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Abstract. We propose a simple finite difference scheme for Navier-Stokes equations in primitive formulation on curvilin-
ear domains. With proper boundary treatment and interplay between covariant and contra-variant components, the spatial
discretization admits exact Hodge decomposition and energy identity. As a result, the pressure can be decoupled from the
momentum equation with explicit time stepping. No artificial pressure boundary condition is needed. In addition, it can be
shown that this spatially compatible discretization leads to uniform inf-sup condition, which plays a crucial role in the pressure
approximation of both dynamic and steady state calculations. Numerical experiments demonstrate the robustness and efficiency
of our scheme.

1. Introduction. In the numerical computation of the Navier-Stokes equation

ut + (u · ∇)u + ∇p = ν∇2u+ f in Ω(1.1)

∇ · u = 0 in Ω(1.2)

u = 0 on Γ(1.3)

one of the key issue is the proper implementation of boundary conditions. Since the pressure p is not described
by an evolutionary equation, one could instead, treat it as a Lagrangian multiplier to enforce the discrete
divergence free constraint. To realize it in discrete setting, the discrete gradient, curl and divergence operators
are required to satisfy certain compatibility conditions so that the the discrete Hodge decomposition can be
performed exactly and efficiently. This is key to decoupling the pressure from the momentum equation and
efficiency of the scheme for time dependent problems. In this approach, the pressure is no longer solved via
an elliptic PDE and there is no boundary condition involved for the pressure. The classical Mark-And-Cell
(MAC) scheme [Le, DHSW, HW] can be interpreted as a typical example of this approach [An].

Inspired by the classical MAC scheme, we propose here a generalized MAC (GMAC) scheme on curvi-
linear coordinate that preserves the desired properties. This is done by careful construction of appropriate
2nd order finite difference operators such that the differential identities such as

(1.4) curl ◦ grad ≡ 0, div ◦ curl ≡ 0

remain valid in the discrete setting. In particular, the discrete Hodge decomposition for vector fields can
be performed exactly and the corresponding linear system for the pressure is symmetric and semi-definite.
No pressure boundary condition is needed. The scheme is finite difference in nature and easy to imple-
ment on curvilinear domains with simple geometry. Overall, the resulting scheme is robust and efficient as
demonstrated by our numerical examples.

The exact Hodge decomposition also leads to a very simple error analysis for the velocity field [HLW].
Rigorous error analysis for the classical MAC scheme was first obtained in [HoW] and for MAC-like schemes
on Cartesian grids in [We]. The proof in [HoW, We] is based on high order Strang’s expansion. In contrast,
the argument in [HLW] explores on the special structure of the spatial discretization and makes use of both
the stream function and the discrete analogue of the differential identities (1.4). As a result, an optimal
O(h2) error estimate is obtained provided the exact velocity is in C4 and pressure in C3. This may be the
minimal regularity requirement in finite difference setting.
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In addition to exact discrete Hodge decomposition, compatibility among spatial discretizations is closely
related to the pressure error. The heart of this matter is widely known as the inf-sup condition or Ladyzhenskaya-
Babuška-Brezzi (LBB) condition (see (3.74) below). Spatial discretizations that do not satisfy the inf-sup
condition usually result in degradation of the accuracy in pressure. This is well documented for steady state
([BS]) and dynamic calculations (see for example [We]). A well known example is the Q1 − P0 element,
with LBB constant βh = O(h), ([BN]). In contrast, GMAC is staggered and supported the same way as the
Q1 − P0 element (and a few other finite difference schemes that fail to satisfy the inf-sup condition), except
GMAC results in a different 9-point differencing formula for the viscous term. Nevertheless, it can be shown
([HLW]) that GMAC admits uniform LBB estimate with an O(1) lower bound for smooth grids in 2D. We
also give strong numerical evidence for this assertion. See section 3.5 and section 4 for details.

Related works on finite difference and finite volume methods on mapped grids include those designed
for NSE in primitive variables on non-staggered or fully staggered curvilinear grids [ZSK, GeS, LB, TC].
See also [NC, CDHM, Ar, ArL, LWa, HS] for numerical methods in curvilinear coordinates on NSE with
vorticity-stream formulation, convection-diffusion equation, and other linear equations. In addition, a vast
amount of research works have contributed to the development of computational incompressible flows in many
aspects. For example, parallel implementation on large scale simulation [OOB, KK], adaptive refinement
techniques [ABCHW, RBLCB], fast iterative methods [ESW], multigrid methods [BHM, TOS] and domain
decomposition [TW]. For an overview on recent development in CFD, see for example [DFM, GS, KS, FP]
and the references therein.

The rest of the paper is organized as follows. In section 2, we review the classical MAC scheme, the
boundary treatment and discrete Hodge decomposition. In section 3, we describe our generalized MAC
scheme (GMAC) in curvilinear coordinates. The velocity components are located on the same location
for convenience in both programming and applications. Representation of the Navier Stokes equation in a
‘skewed’ local coordinate leads to a natural discretization that gives rise to desired crucial discrete identities.
One of the key issue here is to incorporate the boundary conditions into the finite difference operators so
that exact summation by parts identity holds. The key properties of MAC scheme and exact discrete Hodge
decomposition mentioned above is retained here even for the non-homogeneous boundary conditions. The
3D version of our scheme, as well as possible variants are documented in the appendix. Finally, we perform
a systematic numerical test and report the results in section 4.

2. Classical MAC Scheme, Energy Identity and Hodge Decomposition. In this section, we
review the classical MAC scheme and fundamental discrete identities associated with it. We first recall the
essential ingredients that lead to the energy estimate and the well-posedness of the Navier-Stokes equation
(1.1-1.3). Take the inner product with u on both sides of (1.1) and then integrate over Ω using the following
facts,

〈u,∇p〉 = −〈∇ · u, p〉,(2.1)

The vector Laplacian ∇2 is symmetric and non-positive,(2.2)

〈N(u),u〉 = 0,(2.3)

where N(u) = u · ∇u and 〈u,v〉 =

∫

Ω

u · v dx. It is easy to obtain the basic energy estimate (for f ≡ 0):

(2.4)
1

2

d

dt
‖u‖2 + ν‖∇u‖2 = 0.

It is therefore desirable if a numerical scheme can preserve discrete analogue of (2.1-2.3) and therefore
guarantee the stability of the scheme. A well known example satisfying (2.1, 2.2) is the classical Mark-
and-Cell (MAC) scheme [Le, DHSW, HW], where the pressure and the components of the velocity field
are placed on staggered grids in such a way that 2nd order centered difference, divergence free constraint
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and no-slip, no-penetration boundary conditions all fit naturally and elegantly with the placement of the
variables (Figure 2.1).

Fig. 2.1. The MAC grid.

The fully discrete MAC scheme with explicit treatment for the viscous term is given by:

(2.5)






un+1 − un

∆t
+Nh(un) + ∇hp

n+1 = ν∇2
hu

n + fn on ‘→ ’ and ‘ ↑ ’,

∇h · un+1 = 0 on ‘ • ’,

un+1 = 0 on Γ.

The MAC scheme (2.5) is to be completed with extensions on the ghost points outside the computational
domain (for example, on the left of i = 0),

(2.6) v− 1
2 ,j , p− 1

2 ,j− 1
2
.

The ghost values in (2.6) are needed to enforce the tangential component of no-slip boundary condition, to
evaluate the viscous term and nonlinear term near the boundary, and to impose artificial pressure boundary
condition, which is the central issue in pressure Poisson formulation and the key to decoupling the pressure
from the momentum equation.

Alternatively, the staggered placement of the variables offers an equivalent interpretation of (2.5) without
resorting to the ghost values and artificial pressure boundary condition. This is realized by introducing the
‘reduced’ operator (c.f. Anderson [An]) that retains a fraction of the original finite difference operators and
incorporates the no-slip condition on the boundary grids.

Using the reduced operators (denoted as primed operators), one can recast (2.5) as

(2.7)






un+1 − un

∆t
+Nh(un) + ∇′

hp
n+1 = ν∇2

h
′un + fn on ‘→ ’ and ‘ ↑ ’,

∇′
h · un+1 = 0 on ‘ • ’,

Note that in (2.7), the system in self-contained. The ghost values (2.6) are no longer needed. One can
therefore identify the pressure gradient as discrete Hodge projection of the acceleration terms onto the
orthogonal complement of the divergence free subspace,

(2.8)
un+1

∆t
+ ∇′

hp
n+1 =

un

∆t
−Nh(un) + ν∇2

h
′un + fn, ∇′

h · un+1 = 0.
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Moreover, the pressure can be easily decoupled from (2.8). No artificial pressure boundary condition is
needed (the curvilinear analogue of the reduced operators and aforementioned properties will be explained
in section 3.2 and therefore not detailed here). The resulting scheme is robust and efficient. However, the
restriction of Cartesian grids have limited the applicability and popularity of the MAC scheme. In addition,
issues of high order time discretization and cell Reynolds number constraint have raised controversy and were
not fully understood until the 90’s [EL]. In (2.5), we have illustrated these issues using first order forward
Euler discretization. Proper high order time-discretization and its connection with the cell Reynolds number
can be found in [EL].

Motivated by the success of the MAC scheme, we propose in this work a second order finite difference
scheme for Navier-Stokes equation on curvilinear domains. The velocity field and pressure are placed on cell
centers and grid points respectively. With a set of ‘skewed’ coordinates, the Navier-Stokes equation can be
discretized naturally in such a way that the discrete analogue of (2.1-2.3) remain valid. As a consequence,
the resulting scheme admits a discrete energy estimate. In addition, the scheme also preserves the vector
identities (1.4) in discrete settings. This is key to discrete Hodge decomposition and plays an essential role
in the efficiency, as well as rigorous error analysis of our scheme.

