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Abstract.

We present a rigorous convergence analysis for the generalized MAC (GMAC) scheme on curvilinear domains proposed
earlier by the authors [HLW]. The error estimate for the velocity field is established by energy estimate utilizing the stream
function and discrete identities associated with the spatially compatible discretization. The spatially compatible discretization
also induces subtle stabilizing effect that renders the scheme uniform LBB bound even though GMAC is staggered and supported
the same way as the Q1 − P0 finite element method, which is well known to be unstable under divergence constraint. As a
result, full second order error estimate is achieved for both velocity and pressure with minimal regularity requirement.

1. Introduction. A generalized MAC scheme (GMAC) for the Navier-Stokes equation in rotational
form

(1.1)
ut + ω × u + ∇p = ν∇2u + f on Ω

∇ · u = 0 on Ω
u = 0 on Γ

on curvilinear domains was introduced in [HLW]. With partially staggered grids (velocity components
collocated on cell centers, pressure placed on grid points) and centered difference in a locally ’skewed’
coordinate, the discretization preserves crucial identities such as

(1.2) curlh ◦ gradh ≡ 0, divh ◦ curlh ≡ 0

and their converse in the discrete setting. The resulting scheme is simple and efficient with full second order
accuracy on curvilinear domains. A key ingredient of the scheme is the proper treatment at the boundary,
which not only enforces the pressure as discrete Lagrangian multiplier without introduction artificial bound-
ary conditions, but also leads to an exact Hodge decomposition for the velocity field, which plays a key role
in both stability and efficiency of the scheme.

In this paper, we will show that the spatial compatibility (1.2) (recast as Lemma 2.1 in section 2) also
leads to a simple error estimate for the velocity field. Optimal error analysis for the classical MAC scheme
was first obtained in [HW], and in [W1] for MAC-like schemes on Cartesian grids. The proof in [HW, W1]
is based on high order Strang’s expansion. Here we present an alternative approach that relies mainly on
the special structure of the spatial discretization, making use of both the stream function and the discrete
differential identities in Lemma 2.1. As a result, we obtain optimal O(h2) error estimate for the velocity
field provided the exact solution satisfies ue ∈ L2(0, T ;C4(Ω̄)) ∩H1(0, T ;C2(Ω̄)) and pe ∈ L2(0, T ;C3(Ω̄))
(Theorem 1, section 3.1). This may be the minimal regularity requirement in finite difference setting.

On the other hand, the error analysis for the pressure is much more subtle due to lack of evolutionary
equation. Our approach is based on establishing the Ladyzhenskaya-Babuška-Brezzi condition (also known
as the LBB, div-stability or inf-sup condition) for the generalized MAC scheme. The LBB condition provides
direct access to pressure error estimate for the dynamic problem (1.1), and is essential to the solvability and
uniform estimate for the static Stokes problem. It is worth noting that GMAC is staggered the same way as
the Q1−P0 finite element method, which is known to violate the uniform LBB condition. The main difference
between the two schemes is the discretization of the viscous term. The spatially compatible discretization
associated with GMAC induces subtle stabilizing effect and is key to the uniform LBB bound. As a result, we
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Fig. 2.1. The computational domain (left) and physical domain (right)

obtain second order pressure estimate with ue ∈ L2(0, T ;C4(Ω̄))∩H1(0, T ;C3(Ω̄)) and pe ∈ L2(0, T ;C3(Ω̄))
(Theorem 3, section 3.2).

The rest of the paper is organized as follows. In section 2 we review the generalized MAC scheme, the
boundary treatment and relevant identities associated with the spatial discretizations. In section 3.1, we
proceed with the basic energy estimate and give a second order error estimate for the velocity and a first
order error estimate for the pressure gradient. The full second order pressure estimate utilizing the LBB
condition is given in section 3.2. Finally, the technical proof of the LBB condition is given in the Appendix.

2. Generalized MAC Scheme in Curvilinear Coordinate. We briefly summarize the spatial dis-
cretization of the generalized MAC scheme in the 2D setting. The details can be found in [HLW]. Denote
by x = (x, y) the position vector in the physical domain and (ξ1, ξ2) the coordinate in the computational
domain with mesh size ∆ξ1 = h1 and ∆ξ2 = h2. Instead of the default coordinate (ξ1, ξ2), a local coordinate
in the skewed direction (Figure 2.1)

(2.1)
×

ξ1 ,
h2ξ

1 + h1ξ
2

√

h2
1 + h2

2

,
×

ξ2 ,
−h2ξ

1 + h1ξ
2

√

h2
1 + h2

2

.

is selected to realize the discretization of (1.1).
With the skewed local coordinate, the differential operators can be determined following standard pro-

cedure. The superscript ‘×’ is used to denote quantities computed in the skewed variables
×

ξα. The basis

vectors and metric tensors with respect to the skewed coordinate (
×

ξ1,
×

ξ2) are thus denoted by

(2.2)
×

e1 =
∂x

∂
×

ξ1
,

×

e2 =
∂x

∂
×

ξ2
,

×

gµν =
×

eµ · ×

eν ,

(2.3)
×

e1 = ∇
×

ξ1,
×

e2 = ∇
×

ξ2,
×

g
µν

=
×

eµ · ×

eν .

The Jacobian of the transformation between x and
×

ξ is given by

(2.4)

√

×

g = det

(

∂x

∂
×

ξ

)

=
√

det(
×

gµν).

The covariant and contra-variant components of a vector field u are defined through

(2.5) u =
×

u1×

e1 +
×

u2×

e2 =
×

u1
×

e1 +
×

u2
×

e2.
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The transformation between the covariant and contra-variant components for the metric tensor and for a
vector field are given by

(2.6)

2
∑

γ=1

×

g
µγ×

gγν = δµ
ν

and

(2.7)
×

uµ =

2
∑

γ=1

×

gµγ ×

uγ ,
×

uν =

2
∑

γ=1

×

gγν
×

uγ , µ, ν = 1, 2.

The discretization of (1.1) is based on centered difference approximation of the intrinsic differential
operators given below in (2.19)-(2.23). The metric tensors involved there can be calculated either analytically,
given explicit form of the mapping (ξ1, ξ2) 7→ (x, y), or numerically from centered difference approximation
of (2.2) for the covariant component, and then from (2.4) and (2.6) for the numerical Jacobian and contra-
variant components.

Here for simplicity of presentation, we assume the physical domain Ω is diffeomorphic to a ring, so
that a single coordinate chart (ξ1, ξ2) ∈ (0, 1) × S1 is sufficient to represent the computational domain.
The generalized MAC scheme can be applied to a generic domain by decomposing it into non-overlapping
quadrilateral sub-domains. The details of the discretizations on coordinate interfaces and junctions, as well
as the 3D case can be found in [HLW].

We further assume equal spacing in ξ1 and ξ2:

(2.8) h1 = h2 = h =

×

h√
2

=
1

N
,

where
×

h = ∆
×

ξ1 = ∆
×

ξ2 = 2h1h2√
h2
1+h2

2

is the natural grid spacing in the skewed variables. When h1 = h2, we also

have
√
g =

√

×

g. The relevant domains for spatial discretizations are summarized as follows:

Ωc ,
{

x(ξ1i− 1
2

, ξ2j− 1
2

) | 1 ≤ i ≤ N ; 1 ≤ j ≤ N
}

(2.9)

Ω̊g ,
{

x(ξ1i , ξ
2
j ) | 1 ≤ i ≤ N − 1; 1 ≤ j ≤ N

}

(2.10)

Ω̄g ,
{

x(ξ1i , ξ
2
j ) | 0 ≤ i ≤ N ; 1 ≤ j ≤ N

}

(2.11)

Γg , Ω̄g \ Ω̊g(2.12)

Ω̄ge
,
{

x(ξ1i , ξ
2
j ) ∈ Ω̄g | i+ j is even

}

(2.13)

Ω̄go
,
{

x(ξ1i , ξ
2
j ) ∈ Ω̄g | i+ j is odd

}

(2.14)

By assumption, all scalar and vector fields under consideration, including

L2(Ω̄g,R) ,
{

ω : Ω̄g → R
}

(2.15)

L2(Ωc,R
2) ,

{

u : Ωc → R
2
}

(2.16)

and

L2(Ω̄g,R)/R2 ,
{

p ∈ L2(Ω̄g,R)
∣

∣

∑

Ω̄ge

′(

√

×

ghp)i,j = 0 =
∑

Ω̄go

′(

√

×

ghp)i,j

}

,(2.17)

L2
c(Ω̄g,R) ,

{

ψ ∈ L2(Ω̄g,R)
∣

∣ψi,j = constant on i = 0 and i = N, respectively
}

(2.18)
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are all periodic in ξ2. Here in (2.17), the primed sums denote summing with half weight on boundary grids
Γg ∩ Ω̄ge

and Γg ∩ Ω̄go
respectively.

For ω, p ∈ L2(Ω̄g,R) and u =
×

u1×

e1 +
×

u2×

e2 =
×

u1
×

e1 +
×

u2
×

e2 ∈ L2(Ωc,R
2), we define

(2.19)
×

∇h : L2(Ω̄g,R) 7→ L2(Ωc,R
2),

×

∇hp , (
×

D1p)
×

e1 + (
×

D2p)
×

e2

(2.20)
×

∇⊥
h : L2(Ω̄g,R) 7→ L2(Ωc,R

2),
×

∇⊥
h ω ,

−
×

D2ω
√

×

gh

×

e1 +

×

D1ω
√

×

gh

×

e2

(2.21)
×

∇′
h· : L2(Ωc,R

2) 7→ L2(Ω̄g,R),
×

∇′
h · u =

1
√

×

gh

(
×

D
′
1(

√

×

gh
×

u1) +
×

D
′
2(

√

×

gh
×

u2)
)

(2.22)
×

∇⊥′
h · : L2(Ωc,R

2) 7→ L2(Ω̄g,R),
×

∇⊥′
h · u =

1
√

×

gh

(
×

D
′
1
×

u2 −
×

D
′
2
×

u1)

and

(2.23)
×

△′
h : L2(Ω̄g,R) 7→ L2(Ω̄g,R),

×

△′
hp =

1
√

×

gh

2
∑

µ,ν=1

×

D
′
µ(

√

×

gh
×

g
µν

h

×

Dνp).

The primed operators in (2.21)-(2.23) denote the ‘reduced’ operators following Anderson [AN]. The
reduction only takes place near boundary, where all quantities involving the metric tensors located outside
the computational domain are set to zero, followed by proper normalization. For example, at interior grids
1 < i < N , (2.23) gives the full Laplacian

(
×

△′
hp)i,j = (

×

△hp)i,j =
1

√

×

ghi,j





(
×

q11h

×

D1p+
×

q12h

×

D2p)i+ 1
2
,j+ 1

2

×

h
+

(
×

q21h

×

D1p+
×

q22h

×

D2p)i− 1
2
,j+ 1

2

×

h

−
(
×

q11h

×

D1p+
×

q12h

×

D2p)i− 1
2

,j− 1
2

×

h
−

(
×

q21h

×

D1p+
×

q22h

×

D2p)i+ 1
2
,j− 1

2

×

h





(2.24)

where
×

qαβ
h =

√

×

gh
×

g
αβ

h . At a boundary grid, say i = 0, the discrete Laplacian reduces to

(2.25) (
×

△′
hp)0,j =

2
√

×

gh0,j





(
×

q11h

×

D1p+
×

q12h

×

D2p) 1
2
,j+ 1

2

×

h
−

(
×

q21h

×

D1p+
×

q22h

×

D2p) 1
2
,j− 1

2

×

h



 .

The detailed formula of (2.19)-(2.23) can be found in [HLW]. It can be shown that

(2.26) ker(
×

△′
h) = ker(

×

∇h) = span{1Ω̄ge
,1Ω̄go

}

In case N is odd, Ω̄ge
and Ω̄go

coincide due to periodicity in ξ2. To be definite, we assume without loss of

generality that N is even and therefore dim
(

ker(
×

△′
h)
)

= dim
(

ker(
×

∇h)
)

= 2.
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The significance of the reduced operator can be seen from the role it plays in the adjointness with respect
to the natural inner products:

〈u , v 〉Ωc
= h2

N
∑

i=1

N
∑

j=1

(

(u · v)
√
gh

)

i− 1
2
,j− 1

2

= h2
N
∑

i=1

N
∑

j=1

(

(
×

u1
×

v1 +
×

u2
×

v2)
√
gh

)

i− 1
2

,j− 1
2

= h2
N
∑

i=1

N
∑

j=1

(

(
×

u1×

v1 +
×

u2×

v2)
√
gh

)

i− 1
2
,j− 1

2

, u, v ∈ L2(Ωc,R
2),

(2.27)

(2.28) 〈 a , b 〉Ω̄g
= h2

M
∑

i=0

′
N
∑

j=1

(

a b
√
gh

)

i,j
, a, b ∈ L2(Ω̄g,R).

More precisely, we have the following Lemma from [HLW] which plays an essential role in the error analysis
to be presented below:

Lemma 2.1. Let u ∈ L2(Ωc,R
2) and a ∈ L2(Ω̄g,R), we have

1.

(2.29) 〈u ,
×

∇ha 〉Ωc
= −〈

×

∇′
h · u , a 〉Ω̄g

2.

(2.30) 〈u ,
×

∇⊥
h a 〉Ωc

= −〈
×

∇⊥′
h · u , a 〉Ω̄g

3.

(2.31)
×

∇′
h ·

×

∇ha =
×

∇⊥′
h ·

×

∇⊥
h a =

×

△′
ha on Ω̄g;

4. If a ∈ L2(Ω̄g,R), then

(2.32)
×

∇′
h ·

×

∇⊥
h a =

×

∇⊥′
h ·

×

∇ha = 0 on Ω̊g.

In addition, if a ∈ L2
c(Ω̄g,R), then

(2.33)
×

∇′
h ·

×

∇⊥
h a =

×

∇⊥′
h ·

×

∇ha = 0 on Ω̄g.

In addition to Lemma 2.1, the reduced operators also provide a way of incorporating the no-slip, no-
penetration conditions at the physical boundary. The resulting scheme for (1.1) is given by

(2.34)

ut + ω̄u⊥ +
×

∇hp = ν
×

∇⊥
h ω + f on Ωc

ω =
×

∇⊥′
h · u on Ω̄g

×

∇′
h · u = 0 on Ω̄g

The reduced divergence operator in the third equation of (2.34) has implicitly incorporated the no-penetration
condition u · n = 0 in a natural way. On the other hand, the reduced curl operator in the second equation
of (2.34) has implicitly incorporated the no-slip condition u × n = 0 on Γg. This can be interpreted as an
implicit form of local vorticity boundary condition.
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3. Error Estimate for the Generalized MAC Scheme. We now proceed with our main result,
the second order error estimate for the generalized MAC scheme. Rigorous 2nd order error estimate for
the classical MAC scheme and some variants were first obtained in [HW] and [W1]. The method used in
[HW, W1] is a combination of energy estimate and high order Strang’s expansion. Here we propose an
alternative proof and apply it to our scheme. In addition to extending the analysis to curvilinear domains,
our method differs from [HW, W1] in several aspects. The first new component in our analysis is to utilize the
stream function and combine it with the discrete identity (2.33) in our analysis. As a result, the regularity
requirement on the exact solution becomes transparent and less stringent. Secondly, our pressure error
analysis is established via uniform inf-sup (LBB) estimate, which is of independent importance and has
potential applications in other areas such as computational elasticity and computational electromagnetics.
The verification of the inf-sup condition is quite technical and is left in the Appendix.

