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Abstract. We introduce a simple finite difference scheme for the elliptic in-

terface problem. The scheme is symmetric, definite and monotone with second

order accuracy. It is also quite naturally adapted to corner singularities. A

simple adaptive strategy yields competitive performance even in the severe

case of intersecting interfaces.

1. Introduction

In this report, we consider the elliptic interface problem

(1.1) ∇ · (κ(x)∇u(x)) = f(x), x ∈ Ω \ Γ,

where κ(x) > 0 is piecewise smooth but discontinuous across an interface Γ. Accom-
panied with the discontinuity of κ(x) are the following jump conditions prescribed
along Γ:

[u]Γ = a(x), x ∈ Γ,

[κun]Γ = b(x), x ∈ Γ.
(1.2)

Here the jump [·] denotes the difference between the limits from both sides of Γ.
The elliptic interface problem (1.1) arises naturally in many fields of science and

engineering applications. Due to the presence of discontinuity in κ, standard nu-
merical methods for continuous κ usually fail to reach optimal performance. There
are many numerical methods specifically designed for (1.1), (1.2) with discontinuous
κ.

When the interface Γ is smooth, the solution is piecewise smooth [8, 9, 11,

14]. In this case, local Taylor expansion is valid on either side of the interface
Γ. In [12], LeVeque and Li devised a second order finite difference scheme on
uniform Cartesian grids by matching the interface conditions (1.2) with local Taylor
expansion to very high order. In contrast, Liu et al. [15] proposed a simple first
order finite difference scheme also on uniform grids. The corresponding matrix is
symmetric and definite and thus can be solved with standard iterative methods
and preconditioning techniques. In [17], a different finite difference approach was
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proposed. Using a body-fitting curvilinear coordinate system and the covariant
form of (1.1) together with an unusual choice of computational variables, a second
order centered difference scheme was constructed. The interface conditions (1.2)
are incorporated into the discretization and the corresponding stiffness matrix is
symmetric, definite and very easy to generate. Both the numerical solution and the
flux are observed to have second order accuracy.

There are also finite element methods designed specifically for (1.1) and (1.2).
In [1, 2, 5] the elements are constructed by matching element edges with the inter-
face Γ. Various treatments have been proposed to handle the interface conditions
in [1, 2, 5] and an optimal error estimate in the energy norm was given in [5] for
standard linear finite elements. An alternative treatment was proposed by Li et
al. [13]. There the special basis functions satisfying the interface conditions (1.2)
were constructed to span the finite element space, thus no need to enforce them
explicitly in the Galerkin approximation.

When the interface contains a corner or crosses itself, the solution is potentially
singular [10]. In this case, local mesh refinement near the corner is necessary to
obtain reasonable accuracy. It is shown in [16] and [4] that if the error estimator
is properly chosen, one can efficiently distribute the grids and get near optimal
performance.

In the special case where the interface are straight lines and f is locally self-
similar, Han [6] and Yin [18] proposed an infinite element method for singular
elliptic interface problems. Utilizing the self-similarity of the solution and the
elements, the infinite stiffness matrix can be generated by a transition matrix which
acts on neighboring layers of nested elements. Thus the computational cost is
effectively reduced. However, this method does not seem to be applicable to curved
interfaces.

In this paper, we report an improved version of the jump condition captur-
ing scheme described in [17]. With elaborations on mixing discretizations from
different coordinate directions, the corresponding matrix is constructed with built-
in symmetry, definiteness and monotonicity (M-matrix). Moreover, we find the
scheme quite natural for corner singularities. With a deformed local polar coordi-
nate system and an adaptive stretching of the radial variable, our scheme is capable
of resolving the corner singularity to satisfaction. The adaptive procedure is very
simple and the result is comparable to those obtained by adaptive mesh refinement
based on a posteriori error estimates proposed in [5, 16].

The rest of this paper is organized as follows. In section 2, we describe the
covariant form of the elliptic interface problem in general curvilinear coordinate
systems and the numerical discretization of the metric tensors in the standard
coordinate and the “skewed” coordinate. In section 3, we introduce a symmetry
preserving averaging procedure that mixes the two different schemes from two sets
of coordinates. We also obtain a sufficient condition on grid skewness such that
a monotone discretization of (1.1) can be so obtained. In section 4, we show how
to incorporate the interface conditions (1.2) into the monotone discretization and
finally in section 5, we report the numerical result of a singular problem with self-
crossing interfaces using our scheme.
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Figure 1: The curvilinear coordinate and the skewed coordinate.