Another appealing feature of the MAC scheme is about the following generalized Stokes system (α ≥ 0):

(2.9)

{
(α−∇2

h
′)u+ ∇′

hp = f on ‘→ ’ and ‘ ↑ ’,

∇′
h · u = 0 on ‘ • ’,

Equation (2.9) arises naturally from steady state calculation or partially implicit time stepping for the
Navier-Stokes equation on MAC grid. The solvability of (2.9) and uniform bound of the solution operator
are direct consequences of the LBB condition. The verification of the LBB condition is vital to pressure
error estimate for both static and dynamic problems and is a long-standing open problem for MAC scheme.
In [HWu], the authors constructed a new finite element method for the Stokes system based on three sets
of tessellation of rectangular cells. The resulting scheme combined with quadrature formulas corresponds to
the classical MAC scheme (2.9) equipped with the Orszag-Israeli vorticity boundary condition [OI] (see also
[EL], Table I):

(2.10) u0,j+ 1
2

= 0, v− 1
2 ,j = −2v 1

2 ,j + 1
3v 3

2 ,j ,

and satisfies uniform LBB estimate. This method is later extended to NSE in [HY]. The issue of uniform
LBB estimate for MAC scheme with the original reflection boundary condition, v− 1

2 ,j = −v 1
2 ,j , will be

addressed in a forthcoming paper. An alternative approach for the pressure error estimate on MAC scheme
using high order Strang’s expansion can be found in [HW].

3. Generalized MAC Scheme on Curvilinear Domains. The generalized MAC scheme is based
on discretizing Navier-Stokes equation in rotational form:

(3.1)

ut + ω × u+ ∇p = −ν∇× ω + f
ω = ∇× u in Ω

∇ · u = 0
u = 0 on Γ

On a curvilinear domain, we place all three components of the velocity on cell centers x(ξ1
i+ 1

2

, ξ2
j+ 1

2

, ξ3
k+ 1

2

),

while the pressure and the vorticity components are placed on the grid points x(ξ1i , ξ
2
j , ξ

3
k). Here (ξ1, ξ2, ξ3)

is the coordinate in the computational domain and x is the position vector in physical domain Ω.
In addition to generalization to curvilinear coordinates, GMAC differs from the classical MAC scheme

in the placement of the velocity components. One advantage of placing all three components of velocity at
the same place is that (2.3) can be naturally realized in the discrete setting. Together with other vector
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×

ξ2
= constant

×

ξ2
= constant

ξ2
= constant

ξ2
= constant

×

ξ1
= constant

×

ξ1
= constant

ξ1
= constantξ1

= constant

Fig. 3.1. The computational domain (left) and the physical domain (right).

identities, this ensures the stability of GMAC. More importantly, the resulting discrete Laplacian for p is
self-adjoint and non-positive definite as long as the cells are non-singular, regardless of the regularity of the
grids. See the discussion in section 3.4. For the fully staggered case, where different components of u are
placed on different positions as in the classical MAC case, positivity of the pressure equation on curvilinear
domains may require extra assumption on smoothness of the grids ([BD], p147-150).

For simplicity of presentation, we start with the 2D case:

(3.2)

ut + ωu⊥ + ∇p = ν∇⊥ω + f
ω = ∇⊥ · u in Ω

∇ · u = 0
u = 0 on Γ

The discretization of (3.2) and boundary treatment in curvilinear coordinate will be explained in detail
in following subsections.

3.1. Differential operators in curvilinear coordinate. In the 2D case, x = (x, y) is the position
vector in the physical domain and (ξ1, ξ2) the coordinate in the computational domain with mesh size
∆ξ1 = h1 and ∆ξ2 = h2. We further introduce a new set of coordinates in the skewed direction by

(3.3)
×

ξ1 :=
h2ξ

1 + h1ξ
2

√
h2

1 + h2
2

,
×

ξ2 :=
−h2ξ

1 + h1ξ
2

√
h2

1 + h2
2

.

as illustrated in Figure 3.1.
Once the a local coordinate is chosen, the intrinsic differential operators can be determined following

standard procedure. Through out this paper, we use ‘×’ to emphasis that the corresponding quantities are

computed in the skewed variables
×

ξα. Denote by

(3.4)

×

e1 =
∂x

∂
×

ξ1
,

×

e2 =
∂x

∂
×

ξ2
,

×

e1 = ∇
×

ξ1,
×

e2 = ∇
×

ξ2,

the metric tensors with respect to the skewed coordinate (
×

ξ1,
×

ξ2) is then given by

(3.5)
×

gµν =
×

eµ · ×

eν ,
×

gµν =
×

eµ · ×

eν , µ, ν = 1, 2.

and

(3.6)
×

g := det(
×

gµν).
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The following identities follow immediately from definition:

(3.7)

√
×

g = det

(
∂x

∂
×

ξ

)

(3.8)

2∑

γ=1

×

gµγ×

gγν = δµ
ν .

We use (
×

u1,
×

u2) and (
×

u1,
×

u2) to denote the covariant and contra-variant components of a vector field u in

the
×

ξα coordinate:

u =
×

u1×

e1 +
×

u2×

e2 =
×

u1
×

e1 +
×

u2
×

e2.

The transformation between co-variant and contra-variant components is given by

(3.9)
×

uµ =
2∑

γ=1

×

gµγ ×

uγ ,
×

uν =
2∑

γ=1

×

gγν
×

uγ , µ, ν = 1, 2.

We summarize relevant formulae for (3.2) as follows:

∇p =
∂p

∂
×

ξ1

×

e1 +
∂p

∂
×

ξ2

×

e2,

∇⊥ω =
1√

×

g

(
− ∂ω

∂
×

ξ2

×

e1 +
∂ω

∂
×

ξ1

×

e2

)
,

∇ · u =
1√

×

g

( ∂

∂
×

ξ1

(√
×

g
×

u1
)

+
∂

∂
×

ξ2

(√
×

g
×

u2
))
,

∇2p =∇ · ∇p =
1√

×

g

2∑

µ,ν=1

∂

∂
×

ξµ

(√
×

g
×

gµν ∂p

∂
×

ξν

)
,

u⊥ =

√
×

g(−×

u2×

e1 +
×

u1×

e2) =
1√
×

g

(−×

u2
×

e1 +
×

u1
×

e2),

ω =∇⊥ · u =
1√

×

g

(∂×

u2

∂
×

ξ1
− ∂

×

u1

∂
×

ξ2

)
.

Whenever necessary, the co-variant and contra-variant components can be converted to each other using
(3.9). For example,

∇p =
( ∂p

∂
×

ξ1

×

g11 +
∂p

∂
×

ξ2

×

g21
)

×

e1 +
( ∂p

∂
×

ξ1

×

g12 +
∂p

∂
×

ξ2

×

g22
)

×

e2.

3.2. Spatial Discretization. The choice of the skewed coordinate in motivated by the jump condition
capturing scheme developed for elliptic interface problems [Wa]. It was shown that, using the skewed
coordinate as independent variables, the interface jump conditions can be naturally incorporated into the
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finite difference operator. The resulting scheme is symmetric, definite and second order accurate even when
the diffusion coefficient has a jump continuity across the material interface.

We now give detailed description on the spatial discretization of our scheme, starting with the metric
tensor. In case the coordinate mapping (ξ1, ξ2) 7→ (x, y) is explicitly given, one can compute the metric
tensors from (3.4)-(3.8) and use it in the discretizations (3.30)-(3.36) below. Alternatively, one can also

compute the numerical metric tensors
×

gh
αβ from straightforward centered difference:

(
×

gh
11)i+ 1

2 ,j+ 1
2

:=
xi+1,j+1 − xi,j

×

h
· xi+1,j+1 − xi,j

×

h
,

(
×

gh
22)i+ 1

2 ,j+ 1
2

:=
xi,j+1 − xi+1,j

×

h
· xi,j+1 − xi+1,j

×

h
,

(
×

gh
12)i+ 1

2 ,j+ 1
2

= (
×

gh
21)i+ 1

2 ,j+ 1
2

:=
xi+1,j+1 − xi,j

×

h
· xi,j+1 − xi+1,j

×

h
.

where

(3.10)
×

h :=
2h1h2√
h2

1 + h2
2

= ∆
×

ξ1 = ∆
×

ξ2

is the mesh size in the skewed directions
×

ξ1 and
×

ξ2. Note that the indices i, j refer to the ξ variables, not

the
×

ξ ones.
The numerical contra-variant components (3.8) are defined through analogue of (3.8):

(
×

gαβ
h ) := (

×

gh
µν)−1

that is

2∑

λ=1

×

gµλ
h

×

gh
λν = δµ

ν .

The numerical Jacobian on cell centers and grids are given by

×

ghi+ 1
2 ,j+ 1

2
:= det

(
×

gh
11

×

gh
12

×

gh
21

×

gh
22

)

i+ 1
2 ,j+ 1

2

and
√

×

ghi,j
:=

1

4

(√
×

ghi+ 1
2 ,j+ 1

2

+

√
×

ghi+ 1
2 ,j− 1

2

+

√
×

ghi− 1
2 ,j+ 1

2

+

√
×

ghi− 1
2 ,j− 1

2

)
.

Next, we introduce the discrete grad, div, curl and Laplacian. With the semi-staggered placement of the
variables u, p and ω as in Figure 3.4, it is straight forward to discretize (3.2) using centered difference. The
crucial issue here is the boundary treatment of these operators which plays an essential role in the stability
of our scheme. We define the 1D reduced finite difference operator by

(3.11) (D′b)i :=






b 1
2
−0

1
2h

i = 0
b

i+ 1
2
−b

i− 1
2

h 1 ≤ i ≤M − 1
0−b

M−
1
2

1
2h

i = M
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A direct consequence of the reduced differencing is the exact summation by parts identity as observed
in [An]:

Proposition 1.

(3.12) h

M∑

i=1

bi− 1
2
(Da)i− 1

2
= −h

M∑

i=0

′ai(D
′b)i

where the primed sum denotes half weight on the boundary:

(3.13)

M∑

i=0

′ai =
1

2
a0 +

M−1∑

i=1

ai +
1

2
aM .