3.1. Basic Error Estimate. Our first main result, 2nd order error estimate for the velocity field, is
obtained from basic energy estimate.

Theorem 1. Assume the mapping x : (ξ1, ξ2) 7→ (x, y) is a C4 bijection from [0, 1]×S1 to Ω̄ ⊂ R
2. Let

ue ∈ L2(0, T ;C4(Ω̄)) ∩H1(0, T ;C2(Ω̄)), pe ∈ L2(0, T ;C3(Ω̄)) be an exact solution of (1.1), and uh, ωh, ph

the numerical solution of (2.34) with initial velocity uh
0 satisfying

×

∇′
h · uh

0 = 0. Then we have

max
[0,T ]

‖uh − ue‖2
Ωc

+ ν

∫ T

0

‖ωh − ωe‖2
Ω̄g

≤ K1(‖uh
0 − ue

0‖2
Ωc

+
×

h4),(3.1)

∫ T

0

‖
×

∇h(ph − pe)‖2
Ωc

≤ K2

(
×

h−2‖uh
0 − ue

0‖2
Ωc

+
×

h2
)

.(3.2)

where K1, K2 are constants depending on T , ν, ‖ue‖L2(0,T ;C4(Ω̄)), ‖ue‖H1(0,T ;C2(Ω̄)), ‖pe‖L2(0,T ;C3(Ω̄)), but

not on
×

h.
A crucial part of Theorem 1 is to utilize the exact stream function ψe to construct a divergence free

approximate solution of the form

(3.3) ua(t, ·) =
×

∇⊥
h (ψe +

×

h2ϕ) ∈ L2(Ωc,R
2)

such that both ua − ue and uh − ua are O(h2). The latter requires in addition that
×

∇⊥′
h · ua − ωe =

×

△′
h(ψe +

×

h2ϕ) − ωe = O(h2). Here ϕ is a correction to be determined from the following Lemma.
Lemma 3.1. If the mapping x : (ξ1, ξ2) 7→ (x, y) is a C4 bijection from [0, 1] × S1 to Ω̄ ⊂ R

2 and
ψ ∈ C4(Ω̄), then

×

△′
hψ
(

x(0, ξ2)
)

=
(2

√
2

×

h

(

g11∂1ψ + g12∂2ψ
)

+ △ψ
)

(

x(0, ξ2)
)

+ PL(ψ)(ξ2)
×

h+Qh
L(ψ)(ξ2)

×

h2,

×

△′
hψ
(

x(1, ξ2)
)

=
(−2

√
2

×

h

(

g11∂1ψ + g12∂2ψ
)

+ △ψ
)

(

x(1, ξ2)
)

+ PR(ψ)(ξ2)
×

h+Qh
R(ψ)(ξ2)

×

h2,

(3.4)

where

(3.5) ‖PL,R(ψ)‖C1(S1) + ‖Qh
L,R(ψ)‖C0(S1) ≤ C

[

‖x‖C4([0,1]×S1), ‖x−1‖C4(Ω̄)

]

‖ψ‖C4(Ω̄).

Here in (3.5) and the rest of the paper, we denote by C
[

· · ·
]

a positive constant that depends on the
arguments inside the bracket.

Proof. We apply the reduced Laplacian (2.25) to ψ on x(0, ξ2) and split it into two parts:

(3.6)
×

△′
hψ
(

x(0, ξ2)
)

=
2

√

×

g(0, ξ2)

(

IL,+(0, ξ2) + IL,−(0, ξ2)
)
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where IL,±(0, ξ2) are the terms associated with
×

qαβ(h
2 , ξ

2 ± h
2 ) =

√

×

g
×

gαβ(h
2 , ξ

2 ± h
2 ), respectively. More

precisely,

IL,+(0, ξ2) ,
1
×

h

(

×

q11
×

D1ψ̃ +
×

q12
×

D2ψ̃
)

(h
2 , ξ

2 + h
2 )

=
1
×

h

×

q11(h
2 , ξ

2 + h
2 )
(×

∂1ψ̃(h
2 , ξ

2 + h
2 ) +

×

h2

24

×

∂3
1 ψ̃(h

2 , ξ
2 + h

2 ) +Kh
L,1,+(ψ)(ξ2)

×

h3
)

+
1
×

h

×

q12(h
2 , ξ

2 + h
2 )
(×

∂2ψ̃(h
2 , ξ

2 + h
2 ) +

×

h2

24

×

∂3
2ψ̃(h

2 , ξ
2 + h

2 ) +Kh
L,2,+(ψ)(ξ2)

×

h3
)

(3.7)

where ψ̃ = ψ◦x and the remainder terms satisfy |Kh
L,ℓ,+(ψ)(ξ2)| ≤ C

[

‖x‖C4([0,1]×S1)

]

‖ψ‖C4(Ω̄), and we have
assumed that analytic metric tensors have been adopted in the discretization. The analysis below applies to
numerical metric tensors without difficulty.

Expand (3.7) around (0, ξ2) and apply (2.2), we get

IL,+(0, ξ2) =
1
×

h

(×

q11
×

∂1ψ̃ +
×

q12
×

∂2ψ̃
)

(0, ξ2) +
1

2

×

∂1

(×

q11
×

∂1ψ̃ +
×

q12
×

∂2ψ̃
)

(0, ξ2)

+ P̃L,+(ψ)(ξ2)
×

h+ Q̃h
L,+(ψ)(ξ2)

×

h2

(3.8)

where |Q̃h
L,+(ψ)(ξ2)| ≤ C

[

‖x‖C4([0,1]×S1), ‖x−1‖C4(Ω̄)

]

‖ψ‖C4(Ω̄) and

(3.9) P̃L,+(ψ)(ξ2) ,
1

8

×

∂2
1

(×

q11
×

∂1ψ̃ +
×

q12
×

∂2ψ̃
)

(0, ξ2) +
1

24

(×

q11
×

∂3
1 ψ̃ +

×

q12
×

∂3
2 ψ̃
)

(0, ξ2).

Similarly,

IL,−(0, ξ2) ,
−1
×

h

(

×

q21
×

D1ψ̃ +
×

q22
×

D2ψ̃
)

(h
2 , ξ

2 − h
2 )

= − 1
×

h

(×

q21
×

∂1ψ̃ +
×

q22
×

∂2ψ̃
)

(0, ξ2) +
1

2

×

∂2

(×

q21
×

∂1ψ̃ +
×

q22
×

∂2ψ̃
)

(0, ξ2)

− P̃L,−(ψ)(ξ2)
×

h+ Q̃h
L,−(ψ)(ξ2)

×

h2

(3.10)

where |Q̃h
L,−(ψ)(ξ2)| ≤ C

[

‖x‖C4([0,1]×S1), ‖x−1‖C4(Ω̄)

]

‖ψ‖C4(Ω̄) and

(3.11) P̃L,−(ψ)(ξ2) ,
1

8

×

∂2
2

(×

q21
×

∂1ψ̃ +
×

q22
×

∂2ψ̃
)

(0, ξ2) +
1

24

(×

q21
×

∂3
1 ψ̃ +

×

q22
×

∂3
2 ψ̃
)

(0, ξ2).

From (2.1), (2.8) and the relation

(3.12)
×

g
11 − 2

×

g
21

+
×

g
22

= 2g11,
×

g
11 − ×

g
22

= 2g12,

we have

(3.13)
1
×

h

(

×

q11
×

∂1ψ̃ +
×

q12
×

∂2ψ̃ − ×

q21
×

∂1ψ̃ − ×

q22
×

∂2ψ̃
)

=

√
2

√

×

g
×

h

(

g11∂1ψ + g12∂2ψ
)

.
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As a consequence, (3.4) follows from (3.6), (3.8) and (3.10) with

PL(ψ)(ξ2) ,
2

√

×

g(0, ξ2)

(

P̃L,+(ψ)(ξ2) − P̃L,−(ψ)(ξ2)
)

,

Qh
L(ψ)(ξ2) ,

2
√

×

g(0, ξ2)

(

Q̃h
L,+(ψ)(ξ2) + Q̃h

L,−(ψ)(ξ2)
)

.

The estimate for PR and Qh
R are similar.

From Lemma 3.1, it is clear that |ωe(t, ·) − ωa(t, ·)| = O(h2) provided ϕ satisfies

ϕ
(

t,x(0, ξ2)
)

= 0, ∂ξ1ϕ
(

t,x(0, ξ2)
)

=
−PL(ψe)(t, ξ2)

2
√

2g11(0, ξ2)
,

ϕ
(

t,x(1, ξ2)
)

= 0, ∂ξ1ϕ
(

t,x(1, ξ2)
)

=
PR(ψe)(t, ξ2)

2
√

2g11(1, ξ2)
.

(3.14)

with PL,R(ψe) obtained by applying Lemma 3.1 to the exact stream function ψe(t, ·).
Such a correction ϕ could be constructed by combining direct tensor products of fL,R with proper cutoff

functions in ξ1. However, for regularity consideration, we will elaborate further by mollifying fL and fR in
the ξ2 direction, with support of the mollifier proportional to the distance to Γ. The singularity induced
by vanishing support of the mollifier near the boundary can be compensated by the condition ϕ = 0 on Γ.
More precisely, we have the following Lemma:

Lemma 3.2. Given fL and fR ∈ C1(S1), there exists a function ϕ̃ ∈ C2([0, 1] × S1) such that

(3.15) ϕ̃(0, ξ2) = 0, ϕ̃(1, ξ2) = 0,

(3.16) ∂1ϕ̃(0, ξ2) = fL(ξ2), ∂1ϕ̃(1, ξ2) = fR(ξ2),

and

(3.17) ‖ϕ̃‖C2([0,1]×S1) ≤ C
(

‖fL‖C1(S1) + ‖fR‖C1(S1)

)

.

Proof. Let η(·) : S1 7→ R be a standard mollifier with compact support [−δ, δ] ⊂ S1 and total mass 1,

∫

S1

η(ξ2) dξ2 = 1, ηǫ(ξ2) ,
1

ǫ
η(
ξ2

ǫ
).

We define

ϕ̃L(ξ1, ξ2) = ξ1
(

ηξ1 ∗ fL

)

(ξ2) =

∫

S1

η(
ξ2 − λ

ξ1
)fL(λ) dλ,(3.18)

ϕ̃R(ξ1, ξ2) =(1 − ξ1)
(

η1−ξ1 ∗ fR

)

(ξ2) =

∫

S1

η(
ξ2 − λ

1 − ξ1
)fR(λ) dλ,(3.19)

and

(3.20) ϕ̃(ξ1, ξ2) = ϕ̃L(ξ1, ξ2)Θ(ξ1) − ϕ̃R(ξ1, ξ2)Θ(1 − ξ1),
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where Θ is a smooth cutoff function satisfying

(3.21) Θ(ξ1) =











1, 0 ≤ ξ1 ≤ 1
3

0, 2
3 ≤ ξ1 ≤ 1

smoothly connected on 1
3 ≤ ξ1 ≤ 2

3

It is easy to see that ϕ̃ satisfies (3.15). To show that ϕ̃ satisfies (3.16), we note that

∂ξ1(ξ1ηξ1

(ξ2)) =∂ξ1η
(ξ2

ξ1
)

=
−ξ2
(ξ1)2

η′
(ξ2

ξ1
)

=
1

ξ1
ζ
(ξ2

ξ1
)

= ζξ1

(ξ2),(3.22)

where ζ(ξ2) , −ξ2η′(ξ2), is another mollifier with total mass 1 and ζǫ(ξ2) , 1
ǫ ζ(

ξ2

ǫ ). Therefore

lim
ξ1→0+

∂ξ1 ϕ̃L(ξ1, ξ2) = lim
ξ1→0+

∫

S1

∂ξ1(ξ1ηξ1

)(ξ2 − λ)fL(λ) dλ = lim
ξ1→0+

∫

S1

ζξ1

(ξ2 − λ)fL(λ) dλ = fL(ξ2).

(3.23)

Similarly,

(3.24) lim
ξ1→1−

∂ξ1 ϕ̃R(ξ1, ξ2) = −fR(ξ2).

To estimate the C2-norm of ϕ̃(ξ1, ξ2), we first observe that

∣

∣∂2
ξ2 ϕ̃L(ξ1, ξ2)

∣

∣ =
∣

∣

∫

S1

∂2
ξ2 η(

ξ2 − λ

ξ1
)fL(λ) dλ

∣

∣ =
∣

∣

∫

S1

∂λ∂ξ2 η(
ξ2 − λ

ξ1
)fL(λ) dλ

∣

∣

=
∣

∣

∫

S1

∂ξ2 η(
ξ2 − λ

ξ1
)∂λfL(λ) dλ

∣

∣ ≤ ‖fL‖C1(S1)‖η′‖L1(S1).

(3.25)

Secondly

∂ξ1ζξ1

(ξ2 − λ) = ∂ξ1

( 1

ξ1
ζ(
ξ2 − λ

ξ1
)
)

=
−1

ξ1
( 1

ξ1
ζ(
ξ2 − λ

ξ1
) +

ξ2 − λ

(ξ1)2
ζ′(
ξ2 − λ

ξ1
)
)

=
1

ξ1
∂λ

(ξ2 − λ

ξ1
ζ(
ξ2 − λ

ξ1
)
)

= ∂λZ
ξ1

(ξ2 − λ)

(3.26)

where

(3.27) Z(ξ2) , ξ2ζ(ξ2), Zǫ(ξ2) ,
1

ǫ
Z
(ξ2

ǫ

)

From (3.22) and (3.26), we have

|∂2
ξ1 ϕ̃L(ξ1, ξ2)| =

∣

∣

∫

S1

∂ξ1ζξ1

(ξ2 − λ)fL(λ) dλ
∣

∣ =
∣

∣

∫

S1

∂λZ
ξ1

(ξ2 − λ)fL(λ) dλ
∣

∣

=
∣

∣

∫

S1

Zξ1

(ξ2 − λ)∂λfL(λ) dλ
∣

∣ ≤ ‖fL‖C1(S1)‖Z‖L1(S1).