2. Curvilinear Coordinate and Metric Tensors

For simplicity of presentation, we first assume that a physical domain R can be
mapped smoothly from a rectangular computational domain with κ and the exact
solution to (1.1) being smooth in R. The general case is described in Section 4.

In a general curvilinear coordinate system, (1.1) can be written as:

(2.1) ∇ · (κ∇u) =
1√
g
∂α(κ

√
ggαβ∂βu) = f

or the symmetrized form:

(2.2) ∂α(κ
√

ggαβ∂βu) =
√

g f

where summation convention is adopted and ∂α denotes the partial derivative with
respect to ξα. The metric tensors in (2.2) are defined by

gαβ :=
〈
∇ξα , ∇ξβ

〉
,(2.3)

gαβ :=

〈
∂x

∂ξα
,

∂x

∂ξβ

〉
,(2.4)

g := det( gαβ ),(2.5)

√
g = det

(
∂x

∂ξ

)
,(2.6)

gαλ gλβ = δα
β .(2.7)

Equation (2.2) is valid in any coordinate system. Instead of discretizing (2.2)
in the ξ variables directly, it turns out to be easier to construct a symmetric and
definite discretization for (1.1) in the skewed direction [17]. In other words, we
define

(2.8) η1 :=
ξ1h2 + ξ2h1

`
, η2 :=

ξ2h1 − ξ1h2

`
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where ` :=
√

h2
1 + h2

2, and

h := ∆η1 = ∆η2 =
2h1h2

`
.

The interface problem (1.1) can be written in the η coordinates as

(2.9) ∂̂µ(κ
√

ĝĝµν ∂̂νu) =
√

ĝ f

where ∂̂µ is the partial derivative with respect to ηµ and ĝµν , ĝµν , and ĝ are defined
as (2.3)-(2.7) with ξα replaced by ηµ.

A second order approximation of the metric tensors for the η variables can be
conveniently computed from xij via centered difference:

((ĝ11)h)i+ 1
2
,j+ 1

2

:=

〈
xi+1,j+1 − xi,j

h
,

xi+1,j+1 − xi,j

h

〉
,

((ĝ22)h)i+ 1
2
,j+ 1

2

:=

〈
xi,j+1 − xi+1,j

h
,

xi,j+1 − xi+1,j

h

〉
,

((ĝ12)h)i+ 1
2
,j+ 1

2

= ((ĝ21)h)i+ 1
2
,j+ 1

2

:=

〈
xi+1,j+1 − xi,j

h
,

xi,j+1 − xi+1,j

h

〉
,

ĝµλ
h (ĝλν)h = δµ

ν .

The discretization of (2.9) is then given by

(2.10) (L̂(κ)u)i,j := D̂µ(κ
√

ĝhĝµν
h D̂νu)i,j ,

where

(D̂1u)i,j =
ui+ 1

2
,j+ 1

2
− ui− 1

2
,j− 1

2

h
, (D̂2u)i,j =

ui− 1
2
,j+ 1

2
− ui+ 1

2
,j− 1

2

h
,

and the indices (i, j) refer to the ξ variables, not η.
Since

(2.11)
∑

i

ψi(Dφ)i = −
∑

i

(Dψ)i− 1
2
φi− 1

2
,

we have ∑

i,j

ψi,j(L̂φ)i,j =
∑

i,j

ψi,jD̂µ(κ
√

ĝhĝµν
h D̂νφ)i,j

= −
∑

i,j

κ
√

ĝhĝµν
h (D̂µψ)(D̂νφ)i+ 1

2
,j+ 1

2
=

∑

i,j

(L̂ψ)i,jφi,j

(2.12)

and

−
∑

i,j

φi,j(L̂φ)i,j = −
∑

i,j

φi,jD̂µ(κ
√

ĝhĝµν
h D̂νφ)i,j

=
∑

i,j

κ
√

ĝhĝµν
h (D̂µφ)(D̂νφ)i+ 1

2
,j+ 1

2
≥ 0.