We now introduce the following notations

Ωc :=
{
x(ξ1i− 1

2
, ξ2j− 1

2
) | 1 ≤ i ≤M, 1 ≤ j ≤ N

}
(3.14)

Ω̊g :=
{
x(ξ1i , ξ

2
j ) | 1 ≤ i ≤M − 1, 1 ≤ j ≤ N − 1

}
(3.15)

Ω̄g :=
{
x(ξ1i , ξ

2
j ) | 0 ≤ i ≤M, 0 ≤ j ≤ N

}
(3.16)

Γg := Ω̄g \ Ω̊g(3.17)

Γc :=
{
x(ξ1i− 1

2
, ξ2j ) | 1 ≤ i ≤M, j = 0, N

}
∪
{
x(ξ1i , ξ

2
j− 1

2
) | i = 0,M, 1 ≤ j ≤ N

}
(3.18)

Ω̄ge :=
{
x(ξ1i , ξ

2
j ) ∈ Ω̄g | i+ j is even

}
(3.19)

Ω̄go :=
{
x(ξ1i , ξ

2
j ) ∈ Ω̄g | i+ j is odd

}
(3.20)

and denote by L2(Ω̄g,R) the collection of real valued functions on Ω̄g and L2(Ωc,R
2) the vector fields on Ωc:

L2(Ω̄g,R) := {ω : Ω̄g → R}(3.21)

L2(Ωc,R) := {u : Ωc → R}(3.22)

L2(Ωc,R
2) := {u : Ωc → R

2}(3.23)

and

L2(Ω̄g,R)/R2 :=
{
p ∈ L2(Ω̄g,R)

∣∣
∑

Ω̄ge

′(

√
×

ghp)i,j = 0 =
∑

Ω̄go

′(

√
×

ghp)i,j

}
(3.24)

L2
c(Ω̄g,R) := {ψ ∈ L2(Ω̄g,R)

∣∣ψ = constant on each connected component of Γ }(3.25)

In view of Proposition 1, it is natural to define the reduced difference operator in the skewed variables
as

Definition 1.

1. For a ∈ L2(Ω̄g,R),

(3.26) (
×

D1a)i− 1
2 ,j− 1

2
:=

ai,j − ai−1,j−1
×

h
, (

×

D2a)i− 1
2 ,j− 1

2
:=

ai−1,j − ai,j−1
×

h
.
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2. For b ∈ L2(Ωc,R),

(3.27) (
×

D′
1b)i,j :=






bi+ 1
2 ,j+ 1

2
− bi− 1

2 ,j− 1
2

×

h
0 < i < M, 0 < j < N ;

b 1
2 ,j+ 1

2

1
2

×

h
i = 0, 0 < j < N ;

b 1
2 , 1

2

1
4

×

h
(i, j) = (0, 0);

0 (i, j) = (0, N).

(3.28) (
×

D′
2b)i,j :=






bi− 1
2 ,j+ 1

2
− bi+ 1

2 ,j− 1
2

×

h
0 < i < M, 0 < j < N ;

−b 1
2 ,j− 1

2

1
2

×

h
i = 0, 0 < j < N ;

0 (i, j) = (0, 0);
−b 1

2 ,N−
1
2

1
4

×

h
(i, j) = (0, N).

Here in Definition 1 and the rest of the paper, we use the prime to indicate that the reduced difference
is applied on boundary when the standard finite difference requires grid points outside the computational
domain.

The (reduced) finite difference in the
×

ξ variables extends naturally to the discrete grad, div, curl and
Laplacian operators as follows:

Definition 2. For a ∈ L2(Ω̄g,R), we define

(3.29)
×

∇h : L2(Ω̄g,R) 7→ L2(Ωc,R
2),

×

∇ha := (
×

D1a)
×

e1 + (
×

D2a)
×

e2

and

(3.30)
×

∇⊥
h : L2(Ω̄g,R) 7→ L2(Ωc,R

2),
×

∇⊥
h a :=

−
×

D2a√
×

gh

×

e1 +

×

D1a√
×

gh

×

e2.

Definition 3. Let u =
×

u1×

e1 +
×

u2×

e2 ∈ L2(Ωc,R
2). We define

(3.31)
×

∇′
h· : L2(Ωc,R

2) 7→ L2(Ω̄g,R),
×

∇′
h · u =

1√
×

gh

(
×

D′
1

(√
×

gh
×

u1
)

+
×

D′
2

(√
×

gh
×

u2
))

and

(3.32)
×

∇⊥′
h · : L2(Ωc,R

2) 7→ L2(Ω̄g,R),
×

∇⊥′
h · u =

1√
×

gh

(
×

D′
1
×

u2 −
×

D′
2
×

u1).

9



Fig. 3.2. Schematic illustration of �∇′

h · u. Fig. 3.3. Schematic illustration of �∇⊥′

h · u.

The realization of (3.31) and (3.32) on typical interior, boundary and corner points are given by

(3.33) (
×

∇′
h · u)i,j =






1√
×

ghi,j



 (

√
×

gh
×

u1)i+ 1
2 ,j+ 1

2
− (

√
×

gh
×

u1)i− 1
2 ,j− 1

2

×

h

+
(

√
×

gh
×

u2)i− 1
2 ,j+ 1

2
− (

√
×

gh
×

u2)i+ 1
2 ,j− 1

2

×

h



 , 0 < i < M, 0 < j < N ;

2√
×

gh0,j

(

√
×

gh
×

u1) 1
2 ,j+ 1

2
− (

√
×

gh
×

u2) 1
2 ,j− 1

2

×

h
, i = 0, 0 < j < N ;

4√
×

gh0,0

(

√
×

gh
×

u1) 1
2 , 12

×

h
, (i, j) = (0, 0),

and

(3.34) (
×

∇⊥′
h · u)i,j =






1√
×

ghi,j

(
(
×

u2)i+ 1
2 ,j+ 1

2
− (

×

u2)i− 1
2 ,j− 1

2
×

h

−
(
×

u1)i− 1
2 ,j+ 1

2
− (

×

u1)i+ 1
2 ,j− 1

2
×

h

)
, 0 < i < M, 0 < j < N ;

2√
×

gh0,j

(
×

u2) 1
2 ,j+ 1

2
+ (

×

u1) 1
2 ,j− 1

2
×

h
, i = 0, 0 < j < N ;

4√
×

gh0,0

(
×

u2) 1
2 , 1

2
×

h
, (i, j) = (0, 0).

See also Figure 3.2 and Figure 3.3.

Finally, the discrete Laplacian is defined in a similar way (see also [Wa] for the reduced Laplacian in the
skewed variables for elliptic interface problems):
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Definition 4. For a ∈ L2(Ω̄g,R), define

(3.35)
×

△′
h : L2(Ω̄g,R) 7→ L2(Ω̄g,R),

×

△′
ha =

1√
×

gh

2∑

µ,ν=1

×

D
′

µ(

√
×

gh
×

gµν
h

×

Dνa).

That is,
(3.36)

(
×

△′
ha)i,j =






1√
×

ghi,j



 (
×

q11h

×

D1a+
×

q12h

×

D2a)i+ 1
2 ,j+ 1

2
×

h
+

(
×

q21h

×

D1a+
×

q22h

×

D2a)i− 1
2 ,j+ 1

2
×

h

−
(
×

q11h

×

D1a+
×

q12h

×

D2a)i− 1
2 ,j− 1

2
×

h
−

(
×

q21h

×

D1a+
×

q22h

×

D2a)i+ 1
2 ,j− 1

2
×

h



 ,
0 < i < M

0 < j < N
;

2√
×

gh0,j



 (
×

q11h

×

D1a+
×

q12h

×

D2a) 1
2 ,j+ 1

2
×

h
−

(
×

q21h

×

D1a+
×

q22h

×

D2a) 1
2 ,j− 1

2
×

h



 ,
i = 0

0 < j < N
;

4√
×

gh0,0

(
×

q11h

×

D1a+
×

q12h

×

D2a) 1
2 , 1

2
×

h
, (i, j) = (0, 0),

where
×

qαβ
h =

√
×

gh
×

gαβ
h .

We are now ready to state the key Lemma associated with the reduced difference operators. Define the
discrete inner products

〈u , v 〉Ωc = h1h2

M−1∑

i=0

N−1∑

j=0

(
(u · v)

√
gh

)

i+ 1
2 ,j+ 1

2

= h1h2

M−1∑

i=0

N−1∑

j=0

(
(
×

u1
×

v1 +
×

u2
×

v2)
√
gh

)

i+ 1
2 ,j+ 1

2

= h1h2

M−1∑

i=0

N−1∑

j=0

((
×

u1×

v1 +
×

u2×

v2

)√
gh

)

i+ 1
2 ,j+ 1

2

, u, v ∈ L2(Ωc,R
2).

(3.37)

(3.38) 〈 a , b 〉Ω̄g
= h1h2

M∑

i=0

′

N∑

j=0

′

(
a b

√
gh

)

i,j
, a, b ∈ L2(Ω̄g,R)

and the corresponding norms

‖u‖2
Ωc

= 〈u , u 〉Ωc , ‖a‖2
Ω̄g

= 〈 a , a 〉Ω̄g
,

where
√
gh :=

2h1h2

h2
1 + h2

2

√
×

gh is the numerical Jacobian with respect to the default coordinate (ξ1, ξ2). Ap-

plying Proposition 1 in the skewed directions
×

ξ1 and
×

ξ2, it is easy to derive the following discrete identities:

Lemma 3.1. Let u ∈ L2(Ωc,R
2) and a ∈ L2(Ω̄g,R). We have

1.

(3.39) 〈u ,
×

∇ha 〉Ωc = −〈
×

∇′
h · u , a 〉Ω̄g

11



Fig. 3.4. Positions of velocity field (տ and ր), vorticity and pressure (•) for the generalized MAC scheme (3.44).

2.

(3.40) 〈u ,
×

∇⊥
h a 〉Ωc = −〈

×

∇⊥′
h · u , a 〉Ω̄g

3.