(3.28)

Similar calculation leads to

|∂ξ1 ϕ̃L(ξ1, ξ2)| ≤ ‖fL‖C0(S1),(3.29)

|∂ξ2 ϕ̃L(ξ1, ξ2)| ≤ ‖fL‖C0(S1)‖η′‖L1(S1),(3.30)

|∂ξ1∂ξ2 ϕ̃L(ξ1, ξ2)| ≤ ‖fL‖C1(S1).(3.31)
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The estimate of ϕ̃R(ξ1, ξ2) is also similar. Therefore (3.16) follows.
Proof of Theorem 1. Let ϕ̃ be given by Lemma 3.2 with

(3.32) fL(t, ξ2) ,
−PL(ψe)(t, ξ2)

2
√

2g11(0, ξ2)
, fR(t, ξ2) ,

PR(ψe)(t, ξ2)

2
√

2g11(1, ξ2)
.

and ϕ = ϕ̃ ◦ x−1. It follows from (3.5) that

‖ϕ(t, ·)‖C2(Ω̄) ≤C
[

‖x‖C4([0,1]×S1), ‖x−1‖C4(Ω̄)

](

‖PL(ψe)‖C1(S1) + ‖PR(ψe)‖C1(S1)

)

≤C
[

‖x‖C4([0,1]×S1), ‖x−1‖C4(Ω̄)

]

‖ψe(t, ·)‖C4(Ω̄).
(3.33)

From the construction of ϕ, it is also clear that

‖∂tϕ(t, ·)‖C2(Ω̄) ≤C
[

‖x‖C4([0,1]×S1), ‖x−1‖C4(Ω̄)

](

‖∂tPL(ψe)‖C1(S1) + ‖∂tPR(ψe)‖C1(S1)

)

≤C
[

‖x‖C4([0,1]×S1), ‖x−1‖C4(Ω̄)

]

‖∂tψ
e(t, ·)‖C4(Ω̄).

(3.34)

Now we define

(3.35) ua(t, ·) ,
×

∇⊥
h (ψe +

×

h2ϕ) ∈ L2(Ωc,R
2)

The corresponding approximate vorticity is given by

(3.36) ωa(t, ·) ,
×

∇⊥′
h · ua =

×

△′
h(ψe +

×

h2ϕ) ∈ L2(Ω̄g,R).

It follows that

(3.37) ωa =







ωe +
(

PL,R(ψe) ± 2
√

2g11∂1ϕ
)×

h+
(

Rh
4 (ψe) +Rh

2 (ϕ)
)×

h2 on Γg

ωe +
(

R̊h
4 (ψe) + R̊h

2 (ϕ)
)×

h2 on Ω̊g

where the remainder terms satisfy ‖Rh
k(·)‖C0(Ω̄), ‖R̊h

k(·)‖C0(Ω̄) ≤ C
[

‖x‖Ck([0,1]×S1), ‖x−1‖Ck(Ω̄)

]

‖ · ‖Ck(Ω̄).
For brevity, we shall omit the dependence of C on the mapping x from now on. From (3.35), (3.36),

(3.37), (3.14) and (2.33), we conclude that

(3.38) |ua(t, ·) − ue(t, ·)| ≤ C1

[

‖ψe(t, ·)‖C3(Ω̄), ‖ϕ(t, ·)‖C1(Ω̄)

]
×

h2 = C1

[

‖ue(t, ·)‖C2(Ω̄)

]
×

h2,

(3.39) |∂tu
a(t, ·) − ∂tu

e(t, ·)| ≤ C2

[

‖∂tψ
e(t, ·)‖C3(Ω̄), ‖∂tϕ(t, ·)‖C1(Ω̄)

]
×

h2 = C2

[

‖∂tu
e(t, ·)‖C2(Ω̄)

]
×

h2,

(3.40) |ωa(t, ·) − ωe(t, ·)| ≤ C3

[

‖ψe(t, ·)‖C4(Ω̄), ‖ϕ(t, ·)‖C2(Ω̄)

]
×

h2 = C3

[

‖ue(t, ·)‖C3(Ω̄)

]
×

h2

and

(3.41)
×

∇′
h · uh(t, ·) =

×

∇′
h · ua(t, ·) = 0.

We can now write

(3.42) ∂tu
a + ω̄eua⊥ +

×

∇hp
e = ν

×

∇⊥
h ω

e + E + f on Ωc,
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where E is the local truncation error:

(3.43) E = ∂t(u
a − ue) + (ω̄eua⊥ − ωeue⊥) + (

×

∇h −∇)pe + ν(∇⊥ −
×

∇⊥
h )ωe.

From (3.38, 3.39) and

(3.44) ω̄eua⊥ − ωe(ue)⊥ = ω̄e(ua − ue)⊥ + (ω̄e − ωe)(ue)⊥,

it is easy to see that

(3.45)

∫ T

0

‖E ‖2
Ωc

≤ C4

[

ν, ‖ue‖H1(0,T ;C2(Ω̄)), ‖ue‖L2(0,T ;C4(Ω̄)), ‖pe‖L2(0,T ;C3(Ω̄))

]
×

h4.

We now proceed to derive an error equation. Define ε(t, ·) = uh(t, ·) − ua(t, ·), we have

(3.46) ∂tε + (ω̄huh⊥ − ω̄eua⊥) +
×

∇h(ph − pe) = ν
×

∇⊥
h (ωh − ωe) − E .

From (2.29) and (3.41), we have 〈 ε ,
×

∇h(ph − pe) 〉Ωc
= −〈

×

∇′
h · ε , ph − pe 〉Ω̄g

= 0, and thus

〈 ε , ∂tε 〉Ωc
+ 〈 ε , ω̄huh⊥ − ω̄eua⊥ 〉Ωc

= ν〈 ε ,
×

∇⊥
h (ωh − ωe) 〉Ωc

− 〈 ε , E 〉Ωc
.

From (2.30),

ν〈 ε ,
×

∇⊥
h (ωh − ωe) 〉Ωc

= − ν〈
×

∇⊥′
h · (uh − ua) , ωh − ωe 〉Ω̄g

= − ν〈ωh − ωa , ωh − ωe 〉Ω̄g

= − ν〈ωh − ωe , ωh − ωe 〉Ω̄g
− ν〈ωe − ωa , ωh − ωe 〉Ω̄g

≤ − ν

2
‖ωh − ωe‖2

Ω̄g
+
ν

2
‖ωe − ωa‖2

Ω̄g
.

Since ε = uh − ua is pointwise perpendicular to ω̄h(uh − ua)⊥, we have

〈 ε , ω̄huh⊥ − ω̄eua⊥ 〉Ωc
= 〈 ε , ω̄h(uh − ua)⊥ + (ω̄h − ω̄e)ua⊥ 〉Ωc

= 〈 ε , (ω̄h − ω̄e)ua⊥ 〉Ωc
.

Thus from Jensen’s inequality,

∣

∣〈 ε , ω̄huh⊥ − ω̄eua⊥ 〉Ωc

∣

∣ ≤ 1

ν
‖ua‖2

L∞(Ωc)
‖ε‖2

Ωc
+
ν

4
‖ωh − ωe‖2

Ω̄g
≤ 1

ν
‖ua‖2

L∞(Ωc)
‖ε‖2

Ωc
+
ν

4
‖ω̄h − ω̄e‖2

Ωc

In summary, we have shown that

(3.47)
1

2
∂t‖ε‖2

Ωc
+
ν

4
‖ωh − ωe‖2

Ω̄g
≤
(1

2
+

1

ν
‖ua‖2

L∞(Ωc)

)

‖ε‖2
Ωc

+
ν

2
‖ωe − ωa‖2

Ω̄g
+

1

2
‖E ‖2

Ωc
.

In view of (3.40), (3.45), and Gronwall’s inequality, we have

(3.48) max
0≤t≤T

‖uh − ua‖2
Ωc

+ ν

∫ T

0

‖ωh − ωe‖2
Ω̄g

≤ K1(‖uh
0 − ue

0‖2
Ωc

+
×

h4).

The estimate (3.1) follows in view of (3.38).
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Next, we proceed to show the preliminary pressure error estimate (3.2). Take the inner product with
×

∇h(ph − pe) on both sides of (3.46), then apply (2.29) and (3.41), we obtain

〈
×

∇h(ph − pe) , ω̄huh⊥ − ω̄eua⊥ 〉Ωc
+ ‖

×

∇h(ph − pe)‖2
Ωc

=ν〈
×

∇h(ph − pe) ,
×

∇⊥
h (ωh − ωe) 〉Ωc

− 〈
×

∇h(ph − pe) , E 〉Ωc
.

(3.49)

Thus

(3.50)
1

4
‖

×

∇h(ph − pe)‖2
Ωc

≤ ν2‖
×

∇⊥
h (ωh − ωe)‖2

Ωc
+ ‖ω̄huh⊥ − ω̄eua⊥‖2

Ωc
+ ‖E ‖2

Ωc
.

Since

‖
×

∇⊥
h (ωh − ωe)‖2

Ωc
≤ 8

×

h2
‖ωh − ωe‖2

Ω̄g

and

(3.51) ‖ω̄huh⊥ − ω̄eua⊥‖2
Ωc

≤ 2‖uh‖2
L∞(Ωc)

‖ωh − ωe‖2
Ω̄g

+ 2‖ωe‖2
C0(Ω̄)‖uh − ua‖2

Ωc
,

it follows that

1

4

∫ T

0

‖
×

∇h(ph − pe)‖2
Ωc

≤
(8ν2

×

h2
+ 2 max

[0,T ]
‖uh‖2

L∞(Ωc)

)

∫ T

0

‖ωh − ωe‖2
Ω̄g

+ 2 max
[0,T ]

‖ωe‖2
C0(Ω̄)

∫ T

0

‖uh − ua‖2
Ωc

+

∫ T

0

‖E ‖2
Ωc
.

Note that

‖uh‖2
L∞(Ωc)

≤2‖uh − ue‖2
L∞(Ωc)

+ 2‖ue‖2
C0(Ω̄)

≤ 2
×

h2 min
Ωc

√
g

h

‖uh − ue‖2
Ωc

+ 2‖ue‖2
C0(Ω̄)

≤ 2K1

min
Ωc

√
g

h

(
×

h−2‖uh
0 − ue

0‖2
Ωc

+
×

h2) + 2‖ue‖2
C0(Ω̄).

(3.52)

Hence

(3.53) max
[0,T ]

‖uh‖2
L∞(Ωc)

≤ C5(1 +
×

h−2‖uh
0 − ue

0‖2
Ωc

),

where C5 = C5

[

T, ν, ‖ue‖L2(0,T ;C4(Ω̄)), ‖ue‖H1(0,T ;C2(Ω̄)), ‖pe‖L2(0,T ;C3(Ω̄))

]

. Consequently,

(3.54)

∫ T

0

‖
×

∇h(ph − pe)‖2
Ωc

≤ K ′
2

(
×

h−2‖uh
0 − ue

0‖2
Ωc

(1 + ‖uh
0 − ue

0‖2
Ωc

) +
×

h2
)

≤ K2

(
×

h−2‖uh
0 − ue

0‖2
Ωc

+
×

h2
)

.

Remark 1. The error estimate (3.1), (3.2) is subject to appropriate approximation of the initial velocity
field. This can be achieved, for example, by taking uh

0 = ua
0 = ua(0, ·) with ua defined by (3.35). In view of

(3.38), uh
0 = ua

0 gives

max
[0,T ]

‖uh − ue‖2
Ωc

+ ν

∫ T

0

‖ωh − ωe‖2
Ω̄g

≤ K1

×

h4,(3.55)

∫ T

0

‖
×

∇h(ph − pe)‖2
Ωc

≤ K2

×

h2.(3.56)
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Similarly, the refined estimates (3.58), (3.59) in Theorem 3 also depend on the approximations of initial

velocity uh
0 − ue

0 and initial vorticity ωh
0 − ωe

0 =
×

∇⊥
h (uh

0 − ue
0). The choice uh

0 = ua
0 and consequently

ωh
0 =

×

∇⊥
h ua

0 gives full second order accuracy in (3.58), (3.59) in view of (3.38) and (3.40).

3.2. The LBB Condition and Refined Pressure Estimate. Since the pressure lacks an evolu-
tionary equation, it is in general difficult to obtain optimal estimate from basic energy estimate alone. The
pressure estimate (3.2) is only first order. To get full second order accuracy, we resort to the well known
inf-sup condition (also known as div-stability condition or Ladyzhenskaya-Babuška-Brezzi (LBB) condition).
Indeed, we have

Theorem 2 (LBB). If the mapping x : (ξ1, ξ2) 7→ (x, y) is a C1,1 bijection between [0, 1] × S1 and
Ω̄ ⊂ R

2, then there exists a constant β > 0 such that

(3.57) inf
p∈L2(Ω̄g,R)/R2

sup
u∈L2(Ωc,R2)

〈 p ,
×

∇′
h · u 〉Ω̄g

‖p‖Ω̄g
‖u‖×

H1
h

≥ β uniformly in h.

Here ‖u‖×

H1
h

, (‖u‖2
Ωc

+ ‖
×

∇⊥′
h · u‖2

Ω̄g
+ ‖

×

∇′
h · u‖2

Ω̄g
)

1
2 is the natural norm associated with the discrete

vector Laplacian.

The LBB condition arises naturally as a compatibility condition between the discrete velocity and pres-
sure spaces in mixed finite element formulations. It is a fundamental research topic in finite element analysis
for steady state computation, yet rarely discussed in finite difference setting or dynamical problems. The
uniform estimate (3.57) is not only vital to the pressure error estimate presented here, but also directly
affects the condition number and uniform bound of the solution operator for the Stokes’s problem.

The verification of the LBB condition is quite complicated, especially for low order finite element meth-
ods. Denote by DOF(u) and DOF(p) the degree of freedom for u and p, respectively. It is clear that, the
larger the ratio DOF(u)/DOF(p) is, the more likely (3.57) is to hold and be verified.

To verify the LBB condition, a common approach is to reduce the problem to a patch of elements and
conduct local analysis [BN1]. See also [St] for a related approach. This local argument has proved successful
for higher order finite element methods with large DOF(u)/DOF(p) ratio. When the ratio is low, the spatial
compatibility plays a crucial role in establishing (3.57).

For example, the spaces (Ql, Pl−1) are well known and widely used in mixed finite element formulation.
Using the local argument, it can be shown that LBB condition holds for (Ql, Pl−1) with l ≥ 2 [GR]. However,
this local argument does not apply to the lowest order scheme Q1 −P0 (bilinear in velocity components and
piecewise constant in pressure), but only to some of its variants equipped with extra degrees of freedom in
the velocity space. In fact, the Q1−P0 element is known to violate the LBB condition with β = O(h) [BN2].

In our case, GMAC is staggered and supported the same way as the Q1 −P0 element but only differs in
the discretization of the vector Laplacian. Both of them have the minimal ratio DOF(u)/DOF(p) = 2 (3, if
in 3D) among quadrilateral meshes. The similarity between GMAC and the Q1 − P0 element demonstrates
the subtlety and difficulty of Theorem 2. It is also a common belief that staggered grids in some sense implies
the inf-sup condition. The contrast between GMAC scheme and the Q1 − P0 element indicates the inf-sup
estimate is subtler than plain staggeredness. Our analysis shows that it is closely related to the compatibility
of the spatial discretization (2.29)-(2.32). See the Appendix for details.