(2.13)

where for simplicity of presentation, we have ignored the boundary terms in (2.11),

(2.12) and (2.13). It follows that L̂(κ) is symmetric and (non-positive) definite.
The discretization of (2.2) in the ξα variables is more complicated. It is given

by [7]

L(κ) = L11(κ) + L21(κ) + L12(κ) + L22(κ),
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where

(
L11(κ)u

)
i,j

:=
(
D1(A2(κ

√
ghg11

h )D1u)
)

i,j

(
L12(κ)u

)
i,j

:=
(
D1A2(κ

√
ghg12

h A1D2u)
)

i,j

(
L21(κ)u

)
i,j

:=
(
D2A1(κ

√
ghg21

h A2D1u)
)

i,j

(
L22(κ)u

)
i,j

:=
(
D2(A1(κ

√
ghg22

h )D2u)
)

i,j

(2.14)

with

(D1u)i,j :=
ui+ 1

2
,j − ui− 1

2
,j

h1
, (D2u)i,j :=

ui,j+ 1
2
− ui,j− 1

2

h2
,

and

(A1u)i,j :=
ui+ 1

2
,j + ui− 1

2
,j

2
, (A2u)i,j :=

ui,j+ 1
2

+ ui,j− 1
2

2
.

In (2.14), we find it convenient to evaluate the numerical metric tensors by way
of

(g11
h )i+ 1

2
,j+ 1

2
:=

`2

4h2
2

(
ĝ11

h + ĝ22
h − 2ĝ12

h

)
i+ 1

2
,j+ 1

2

,

(g22
h )i+ 1

2
,j+ 1

2
:=

`2

4h2
1

(
ĝ11

h + ĝ22
h + 2ĝ12

h

)
i+ 1

2
,j+ 1

2

,

(g12
h )i+ 1

2
,j+ 1

2
= (g21

h )i+ 1
2
,j+ 1

2
:=

`2

4h1h2

(
ĝ11

h − ĝ22
h

)
i+ 1

2
,j+ 1

2

√
gh :=m−1

√
ĝh where m := (2h1h2)

−1`2.

(2.15)

The continuum analogue of (2.15) can be derived easily from (2.3)-(2.6) and (2.8).
The discretization (2.14) is deliberately constructed with built-in symmetry

and non-positivity. Indeed, from (2.11) and the following identity

(2.16)
∑

i

ψi(Aφ)i =
∑

i

(Aψ)i− 1
2
φi− 1

2

we can derive

−
∑

φi,j (L(κ)φ)i,j

= −
∑

φi,j

(
D1(A2(κ

√
ghg11

h )D1φ)
)

i,j
−

∑
φi,j

(
D2(A1(κ

√
ghg22

h )D2φ)
)

i,j

−
∑

φi,j

(
D2A1(κ

√
ghg21

h A2D1φ)
)

i,j
−

∑
φi,j

(
D1A2(κ

√
ghg12

h A1D2φ)
)

i,j

=
∑ (

A2(κ
√

ghg11
h )(D1φ)2

)

i+ 1
2
,j

+
∑ (

A1(κ
√

ghg22
h )(D2φ)2

)

i,j+ 1
2

+ 2
∑ (

κ
√

ghg12
h (A1D2φ) (A2D1φ)

)

i+ 1
2
,j+ 1

2

,

(2.17)
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where for simplicity, we have again ignored boundary terms in (2.16)-(2.17). More-
over,

2

∣∣∣∣
∑ (

κ
√

ghg12
h (A1D2φ) (A2D1φ)

)

i+ 1
2
,j+ 1

2

∣∣∣∣

≤
∑ (

κ
√

ghg11
h (A2D1φ)

)2

i+ 1
2
,j+ 1

2

+
∑ (

κ
√

ghg22
h (A1D2φ)

)2

i+ 1
2
,j+ 1

2

≤
∑ (

κ
√

ghg11
h A2(D1φ)2

)

i+ 1
2
,j+ 1

2

+
∑ (

κ
√

ghg22
h A1(D2φ)2

)

i+ 1
2
,j+ 1

2

=
∑ (

A2(κ
√

ghg11
h )(D1φ)2

)

i+ 1
2
,j

+
∑ (

A1(κ
√

ghg22
h )(D2φ)2

)

i,j+ 1
2

.