(3.41)
×

∇′
h ·

×

∇ha =
×

∇⊥′
h ·

×

∇⊥
h a =

×

△′
ha on Ω̄g;

4. If a ∈ L2(Ω̄g,R), then

(3.42)
×

∇′
h ·

×

∇⊥
h a =

×

∇⊥′
h ·

×

∇ha = 0 on Ω̊g.

In addition, if a ∈ L2
c(Ω̄g,R), then

(3.43)
×

∇′
h ·

×

∇⊥
h a =

×

∇⊥′
h ·

×

∇ha = 0 on Ω̄g.

3.3. Generalized MAC Scheme. On a curvilinear domain, we place both components of the velocity
on cell centers x(ξ1

i+ 1
2

, ξ2
j+ 1

2

), while the pressure and the vorticity are both placed on the grid points x(ξ1i , ξ
2
j )

as shown in Figure 3.4.
The generalized MAC scheme with u defined on cell centers (GMACc) can be summarized as follows:

The GMACc Scheme:
Solve for u ∈ C1([0, T ];L2(Ωc,R

2)) and p ∈ C0([0, T ];L2(Ω̄g,R)) such that

(3.44)

ut + ω̄u⊥ +
×

∇hp = ν
×

∇⊥
h ω + f on Ωc

ω =
×

∇⊥′
h · u on Ω̄g

×

∇′
h · u = 0 on Ω̄g

where ω̄i− 1
2 ,j− 1

2
= 1

4 (ωi,j + ωi−1,j + ωi,j−1 + ωi−1,j−1).
Another version of the generalized MAC scheme, GMACg, with u defined on grids and p on cell centers,

is detailed in Appendix A.
As a direct consequence of (3.39-3.40), we have the following discrete energy estimate for (3.44):
Lemma 3.2. Let (u, p, ω) be a solution to (3.44) with f = 0, then

1

2

d

dt
‖u‖2

Ωc
+ ν‖ω‖2

Ω̄g
= 0.

It is worth noting that the reduced divergence operator in the third equation of (3.44) has implicitly
incorporated the no-penetration condition u · n = 0 in a natural way. On the other hand, the reduced curl
operator in the second equation of (3.44) has implicitly incorporated the no-slip condition u×n = 0 on Γg.
This can be interpreted as a local vorticity boundary condition.
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3.3.1. Non-homogeneous boundary velocity. In case of inhomogeneous boundary velocity u = ub

on Γ, such as the driven cavity flow, the corresponding reduced operators requires proper modification.

Let F ∈ L2(Ωc,R) and f ∈ L2(Γc,R). With slight abuse of notations, we define the extended reduced

operators, still denoted by
×

D′
1,

×

D′
2, as follows:

(3.45)
×

D′
1,

×

D′
2 : L2(Ωc,R) × L2(Γc,R) 7→ L2(Ω̄g,R),

×

D′
1(F ⊕ f)i,j :=






Fi+ 1
2 ,j+ 1

2
− Fi− 1

2 ,j− 1
2

×

h
on Ω̊g;

Fi+ 1
2 , 1

2
− 1

2 (fi+ 1
2 ,0 + fi− 1

2 ,0)

1
2

×

h
0 < i < M, j = 0;

F 1
2 , 1

2
− 1

2 (f0, 12
+ f 1

2 ,0)

1
4

×

h
(i, j) = (0, 0).

(3.46)

×

D′
2(F ⊕ f)i,j :=






Fi− 1
2 ,j+ 1

2
− Fi+ 1

2 ,j− 1
2

×

h
on Ω̊g;

Fi− 1
2 , 1

2
− 1

2 (fi+ 1
2 ,0 + fi− 1

2 ,0)

1
2

×

h
0 < i < M, j = 0;

f0, 1
2
− f 1

2 ,0

1
2

×

h
(i, j) = (0, 0).

(3.47)

One can define
×

∇′
h · and

×

∇⊥′
h · : L2(Ωc,R

2) × L2(Γc,R
2) 7→ L2(Ω̄g,R) in a natural way.

When the boundary data is identically zero, (3.46)-(3.47) reduce to the original reduced operators,

(3.48)
×

D′
α(F ⊕ 0) =

×

D′
αF.

(3.49)
×

∇′
h · (u⊕ 0) =

×

∇′
h · u,

×

∇⊥′
h · (u⊕ 0) =

×

∇⊥′
h · u.

The corresponding scheme for inhomogeneous boundary velocity is given by

(3.50)

ut + ω̄u⊥ +
×

∇hp = ν
×

∇⊥
h ω + f on Ωc

ω =
×

∇⊥′
h · (u⊕ ub) on Ω̄g

×

∇′
h · (u⊕ ub) = 0 on Ω̄g

subject to the following compatibility condition for the boundary velocity ub:

(3.51) 〈1Ω̄ge
,

×

∇′
h · (0 ⊕ ub) 〉Ω̄g

= 0 = 〈1Ω̄go
,

×

∇′
h · (0 ⊕ ub) 〉Ω̄g

.

To see this, we first note that the kernel of
×

∇h consists of linear combinations of indicator functions of Ω̄ge

and Ω̄go :

(3.52) ker(
×

∇h) = span{1Ω̄ge
,1Ω̄go

}.
13



From (3.48), (3.39) and (3.52), it follows that for all c1, c2 ∈ R,

〈 c11Ω̄ge
+ c21Ω̄go

,
×

∇′
h · (u ⊕ ub) 〉Ω̄g

=〈 c11Ω̄ge
+ c21Ω̄go

,
×

∇′
h · (u ⊕ 0) +

×

∇′
h · (0 ⊕ ub) 〉Ω̄g

=〈 c11Ω̄ge
+ c21Ω̄go

,
×

∇′
h · (0 ⊕ ub) 〉Ω̄g

(3.53)

In view of (3.53) and the 3rd equation of (3.50), the compatibility condition (3.51) follows. It is easy to see

that both conditions in (3.51) can be interpreted naturally as discrete analogue of

∫

Γ

ub · n = 0 since

〈1Ω̄ge
,

×

∇′
h · (0⊕ ub) 〉Ω̄g

= 〈1Ω̄go
,

×

∇′
h · (0⊕ ub) 〉Ω̄g

=
1

2

∑

Γc

ub · n∆ℓh

=
1

2




M∑

i=1

(
(ub · n∆ℓh)i− 1

2 ,0 + (ub · n∆ℓh)i− 1
2 ,N

)
+

N∑

j=1

(
(ub · n∆ℓh)0,j− 1

2
+ (ub · n∆ℓh)M,j− 1

2

)



(3.54)

where, for example

(3.55) (ub ·n∆ℓh)i− 1
2 ,0 =

h1h2
×

h

(√
gh(−×

u2
b −

×

u1
b)
)

i− 1
2 ,0

, (ub ·n∆ℓh)0,j− 1
2

=
h1h2

×

h

(√
gh(

×

u2
b −

×

u1
b)
)

0,j− 1
2

,

with

(ub · n)i− 1
2 ,0 =

( −u2
b√
g22

)

i− 1
2 ,0

=
((−×

u2
b −

×

u1
b)h2

×

h
√
g22

)

i− 1
2 ,0

(ub · n)0,j− 1
2

=
( −u1

b√
g11

)

0,j− 1
2

=
((

×

u2
b −

×

u1
b)h1

×

h
√
g11

)

0,j− 1
2

,(3.56)

(∆ℓh)i− 1
2 ,0 := (h1

√
gh

√
g22)i− 1

2 ,0 = (h1

√
gh√
g

√
g11)i− 1

2 ,0 ≈ ∆ξ1
∣∣∣∣
∂x

∂ξ1

∣∣∣∣
i− 1

2 ,0

(∆ℓh)0,j− 1
2

:= (h2
√
gh

√
g11)0,j− 1

2
= (h2

√
gh√
g

√
g22)0,j− 1

2
≈ ∆ξ2

∣∣∣∣
∂x

∂ξ2

∣∣∣∣
0,j− 1

2

,(3.57)

and similarly on (i− 1
2 , N) and (M, j − 1

2 ).
Remark 1. In case of complex geometry, it may be necessary to patch the domain with several

non-overlapping coordinate charts as illustrated in Figure 4.1. In this case, the metric tensor has a jump
discontinuity across coordinate boundaries. We define the discrete divergence operator at a grid point P on
the coordinate interface by

(3.58) (
×

∇h · u)P =

(
1
2

√
×

gh

×

∇′
h · u

)
P(+)

+
(

1
2

√
×

gh

×

∇′
h · u

)
P(−)

(√
×

gh

)
P(+)

+
(√

×

gh

)
P(−)

At a multiple coordinate junction Q, such as the one given in Figure 3.5, the formula becomes

(3.59) (
×

∇h · u)Q =
( ∑

Q∈ith chart

(√
×

gh

)

Q(i)

)−1 ∑

Q∈ith chart

(
1

4

√
×

gh

×

∇′
h · u

)

Q(i)

A similar formula applies to discrete curl and discrete Laplacian. In this way, it is easy to see that the
summation by parts identities in Lemma 3.1 remains valid. The same treatment for discrete Laplacian on
material interface has been proposed for elliptic interface problems in [Wa, HWa].
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Ω−

Ω+

Γ
Ω1Ω2

Ω3

P

Q

Fig. 3.5. Schematic illustration of the discrete divergence at a point P on the coordinate interface Γ (left) and a triple
coordinate junction Q (right).

3.4. Explicit and Implicit Time Stepping.

3.4.1. Explicit Time Stepping and Hodge Decomposition. As in section 2, we illustrate the time
stepping by the forward Euler method:

(3.60)

un+1 − un

∆t
+ (ω̄u⊥)n +

×

∇hp
n+1 = ν

×

∇⊥
h ω

n + fn on Ωc

ωn =
×

∇⊥′
h · (un ⊕ un

b ) on Ω̄g
×

∇′
h · (un+1 ⊕ un+1

b ) = 0 on Ω̄g

In high Reynolds number calculations, a high order Runge-Kutta method such as RK4 is needed for stability
consideration [EL].