With the inf-sup condition (3.57) established, the pressure error estimate can be improved to second
order with only minor extra regularity requirement on the exact solution:

Theorem 3. Assume the mapping x : (ξ1, ξ2) 7→ (x, y) is a C4 bijection from [0, 1] × S1 to Ω̄ ⊂ R
2,
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and ue ∈ L2(0, T ;C4(Ω̄)) ∩H1(0, T ;C3(Ω̄)), pe ∈ L2(0, T ;C3(Ω̄)). Then

νmax
[0,T ]

‖ωh − ωe‖2
Ω̄g

+

∫ T

0

‖∂t(u
h − ue)‖2

Ωc
≤ K3(

×

h−2‖uh
0 − ue

0‖4
Ωc

+ ‖uh
0 − ue

0‖2
Ωc

+ ‖ωh
0 − ωe

0‖2
Ω̄g

+
×

h4),(3.58)

∫ T

0

‖ph − pe‖2
Ω̄g

≤ K4(
×

h−2‖uh
0 − ue

0‖4
Ωc

+ ‖uh
0 − ue

0‖2
Ωc

+ ‖ωh
0 − ωe

0‖2
Ω̄g

+
×

h4)(3.59)

where K3, K4 are constants that depend only on T , ν, ‖ue‖H1(0,T ;C3(Ω̄)),‖ue‖L2(0,T ;C4(Ω̄)), ‖pe‖L2(0,T ;C3(Ω̄))

and independent of h.
Proof. We start with the estimate (3.58). Take the inner product with ∂tε on both sides of (3.46) and

apply (3.41), we get

‖∂tε‖2
Ωc

+ 〈 ∂tε , ω̄
huh⊥ − ω̄eua⊥ 〉Ωc

= −ν〈 ∂t(ω
h − ωa) , ωh − ωe 〉Ω̄g

− 〈 ∂tε , E 〉Ωc
.

Note that, from (3.51),

ν

2
∂t‖ωh − ωe‖2

Ω̄g
+ ‖∂tε‖2

Ωc

≤|〈 ∂tε , ω̄
huh⊥ − ω̄eua⊥ 〉Ωc

| + ν|〈 ∂t(ω
e − ωa) , ωh − ωe 〉Ω̄g

| + 1

4
‖∂tε‖2

Ωc
+ ‖E ‖2

Ωc

≤1

2
‖∂tε‖2

Ωc
+ ‖ω̄huh⊥ − ω̄eua⊥‖2

Ωc
+
ν

2
‖∂t(ω

e − ωa)‖2
Ω̄g

+
ν

2
‖ωh − ωe‖2

Ω̄g
+ ‖E ‖2

Ωc

≤1

2
‖∂tε‖2

Ωc
+
(

2‖uh‖2
L∞(Ωc)

+
ν

2

)

‖ωh − ωe‖2
Ω̄g

+ 2‖ωe‖2
C0(Ω̄)‖uh − ua‖2

Ωc
+
ν

2
‖∂t(ω

e − ωa)‖2
Ω̄g

+ ‖E ‖2
Ωc
.

From (3.36), we have

(3.60) ‖∂tω
e(t, ·) − ∂tω

a(t, ·)‖2
Ω̄g

≤ C6

[

‖∂tψ
e(t, ·)‖2

C4(Ω̄), ‖∂tϕ(t, ·)‖2
C2(Ω̄)

]
×

h4 = C6

[

‖∂tu
e(t, ·)‖2

C3(Ω̄)

]
×

h4.

Thus, in view of (3.48), we obtain

ν∂t‖(ωh − ωe)(t, ·)‖2
Ω̄g

+ ‖∂tε(t, ·)‖2
Ωc

≤
(

4‖uh‖2
L∞(Ωc)

+ ν
)

‖ωh − ωe‖2
Ω̄g

+ C7

[

ν,K1, ‖ωe‖C0(Ω̄), C6

](

‖uh
0 − ue

0‖2
Ωc

+
×

h4
)

+ ‖E ‖2
Ωc
.

(3.61)

Integrate (3.61) over [0, T ] and apply (3.1), (3.45) and (3.53), we have

(3.62)

∫ T

0

‖∂tε‖2
Ωc

+ νmax
[0,T ]

‖ωh − ωe‖2
Ω̄g

≤ K3(
×

h−2‖uh
0 − ue

0‖4
Ωc

+ ‖uh
0 − ue

0‖2
Ωc

+ ‖ωh
0 − ωe

0‖2
Ω̄g

+
×

h4).

Thus (3.58) follows in view of (3.39).
We now proceed with the pressure error estimate (3.59). Firstly, both ph and pe are unique up to proper

normalizations. The pressure norm in (3.59) should be understood as

‖ph − pe‖Ω̄g
, min

ph−p̃∈ker(
×

∇⊥
h

)

‖p̃− pe‖Ω̄g

Without loss of generality, we assume that

∫

Ω

pedx = 0 and ph − pe ∈ L2(Ω̄g,R)/R2.

Since the assumption of Theorem 2 is weaker than that of Theorem 3, it follows that (3.57) holds and
there exists u ∈ L2(Ωc,R

2) such that

(3.63) − 〈
×

∇h(ph − pe) , u 〉Ωc
= 〈 ph − pe ,

×

∇′
h · u 〉Ωc

≥ β‖(ph − pe)‖Ω̄g
‖u‖×

H1
h

.
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Now take the inner product with −u on both sides of (3.46), we get
(3.64)

〈−u , ∂tε 〉Ωc
+ 〈−u , ω̄huh⊥ − ω̄eua⊥ 〉Ωc

− 〈
×

∇h(ph − pe) , u 〉Ωc
= ν〈−u ,

×

∇⊥
h (ωh − ωe) 〉Ωc

+ 〈u , E 〉Ωc
.

Therefore

β‖(ph − pe)‖Ω̄g
‖u‖×

H1
h

≤|〈u , ∂tε 〉Ωc
| + |〈u , ω̄huh⊥ − ω̄eua⊥ 〉Ωc

| + |〈u , E 〉Ωc
| + ν|〈

×

∇⊥′
h · u , ωh − ωe 〉Ω̄g

|

≤‖u‖×

H1
h

(

‖∂tε‖Ωc
+ ‖ω̄huh⊥ − ω̄eua⊥‖Ωc

+ ‖E ‖Ωc
+ ν‖ωh − ωe‖Ω̄g

)

(3.65)

Consequently, in view of (3.51), we obtain

(3.66) ‖ph − pe‖2
Ω̄g

≤ 4

β2

(

‖∂tε‖2
Ωc

+
(

2‖uh‖2
L∞(Ωc)

+ ν2
)

‖ωh − ωe‖2
Ω̄g

+ 2‖ωe‖2
C0(Ω̄)‖uh − ua‖2

Ωc
+ ‖E ‖2

Ωc

)

Now we integrate from 0 to T on both sides of (3.66) and apply (3.1, 3.39, 3.45, 3.53, 3.58). The refined
pressure estimate (3.59) then follows.

Similarly, one can give an L∞(0, T ;L2(Ω̄g)) estimate for the pressure error with higher regularity re-
quirement on the exact solution. We state the following Theorem without proof.

Theorem 4. Assume the mapping x : (ξ1, ξ2) 7→ (x, y) is a C4 bijection from [0, 1] × S1 to Ω̄ ⊂ R
2,

and ue ∈ H1(0, T ;C4(Ω̄)) ∩H2(0, T ;C2(Ω̄)), pe ∈ H1(0, T ;C3(Ω̄)). Then

(3.67) max
[0,T ]

‖∂t(u
h − ue)‖2

Ωc
+ ν

∫ T

0

‖∂t(ω
h − ωe)‖2

Ω̄g
≤ K5(χ1 + ‖∂t(u

h − ue)0‖2
Ωc

+
×

h4)

(3.68) max
[0,T ]

‖ph − pe‖2
Ω̄g

≤ K6(χ1 + ‖∂t(u
h − ue)0‖2

Ωc
+

×

h4)

where

(3.69) χ1 ,
×

h−4‖uh
0 − ue

0‖6
Ωc

+ ‖uh
0 − ue

0‖2
Ωc

+
×

h−1‖ωh
0 − ωe

0‖3
Ω̄g

+ ‖ωh
0 − ωe

0‖2
Ω̄g

and K5, K6 are constants that depend on T , ν, ‖ue‖H1(0,T ;C4(Ω̄)), ‖ue‖H2(0,T ;C2(Ω̄)) and ‖pe‖H1(0,T ;C3(Ω̄)),
but not on h.

The ‖∂t(u
h − ue)0‖2

Ωc
term in (3.67) and (3.68) result from Ladyzhenskaya type higher order energy

estimate. An alternative expression in terms of ‖
×

∇⊥
h (ωh

0 − ωe
0)‖2

Ωc
can be derived as follows.

Rewrite (3.46) at t = 0 as

(3.70) ν
×

∇⊥
h (ωh

0 − ωe
0) − (ω̄h

0 uh
0
⊥ − ω̄e

0u
a
0
⊥) − E0 = ∂t(u

h − ua)0 +
×

∇h(ph
0 − pe

0).

Since

(3.71) 〈 ∂t(u
h − ua)0 ,

×

∇h(ph
0 − pe

0) 〉Ωc
= 0,

it follows that (3.70) is an orthogonal decomposition for ν
×

∇⊥
h (ωh

0 −ωe
0)− (ω̄h

0 uh
0
⊥ − ω̄e

0u
a
0
⊥)− E0. Therefore

(3.72) ‖∂t(u
h − ua)0‖Ωc

≤ ν‖
×

∇⊥
h (ωh

0 − ωe
0)‖Ωc

+ ‖ω̄h
0uh

0
⊥ − ω̄e

0u
a
0
⊥‖Ωc

+ ‖E0‖Ωc
.
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Moreover, from (3.43), (3.44), (3.38) and (3.39), we have

(3.73) ‖E0‖2
Ωc

≤ C8

[

‖ue
0‖C4(Ω̄), ‖∂tu

e
0‖C2(Ω̄), ‖pe

0‖C3(Ω̄)

]
×

h4,

and

(3.74) ‖ω̄h
0uh

0
⊥ − ω̄e

0u
a
0
⊥‖2

Ωc
≤ 2‖uh

0‖2
L∞(Ωc)

‖ωh
0 − ωe

0‖2
Ω̄g

+ 2‖ωe
0‖2

C0(Ω̄)‖uh
0 − ua

0‖2
Ωc

, χ2,

with

(3.75) χ2 ≤ C
[

‖ue
0‖C1(Ω̄)

]

(‖ωh
0 − ωe

0‖2
Ω̄g

+ ‖uh
0 − ue

0‖2
Ωc

+
×

h−2‖uh
0 − ue

0‖2
Ωc
‖ωh

0 − ωe
0‖2

Ω̄g
).

Therefore

(3.76) ‖∂t(u
h − ua)0‖2

Ωc
≤ ν‖

×

∇⊥
h (ωh

0 − ωe
0)‖2

Ωc
+ χ2 + C8

×

h4 ≤ C9

[

ν, C2, C8]
(

‖
×

∇⊥
h (ωh

0 − ωe
0)‖2

Ωc
+ χ2 +

×

h4
)

.

As a result, we can replace the ‖∂t(u
h −ue)0‖2

Ωc
term in (3.67) and (3.68) by ‖

×

∇⊥
h (ωh

0 −ωe
0)‖2

Ωc
+χ2, which

is easier to analyze in practice.
For example, if the mapping x is a C5 bijection and ue

0 ∈ C4(Ω̄) (and consequently ψe
0 ∈ C5(Ω̄)), then

following the derivation in the proof of Lemma 3.1, it is easy to see that

(3.77) ‖PL,R(ψe
0)‖C2(S1) ≤ C

[

‖x‖C5([0,1]×S1), ‖x−1‖C5(Ω̄)

]

‖ψe
0‖C5(Ω̄)

and the construction (3.18)-(3.21) gives

(3.78) ‖ϕ̃‖C3([0,1]×S1) ≤ C
[

‖x‖C5([0,1]×S1), ‖x−1‖C5(Ω̄)

]

(‖fL‖C2(S1) + ‖fR‖C2(S1)).

Together with (3.32), we conclude that

(3.79) ‖ϕ0‖C3(Ω̄) ≤ C
[

‖x‖C5([0,1]×S1), ‖x−1‖C5(Ω̄)

]

‖ψe
0‖C5(Ω̄).

where ϕ0 = ϕ̃0 ◦ x−1.
Overall, we have the following refined estimate

(3.80) ωa
0 =







ωe
0 +

(

R4(ψ
e
0) + △ϕ0

)×

h2 +
(

Rh
5 (ψe

0) +Rh
3 (ϕ0)

)×

h3 on Γg

ωe
0 +

(

R4(ψ
e
0) + △ϕ0

)×

h2 +
(

R̊h
5 (ψe

0) + R̊h
3 (ϕ0)

)×

h3 on Ω̊g,

where

(3.81) R4(ψ
e
0) =

1

24

√

×

g

2
∑

γ=1

(

×

∂3
γ(

√

×

g
×

g1γ
×

∂1ψ
e +

√

×

g
×

g2γ
×

∂2ψ
e) +

×

∂γ(

√

×

g
×

g1γ
×

∂3
1ψ

e +

√

×

g
×

g2γ
×

∂3
2ψ

e)

)

and the remainder terms satisfy

(3.82) ‖Rh
k(·)‖C0(Ω̄), ‖R̊h

k(·)‖C0(Ω̄) ≤ C
[

‖x‖Ck([0,1]×S1), ‖x−1‖Ck(Ω̄)

]

‖ · ‖Ck(Ω̄).

It is easy to see from (3.80)-(3.82) that

(3.83) ‖
×

∇⊥
h (ωa

0 − ωe
0)‖Ωc

≤ C10[‖x‖C5([0,1]×S1), ‖x−1‖C5(Ω̄), ‖ψe
0‖C5(Ω̄)]

×

h2.
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In view of Remark 1 and the analysis above, the estimates (3.67) and (3.68) result in full second order
accuracy provided the initial data is chosen properly. In particular, we have the following

Corollary 1. Assume the mapping x : (ξ1, ξ2) 7→ (x, y) is a C5 bijection from [0, 1] × S1 to Ω̄ ⊂ R
2

and uh
0 = ua

0. Then

(3.84) max
[0,T ]

‖∂t(u
h − ue)‖2

Ωc
+ ν

∫ T

0

‖∂t(ω
h − ωe)‖2

Ω̄g
+ max

[0,T ]
‖ph − pe‖2

Ω̄g
≤ K7

×

h4,

where K7 = K7

[

T, ν, ‖ue‖H1(0,T ;C4(Ω̄)), ‖ue‖H2(0,T ;C2(Ω̄))‖pe‖H1(0,T ;C3(Ω̄)), ‖x‖C5([0,1]×S1), ‖x−1‖C5(Ω̄)

]

.
It is worth noting that the extra regularity requirement on x is only needed in constructing a good initial

data. It will be interesting to see if there exists initial data satisfying (3.83) under a C4 bijection.
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Appendix A. Proof of Theorem 2, the LBB Condition.