(2.18)

therefore we conclude that

−
∑

φi,j (L(κ)φ)i,j ≥ 0,

A similar calculation as in (2.12) also leads to
∑

i,j

ψi,j(L(κ)φ)i,j =
∑

i,j

(L(κ)ψ)i,jφi,j .

Thus L(κ) is symmetric and definite.

3. Symmetry Preserving Average and Monotonicity

Both L̂ and L are of the form
i+1∑

k=i−1

j+1∑

l=j−1

ak,luk,l with

i+1∑

k=i−1

j+1∑

l=j−1

ak,l = 0.

Such an operator is monotone provided ai,j < 0 and ak,l ≥ 0 for (k, l) 6= (i, j). It is

easy to see that neither L̂ nor L is monotone. However, each has a favored direction
in which the coefficients has the preferred sign. Motivated by this, we define the
following symmetrically averaged operator with an auxiliary weight function w
defined on the cell centers as free parameters:

Mu :=L̂(wκ)u + mL((1 − w)κ)u

=D̂µ(wκ
√

ĝhĝµν
h D̂νu)

+ mD1

(
A2

(
(1 − w)κ

√
ghg11

h

)
D1u

)
+ mD2

(
A1

(
(1 − w)κ

√
ghg22

h

)
D2u

)

+ mD2A1

(
(1 − w)κ

√
ghg21

h A2D1u
)

+ mD1A2

(
(1 − w)κ

√
ghg12

h A1D2u
)
.

(3.1)

It follows that if ue is the exact solution of (1.1) and w sufficiently smooth, we have

L̂(wκ)ue + mL((1 − w)κ)ue

=
√

ĝ∇ · (wκ∇ue) + m
√

g∇ ·
(
(1 − w)κ∇ue

)
+ O(h2)

=
√

ĝ
(
w + (1 − w)

)
∇ · (κ∇ue) +

√
ĝ
(
∇w + ∇(1 − w)

)
· κ∇ue + O(h2)

=
√

ĝf + O(h2).

(3.2)

Therefore M is consistent with
√

ĝh∇ · (κ∇u) to second order. One can also show

similarly that wL̂(κ)ue + (1−w)mL(κ)ue =
√

ĝf + O(h2). However, the operator
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Figure 2: non-overlapping quadrilateral decomposition of Ω.

wL̂(κ) + (1 − w)mL(κ) is no longer symmetric for non-constant weight functions
w.

For the symmetrically averaged operator M, we have the following equivalent
condition for monotonicity of M [7]:

Theorem 1. Define

(3.3) g̃11
h =

h2

h1
g11

h , g̃22
h =

h1

h2
g22

h and g̃12
h = g12

h .

Then there exists a weight function w with 0 ≤ w ≤ 1 such that M is monotone if

(3.4)
∣∣∣(g̃12

h )i+ 1
2
,j+ 1

2

∣∣∣ ≤ min
{

(g̃11
h )i+ 1

2
,j+ 1

2
, (g̃22

h )i+ 1
2
,j+ 1

2

}

for all i, j.

When (3.4) holds, a symmetric, definite and monotone discretization of (2.2)
is thus given by

(3.5) Mu =
√

ĝh f

with the corresponding weight function w.

4. Capturing the Jump Conditions on the Interface

For general domains with κ discontinuous across an interface Γ, we can decom-
pose the domain into non-overlapping quadrilateral sub-domains with the material
interface Γ aligned with coordinate lines. An example is given in figure 2. When
Γ is smooth and not self-crossing, we may assume, without loss of generality, that
κ and gαβ are piecewise smooth and may be discontinuous across the material in-
terface Γ and/or coordinate interfaces. Since all the derivatives are approximated
by centered differences, the local truncation error is therefore is O(h2) within each
sub-domain except on Γ.