Given (un, pn) with
×

∇′
h · (un ⊕ un

b ) = 0, (3.60) is solved via the following steps:
Step 1. Evaluate ωn up to the boundary

(3.61) ωn =
×

∇⊥′
h · (un ⊕ un

b ) on Ω̄g.

Step 2. Evaluate u∗ on cell centers

(3.62)
u∗ − un

∆t
+ (ω̄u⊥)n = ν

×

∇⊥
h ω

n + fn on Ωc.

Step 3. Solve for (un+1, pn+1) such that

(3.63)

un+1 − u∗

∆t
+

×

∇hp
n+1 = 0 on Ωc,

×

∇′
h · (un+1 ⊕ un+1

b ) = 0 on Ω̄g,

This is the (inhomogeneous) Hodge decomposition for u∗ and can be performed as follows:
Step 3-1. Solve for pn+1 up to the boundary from

(3.64)
×

△′
hp

n+1 =
1

∆t

×

∇′
h · (u∗ ⊕ un+1

b ) on Ω̄g.
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Step 3-2. Update un+1 from

(3.65)
un+1 − u∗

∆t
+

×

∇hp
n+1 = 0 on Ωc.

It follows from (3.41, 3.49, 3.64, 3.65) that

×

∇′
h · (un+1 ⊕ un+1

b ) =
×

∇′
h · (u∗ ⊕ un+1

b ) +
×

∇′
h ·
(
(un+1 − u∗) ⊕ 0

)

=
×

∇′
h · (u∗ ⊕ un+1

b ) +
×

∇′
h · (un+1 − u∗)

= 0.

Step 1 can be viewed as a vorticity boundary condition that incorporates the tangential component of
ub. On the other hand, step 3 depends on ub only through its normal component. In step 3-1, the pressure
is solved as a Lagrangian multiplier without introducing the ghost value and artificial pressure boundary
conditions. From (3.39) and (3.41), it is easy to see that

(3.66) 〈 q ,
×

△′
hp 〉Ω̄g

= −〈
×

∇hq ,
×

∇hp 〉Ωc = −h1h2

M∑

i=1

N∑

j=1

(√
gh

∑

µ,ν=1,2

×

gµν
h (

×

Dµp)(
×

Dνq)
)

i− 1
2 ,j− 1

2

.

In other words,
×

△′
h is self-adjoint with respect to the inner product (3.38) and non-positive definite as long

as each of the 2 × 2 matrices
(
{×

gµν
h }2

µ,ν=1

)
i− 1

2 ,j− 1
2

is positive definite on the cell centers. This only requires

the cells to be non-singular. No further grid regularity is needed for stability concerns. In addition,

(3.67) ker(
×

△′
h) = ker(

×

∇h) = span{1Ω̄ge
,1Ω̄go

}
thus (3.64) is solvable if and only if

(3.68) 〈 c11Ω̄ge
+ c21Ω̄go

,
×

∇′
h · (u∗ ⊕ un

b ) 〉Ω̄g
= 0 for all c1, c2 ∈ R.

In view of (3.53), it follows that the solvability condition for (3.64) is exactly the compatibility condition
(3.51). In addition, it is worth noting that (3.64) can be decoupled and solved on Ω̄ge and Ω̄go separately.

3.4.2. Implicit Time Stepping and Nonlinear Stability. Here we list a few partially and fully
implicit 2nd order time discretizations of our scheme.

For low Reynolds number flows, explicit time stepping is subject to parabolic time stepping constraint
[EL]. As an alternative, the Stokes-based partially implicit time stepping is given by:

(3.69)

un+1 − un

2∆t
+Nh(un+ 1

2 ) +
1

2
(

×

∇hp
n+1 +

×

∇hp
n) =

1

2
ν(

×

∇⊥
h ω

n+1 +
×

∇⊥
h ω

n) + fn+ 1
2 on Ωc

ωn+1 =
×

∇⊥′
h · (un+1 ⊕ un+1

b ) on Ω̄g
×

∇′
h · (un+1 ⊕ un+1

b ) = 0 on Ω̄g

where Nh(un+ 1
2 ) =

3

2
ω̄n(un)⊥ − 1

2
ω̄n−1(un−1)⊥.

It is not clear what the time stepping constraint for (3.69) is. Alternatively, one can discretize the
nonlinear term semi-implicitly or fully implicitly to allow larger time steps. The special structure of our
discretization of the nonlinear term guarantees unconditional stability with second order backward difference
time stepping (assuming f = 0 and ub = 0):

(3.70)

3un+1 − 4un + un−1

2∆t
+Nh(un+1) +

×

∇hp
n+1 = ν

×

∇⊥
h ω

n+1 on Ωc

ωn+1 =
×

∇⊥′
h · un+1 on Ω̄g

×

∇′
h · un+1 = 0 on Ω̄g
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where Nh(un+1) =
(
2ω̄n − ω̄n−1

)
(un+1)⊥ for semi-implicit scheme, or Nh(un+1) = ω̄n+1

(
un+1

)⊥
for fully

implicit scheme.
To see the stability of (3.70), we take the inner product of (3.70) with un+1 to get

〈un+1 ,
3un+1 − 4un + un−1

2∆t
〉Ωc + ν‖ωn+1‖2

Ω̄g
= 0.

This gives

3‖un+1‖2
Ωc

− 4‖un‖2
Ωc

+ ‖un−1‖2
Ωc

4∆t
+

4‖un+1 − un‖2
Ωc

− ‖un+1 − un−1‖2
Ωc

4∆t
+ ν‖ωn+1‖2

Ω̄g
= 0.

With the inequality ‖un+1 − un−1‖2
Ωc

≤ 2(‖un+1 − un‖2
Ωc

+ ‖un − un−1‖2
Ωc

), one obtains

3‖un+1‖2
Ωc

− ‖un‖2
Ωc

− 3‖u1‖2
Ωc

+ ‖u0‖2
Ωc

+ 2‖un+1 − un‖2
Ωc

− 2‖u1 − u0‖2
Ωc

+ 4ν∆t
n+1∑

k=2

‖ωk‖2
Ω̄g

≤ 0,

or

(3.71) ‖un+1‖2
Ωc

+ ‖2un+1 − un‖2
Ωc

+ 4ν∆t

n+1∑

k=2

‖ωk‖2
Ω̄g

≤ 3‖u1‖2
Ωc

+ 2‖u1 − u0‖2
Ωc

− ‖u0‖2
Ωc
.

This gives unconditionally stability of (3.70).
Similarly, for steady state calculations with pseudo-time stepping where ∆t may vary spatially, it is not

difficult to see that the 1st order BDF formula

(3.72)

un+1 − un

∆t
+Nh(un+1) +

×

∇hp
n+1 = ν

×

∇⊥
h ω

n+1 on Ωc

ωn+1 =
×

∇⊥′
h · un+1 on Ω̄g

×

∇′
h · un+1 = 0 on Ω̄g

with Nh(un+1) = ω̄n(un+1)⊥ or Nh(un+1) = ω̄n+1
(
un+1

)⊥
also leads to unconditional stability:

(3.73)
1

2
‖ u

n

√
∆t

‖2
Ωc

+
1

2

n∑

k=1

‖u
k − uk−1

√
∆t

‖2
Ωc

+ ν

n∑

k=1

‖ωk‖2
Ω̄g

≤ 1

2
‖ u

0

√
∆t

‖2
Ωc
.

3.5. Comparison with Similarly Staggered Schemes. It can be shown that GMAC is second order
accurate on smooth grids in 2D for both velocity and pressure [HLW]. A key ingredient in the pressure error
estimate for (3.44) is the inf-sup (LBB) condition which states that there exists a constant β, independent
of the grid size, such that

(3.74) inf
p∈L2(Ω̄g,R)/R2

sup
u∈L2(Ωc,R2)

〈 p ,
×

∇′
h · u 〉Ω̄g

‖p‖Ω̄g

(
‖u‖2

Ωc
+ ‖

×

∇⊥′
h · u‖2

Ω̄g
+ ‖

×

∇′
h · u‖2

Ω̄g

) 1
2

:= βh ≥ β

Roughly speaking, the higher the ratio DOF(u)/DOF(p) is, the more likely the inf-sup condition (3.74) is
to hold true and be verified.

On 2D quadrilateral meshes, some numerical schemes are known to satisfy the inf-sup condition (3.74),
including the Qℓ − Pℓ−1 elements, ℓ ≥ 2 [GR] with DOF(u)/DOF(p)≥ 8/3, the Q1 − P0 element [GR] with
DOF(u)/DOF(p)= 3, and the schemes proposed in [Cho], [Han] and [RaTu] with DOF(u)/DOF(p) ≥ 4.
Here DOF(u) is the degree of freedom for the velocity field, counting both components.
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Fig. 3.6. Comparison of vector Laplacian for various schemes

When the ratio of degrees of freedom becomes marginal, the compatibility of spatial discretization plays
the key role in establishing the inf-sup condition. This is the case for the classical MAC scheme [HW] and
GMAC scheme.

To demonstrate this point more clearly, we compare GMAC ((3.44) and (A.17)) against similarly stag-
gered schemes with different (and non-compatible) spatial discretizations, including the BCG scheme (Bell,
Colella and Glaz [BCG]), the KF scheme (Kuznetsov, Fortin et al [FPT, Ku, PT]), and the Q1−P0 element.
For simplicity of presentation, all the discretization formula throughout this subsection refer to interior nodes
only. Proper reductions are required on the boundary for all these schemes. We omit the details.