In this appendix, we proceed with the proof of Theorem 2, the LBB condition for GMAC.
Our proof consists of two parts. In section A.1, Theorem 5, we will prove a (formally) stronger version

of the LBB condition for the special case of conformal metrics. That is, mappings with corresponding metric
tensors of the form

(A.1) g�11
= g�22

=
√

g�(ξ1, ξ2), g�12
= g�21

≡ 0.

For example, the mapping x� : (ξ1, ξ2) 7→ (x�, y�) with

x� = e2πξ1

cos(2πξ2), y� = e2πξ1

sin(2πξ2),

satisfies (A.1) with
√

g�(ξ1, ξ2) = 4π2e4πξ1

.

To make distinction between conformal and general metrics, we will add the subscript ’+’ for all quantities
derived from the conformal coordinate mapping, including the basis vectors and the difference operators and
various norms in the rest of the paper.

This strong LBB condition, together with a crucial estimate (Lemma A.5), are then used to give a
constructive proof for the general case in section A.2. Note that we do not require the general case to be
small perturbation of the conformal one.

A.1. Strong Form of LBB Condition for Conformal Metrics. We start with the following strong
version of the LBB condition for conformal metrics satisfying (A.1).

Theorem 5 (Strong form of LBB). If the mapping x� : (ξ1, ξ2) 7→ (x� , y� ) is a conformal bijection

between [0, 1]× S1 and Ω̄� ⊂ R
2, then given any q ∈ L2(Ω̄� g

,R)/R2, there exists a vector field v ∈ L2(Ω� c
,R2)

such that

(A.2)
×

∇� ′
h
· v = q

and

(A.3) γ‖v‖×
H1�h

≤ ‖q‖Ω̄� g

where γ > 0 is a constant independent of q, v or
×

h.
It is easy to see that (A.2, A.3) implies the standard LBB condition

(A.4) inf
q∈L2(Ω̄� g

,R)/R2
sup

v∈L2(Ω� c
,R2)

〈 q ,
×

∇′
h · v 〉Ω̄� g

‖q‖Ω̄� g
‖v‖×

H1�h

≥ γ uniformly in h.

In fact, it can be shown that the strong form of LBB condition (A.2, A.3) is equivalent to the standard LBB
condition (A.4).

Our approach for Theorem 5 is based on a global construction procedure using Fourier series. We start
with a list of notations. Define

Cm
i ,

{√
2 cos(mπξ1i ), 1 ≤ m ≤ N − 1;

cos(mπξ1i ), m = 0, N,
(A.5)

Sm
i ,

√
2 sin(mπξ1i ), 1 ≤ m ≤ N − 1,(A.6)

En
j , exp(2nπ

√
−1ξ2j ), 0 ≤ n ≤ N − 1.(A.7)
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It is easy to verify that

(A.8) {Cm ⊗ En | 0 ≤ m ≤ N, 0 ≤ n ≤ N − 1}

is an orthonormal basis for L2(Ω̄� g
,R) with respect to the standard inner product

(A.9) 〈a, b〉0,Ω̄� g
= h2

N
∑

i=0

′
N
∑

j=1

(ab)ij .

where the primed sum denotes half weight at i = 0 and i = N . In addition, (A.8) is an orthonormal

eigen-basis for
√

g� ×

△� ′
h
. Indeed, since the coordinate mapping is conformal and h1 = h2 = h, it follows that

×

g�11 =
×

g�22 = 1/
√

×

g� = 1/
√

g� and
×

g�12 =
×

g�21 ≡ 0. Thus

(A.10)
×

△� ′
h

=
1
√

g� ( ×

D2
1
′ +

×

D2
2
′) =

1
√

g� (D2
1
′ +D2

2 +
h2

2
D2

1
′D2

2

)

.

where

(A.11) (D2
1
′f)i =











2
h2 (f1 − f0) i = 0
1
h2 (fi+1 − 2fi + fi−1) 1 ≤ i ≤ N − 1
2
h2 (fN−1 − fN ) i = N

, (D2
2g)j =

gj+1 − 2gj + gj−1

h2
, 1 ≤ j ≤ N.

The reduction is not needed in the ξ2 direction due to periodicity.
It is east to see that

(A.12)
D2

1
′Cm

i = −λ2
mCm

i , 0 ≤ i ≤ N,

D2
2E

n
j = −λ2

2nEn
j , 1 ≤ j ≤ N,

where

(A.13) λm ,
2 sin(mπh/2)

h
.

Therefore

(A.14)
√

g� ×

△� ′
h
(Cm ⊗ En)ij = −×

κ2
mn(Cm ⊗ En)ij ,

where

(A.15)
×

κ2
mn , λ2

m + λ2
2n − h2

2
λ2

mλ
2
2n =

4

h2

(

sin2(
mπh

2
) cos2(nπh) + cos2(

mπh

2
) sin2(nπh)

)

.

On the other hand,

(A.16) {Sm ⊗ En | 1 ≤ m ≤ N − 1, 0 ≤ n ≤ N − 1}

is an orthonormal basis for

(A.17) L2
0(Ω̄� g

,R) ,
{

ψ ∈ L2(Ω̄� g
,R)

∣

∣ψ0,j = 0 = ψN,j, 1 ≤ j ≤ N
}
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with

(A.18) D2
1S

m
i = −λ2

mSm
i , 1 ≤ i ≤ N − 1,

and

(A.19)
√

g� ×

△� h
(Sm ⊗ En)ij = −×

κ2
mn(Sm ⊗ En)ij , 1 ≤ i ≤ N − 1.

Note that, however, (A.16) is not an eigen-basis for
√

g� ×

△� ′
h

since
√

g� ×

△� ′
h
(Sm ⊗ En) 6= 0 on Γg.

Proof of Theorem 5. Given q ∈ L2(Ω̄� g
,R)/R2, we will construct explicitly a vector field v that satisfies

(A.2) and (A.3). This is done in the following steps:

Step 1:
Solve for φ ∈ L2(Ω̄� g

,R)/R2 from

(A.20)
×

△� ′
h
φ = q on Ω̄� g

.

From (A.10-A.15) above, it is easy to see that we can solve (A.20) by expanding φ and Q =
√

g�q with

respect to the eigen-basis (A.8),

(A.21) φij =

N−1
∑

n=0

N
∑

m=0

φ̂mnCm
i En

j , Qij = (
√

g�q)ij =

N−1
∑

n=0

N
∑

m=0

Q̂mnC
m
i En

j .

and compare the coefficients mode by mode to get

(A.22) φ̂mn =







− 1
×

κ2
mn

Q̂mn, (m,n) 6= (0, 0), (N, N
2 )

0, otherwise.

Note that from (A.15),
×

κ2
mn = 0 if and only if (m,n) = (0, 0) or (N, N

2 ), while Q̂0,0 = Q̂N, N
2

= 0 as

q ∈ L2(Ω̄� g
,R)/R2. Thus (A.22) indeed gives the unique solution φ in L2(Ω̄� g

,R)/R2. It is worth mentioning

that, from the analysis above, we have for φ ∈ L2(Ω̄� g
,R)/R2,

h2
N
∑

i=0

′
N
∑

j=1

φ2
ij =

N
∑

m=0

N−1
∑

n=0

|φ̂mn|2 ≤ 1
×

κ4
min

N
∑

m=0

N−1
∑

n=0

|×κ2
mnφ̂mn|2

=
h2

×

κ4
min

N
∑

i=0

′
N
∑

j=1

(
√

g� ×

△� ′
h
φ)2ij

(A.23)

where

(A.24)
×

κ2
min , min

(m,n) 6=(0,0),(N, N
2

)

×

κ2
mn

Moreover, with straightforward calculation (see also (A.76, A.80) below), it is easy to see that

(A.25)
×

κ2
min =

×

κ2
1,0 =

4

h2
sin2

(πh

2

)

= O(1), 8 ≤ ×

κ2
min < π2.
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Thus we have the following estimate for the solution φ ∈ L2(Ω̄� g
,R)/R2:

(A.26) ‖φ‖2
Ω̄� g

≤
×

g�max
×

κ4
min

‖
×

△� ′
h
φ‖2

Ω̄� g

.

Following similar calculations, one can also show that

(A.27) h2
N
∑

i=0

′
N
∑

j=1

φ2
ij =

N
∑

m=0

N−1
∑

n=0

|φ̂mn|2 ≤ 1
×

κ2
min

N
∑

m=0

N−1
∑

n=0

×

κ2
mn|φ̂mn|2 =

1
×

κ2
min

‖
×

∇� h
φ‖2

Ω� c

and

(A.28) ‖
×

∇� h
φ‖2

Ω� c
=

N
∑

m=0

N−1
∑

n=0

×

κ2
mn|φ̂mn|2 ≤ 1

×

κ2
min

N
∑

m=0

N−1
∑

n=0

|×κ2
mnφ̂mn|2 =

h2

×

κ2
min

N
∑

i=0

′
N
∑

j=1

(
√

g� ×

△� ′
h
φ)2ij .

Similarly, for ψ ∈ L2
0(Ω̄� g

,R), we have

(A.29) h2
N−1
∑

i=1

N
∑

j=1

ψ2
ij =

N−1
∑

m=1

N−1
∑

n=0

|ψ̂mn|2 ≤ 1
×

κ2
min

N−1
∑

m=1

N−1
∑

n=0

×

κ2
mn|ψ̂mn|2 =

1
×

κ2
min

‖√g�− 1
2

×

∇� ⊥
h
ψ‖2

Ωc

(A.30) ‖√g�− 1
2

×

∇� ⊥
h
ψ‖2

Ω� c
=

N−1
∑

m=1

N−1
∑

n=0

×

κ2
mn|ψ̂mn|2 ≤ 1

×

κ2
min

N−1
∑

m=1

N−1
∑

n=0

|×κ2
mnψ̂mn|2 =

h2

×

κ2
min

N−1
∑

i=1

N
∑

j=1

(
√

g� ×

△� h
ψ)2ij .

Here in (A.29, A.30), ψ̂mn is the coefficient with respect to the basis (A.16):

(A.31) ψij =

N−1
∑

m=1

N−1
∑

n=0

ψ̂mnSm
i En

j , ψ ∈ L2
0(Ω̄� g

,R).

As a result, we have the following Poincaré type inequalities for φ ∈ L2(Ω̄� g
,R)/R2 and ψ ∈ L2

0(Ω̄� g
,R)

respectively:
Lemma A.1.
1. Let φ ∈ L2(Ω̄� g

,R)/R2, then

(A.32) ‖φ‖2
Ω̄� g

≤
√

g�max
×

κ2
min

‖
×

∇� h
φ‖2

Ω� c
, ‖

×

∇� h
φ‖2

Ω� c
≤
√

g�max
×

κ2
min

‖
×

△� ′
h
φ‖2

Ω̄� g

.

2. Let ψ ∈ L2
0(Ω̄� g

,R), then

(A.33) ‖ψ‖2
Ω̊� g

≤
√

g�max
×

κ2
min
√

g�min

‖
×

∇� ⊥
h
ψ‖2

Ω� c
, ‖

×

∇� ⊥
h
ψ‖2

Ω� c
≤

×

g�max
×

κ2
min

‖
×

△� h
ψ‖2

Ω̊� g

.

Note that in (A.33),

(A.34) ‖
×

△� h
ψ‖2

Ω̊� g

, h2
N−1
∑

i=1

N
∑

j=1

(

√

g� (
×

△� h
ψ)2
)

ij
,
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the integrand is summed over interior grids only. In general,
×

△� ′
h
ψ|Γg

6= 0 even if ψ ∈ L2
0(Ω̄� g

,R).

Step 2:
With φ obtained in step 1, construct ψ ∈ L2

0(Ω̄� g
,R) such that

(A.35) D−
n ψ
∣

∣

Γg
= D̃τφ

∣

∣

Γ̊g

and

(A.36) ‖
×

△� h
ψ‖

Ω̊� g

≤ C‖
×

△� ′
h
φ‖Ω̄� g

,

where Γ̊g = {(ξ1i , ξ2j ) | i = 1 or N − 1, 1 ≤ j ≤ N }, C is a constant that only depends on
√

g�max
and

√

g�min
,

D−
n is the one-sided backward difference with respect to the unit outer normal n,

(A.37) D−
n ψi,j =















ψ0,j − ψ1,j

h
, i = 0,

ψN,j − ψN−1,j

h
, i = N ;

and D̃τ the long-stencil centered difference with respect to the counter-clockwise unit tangent τ ,

(A.38) D̃τφi,j =















φ1,j−1 − φ1,j+1

2h
, i = 1,

φN−1,j+1 − φN−1,j−1

2h
, i = N − 1.

This step is the most technical part of the Theorem. We will detail it in section A.1.1.
Step 3:

With ψ given by Step 2, construct explicitly the vector field v as

(A.39) v ,
×

∇� h
φ−

×

∇� ⊥
h
ψ.

Since ψ ∈ L2
0(Ω̄� g

,R), it follows from (2.33) that
×

∇� ′
h
·

×

∇� ⊥
h
ψ ≡ 0 on Ω̄� g

. Therefore from (2.31), we have

(A.40)
×

∇� ′
h
· v =

×

∇� ′
h
·

×

∇� h
φ−

×

∇� ′
h
·

×

∇� ⊥
h
ψ =

×

△� ′
h
φ = q on Ω̄� g

.

This gives (A.2).
To see that v indeed satisfies (A.3), we first note from (A.32), (A.33), (A.36) and (A.20) that

(A.41) ‖v‖2
Ω� c

= ‖
×

∇� h
φ‖2

Ω� c
+ ‖

×

∇� ⊥
h
ψ‖2

Ω� c
≤ 1

×

κ2
min

(
√

g�max
‖

×

△� ′
h
φ‖2

Ω̄� g

+ g�max
‖

×

△� h
ψ‖2

Ω̊� g

) ≤ β1‖q‖2
Ω̄� g

for some constant β1 > 0 that only depends on
√

g�max
. On the other hand, from (2.31) and (2.32), it is easy

to see that

(A.42)
√

g� ×

∇� ⊥′
h

· v =
√

g� ×

∇� ⊥′
h

· (
×

∇� h
φ−

×

∇� ⊥
h
ψ) =

√

g� ×

△� ′
h
ψ on Ω̊� g

.

Note that in general,
√

g� ×

∇� ⊥′
h

·
×

∇� h
φ 6= 0 on Γg. The net contribution of

√

g� ×

∇� ⊥′
h

· v on (ξ10 , ξ
2
j ) for example,

can be calculated by applying the boundary condition (A.35), that is,

(A.43) ψ1,j =
φ1,j+1 − φ1,j−1

2
,
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to get

(
√

g� ×

∇� ⊥′
h

· v)0,j =(
√

g� ×

∇� ⊥′
h

·
×

∇� h
φ−√g� ×

∇� ⊥′
h

·
×

∇� ⊥
h
ψ)0,j

=2
φ0,j+1 − φ0,j−1 − ψ1,j+1 − ψ1,j−1

×

h2

=
2φ0,j+1 − 2φ0,j−1 − (φ1,j+2 − φ1,j) − (φ1,j − φ1,j−2)

×

h2

=
−(φ1,j+2 − 2φ0,j+1 + φ1,j) + (φ1,j − 2φ0,j−1 + φ1,j−2)

×

h2

=
(
√

g� ×

△� ′
h
φ)0,j−1 − (

√

g� ×

△� ′
h
φ)0,j+1

2
=

1

2

(

(
√

g�q)0,j−1 − (
√

g�q)0,j+1

)

.