We now proceed to show that (3.5) can be generalized to material/coordinate
interfaces. The symmetry, non-positivity and monotonicity remain and the local
truncation error is O(h) on the interfaces. Suppose the interface is aligned with
a coordinate surface ξ1 = constant, or i = i0. For simplicity of presentation, we
assume [u] = 0 across Γ. The general case can be similarly derived with slight



8 YIN-LIANG HUANG AND WEI-CHENG WANG

modification. We collect the “right” part of L, which are terms in L involving the
quantities defined on (i + 1

2 , j + 1
2 ) and (i + 1

2 , j − 1
2 ) and name the corresponding

portion LR(κ). In other words,

(
LR(κ)u

)
i,j

= (A) + (B) + (C)

where

(A) :=
(
κ
√

ghg12
h

)
i+ 1

2
,j+ 1

2

(
ui+1,j+1 − ui,j

2h1h2

)
+

(
κ
√

ghg12
h

)
i+ 1

2
,j− 1

2

(
ui,j − ui+1,j−1

2h1h2

)
,

(B) :=
1

2h1

(
(
κ
√

ghg11
h

)
i+ 1

2
,j+ 1

2

+
(
κ
√

ghg11
h

)
i+ 1

2
,j− 1

2

)(
ui+1,j − ui,j

h1

)
,

(C) :=
(
κ
√

ghg22
h

)
i+ 1

2
,j+ 1

2

(
ui,j+1 − ui,j

2 (h2)2

)
−

(
κ
√

ghg22
h

)
i+ 1

2
,j− 1

2

(
ui,j − ui,j−1

2 (h2)2

)
.

For a piecewise smooth function u, (A)-(C) can be written as

(A) =
h

2h1h2

(
κ
√

gg12∂̂1u
)

i+ 1
2
,j+ 1

2

+
h

2h1h2

(
κ
√

gg12∂̂2u
)

i+ 1
2
,j− 1

2

+ O(h),

(B) =
1

h1

(
κ
√

gg11∂1u
)
i+ 1

2
,j

+ O(h),

(C) =
1

2h2

((
κ
√

gg22 +
h1

2
∂1

(
κ
√

gg22
))

∂2u

)

i+,j+ 1
2

− 1

2h2

((
κ
√

gg22 +
h1

2
∂1

(
κ
√

gg22
))

∂2u

)

i+,j− 1
2

+ O(h).

Since

∂̂1u =
`

2h2
∂1u +

`

2h1
∂2u and ∂̂2u =

−`

2h2
∂1u +

`

2h1
∂2u,

we have

(A) =
h

2h1h2

((
κ
√

gg12
)
∂1u · `

2h2
+

(
κ
√

gg12
)
∂2u · `

2h1

)

i+ 1
2
,j+ 1

2

+
h

2h1h2

(
−

(
κ
√

gg12
)
∂1u · `

2h2
+

(
κ
√

gg12
)
∂2u · `

2h1

)

i+ 1
2
,j− 1

2

+ O(h).

Next we expand these terms around (i + 1
2 , j) and combine (A) with (B) to get

(A) + (B) =
1

2
∂2

(
κ
√

gg12∂1u
)
i+ 1

2
,j

+
1

h1

(
κ
√

gg12∂2u
)
i+ 1

2
,j

+
1

h1

(
κ
√

gg11∂1u
)
i+ 1

2
,j

+ O(h)

=
1

2
∂2

(
κ
√

gg12∂1u
)
i+,j

+
1

h1

(
κ
√

gg12∂2u
)
i+,j

+
1

2
∂1

(
κ
√

gg12∂2u
)
i+,j

+
1

h1

(
κ
√

gg11∂1u
)
i+,j

+
1

2
∂1

(
κ
√

gg11∂1u
)
i+,j

+ O(h).
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Expanding (C) around (i+, j) gives

(C) =
1

2h2

((
κ
√

gg22 +
h1

2
∂1

(
κ
√

gg22
))

∂2u

)

i+,j+ 1
2

− 1

2h2

((
κ
√

gg22 +
h1

2
∂1

(
κ
√

gg22
))

∂2u

)

i+,j− 1
2

+ O(h)

=
1

2
∂2

(
κ
√

gg22∂2u
)
i+,j

+ O(h).

If ue is the exact solution of (2.2),

(4.1) (LR(κ)ue)i,j =

( |∇ξ1|√g

h1
(κue

n)

)

i+,j

+
(
√

gf)i+,j

2
+ O(h).

Moreover,
∣∣∇ξ1

∣∣√g =
√

g11 · √g =

√
g22

g
· √g =

√
g22

is continuous across the interface, therefore

(4.2) (LR(κ)ue)i,j =

(√
g22

h1
(κue

n)

)

i+,j

+
(
√

gf)i+,j

2
+ O(h).