Recall the spatial discretization of the classical MAC scheme on 2D uniform Cartesian grids are given
by
(3.75)

△hui,j− 1
2

=
1

h2
(ui+1,j− 1

2
+ ui−1,j− 1

2
+ ui,j+ 1

2
+ ui,j− 3

2
− 4ui,j− 1

2
), Dxpi,j− 1

2
=

1

h
(pi+ 1

2 ,j− 1
2
− pi− 1

2 ,j− 1
2
)

△hvi− 1
2 ,j =

1

h2
(vi− 1

2 ,j+1 + vi− 1
2 ,j−1 + vi+ 1

2 ,j + vi− 3
2 ,j − 4vi− 1

2 ,j), Dypi− 1
2 ,j =

1

h
(pi− 1

2 ,j+ 1
2
− pi− 1

2 ,j− 1
2
)

Like the MAC scheme, the discretization of the viscous term for BCG, KF use standard five point
formula. Take the KF scheme for example,

(3.76)
△hui,j =

1

h2
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j),

△hvi,j =
1

h2
(vi+1,j + vi−1,j + vi,j+1 + vi,j−1 − 4ui,j).

On the other hand, the pressure gradient for KF takes standard centered differencing, averaged in the
transversal direction in order to maintain second order local truncation error,

(3.77)
(Dxp)i,j =

1

2h

(
(pi+ 1

2 ,j+ 1
2
− pi− 1

2 ,j+ 1
2
) + (pi+ 1

2 ,j− 1
2
− pi− 1

2 ,j− 1
2
)
)
,

(Dyp)i,j =
1

2h

(
(pi+ 1

2 ,j+ 1
2
− pi+ 1

2 ,j− 1
2
) + (pi− 1

2 ,j+ 1
2
− pi− 1

2 ,j− 1
2
)
)
.

Similar averaging is also needed for the divergence free constraint.

In contrast, the viscous term in GMACc and GMACg are based on the skewed Laplacian. For example,
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in GMACg we have

(3.78)

×

△hui,j =
1

2h2
(ui+1,j+1 + ui−1,j+1 + ui+1,j−1 + ui−1,j+1 − 4ui,j)

×

△hvi,j =
1

2h2
(vi+1,j+1 + vi−1,j+1 + vi+1,j−1 + vi−1,j+1 − 4vi,j),

and the same pressure gradient (3.77) as KF. Here we have adopted conventional vector notation in terms of
the components u, v in the default coordinate (ξ1, ξ2) = (x, y). That is, we write u = (u, v) if u = uex +vey.

The well known div-unstableQ1−P0 element corresponds to a mixture of standard and skewed Laplacian:

(3.79)


△h =

1

3
△h +

2

3

×

△h.

and the same pressure gradient (3.77) as KF and GMACc.
The BCG and GMACc are identical to KF and GMACg respectively except for the half-grid shift in the

placement of variables. We can summarize these discretizations as follows

∇2
BCGui+ 1

2 ,j+ 1
2

=
(
△hui+ 1

2 ,j+ 1
2
,△hvi+ 1

2 ,j+ 1
2

)
,(3.80)

∇2
GMACcui+ 1

2 ,j+ 1
2

=
( ×

△hui+ 1
2 ,j+ 1

2
,

×

△hvi+ 1
2 ,j+ 1

2

)
,(3.81)

∇2
KFui,j =

(
△hui,j ,△hvi,j

)
,(3.82)

∇2
GMACgui,j =

( ×

△hui,j ,
×

△hvi,j

)
,(3.83)

∇2
Q1−P0

ui,j =
( 

△hui,j ,



△hvi,j

)
.(3.84)

Note that, in GMACc (3.44) and GMACg (A.17), the viscous term was originally proposed as
×

∇⊥
h ω =

×

∇⊥
h (

×

∇⊥
h · u), while in (3.81) and (3.83), it is recast in terms of the full vector Laplacian

(3.85) ∇2
GMACu =

×

∇2
hu :=

×

∇h(
×

∇h · u) +
×

∇⊥
h (

×

∇⊥
h · u)

to make the comparison more comprehensible.
Equation (3.85) is the 2D discrete analogue of the identity

(3.86) ∇2u = ∇(∇ · u) −∇×∇× u,

and is algebraically identical to
×

∇⊥
h (

×

∇⊥
h · u) under the incompressibility constraint

×

∇h · u = 0.
All these schemes are semi-staggered with DOF(u)/DOF(p) = 2 in 2D (lowest among discretizations

based on quadrilateral meshes). They result in identical discretizations for the pressure gradient and in-

compressibility constraint, namely the skewed gradient
×

∇h and skewed divergence
×

∇h·. We believe that
the spatial compatibility among the discrete gradient, divergence and curl (as part of the vector Laplacian)
operators

(3.87)
×

∇⊥
h ·

×

∇h =
×

∇h ·
×

∇⊥
h = 0

plays an important role in the uniform LBB estimate for GMAC. We will demonstrate this result by nu-
merically computing the LBB constant in section 4. A rigorous proof of the inf-sup condition (3.74) for
GMAC can be found in [HLW]. We remark here that the classical MAC scheme is fully staggered with
DOF(u)/DOF(p) = 2 in 2D. It is shown in [HWu] that the classical MAC scheme with a different boundary
condition also satisfies the inf-sup condition.
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4. Numerical Result. In this section, we report several numerical test results. We start with the
numerical computation of the LBB constants for the schemes mentioned in section 3.5. The result gives
very strong indication on uniform LBB estimate for GMAC. We then proceed with standard convergence
test and benchmark problems. We have observed clean second order accuracy in both velocity and pressure
in the convergence test. The benchmark simulation also shows good agreement with the results reported in
the literature.

Example 1: The LBB Constant βh

It is well known [RaTu, BF] that the LBB constant can be obtained through a generalized singular value
decomposition. Take GMACc for example, denote the matrix representations of the operators in (3.74) by

A ∼
√

×

g
h,c

(
1 −

×

∇⊥
h

×

∇⊥′
h · −

×

∇h

×

∇′
h ·
)
, B ∼

√
×

g
h,g

′
×

∇′
h· , B

T ∼ −
√

×

g
h,c

×

∇h , M ∼
√

×

g
h,g

′ ,

where the

√
×

g
h,c

in B is defined on cell centers and

√
×

g
h,g

′ defined on grid points with standard weighting

(1
2 on the edges and 1

4 on corners). The LBB constant in (3.74) can be characterized as

βh = inf
p∈R

DOF(p)

p⊥Mker(BT)

sup
u∈RDOF(u)

pT
Bu

(pTMp)
1
2 (uTAu)

1
2

= inf
p̂∈R

DOF(p)

p̂⊥ker(BT
M

−
1
2 )

sup
u∈RDOF(u)

p̂T
M

− 1
2 BA

− 1
2 û

(p̂Tp̂)
1
2 (ûT

û)
1
2

= inf
p∈R

DOF(p)

p̂⊥ker(BT
M

−
1
2 )

p̂T
M

− 1
2 BA

−1
B

T
M

− 1
2 p̂

‖p̂‖‖A− 1
2 BTM− 1

2 p̂‖
= inf

p∈R
DOF(p)

p̂⊥ker(BT
M

−
1
2 )

(
p̂T

M
−

1
2 BA

−1
B

T
M

−
1
2 p̂
) 1

2

‖p̂‖ = inf
p∈R

DOF(p)

p⊥Mker(BT)

(
pT

BA
−1

B
Tp
) 1

2

(pTMp)
1
2

.

(4.1)

In other words, βh can be obtained numerically by computing the smallest non-zero eigenvalue of

(4.2) BA
−1

B
Tp = µ2

Mp, or equivalently −
×

∇′
h · (1 −

×

∇⊥
h

×

∇⊥′
h · −

×

∇h

×

∇′
h·)−1

×

∇hp = µ2p

and βh =
√

min{µ2
i |µ2

i > 0} from (4.1). The computed βh for GMAC and the schemes mentioned in section
3.5 are summarized in Table 4.1. It is clear that βh = O(1) for both GMACc and GMACg. In contrast, KF,
BCG and Q1 − P0 all result in βh = O(h).

Table 4.1

βh for GMAC and similarly staggered schemes.

# cells GMACc BCG GMACg KF Q1 − P0

32 × 32 4.924E-1 3.472E-2 4.453E-1 3.432E-2 5.886E-2
64 × 64 4.774E-1 1.736E-2 4.405E-1 1.726E-2 2.976E-2

128 × 128 4.669E-1 8.678E-3 4.374E-1 8.654E-3 1.496E-2
256 × 256 4.593E-1 4.339E-3 4.351E-1 4.333E-3 7.497E-3
512 × 512 4.536E-1 2.169E-3 4.335E-1 2.168E-3 3.753E-3

Example 2: Convergence Test on a Patched Domain

We proceed with standard accuracy check on a circular domain patched by five non-overlapping coordi-
nate charts as shown in Figure 4.1.

We take the exact solution to be

ue(t, x, y) = cos(t) ·
(
− y(1 − x2 − y2), x(1 − x2 − y2)

)
, pe(t, x, y) = sin(t) · (1 − x2 − y2)

20



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4.1. Domain patched by non-overlapping coordinate charts.

on the unit disk Ω = {x2 + y2 ≤ 1} and generate the corresponding forcing term f with ν = 1.

The result at T = 5.0 is summarized in Table 4.2. We used semi-implicit time stepping (3.70) with
∆t = 5∆x, where ∆x = L/N is the mesh size in the inner square. Here L = 1/(1 +

√
2/2) and each

coordinate chart is divided into N ×N cells. The result shows clean second order accuracy.

Table 4.2

Absolute error and rate of convergence for Example 2.

# cells ‖ue − uh‖2 order ‖ωe − ωh‖2 order ‖pe − ph‖2 order

5 × 162 3.48E − 4 1.64E − 3 8.33E − 4
5 × 322 8.51E − 5 2.03 4.01E − 4 2.03 2.04E − 4 2.03
5 × 642 2.14E − 5 1.99 1.01E − 4 1.99 5.04E − 5 2.02
5 × 1282 5.32E − 6 2.00 2.51E − 5 2.00 1.26E − 5 2.01

Example 3: Benchmark Test: Lid-Driven Cavity Flow
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Fig. 4.2. Illustration of the adaptive grid used for the lid-driven cavity flow (Example 3)
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Driven Cavity Flow, contour of numerical ω, 128x128, Re=1000, time=48

−2

−1

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 4.3. Vorticity contour plot of the lid-driven cavity flow (Example 3) at Re=1,000.