(A.44)

The calculation of (
√

g� ×

∇� ⊥′
h

· v)N,j is similar.

In summary, we have

(A.45) (
√

g� ×

∇� ⊥′
h

· v)i,j =















(
√

g� ×

△� h
ψ)i,j 1 ≤ i ≤ N − 1;

1
2

(

(
√

g�q)0,j−1 − (
√

g�q)0,j+1

)

i = 0;
1
2

(

(
√

g�q)N,j+1 − (
√

g�q)N,j−1

)

i = N.

It follows from (A.45), (A.36) and (A.20) that

(A.46) ‖
×

∇� ⊥′
h

· v‖2
Ω̄� g

≤ β2‖q‖2
Ω̄� g

where β2 is a constant that only depends on
√

g�. In view of (A.40), (A.41) and (A.46), the estimate (A.3)

follows with γ−1 =
√
β1 + β2 + 1. This completes the proof of Theorem 5.

A.1.1. Construction and Estimate of ψ. We now proceed with detailed construction and estimate
for the potential ψ asserted in Step 2.

We first define the
×

H
1
2

h norm for periodic grid functions which is essential to our analysis. Let f be a

periodic grid function on {ξ0, ξ1, · · · , ξN ≡ ξ0}, we can expand f(ξj) =
∑N−1

n=0 f̂n En
j and define

(A.47) ‖f‖2
×

H
1
2
h

,

N−1
∑

n=0

|f̂n|2
×

µn

and for φ ∈ L2(Ω̄� g
,R)/R2,

(A.48) ‖D̃τφ‖2
×

H
1
2

h
(̊Γg)

, ‖D̃2φ(ξ11 , ·)‖2
×

H
1
2

h

+ ‖D̃2φ(ξ1N−1, ·)‖2
×

H
1
2

h

,

where

(A.49)
×

µn ,

(

∑

m∈
×

Mn

cos2(mπh)
×

κ2
mn

)−1

and

(A.50)
×

Mn ,











{ 1, 2, · · · , N } n = 0;

{ 0, 1, · · · , N − 1 } n = N/2;

{ 0, 1, · · · , N } otherwise.
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is where
×

κmn 6= 0.
We have the following discrete analogue of the trace inequality:
Lemma A.2. Let φ ∈ L2(Ω̄� g

,R)/R2. Then

(A.51) ‖D̃τφ‖×

H
1
2

h
(̊Γg)

≤ 4
√

g�max
‖

×

△� ′
h
φ‖Ω̄� g

.

Proof. We first show that

(A.52) ‖D̃2φ(ξ11 , ·)‖2
×

H
1
2

h

≤ 2
√

g�max
‖

×

△� ′
h
φ‖2

Ω̄� g

.

Since

(A.53)
En

j+1 − En
j−1

2h
= λ̃2nEn

j , λ̃2n ,
sin(2nπh)

h
.

It follows that

(A.54) D̃2φ(ξ11 , ξ
2
j ) =

N−1
∑

n=0

(

N
∑

m=0

√
−1λ̃2nφ̂mnCm

1

)

En
j .

Hence

‖D̃2φ(ξ11 , ·)‖2
×

H
1
2

h

=

N−1
∑

n=0

∣

∣

∣

N
∑

m=0

λ̃2nφ̂mnCm
1

∣

∣

∣

2
×

µn

=

N−1
∑

n=0

∣

∣

∣

∑

m∈
×

M

λ̃2nφ̂mnCm
1

×

κmn
×

κmn

∣

∣

∣

2
×

µn

≤ 2

N−1
∑

n=0

(

N
∑

m=0

×

κ2
mnλ̃

2
2n|φ̂mn|2

)(

∑

m∈
×

M

cos2(mπh)
×

κ2
mn

)

×

µn

= 2
N−1
∑

n=0

N
∑

m=0

×

κ2
mnλ̃

2
2n|φ̂mn|2

(A.55)

where we have used (A.49) in the last equality.
Since

λ̃2
2n =

4

h2
sin2(nπh) cos2(nπh)

≤ 4

h2
min{sin2(nπh), cos2(nπh)}

≤ 4

h2

(

cos2
(mπh

2

)

sin2(nπh) + sin2
(mπh

2

)

cos2(nπh)
)

=
×

κ2
mn,

(A.56)

it follows from (A.55) and (A.56) that

(A.57) ‖D̃2φ(ξ11 , ·)‖2
×

H
1
2

h

≤ 2
N−1
∑

n=0

N
∑

m=0

×

κ4
mn|φ̂mn|2 ≤ 2

√

g�max
‖

×

△� ′
h
φ‖2

Ω̄� g
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The estimate for ‖D̃2φ(ξ1N−1, ·)‖2
×

H
1
2

h

is similar and the proof is complete.

We proceed with the construction of the potential ψ(ξ1, ξ2). Let

ae(ξ2j ) ,
D̃2φ1,j + D̃2φN−1,j

2
=

N−1
∑

n=0

âe
nEn

j ,

ao(ξ2j ) ,
D̃2φ1,j − D̃2φN−1,j

2
=

N−1
∑

n=0

âo
nEn

j ,

(A.58)

and define

(A.59)
×

σe
n ,

(

N−1
∑

m=1
m is even

λ̃2
m

×

κ4
mn

)−1

,
×

σo
n ,

(

N−1
∑

m=1
m is odd

λ̃2
m

×

κ4
mn

)−1

The proposed ψ ∈ L2
0(Ω̄� g

,R) is given by

(A.60) ψ(ξ1i , ξ
2
j ) =

N−1
∑

m=1

N−1
∑

n=0

ψ̂mnSm
i En

j

where

(A.61) ψ̂mn ,



















âe
n

λ̃m
×

σe
n√

2
×

κ4
mn

, if m is even;

âo
n

λ̃m
×

σo
n√

2
×

κ4
mn

, if m is odd.

It is easy to verify that the constructed ψ satisfies (A.35):

−D−
n ψ(0, ξ2j ) =D+

1 ψ(0, ξ2j ) =
ψ(ξ11 , ξ

2
j ) − 0

h

=

N−1
∑

n=0

(

N−1
∑

m=1
m is even

âe
n

λ̃2
m

×

σe
n

×

κ4
mn

+

N−1
∑

m=1
m is odd

âo
n

λ̃2
m

×

σo
n

×

κ4
mn

)

En
j

=

N−1
∑

n=0

(

âe
n

×

σe
n

(

N−1
∑

m=1
m is even

λ̃2
m

×

κ4
mn

)

+ âo
n

×

σo
n

(

N−1
∑

m=1
m is odd

λ̃2
m

×

κ4
mn

)

)

En
j

=

N−1
∑

n=0

(âe
n + âo

n)En
j = D̃2φ1,j = −D̃τφ1,j .

(A.62)

where we have used Sm
1 =

√
2hλ̃m in the second equality above. Similarly,

(A.63) D−
n ψ(1, ξ2j ) = D−

1 ψ(1, ξ2j ) =
0 − ψ(ξ1N−1, ξ

2
j )

h
=

N−1
∑

n=0

(âe
n − âo

n)En
j = D̃2φN−1,j = D̃τφN−1,j .

In addition, the constructed potential ψ decays at designed rate in Fourier modes. This enables us to
give an inverse trace estimate:
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Lemma A.3. Let ψ ∈ L2
0(Ω̄� g

,R) be given by (A.60, A.61) and

(A.64) ‖D−
n ψ‖2

×

H
1
2

h
(Γg)

, ‖D+
1 ψ(0, ·)‖2

×

H
1
2

h

+ ‖D−
1 ψ(1, ·)‖2

×

H
1
2

h

.

Then there is a constant C that only depends on
√

g� such that

(A.65) ‖
×

△� h
ψ‖Ω̊� g

≤ C‖D−
n ψ‖×

H
1
2

h
(Γg)

.

Proof. We first expand
√

g� ×

△� h
ψ with respect to the basis (A.16) on Ω̊� g

:

(A.66)
√

g� ×

△� h
ψi,j =

N−1
∑

n=0

N−1
∑

m=1

−×

κ2
mnψ̂mnSm

i En
j , 1 ≤ i ≤ N − 1, 1 ≤ j ≤ N.

From (A.61), we have

(A.67)
√

g� ×

△� h
ψi,j = −

N−1
∑

n=0

(

N−1
∑

m=1
m is even

×

κ2
mnâ

e
n

λ̃m
×

σe
n√

2
×

κ4
mn

Sm
i +

N−1
∑

m=1
m is odd

×

κ2
mnâ

o
n

λ̃m
×

σo
n√

2
×

κ4
mn

Sm
i

)

En
j ,

In view of (A.59), we therefore have

‖
×

△� h
ψ‖2

Ω̊� g

≤ 1

2
√

g�min

N−1
∑

n=0

(

N−1
∑

m=1
m is even

(

|âe
n|
λ̃m

×

σe
n

×

κ2
mn

)2
+

N−1
∑

m=1
m is odd

(

|âo
n|
λ̃m

×

σo
n

×

κ2
mn

)2
)

=
1

2
√

g�min

N−1
∑

n=0

(

|âe
n

×

σe
n|2
(

N−1
∑

m=1
m is even

λ̃2
m

×

κ4
mn

)

+ |âo
n

×

σo
n|2
(

N−1
∑

m=1
m is odd

λ̃2
m

×

κ4
mn

)

)

=
1

2
√

g�min

N−1
∑

n=0

(

|âe
n|2

×

σe
n + |âo

n|2
×

σo
n

)

≤ C∗
2
√

g�min

N−1
∑

n=0

(|âe
n|2 + |âo

n|2)
×

µn (see (A.69) below)

=
C∗

4
√

g�min

(‖ae + ao‖2
×

H
1
2

h

+ ‖ae − ao‖2
×

H
1
2

h

)

=
C∗

4
√

g�min

‖D−
nψ‖2

×

H
1
2

h
(Γg)

.

(A.68)

Here in the second inequality, we have used the estimates
×

σe
n ≤ C∗

×

µn and
×

σo
n ≤ C∗

×

µn which will be given in
Lemma A.4 below.

Lemma A.4. There is a constant C∗ such that

(A.69)
×

σe
n ≤ C∗

×

µn,
×

σo
n ≤ C∗

×

µn

uniformly for all 0 ≤ n ≤ N − 1 and h small enough.
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Proof. We will only show that
×

σe
n ≤ C∗

×

µn, or equivalently

(A.70)
∑

m∈
×

Mn

cos2(mπh)
×

κ2
mn

≤ C∗

N−1
∑

m=1
m is even

λ̃2
m

×

κ4
mn

, uniformly in n.

The proof for
×

σo
n ≤ C∗

×

µn is similar. Denote by

(A.71) sm/2 , sin(mπh/2), cm/2 , cos(mπh/2).

It follows that

LHS of (A.70) =
∑

m∈
×

Mn

c2m
×

κ2
mn

≤
∑

m∈
×

Mn

1
×

κ2
mn

=
h2

4

∑

m∈
×

Mn

1

s2m/2c
2
n + s2nc

2
m/2

, (L)n,(A.72)

RHS of (A.70) =

N−1
∑

m=1
m is even

λ̃2
m

×

κ4
mn

=
h2

4

N−1
∑

m=1
m is even

s2m/2c
2
m/2

(s2m/2c
2
n + s2nc

2
m/2)

2
, (R)n.(A.73)

It suffices to show that

(A.74) (L)n ≤ C∗(R)n

for some constant C∗ independent of n and h. We show it separately for the following cases:
Case 1: 1 ≤ n ≤ N/2 − 1 or N/2 + 1 ≤ n ≤ N − 1.

In this case,
×

Mn = { 0, 1, · · · , N }. Since the expressions in (A.72) and (A.73) are symmetric with respect
to n = N/2, it suffices to consider the case of 1 ≤ n ≤ N/2 − 1. Denote by

(A.75) xm/2 =
mπh

2
, yn = nπh,

and let

fy(x) ,
1

sin2 x cos2 y + sin2 y cos2 x
, x ∈ [0,

π

2
], y ∈ [πh,

π

2
− πh](A.76)

gy(x) ,
sin2 x cos2 x

(sin2 x cos2 y + sin2 y cos2 x)2
, x ∈ [0,

π

2
], y ∈ [πh,

π

2
− πh](A.77)

We can rewrite (A.72) and (A.73) as

(L)n =
h2

4

∑

m∈
×

Mn

1

s2m/2c
2
n + s2nc

2
m/2

=
h2

4

N
∑

m=0

fyn
(xm/2),(A.78)

(R)n =
h2

4

N−1
∑

m=1
m is even

s2m/2c
2
m/2

(s2m/2c
2
n + s2nc

2
m/2)

2
=
h2

4

N−1
∑

m=1
m is even

gyn
(xm/2).(A.79)

Since

(A.80)
d

dx

( 1

fy(x)

)

= sin(2x) cos(2y),
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it follows that fy(·) is decreasing if y ∈ [0, π/4] and increasing if y ∈ [π/4, π/2]. In either case, the integral
test can be used to estimate the sum in (A.79) to get

(L)n =
h2

4

N
∑

m=0

fyn
(xm/2)

≤















h2

4
fyn

(x0) +
h

4

2

π

∫ π/2

0

fyn
(x) dx =

h2

4

1

sin2 yn

+
h

4 sin yn cos yn
, 1 ≤ n ≤ N

4
h2

4
fyn

(xN ) +
h

4

2

π

∫ π/2

0

fyn
(x) dx=

h2

4

1

cos2 yn
+

h

4 sin yn cos yn
,

N

4
≤ n ≤ N

2
− 1

(A.81)

where we have used the identity

∫ π/2

0

1

a2 sin2 x+ b2 cos2 x
dx =

π

2|ab| .
On the other hand,

(A.82)
d

dx

( 1

gy(x)

)

= 2(tanx cos2 y + cotx sin2 y)(sec2 x cos2 y − csc2 x sin2 y),

it follows that gy(·) is increasing when 0 ≤ x ≤ y, deceasing when y ≤ x ≤ π/2 and therefore attains its

maximum
1

4 sin2 y cos2 y
at x = y. Consequently,

(A.83) πh
(

N−1
∑

m=1
m is even

gyn
(xm/2) + max

x∈[0,π/2]
gyn

(x)
)

≥
∫ π/2

0

gyn
(x) dx =

π

4 sin yn cos yn(sin yn + cos yn)2

where we have used the identity

∫ π/2

0

sin2 x cos2 x

(a2 sin2 x+ b2 cos2 x)2
dx =

π

4|ab|(|a| + |b|)2 . Therefore from (A.79),

we have

(R)n =
h2

4

N−1
∑

m=1
m is even

gyn
(xm/2) ≥

h

4π

(

∫ π/2

0

gyn
(x) dx − πh max

x∈[0,π/2]
gyn

(x)
)

=
h

16 sin yn cos yn(sin yn + cos yn)2
− h2

16 sin2 yn cos2 yn

.