Similarly, we can define LL(κ) and conclude that

(4.3) (LL(κ)ue)i,j =

(−√
g22

h1
(κue

n)

)

i−,j

+
(
√

gf)i−,j

2
+ O(h).

Therefore

(L(κ)ue)i,j = (LL(κ)ue)i,j + (LR(κ)ue)i,j

=

(√
g22

h1
[κue

n]

)

i,j

+
(
√

gf)i+,j + (
√

gf)i−,j

2
+ O(h)

on Γ. On a coordinate interface, we simply replace [κue
n] by 0. Similarly, we have

(L̂(κ)ue)i,j =

(
m
√

g22

h1
[κue

n]

)

i,j

+
(
√

ĝf)i+,j + (
√

ĝf)i−,j

2
+ O(h)

on the interface. Using a similar argument as in (3.2), we can derive

(M(κ)ue)i,j = L̂(wκ)(u) + mL((1 − w)κ)(u)

=

(
m
√

g22

h1
[κue

n]

)

i,j

+
(
√

ĝf)i+,j + (
√

ĝf)i−,j

2
+ O(h)

on the interface. Overall the monotone jump condition capturing scheme is given
by

(M(κ)u)i,j =(4.4)





(
m

√
(g22)h

h1

[
κun

]
)

i,j

+
(
√

ĝhf)i+,j + (
√

ĝhf)i−,j

2
(i, j) on an interface,

(
√

ĝhf)i,j otherwise.
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Thus M is monotone with local truncation error O(h) on the interface and
O(h2) elsewhere. From the classical pointwise estimate of discrete Green’s function
[3] and the discrete maximum principle, we have the following error estimate:

Corollary 1. If the exact solution ue is piecewise smooth on each region

separated by Γ, then

|ue − uh|i,j ≤ Ch2 log h.

We remark here that (4.2)-(4.3) and the corresponding counter part for L̂ can
be used to reconstruct the numerical flux:

(4.5) (κuh
n)i+,j :=

h1

m
(√

(g22)h

)
i,j

((
MRuh

)

i,j
− (

√
ĝhf)i+,j

2

)

and

(4.6) (κuh
n)i−,j :=

−h1

m
(√

(g22)h

)
i,j

((
MLuh

)

i,j
− (

√
ĝhf)i−,j

2

)
.

The reconstructed numerical flux satisfies the interface condition exactly:

[κuh
n]i,j =

h1

m
(√

(g22)h

)
i,j

((
Muh

)

i,j
− (

√
ĝhf)i+,j + (

√
ĝhf)i−,j

2

)
= [κun]i,j .

We have done extensive numerical simulations and observed that for piecewise
smooth solutions, the reconstructed numerical flux is pointwise second order accu-
rate [7].

5. Resolving the Point Singularity

When the interface contains a corner or is self-intersecting, the solution may
develop singularity. Following is a well known example where the exact solution is
barely in H1 [10]. In this example, the interface is given by θ = 0, π/2, π and 3π/2
in the polar coordinate. The diffusion coefficient is piecewise constant. It takes the
value κ+ in the first and third quadrants, and κ− = 1 in the second and fourth
quadrants.

An exact solution of (1.1) with

(5.1) f = 0, [u] = [κun] = 0

is given by v1(r, θ) = rγυ(θ), where

υ(θ) =





cos((π/2 − σ)γ) · cos((θ − π/2 + τ)γ) if 0 ≤ θ ≤ π/2,

cos(τγ) · cos((θ − π + σ)γ) if π/2 ≤ θ ≤ π,

cos(σγ) · cos((θ − π − τ)γ) if π ≤ θ ≤ 3π/2,

cos((π/2 − τ)γ) · cos((θ − 3π/2 − σ)γ) if 3π/2 ≤ θ ≤ 2π,
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and the parameters γ, τ , σ, κ+ are related to each other through the following
relations

(5.2)





κ+ = − tan((π/2 − σ)γ) · cot(τγ),

1/κ+ = − tan(τγ) · cot(σγ),

κ+ = − tan(σγ) · cot((π/2 − τ)γ),

0 < γ < 2,

max(0, πγ − π) < 2γτ < min(πγ, π),

max(0, π − πγ) < −2γσ < min(π, 2π − πγ).