We continue with the benchmark problem of lid-driven cavity flow [Bu, GGS, BP]. Here the domain
Ω = [0, 1]2. The flow is initially at rest and driven by a slip velocity u = (1, 0) on top. The grids are adapted
near the boundary to better resolve the flow pattern there. A 32× 32 adaptive grid partitioning is shown in
Figure 4.2 for illustration. The results for Re = 1

ν = 1, 000 with 128 × 128 adaptive grids and Re = 10, 000
with 180 × 180 adaptive grids are presented in Figure 4.3 and Figure 4.4 respectively. Both are simulated
till T ≈ 1.5

√
Re: T1000 = 48.0, T10000 = 255.0 using 4th order explicit Runge-Kutta time stepping. The

Re = 1, 000 case agrees well with the benchmark result in [BP].
Example 4: Convergence Test for 3D Cavity Flow with Bottom Topography

In this example, we perform accuracy check for GMAC3Dc-iso on a 3D cavity flow with bottom topog-
raphy at Re = 2, 000 with explicit 4th order Runge-Kutta time stepping.

The domain is [0, 1]× [0, 1]× [g(x, y), 1] where g(x, y) = 0.15 sin(2πx) sin(2πy) is the bottom topography
as shown in Figure 4.5.

We take the exact solution to be ue = ∇×ψe, pe(t, x, y, z) = cos(t) cos(x) sin(y)ez where ψe(t, x, y, z) =
cos(t)(ψe

1 , ψ
e
2, ψ

e
3) and

(4.3)
ψe

1(x, y, z) = sin2(πx) sin2(πy)(z − 1)2(z − g(x, y))2

ψe
2(x, y, z) = sin2(πx) sin2(2πy)(z − 1)2(z − g(x, y))2

ψe
3(x, y, z) = sin2(2πx) sin2(πy)(z − 1)2(z − g(x, y))2

The right hand side f(t, x, y, z) is generated accordingly with ν = 1/2000.
The result at T = 5.0 is summarized in Table 4.3 and shows second order accuracy.
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Driven Cavity Flow, contour of numerical ω, 180x180, Re=10000, time=255
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Fig. 4.4. Vorticity contour plot of the lid-driven cavity flow (Example 3) at Re=10,000.

Table 4.3

Absolute error and rate of convergence for Example 4.

# cells ‖ue − uh‖2 order ‖ωe − ωh‖2 order ‖pe − ph‖2 order

32 × 32 × 32 1.95E − 2 3.84E − 1 1.06E − 3
64 × 64 × 64 4.91E − 3 1.99 9.90E − 2 1.96 2.69E − 4 1.99

128 × 128 × 128 1.24E − 3 1.99 2.51E − 2 1.98 6.97E − 5 1.95

5. Conclusion. In this paper, we have proposed a novel finite difference scheme for incompressible
Navier-Stokes. The main features of the new scheme include:

1. It partially resembles the classical MAC scheme in the sense that velocity and pressure are defined
on different locations.

2. It is applicable on general curvilinear domains and easy to implement.
3. The spatial discretization is based on intrinsic differential operators div, grad, curl and is mutually

compatible. It naturally incorporates no-slip conditions and is endowed with desirable properties
such as summation by parts identities and exact discrete Hodge decomposition. As a result, pressure
can be decoupled from the momentum equation without imposing artificial boundary conditions.

4. The pressure Poisson equation is symmetric and semi-definite. Standard fast solvers for large linear
systems are applicable.

5. More importantly, the spatial discretization satisfies the inf-sup condition, giving full second order
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Fig. 4.5. 3D cavity with bottom topography

accuracy for velocity and pressure in both dynamic and steady state calculations.

Systematic numerical experiments are conducted to verify the accuracy and robustness of the proposed
scheme.
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Appendix A. GMACg, Another Version of Generalized MAC Scheme.

An alternative placement of the unknown variables

(A.1) u ∈ L2(Ω̊g,R
2), p, ω ∈ L2(Ωc,R)

leads to a variant of the scheme (3.44). In this setting, we place both components of the velocity on grid
points, pressure and vorticity on cell centers. Note that the boundary velocity ub ∈ L2(Γg,R

2) is prescribed
data and not listed in (A.1) as part of active variables.

Associated with this new placements are the following function spaces

(A.2) L2(Ω̊g,R
2) := {u : Ω̊g → R

2}, L2(Γg,R
2) := {ub : Γg → R

2}, L2(Ωc,R) := {a : Ωc → R}.
and finite difference operators

×

∇◦
h :L2(Ωc,R) 7→ L2(Ω̊g,R),

×

∇◦
hp := (

×

D1p)
×

e1 + (
×

D2p)
×

e2 on Ω̊g;(A.3)

×

∇◦⊥
h :L2(Ωc,R) 7→ L2(Ω̊g,R),

×

∇◦⊥
h ω :=

−
×

D2ω√
×

gh

×

e1 +

×

D1ω√
×

gh

×

e2 on Ω̊g.(A.4)

Note that the operators
×

∇◦
h and

×

∇◦⊥
h are exactly the standard finite difference operators as (3.29) and (3.30),

except (A.3) and (A.4) are defined for vector fields on Ωc. We use the superscript ‘◦’ to emphasize that
×

∇◦
h

and
×

∇◦⊥
h are ‘interior’ gradient operators whose range are vector fields defined only on the interior grids.

For inhomogeneous boundary velocity, the operators
×

∇◦′
h · and

×

∇◦⊥′
h · involve both the active variable

u ∈ L2(Ω̊g,R
2) and the data ub ∈ L2(Γg,R

2). Denote by U = u⊕ ub, that is

(A.5)
×

Uα =

{
×

uα on Ω̊g,
×

uα
b on Γg,

×

Uα =

{
×

uα on Ω̊g,

(
×

ub)α on Γg,
, α = 1, 2,

we define
×

∇◦′
h · : L2(Ω̊g,R

2) ⊕ L2(Γg,R
2) 7→ L2(Ωc,R),

×

∇◦′
h · (u⊕ ub) =

1√
×

gh

( ×

D1(

√
×

gh

×

U1) +
×

D2(

√
×

gh

×

U2)
)

(A.6)

×

∇◦⊥′
h · : L2(Ω̊g,R

2) ⊕ L2(Γg,R
2) 7→ L2(Ωc,R),

×

∇◦⊥′
h · (u ⊕ ub) =

1√
×

gh

(
×

D1

×

U2 −
×

D2

×

U1)(A.7)

Fig. A.1. Positions of velocity field (տ and ր), vorticity and pressure (•) for the scheme (A.17).
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As before, for u ∈ L2(Ω̊g,R
2),

(A.8)
×

∇◦′
h · u :=

×

∇◦′
h · (u ⊕ 0),

×

∇◦⊥′
h · u :=

×

∇◦⊥′
h · (u⊕ 0).

Finally,

(A.9)
×

△◦′
h : L2(Ωc,R) 7→ L2(Ωc,R),

×

△◦′
h p =

×

∇◦′
h ·

×

∇◦
hp =

×

∇◦′
h ·
(
(

×

∇◦
hp) ⊕ 0

)
.

Define the discrete inner products

〈u , v 〉Ω̊g
= h1h2

M−1∑

i=1

N−1∑

j=1

(
(u · v)√gh

)
i,j
, u, v ∈ L2(Ω̊g,R

2),(A.10)

〈 a , b 〉Ωc = h1h2

M∑

i=1

N∑

j=1

(
a b

√
gh

)
i− 1

2 ,j− 1
2

, a, b ∈ L2(Ωc,R).(A.11)

The counterpart of Lemma 3.1 is also valid:
Lemma A.1. If u ∈ L2(Ω̊g,R

2) and a ∈ L2(Ωc,R). Then we have
1.

(A.12) 〈u ,
×

∇◦
ha 〉Ω̊g

= −〈
×

∇◦′
h · u , a 〉Ωc

2.

(A.13) 〈u ,
×

∇◦⊥
h a 〉Ω̊g

= −〈
×

∇◦⊥′
h · u , a 〉Ωc

3.

(A.14)
×

∇◦′
h · (

×

∇◦
ha) =

×

∇◦⊥′
h · (

×

∇◦⊥
h a) =

×

△◦′
h a on Ωc;

4. If a ∈ L2(Ωc,R), then

(A.15)
×

∇◦′
h · (

×

∇◦⊥
h a) =

×

∇◦⊥′
h · (

×

∇◦
ha) = 0 on Ω̊c,

where Ω̊c =
{
x(ξ1

i− 1
2

, ξ2
j− 1

2

) ∈ Ωc : 2 ≤ i ≤ M − 1, 2 ≤ j ≤ N − 1
}
. If in addition, a is constant on

Ωc \ Ω̊c, then

(A.16)
×

∇◦′
h · (

×

∇◦⊥
h a) =

×

∇◦⊥′
h · (

×

∇◦
ha) = 0 on Ωc.

The generalized MAC scheme with u defined on grids (GMACg) is given by:
The GMACg Scheme:

Solve for u ∈ C1
(
[0, T ];L2(Ω̊g,R

2)
)

and p ∈ C0
(
[0, T ];L2(Ωc,R)

)
such that

(A.17)

ut + ω̄u⊥ +
×

∇◦
hp = ν

×

∇◦⊥
h ω + f on Ω̊g

ω =
×

∇◦⊥′
h · (u⊕ ub) on Ωc

×

∇◦′
h · (u⊕ ub) = 0 on Ωc

The compatibility condition for the boundary velocity ub is

(A.18) 〈1Ωce
,

×

∇◦′
h · (0⊕ ub) 〉Ωc = 0 = 〈1Ωco

,
×

∇◦′
h · (0⊕ ub) 〉Ωc ,
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where

(A.19) Ωce :=
{
x(ξ1i− 1

2
, ξ2j− 1

2
) ∈ Ωc, i+ j is even

}
, Ωco :=

{
x(ξ1i− 1

2
, ξ2j− 1

2
) ∈ Ωc, i+ j is odd

}
.