(A.84)

Combining (A.81) and (A.84), we obtain

(A.85)
(L)n

(R)n
≤















4 cos yn(sin yn + cos yn)2(h cos yn + sin yn)

sin yn cos yn − h(sin yn + cos yn)2
, 1 ≤ n ≤ N

4 ,

4 sin yn(sin yn + cos yn)2(h sin yn + cos yn)

sin yn cos yn − h(sin yn + cos yn)2
, N

4 ≤ n ≤ N
2 − 1.

That is,

(A.86)
(L)n

(R)n
≤















4(sin yn + cos yn)2(1 + h cot yn)

1 − 2h(csc(2yn) + 1)
, 1 ≤ n ≤ N

4
,

4(sin yn + cos yn)2(1 + h tan yn)

1 − 2h(csc(2yn) + 1)
,

N

4
≤ n ≤ N

2
− 1.
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In either case, we have

(A.87)
(L)n

(R)n
≤



















8(1 + h cot y1)

1 − 2h(csc(2y1) + 1)
, 1 ≤ n ≤ N

4

8(1 + h tan yN
2
−1)

1 − 2h(csc(2yN
2
−1) + 1)

,
N

4
≤ n ≤ N

2
− 1

= 8
1 + 1

π

1 − 1
π

+O(h).

This completes the proof of (A.74) for case 1.
Case 2: n = 0.

Using the same argument as in the proof of case 1, we have

(L)0 =
h2

4

N
∑

m=1

1

s2m/2

≤ h2

4

( 1

s21/2

+

N
∑

m=2

1

s2m/2

)

≤ h2

4
csc2

(πh

2

)

+
h

2π

∫ π
2

πh
2

csc2 θ dθ

=
h2

4
csc2(

πh

2
) +

h

2π
cot(

πh

2
).

(A.88)

and

(A.89) (R)0 =
h2

4

N−1
∑

m=1
m is even

c2m/2

s2m/2

≥ h

4π

∫ π
2

πh

cot2 θ dθ =
h

4π

(

cot(πh) + πh− π

2

)

.

Hence

(A.90)
(L)0
(R)0

≤
h2

4
csc2(

πh

2
) +

h

2π
cot(

πh

2
)

h

4π

(

cot(πh) + πh− π

2

)

= 8 +O(h).

This completes the proof of (A.74) for case 2.
Case 3: n = N/2.

In this case,

(A.91) (L)N/2 =
h2

4

N−1
∑

m=0

1

c2m/2

, (R)N/2 =
h2

4

N−1
∑

m=1
m is even

s2m/2

c2m/2

The estimate

(A.92)
(L)N/2

(R)N/2
≤ 8 +O(h)

follows from the same argument as in case 2.
In view of (A.87, A.90, A.92), the estimate (A.74) follows and the proof for Lemma A.4 is completed.
Denote by

(A.93) ‖a‖0 = 〈a, a〉
1
2

0,Ω̄� g

=
(

h2
N
∑

i=0

′
N
∑

j=1

a2
ij

)
1
2

.
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The following technical Lemma plays an essential role in the proof of the general case of Theorem 2. It is
worth noting that the estimate (A.94) is purely discrete and algebraic. In other words, it is independent of
the coordinate mapping.

Lemma A.5. There exists a constant C̃ > 0, independent of h, such that

(A.94) ‖
×

D′
1
×

v1 −
×

D′
2
×

v2‖2
0 + ‖

×

D′
1
×

v2 +
×

D′
2
×

v1‖2
0 ≤ C̃

(

‖
×

D′
1
×

v1 +
×

D′
2
×

v2‖2
0 + ‖

×

D′
1
×

v2 −
×

D′
2
×

v1‖2
0

)

for all v ∈ L2(Ω� c
,R2).

Proof. We first rewrite the expressions in (A.94) in terms of components and difference operators in the
default coordinate (ξ1, ξ2):

×

D′
1
×

v1 +
×

D′
2
×

v2 = A2D
′
1v1 +A′

1D2v2,
×

D′
1
×

v2 −
×

D′
2
×

v1 = A2D
′
1v2 −A′

1D2v1,
×

D′
1
×

v1 −
×

D′
2
×

v2 = A′
1D2v1 +A2D

′
1v2,

×

D′
1
×

v2 +
×

D′
2
×

v1 = A′
1D2v2 −A2D

′
1v1,

(A.95)

where the averaging and differencing operators are defined by

(A.96) (A′
1f)i =











f 1
2

i = 0
1
2 (fi+ 1

2
+ fi− 1

2
) 1 ≤ i ≤ N − 1

fN− 1
2

i = N

, (A2g)j =
1

2
(gj+ 1

2
+ gj− 1

2
), 1 ≤ j ≤ N.

(A.97) (D′
1f)i =











2
hf 1

2
i = 0

1
h (fi+ 1

2
− fi− 1

2
) 1 ≤ i ≤ N − 1

−2
h fN− 1

2
i = N

, (D2g)j =
1

h
(gj+ 1

2
− gj− 1

2
), 1 ≤ j ≤ N.

The reduced averaging and differencing are not needed in ξ2 due to periodic assumption. Next, we decompose
the quantities in (A.94) into

‖
×

D′
1
×

v1 +
×

D′
2
×

v2‖2
0 + ‖

×

D′
1
×

v2 −
×

D′
2
×

v1‖2
0 =(I) + (II) + (III),(A.98)

‖
×

D′
1
×

v1 −
×

D′
2
×

v2‖2
0 + ‖

×

D′
1
×

v2 +
×

D′
2
×

v1‖2
0 =(I) + (II) − (III),(A.99)

where

(I) , h2
N
∑

i=0

′
N
∑

j=1

(

(A2D
′
1v1)

2 + (A2D
′
1v2)

2
)

i,j
+ h2

N−1
∑

i=1

N
∑

j=1

(

(A1D2v1)
2 + (A1D2v2)

2
)

i,j
,(A.100)

(II) ,
h2

2

N
∑

j=1

(

(D2v1)
2 + (D2v2)

2
)

1
2
,j

+
h2

2

N
∑

j=1

(

(D2v1)
2 + (D2v2)

2
)

N− 1
2
,j
,(A.101)

(III) , 2h
N
∑

j=1

(v1D̃2v2) 1
2

,j+ 1
2
− 2h

N
∑

j=1

(v1D̃2v2)N− 1
2
,j+ 1

2
,(A.102)

and D̃2 is the long-stencil centered difference in ξ2 direction,

(A.103) (D̃2v2)i− 1
2
,j− 1

2
=

(v2)i− 1
2
,j+ 1

2
− (v2)i− 1

2
,j− 3

2

2h
.
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We will show that

(A.104) |(III)| ≤ θ
(

(I) + (II)
)

for some fixed constant θ ∈ (0, 1).

Then (A.94) follows as a consequence.
We first define

S
m
i− 1

2

,

{√
2 sin(mπξ1

i− 1
2

) 1 ≤ m ≤ N − 1;

sin(mπξ1
i− 1

2

) m = N,
(A.105)

E
n
j− 1

2

, exp(2nπ
√
−1ξ2j− 1

2

) 0 ≤ n ≤ N − 1.(A.106)

Thus

(A.107) {S
m ⊗ E

n | 1 ≤ m ≤ N, 0 ≤ n ≤ N − 1. }

is an orthonormal basis of L2(Ω� c
,R) with respect to the inner product

(A.108) 〈a, b〉0,Ω� c
= h2

N
∑

i=1

N
∑

j=1

(ab)i− 1
2
,j− 1

2
.

We can now expand the components of v with respect to the basis (A.107):

(v1)i− 1
2
,j− 1

2
=

N
∑

m=1

N−1
∑

n=0

amnS
m
i− 1

2

E
n
j− 1

2

, 1 ≤ i ≤ N, 1 ≤ j ≤ N ;(A.109)

(v2)i− 1
2
,j− 1

2
=

N
∑

p=1

N−1
∑

n=0

bpnS
p

i− 1
2

E
n
j− 1

2

, 1 ≤ i ≤ N, 1 ≤ j ≤ N.(A.110)

It follows that

(D′
1v1)i,j− 1

2
=

N
∑

m=1

N−1
∑

n=0

λmamnCm
i E

n
j− 1

2

, 0 ≤ i ≤ N, 1 ≤ j ≤ N ;(A.111)

(D2v1)i− 1
2
,j =

√
−1

N
∑

m=1

N−1
∑

n=0

λ2namnS
m
i− 1

2

En
j , 1 ≤ i ≤ N, 1 ≤ j ≤ N.(A.112)

Similar for D′
1v2 and D2v2. Moreover,

(A.113) (D̃2v2)i− 1
2
,j− 1

2
=

√
−1

N
∑

p=1

N−1
∑

n=0

λ̃2nbpnS
p

i− 1
2

E
n
j− 1

2

, i = 1, N, 1 ≤ j ≤ N ;

where

(A.114)







































S
m
i+ 1

2

+ S
m
i− 1

2

2
= cm/2S

m
i , 1 ≤ i ≤ N − 1, 1 ≤ m ≤ N − 1;

S
N
i+ 1

2

+ S
N
i− 1

2

2
= 0, 1 ≤ i ≤ N − 1;

E
n
j+ 1

2

+ E
n
j− 1

2

2
= cnEn

j , 1 ≤ j ≤ N, 0 ≤ n ≤ N − 1.
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and cm/2 = cos(mπh/2), cn = cos(nπh). Therefore

(I) = h2
N
∑

i=0

′
N
∑

j=1

(

(A2D
′
1v1)

2 + (A2D
′
1v2)

2
)

i,j
+ h2

N−1
∑

i=1

N
∑

j=1

(

(A1D2v1)
2 + (A1D2v2)

2
)

i,j

=
4

h2

N
∑

m=1

N−1
∑

n=0

c2ns
2
m/2(|amn|2 + |bmn|2) +

N−1
∑

m=1

N−1
∑

n=0

s2nc
2
m/2(|amn|2 + |bmn|2)

(A.115)

where sm/2 = sin(mπh/2), sn = sin(nπh). Since sn = h
2λ2n, we also have

(II) 1
2

,
h2

2

N
∑

j=1

(

(D2v1)
2 + (D2v2)

2
)

1
2
,j

=
h

2

N
∑

m,k=1

N−1
∑

n=0

amna
∗
knλ

2
2nS

m
1
2

S
k
1
2

+
h

2

N
∑

p,r=1

N−1
∑

n=0

bpnb
∗
rnλ

2
2nS

p
1
2

S
r
1
2

=
2

h

N−1
∑

n=0

s2n

(

(

N
∑

m=1

amnS
m
1
2

)(

N
∑

m=1

amnS
m
1
2

)∗
+
(

N
∑

p=1

bpnS
p
1
2

)(

N
∑

p=1

bpnS
p
1
2

)∗
)

,

(A.116)

(II)N− 1
2

,
h2

2

N
∑

j=1

(

(D2v1)
2 + (D2v2)

2
)

N− 1
2
,j

=
h

2

N
∑

m,k=1

N−1
∑

n=0

amna
∗
knλ

2
2nS

m
1
2

S
k
N− 1

2

+
h

2

N
∑

p,r=1

N−1
∑

n=0

bpnb
∗
rnλ

2
2nS

p
1
2

S
r
N− 1

2

=
2

h

N−1
∑

n=0

s2n

(

(

N
∑

m=1

amnS
m
N− 1

2

)(

N
∑

m=1

amnS
m
N− 1

2

)∗
+
(

N
∑

p=1

bpnS
p

N− 1
2

)(

N
∑

p=1

bpnS
p

N− 1
2

)∗
)

.

(A.117)

Since S
m
N− 1

2

= (−1)m+1
S

m
1
2

, we can write

N
∑

m=1

amnS
m
1
2

=

N
∑

m=1
m=odd

amnS
m
1
2

+

N
∑

m=1
m=even

amnS
m
1
2

,(A.118)

N
∑

m=1

amnS
m
N− 1

2

=

N
∑

m=1
m=odd

amnS
m
1
2

−
N
∑

m=1
m=even

amnS
m
1
2

.(A.119)

It follows that

(II) = (II) 1
2

+ (II)N− 1
2

=
4

h

N−1
∑

n=0

s2n

(

∣

∣

N
∑

m=1
m=odd

amnS
m
1
2

∣

∣

2
+
∣

∣

N
∑

m=1
m=even

amnS
m
1
2

∣

∣

2
+
∣

∣

N
∑

p=1
p=odd

bpnS
p
1
2

∣

∣

2
+
∣

∣

N
∑

p=1
p=even

bpnS
p
1
2

∣

∣

2
)

(A.120)
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Finally,

(III) = 2h

N
∑

j=1

(v1D̃2v2) 1
2
,j− 1

2
− 2h

N
∑

j=1

(v1D̃2v2)N− 1
2
,j− 1

2

= −4
√
−1

N
∑

m,p=1
m+p=odd

(

N
∑

n=1

amnb
∗
pnλ2ncn

)

S
m
1
2

S
p
1
2

=
−8

√
−1

h

N−1
∑

n=0

sncn

(

(

N
∑

m=1
m=even

amnS
m
1
2

)(

N
∑

p=1
p=odd

bpnS
p
1
2

)∗
+
(

N
∑

m=1
m=odd

amnS
m
1
2

)(

N
∑

p=1
p=even

bpnS
p
1
2

)∗
)

.

(A.121)

In summary, we have

(I) =
4

h2

N−1
∑

n=0

(

c2n

N
∑

m=1

(

(|amn|2 + |bmn|2)s2m/2

)

+ s2n

N−1
∑

m=1

(

(|amn|2 + |bmn|2)c2m/2

)

)

,(A.122)

(II) =
4

h

N−1
∑

n=0

s2n

(

∣

∣

N
∑

m=1
m=odd

amnS
m
1
2

∣

∣

2
+
∣

∣

N
∑

m=1
m=even

amnS
m
1
2

∣

∣

2
+
∣

∣

N
∑

p=1
p=odd

bpnS
p
1
2

∣

∣

2
+
∣

∣

N
∑

p=1
p=even

bpnS
p
1
2

∣

∣

2
)

,(A.123)

(III) = − 4
√
−1

N
∑

m,p=1
m+p=odd

(

N−1
∑

n=0

amnb
∗
pnλ2ncn

)

S
m
1
2

S
p
1
2

=
−8

√
−1

h

N−1
∑

n=0

sncn

(

(

N
∑

m=1
m=even

amnS
m
1
2

)(

N
∑

p=1
p=odd

bpnS
p
1
2

)∗
+
(

N
∑

m=1
m=odd

amnS
m
1
2

)(

N
∑

p=1
p=even

bpnS
p
1
2

)∗
)

.