The function v1 is in H1+δ(Ω) with δ < γ and thus is very singular for small
parameter γ. For example, when γ = 0.1, the corresponding parameters are given
by [16]

(5.3) κ+ ≈ 161.4476387975881, τ = π/4, σ ≈ −14.92256510455152.

The singularity is located at the origin r = 0 and polar coordinates is suitable
for this problem. To avoid taking advantages from orthogonal coordinates and
self-similarity of the solution, we add to the exact solution v1 a regular part

v2(r, θ) =

{
0.08 r2 sin(2θ)/κ+ if 0 ≤ θ ≤ π/2 or π ≤ θ ≤ 3π/2,

0.08 r2 sin(2θ) if π/2 ≤ θ ≤ π or 3π/2 ≤ θ ≤ 2π.

and map the domain conformally to produce curved interfaces (Figure 3):

(5.4) X +
√
−1Y =

a (x +
√
−1y)

1 + 0.02 a (x +
√
−1y)

, where a =
1 +

√
−1√

2
.

The exact solution is given by

(5.5) u(X,Y ) := (v1 + v2)(r(X,Y ), θ(X,Y )),

where r(X,Y ) and θ(X,Y ) can be explicitly calculated from (5.4) and

x = r cos θ, y = r sin θ.

In the physical domain, we also define the standard polar coordinate (R,Θ)

X = R cos Θ, Y = R sin Θ.

Since the mapping (5.4) is conformal, it is easy to verify that (5.5) is also an
exact solution to (1.1) and (5.1). The exact solution (5.5) is depicted in Figure 4.

The construction of a body fitting coordinate system is in general quite flexible.
Here we describe a convenient way of constructing such a local coordinate system
for a generic point singularity in 2D. Since the singularity is concentrated at the
origin, it is therefore plausible to resolve the singularity by stretching in the radial
direction. To be more precise, we denote by (ξ1, ξ2) = (ρ, φ) the computational
variables, with ρi = i∆ρ = i/N , φj = j∆φ = 2πj/Nφ, 0 ≤ i ≤ N , 0 ≤ j ≤ Nφ.
The coordinate lines ρ = constant are mapped to R = constant with the function
R = R(ρ) to be specified below.

As for the φ variable, we first map the four coordinate lines φ = 0, π/2, π, 3π/2
(corresponding to j = 0, Nφ/4, Nφ/2 and 3Nφ/4) to the four segments of Γ, Θ =
Θ0(R),Θ1(R),Θ2(R) and Θ3(R) respectively. The functions Θl(R) defining the
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Figure 3: The physical domain and the curved interfaces.
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Figure 4: The surface plot of the exact solution.

interface Γ are assumed to have been explicitly given. Next we map other coordinate
lines φ = constant by equipartition in the Θ direction. For example,

Θ(ρ, φj) = Θ0(R(ρ)) + j

(
Θ1(R(ρ)) − Θ0(R(ρ))

Nφ/4

)
,

for 0 < j < Nφ/4 and so on.
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In order to resolve the singularity, we start with uniform mesh R
(0)
i = ρi and

iteratively compute the radial variable R = R(k)(ρ) by

(5.6)

Dρ

(
W (k)DρR

(k+1)
)

= 0, where W
(k)
i+1/2 = max

j





√
h2

1 +
(
u

(k)
i+1,j − u

(k)
i,j

)2

R
(k)
i+1 − R

(k)
i





,

with R
(k)
0 = 0 and R

(k)
N = 1 held fixed.

In (5.6), u(k) is the numerical solution computed from kth iterated grids and
(5.6) is iterated till R(k) converges. This is the classical equi-arclength distribution
in the radial direction.

The final distribution of {Ri} is depicted in Figure 5 and 6. Note that we did
not use explicit information about the order of singularity γ and the singularity has
been well resolved automatically by this simple grid distribution strategy.
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Figure 5: The resulted distribution of grid points {Ri} in the radial direction.

Table 1: Relative errors (‖ue − uh‖L∞/‖ue‖L∞) and order of accuracy in uh.

N × Nφ ‖ue − uh‖L∞/‖ue‖L∞ Order

16 × 48 3.0110E − 3 —–
32 × 96 7.3793E − 4 2.02
64 × 192 1.8481E − 4 2.00

128 × 384 4.6236E − 5 2.00
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