Furthermore,

(A.20) ker(
×

△◦′
h ) = ker(

×

∇◦
h) = span{1Ωce

,1Ωco
}.

Appendix B. The GMAC3D Scheme.

Generalization of GMAC to 3D with the semi-staggered variable placement as either

(B.1) GMAC3Dc : u ∈ L2(Ωc,R
3), p ∈ L2(Ω̄g,R), ω ∈ L2(Ω̄g,R

3).

or

(B.2) GMAC3Dg : u ∈ L2(Ω̊g,R
3), p ∈ L2(Ωc,R), ω ∈ L2(Ωc,R

3).

are both straightforward once a skewed coordinate system is chosen. We only elaborate on GMAC3Dc.

Take, for example, (
�

ξ1,
�

ξ2,
�

ξ3) as shown in left-top corner of Figure B.1:

(B.3)

�

ξ1 :=
h3ξ

2 + h2ξ
3

√
h2

2 + h2
3

,
�

h1 = ∆
�

ξ1 =
2h2h3√
h2

2 + h2
3

�

ξ2 :=
h1ξ

3 + h3ξ
1

√
h2

3 + h2
1

,
�

h2 = ∆
�

ξ2 =
2h3h1√
h2

3 + h2
1

�

ξ3 :=
h2ξ

1 + h1ξ
2

√
h2

1 + h2
2

,
�

h3 = ∆
�

ξ3 =
2h1h2√
h2

1 + h2
2

The discrete metric tensors {�

gh
αβ}3

α,β=1, {
�

gαβ
h }3

α,β=1 and
√

�

gh with respect to (
�

ξ1,
�

ξ2,
�

ξ3) as well as the

reduced difference operators
�

D′
α and

�

Dα can be defined in a similar way as in the 2D case.
We therefore arrive at the first version of our scheme for 3D Navier-Stokes equation (3.1):

The GMAC3Dc-skew Scheme:
Solve for u ∈ C1

(
[0, T ];L2(Ωc,R

3)
)

and p ∈ C0
(
[0, T ];L2(Ω̊g,R)

)
such that

(B.4)

ut + ω̄ × u+
�

∇hp = ν
�

∇h × ω + f on Ωc

ω =
�

∇′
h × u on Ω̄g

�

∇′
h · u = 0 on Ω̄g

where
�

∇h :L2(Ω̄g,R) 7→ L2(Ωc,R
3),

�

∇hp := (
�

D1p)
�

e1 + (
�

D2p)
�

e2 + (
�

D3p)
�

e3,(B.5)

�

∇′
h· :L2(Ωc,R

3) 7→ L2(Ω̄g,R),
�

∇′
h · u :=

1√
�

gh

( 3∑

α=1

�

D′
α(

√
�

gh
�

uα)
)
,(B.6)

�

∇′
h× :L2(Ωc,R

3) 7→ L2(Ω̄g,R
3),

�

∇′
h × u :=

1√
�

gh

∣∣∣∣∣∣∣

�

e1
�

e2
�

e3
�

D′
1

�

D′
2

�

D′
3

�

u1
�

u2
�

u3

∣∣∣∣∣∣∣
,(B.7)

�

∇h× :L2(Ω̄g,R
3) 7→ L2(Ωc,R

3),
�

∇h × ω :=
1√
�

gh

∣∣∣∣∣∣∣

�

e1
�

e2
�

e3
�

D1

�

D2

�

D3
�

ω1
�

ω2
�

ω3

∣∣∣∣∣∣∣
,(B.8)
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Fig. B.1.

and

(B.9)
�

△′
h : L2(Ω̄g,R) 7→ L2(Ω̄g,R),

�

△′
hp =

1√
�

gh

3∑

µ,ν=1

�

D′
µ

(√
�

gh
�

gµν
h

�

Dνp
)
.

Alternatively, one could have chosen {
�

ξα}3
α=1, {

�

ξα}3
α=1, or {

�

ξα}3
α=1 as coordinates and discretized

accordingly (Figure B.1).

The resulting schemes differ from each other slightly. It should be noted that the averaged version of
the four skew operators, for example,

(B.10) ∇̄hp :=
1

4
(

�

∇hp+
�

∇hp+
�

∇hp+
�

∇hp)

is isotropic, or more precisely, invariant under the coordinate transformation (ξ1, ξ2, ξ3) 7→ (ξ2, ξ3, ξ1). We
thus also propose the following isotropic version of the 3D scheme and elaborate with more details below.
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We first give an alternative expression for the isotropic gradient operator. To this end, we define the
following operators with respect to the default coordinate {ξ1, ξ2, ξ3}:

D̄1 :=D1A2A3 : L2(Ω̄g,R) → L2(Ωc,R),(B.11)

D̄2 :=D2A3A1 : L2(Ω̄g,R) → L2(Ωc,R),(B.12)

D̄3 :=D3A1A2 : L2(Ω̄g,R) → L2(Ωc,R),(B.13)

D̄
′

1 :=D′
1A

′
2A

′
3 : L2(Ωc,R) → L2(Ω̄g,R),(B.14)

D̄
′

2 :=D′
2A

′
3A

′
1 : L2(Ωc,R) → L2(Ω̄g,R),(B.15)

D̄
′

3 :=D′
3A

′
1A

′
2 : L2(Ωc,R) → L2(Ω̄g,R).(B.16)

where D is the standard short-stencil finite difference operator, D′ is the reduced finite difference operator
as defined in (3.11), and the averaging operators are defined by

(B.17) (Ag)i− 1
2

=
1

2
(gi + gi−1), 1 ≤ i ≤ N, (A′f)i =






f 1
2

i = 0
1
2 (fi+ 1

2
+ fi− 1

2
) 1 ≤ i ≤ N − 1

fN−
1
2

i = N

With lengthy but elementary calculations, it can be shown that the isotropic gradient defined in (B.10) can
be recast in terms of the operators in the default coordinate

(B.18) ∇̄hp = (D̄1p)e
1 + (D̄2p)e

2 + (D̄3p)e
3 ∈ L2(Ωc,R

3).

where eα = ∇ξα, eα =
∂x

∂ξα
. We therefore recast the isotropic 3D GMAC scheme as

The GMAC3Dc-iso Scheme:
Solve for u ∈ C1

(
[0, T ];L2(Ωc,R

3)
)

and p ∈ C0
(
[0, T ];L2(Ω̊g,R)

)
such that

(B.19)
ut + ω̄ × u+ ∇̄hp = −ν∇̄h × ω + f on Ωc

ω = ∇̄′
h × u on Ω̄g

∇̄′
h · u = 0 on Ω̄g

with ω̄ = (ω̄1, ω̄2, ω̄3) and ω̄ × u ∈ L2(Ωc,R
3) defined by

(B.20) ω̄ × u :=
√
gh

∣∣∣∣∣∣

e1 e2 e3

ω̄1 ω̄2 ω̄3

u1 u2 u3

∣∣∣∣∣∣
, ω̄α := A1A2A3ω

α ∈ L2(Ωc,R),

and

∇̄′
h· : L2(Ωc,R

3) 7→ L2(Ω̄g,R), ∇̄′
h · u =

1√
gh

( 3∑

α=1

D̄
′

α(
√
ghu

α)
)
,(B.21)

∇̄′
h× : L2(Ωc,R

3) 7→ L2(Ω̄g,R
3), ∇̄′

h × u =
1√
gh

∣∣∣∣∣∣

e1 e2 e3

D̄
′

1 D̄
′

2 D̄
′

3

u1 u2 u3

∣∣∣∣∣∣
,(B.22)

∇̄h× : L2(Ω̄g,R
3) 7→ L2(Ωc,R

3), ∇̄h × ω =
1√
gh

∣∣∣∣∣∣

e1 e2 e3

D̄1 D̄2 D̄3

ω1 ω2 ω3

∣∣∣∣∣∣
.(B.23)

31



It can be shown that analogue of (B.10) remains valid for the discrete operators ∇̄′
h·, ∇̄′

h× and ∇̄h× as well.
In (B.20-B.23), the co-variant components and contra-variant components of a vector field v in L2(Ωc,R

3)
or L2(Ω̄g,R

3) are transformed to each other through

(B.24) vµ =

3∑

ν=1

gµν
h vν and vµ =

3∑

ν=1

gh
µνv

ν

whenever necessary. Here gµν
h and gh

µν are (numerical) metric tensors with respect to the default coordinate
(ξ1, ξ2, ξ3) defined on cell centers and satisfy

3∑

γ=1

gµγ
h gh

γν = δµ
ν .

The corresponding isotropic Laplacian is given by

(B.25) △̄′
h : L2(Ω̄g,R) 7→ L2(Ω̄g,R), △̄′

hp = ∇̄′
h · ∇̄hp =

1√
gh

3∑

µ,ν=1

D̄
′

µ(
√
ghg

µν
h D̄νp).

The 3D analogue of Lemma 3.1 remains valid for the isotropic difference operators
Lemma B.1. For u ∈ L2(Ωc,R

3), v ∈ L2(Ω̄g,R
3) and p ∈ L2(Ω̄g,R), we have

1.

(B.26) 〈u , ∇̄hp 〉Ωc = −〈 ∇̄′
h · u , p 〉Ω̄g

2.

(B.27) 〈u , ∇̄h × ω 〉Ωc = 〈 ∇̄′
h × u , ω 〉Ω̄g

3.

(B.28) △̄′
hp = ∇̄′

h · ∇̄hp

4. If ψ ∈ L2(Ω̄g,R
3), then

(B.29) ∇̄′
h · ∇̄h ×ψ ≡ 0 on Ω̊g.

If in addition, ψ × n = 0 on Γg, then

(B.30) ∇̄′
h · ∇̄h ×ψ ≡ 0 on Ω̄g.
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