(A.124)

We now decompose

(A.125) (I) =
N−1
∑

n=0

(I)n, (II) =
N−1
∑

n=0

(II)n, (III) =
N−1
∑

n=0

(III)n,

where

(I)n =
4

h2

(

c2n

N
∑

m=1

((

|amn|2 + |bmn|2
)

s2m/2

)

+ s2n

N−1
∑

m=1

((

|amn|2 + |bmn|2
)

c2m/2

)

)

,(A.126)

(II)n =
4

h
s2n

(

∣

∣

N
∑

m=1
m=odd

amnS
m
1
2

∣

∣

2
+
∣

∣

N
∑

m=1
m=even

amnS
m
1
2

∣

∣

2
+
∣

∣

N
∑

p=1
p=odd

bpnS
p
1
2

∣

∣

2
+
∣

∣

N
∑

p=1
p=even

bpnS
p
1
2

∣

∣

2
)

,(A.127)

(III)n = − 4
√
−1

N
∑

m,p=1
m+p=odd

amnb
∗
pnλ2ncnS

m
1
2

S
p
1
2

=
−8

√
−1

h
sncn

(

(

N
∑

m=1
m=even

amnS
m
1
2

)(

N
∑

p=1
p=odd

bpnS
p
1
2

)∗
+
(

N
∑

m=1
m=odd

amnS
m
1
2

)(

N
∑

p=1
p=even

bpnS
p
1
2

)∗
)

,

(A.128)
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and proceed to show that

(A.129) |(III)n| ≤ θ
(

(I)n + (II)n

)

, θ ∈ (0, 1),

for the following two cases separately.

Case 1: c2n ≤ 9
25 .

In this case, it is clear from (A.127), (A.128) and Cauchy-Schwartz inequality that

(A.130) |(III)n| ≤
|cn|
sn

(II)n ≤ 3

4

(

(I)n + (II)n

)

.

Case 2: c2n ≥ 9
25 .

We can write

|(III)n| =
∣

∣

∣
− 4

√
−1

N
∑

m,p=1
m+p=odd

amnb
∗
pnλ2ncnS

m
1
2

S
p
1
2

∣

∣

∣

≤ 2

N
∑

m,p=1
m+p=odd

(

|amn|2 + |bpn|2
)

λ2n|cn|Sm
1
2

S
p
1
2

= 2

N
∑

m=1

|amn|2λ2n|cn|
S

m
1
2

h

(

h

N
∑

p=1
m+p=odd

S
p
1
2

)

+ 2

N
∑

p=1

|bpn|2λ2n|cn|
S

p
1
2

h

(

h

N
∑

m=1
m+p=odd

S
m
1
2

)

.

(A.131)

Note that from (A.105),

(A.132) h

N
∑

p=1
m+p=odd

S
p
1
2

=

√
2

π

∫ π
2

0

sinxdx+O(h) =

√
2

π
+O(h).

and

(A.133) λm =
2 sin(mπh/2)

h
=



















√
2S

m
1
2

h
, 1 ≤ m ≤ N − 1;

2S
N
1
2

h
, m = N.

Therefore, we obtain from (A.131), (A.132) and (A.133) that

|(III)n| ≤
2

π

(

1 +O(h)
)(

N
∑

m=1

|amn|2λ2n|cn|λm +

N
∑

p=1

|bpn|2λ2n|cn|λp

)

≤
( 1

π
+O(h)

)(

N
∑

m=1

|amn|2(λ2
2n + |cnλm|2) +

N
∑

p=1

|bpn|2(λ2
2n + |cnλp|2)

)

=
( 1

π
+O(h)

) 4

h2

(

c2n

N
∑

m=1

((

|amn|2 + |bmn|2
)

s2m/2

)

+ s2n

N
∑

m=1

(

|amn|2 + |bmn|2
)

)

.

(A.134)
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On the other hand, from (A.126), we have

(I)n ≥ 4

h2

(

(c2n − c2ns
2
n + c2ns

2
n)

N
∑

m=1

(

(|amn|2 + |bmn|2)s2m/2

)

+ c2ns
2
n

N−1
∑

m=1

(

(|amn|2 + |bmn|2)c2m/2

)

)

=
4

h2

(

(c2n − c2ns
2
n)

N
∑

m=1

(

(|amn|2 + |bmn|2)s2m/2

)

+ c2ns
2
n

N
∑

m=1

(

|amn|2 + |bmn|2
)

)

= c2n
4

h2

(

c2n

N
∑

m=1

(

(|amn|2 + |bmn|2)s2m/2

)

+ s2n

N
∑

m=1

(

|amn|2 + |bmn|2
)

)

.

(A.135)

Therefore, since c2n ≥ 9
25 ,

(A.136) |(III)n| ≤
( 1

π
+O(h)

) (I)n

c2n
≤
( 25

9π
+O(h)

)

(I)n ≤ 25

27

(

(I)n + (II)n

)

.

The estimate (A.129) and therefore (A.104) then follows from (A.130) and (A.136) with θ = 25
27 .

In view of (A.98), (A.99) and (A.104), we have proved (A.94) with C̃ =
1 + θ

1 − θ
= 26.

A.2. The LBB Condition for General Lifshitz Metrics. We now proceed to prove the LBB
condition for the general case where the coordinate mapping x is a C1,1 bijection.

Given p ∈ L2(Ω̄g,R)/R2, we will construct the corresponding vector field u, based on the contra-variant
components of v given in Theorem 5, such that

(A.137)
〈 p ,

×

∇′
h · u 〉Ω̄g

‖p‖Ω̄g
‖u‖×

H1
h

≥ β uniformly in h.

Denote by I : L2(Ω̄g,R) 7→ L2(Ω̄� g
,R) the natural correspondence given by I(p)i,j = pi,j , or more

precisely I(p)
(

x�(ξ1i , ξ2j )
)

= p
(

x(ξ1i , ξ
2
j )
)

. If p ∈ L2(Ω̄g,R)/R2, then I(p) is in L2(Ω̄� g
,R), but not necessarily

in L2(Ω̄� g
,R)/R2. Let q be the projection of I(p) onto L2(Ω̄� g

,R)/R2:

q = I(p) −
〈 I(p) , 1Ω̄� ge

〉Ω̄� g

〈1Ω̄� ge

, 1Ω̄� ge

〉Ω̄� g

1Ω̄� ge

−
〈 I(p) , 1Ω̄� go

〉Ω̄� g

〈1Ω̄� go

, 1Ω̄� go

〉Ω̄� g

1Ω̄� go

(A.138)

Since p ∈ L2(Ω̄g,R)/R2 and I−1(q)−p ∈ span{1Ω̄go
,1Ω̄go

}, it follows from (2.17) that 〈 p , I−1(q) − p 〉Ω̄g
= 0.

Therefore

(A.139) ‖p‖Ω̄g
≤ ‖I−1(q)‖Ω̄g

and

(A.140) ‖q‖2
Ω̄� g

≥
√

g�min√
g
max

‖I−1(q)‖2
Ω̄g

≥
√

g�min√
g
max

‖p‖2
Ω̄g

From Theorem 5, there exists

(A.141) v =
×

v�1×

e� 1
+

×

v�2×

e� 2
∈ L2(Ω� c

,R2)
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such that (A.2) and (A.3) hold. We can now construct explicitly u ∈ L2(Ωc,R
2) in terms of the contra-variant

components of v in (A.141):

(A.142) u ,
×

u1×

e1 +
×

u2×

e2, where
×

u1 =

√

×

g�
√

×

g

×

v�1,
×

u2 =

√

×

g�
√

×

g

×

v�2,

and claim that u satisfies (A.137). To this end, we first note that, by construction

(A.143)
(

√

×

g
×

∇′
h · u

)

ij
=
(

×

D
′
1(
√

×

g� ×

v�1) +
×

D
′
2(
√

×

g� ×

v�2)
)

ij
=
(

√

×

g� ×

∇� ′
h
· v
)

ij
, 0 ≤ i ≤ N, 1 ≤ j ≤ N.

Secondly, we have the following crucial estimate:
Lemma A.6. Let u and v be defined by (A.141) and (A.142), then

(A.144) ‖u‖×

H1
h

≤ C†‖v‖×
H1�h

.

where C† is a constant that only depends on ‖
√

×

g
×

gαβ‖C0,1([0,1]×S1),
√
g
min

and
√

g�max
.

Proof. We start with the estimate for

(A.145) ‖u‖2
Ωc

= h2
N−1
∑

i=0

N
∑

j=1

(

√

×

g(
×

u1×

u1 +
×

u2×

u2)
)

i+ 1
2
,j+ 1

2

.

From (A.142), (A.1) and (2.7), we have

(A.146)

√

×

g
×

uα =
√

×

g�×

v�α =
×

v�α
, α = 1, 2.

It follows from (2.4) and (2.6) that

(A.147)
×

u1 =
×

g11
×

u1 +
×

g12
×

u2 =
×

g11

√

×

g�
√

×

g

×

v�1 +
×

g12

√

×

g�
√

×

g

×

v�2 =
×

q22
×

v�1
− ×

q12
×

v�2
,

where
×

qαβ =

√

×

g
×

gαβ . Similarly,

(A.148)
×

u2 = −×

q12
×

v�1
+

×

q11
×

v�2
.

Hence

(A.149)

√

×

g(
×

u1×

u1 +
×

u2×

u2) =
×

v�1

×

u1 +
×

v�2

×

u2 =
×

q22(
×

v�1
)2 − 2

×

q12
×

v�1

×

v�2
+

×

q11(
×

v�2
)2 ≤ (

×

q11 +
×

q22)
(

(
×

v�1
)2 + (

×

v�2
)2
)

.

Moreover, from (A.146),

(A.150) ‖v‖2
Ω� c

= h2
N−1
∑

i=0

N
∑

j=1

(

√

×

g�(×v�1×

v�1
+

×

v�2×

v�2
)

)

i+ 1
2
,j+ 1

2

= h2
N−1
∑

i=0

N
∑

j=1

(

(
×

v�1
)2 + (

×

v�2
)2
)

i+ 1
2
,j+ 1

2

,

it follows that

(A.151) ‖u‖2
Ωc

≤ ‖×

q11 +
×

q22‖C0([0,1]×S1)‖v‖2
Ω� c
.
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Next, we proceed with the estimate for ‖
×

∇⊥′
h · u‖Ω̄g

.
From (2.21), (2.22) and (A.146), we can write

(A.152)

√

×

g
×

∇⊥′
h · u =

×

D′
1

×

u2 −
×

D′
2

×

u1 =
×

D′
1(−

×

q21
×

v�1
+

×

q11
×

v�2
) −

×

D′
2(

×

q22
×

v�1
− ×

q12
×

v�2
)

and

(A.153)
√

g� ×

∇� ′
h
· v =

×

D′
1
×

v�1
+

×

D′
2
×

v�2
,

√

g� ×

∇� ⊥′
h

· v =
×

D′
1
×

v�2
−

×

D′
2
×

v�1
.

We then apply the identity

(A.154) D′(fv)i =

{

(Af)i (Dv)i + (Df)i (Av)i, 1 ≤ i ≤ N − 1;

(A′f)i (D′v)i, i = 0, N,

and recast (A.152) into

(A.155)

√

×

g
×

∇⊥′
h · u = V 0 + V1

where

V0 ,

{

−(
×

D1
×

q12)(
×

A1
×

v�1
) + (

×

D1
×

q11)(
×

A1
×

v�2
) − (

×

D2
×

q22)(
×

A2
×

v�1
) + (

×

D2
×

q12)(
×

A2
×

v�2
) on Ω̊g,

0 on Γg,
(A.156)

V1 , − (
×

A′
1

×

q12)(
×

D′
1
×

v�1
) + (

×

A′
1

×

q11)(
×

D′
1
×

v�2
) − (

×

A′
2

×

q22)(
×

D′
2
×

v�1
) + (

×

A′
2

×

q12)(
×

D′
2
×

v�2
) on Ω̄g.(A.157)

From (A.150), we have the following estimate in terms of Lifchitz norm of the metric tensor:

(A.158) ‖V0‖2
0 ≤ 8

(

max
α,β=1,2

|×qαβ |2C0,1([0,1]×S1)

)

‖v‖2
Ω� c
.

Furthermore

V1 =
−

×

A′
1
×

q12 +
×

A′
2

×

q12

2
(

×

D′
1
×

v�1
+

×

D′
2
×

v�2
) +

×

A′
1

×

q11 +
×

A′
2

×

q22

2
(

×

D′
1
×

v�2
−

×

D′
2
×

v�1
)

+
−

×

A′
1
×

q12 −
×

A′
2

×

q12

2
(

×

D′
1
×

v�1
−

×

D′
2
×

v�2
) +

×

A′
1

×

q11 −
×

A′
2

×

q22

2
(

×

D′
1
×

v�2
+

×

D′
2
×

v�1
).

(A.159)

It follows from (A.159) and Lemma A.5 that,

(A.160) ‖V1‖2
0 ≤ 4(1 + C̃)

(

max
α,β=1,2

‖×

qαβ‖2
C0([0,1]×S1)

)(

‖
×

D′
1
×

v�1
+

×

D′
2
×

v�2
‖2
0 + ‖

×

D′
1
×

v�2
−

×

D′
2
×

v�1
‖2
0

)

.

From (A.152), (A.155), (A.158) and (A.160), we conclude that

(A.161)

√

×

g
min

‖
×

∇⊥′
h · u‖2

Ω̄g
≤ 2
(

‖V0‖2
0 + ‖V1‖2

0

)

≤ C0

(

‖v‖2
Ω� c

+ ‖√g� 1
2

×

∇� ′
h
· v‖2

Ω̄� g

+ ‖√g� 1
2

×

∇� ⊥′
h

· v‖2
Ω̄� g

)

where C0 is a positive constant depending only on ‖×

qαβ‖C0,1([0,1]×S1).
In view of (A.143), (A.151) and (A.161), the estimate (A.144) follows.
We are now ready to complete the proof of the LBB estimate (3.57). Since I−1(q)−p ∈ span{1Ω̄go

,1Ω̄go
},

from (2.29) and (2.26), we have

(A.162) 〈
×

∇′
h · u , I−1(q) − p 〉Ω̄g

= −〈u ,
×

∇h(I−1(q) − p) 〉Ωc
= 0.
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From (A.143), (A.162) and (A.2),

(A.163) 〈
×

∇′
h · u , p 〉Ω̄g

= 〈
×

∇′
h · u , I−1(q) 〉Ω̄g

= 〈
×

∇� ′
h
· v , q 〉Ω̄� g

= ‖q‖2
Ω̄� g

.

In view of (A.163), (A.140), (A.144) and (A.3), we conclude that

(A.164)
〈

×

∇′
h · u , p 〉Ω̄g

‖p‖Ω̄g
‖u‖×

H1
h

=
‖q‖2

Ω̄� g

‖p‖Ω̄g
‖u‖×

H1
h

≥
(

√

g�min√
g
max

)
1
2

‖q‖Ω̄� g

C†‖v‖×
H1�h

≥
(

√

g�min√
g
max

)
1
2 γ

C† .

Therefore (3.57) follows with β =
(

√
g�min√
g
max

)
1
2 γ

C† > 0, which is independent of h.
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