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Abstract

We provide a rigorous stability analysis for a splitting-based second order time
stepping method for linear self-adjoint diffusive equations. The scheme is based on
a suitably chosen stabilizing splitting, combined with an implicit second order dis-
cretization, also known as stabilized predictor-corrector method. We obtain sufficient
conditions on the stabilizing term for the scheme to be unconditionally stable. The
proof utilizes discrete energy estimate together with a key observation that the com-

posite linear system corresponding to the time stepping is in fact symmetrizable.
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1 Introduction

Many dissipative systems can be modeled by
u + L(u) = f, (1)

where £ is a no é%g%ative elliptic operator. For the purpose of stable and efficient time
discretization of (II], a conventional wisdom is to perform a suitable operator splitting

L(u) = Lo(u) + (L(u) — Lo(u)), (2)

and treat Lo(u) and L£(u)— Lo(u) separately. Typically, Ly is a dominant linear operator. To
stabilize the time stepping, Lo(u) is discretized implicitly, while £(u) — Lo(u) is discretized
explicitly. so that the time marching is stable with fast direct solvers for the resulting linear

system:
n+1 n

T Lo = o) — L) + Q
For example, if £L = —V - (k(x)Vu) is a variable coefficient elliptic operator, a well know
splitting takes Lo = —CA where A is stand (& eQ[l(?OCf'an and C' > 0 is large enough to
stabilize the time marching (see, for example, [6, 3[). Similar stabilization e &ques have

been adﬁﬁg& ,H]SIY\?LQE}?SSQ*RRI%(@?I%%%{C}]F a?vsuikel%enerate diffusion system H &lg@g?ﬁeld

models [33, 25,24, 26, 27] and nonlinear iterafion of steady state computation .

There have been several generalization oﬁ gkiieogt%)glljgixtion to higher order schemes. A

well known 2nd order time discretization (see [29, 15[, Tor example) combines Crank-Nicolson

method for £y(u) together with 2nd order Adam-Bashforth for £(u)—Ly(u) to get (CN-AB2)
™t — w3 1 _ _ 1
—ay thl——)= §(£O(Un) — L(u")) — 5(50@” D= L")+ (4)

This scheme was proposed, for example, in %%% simulate surface diffusion along a moving
interface. Up to 3rd order time discretizations based on ( tua[]gi(}%zed) Backward Differencing
Formula and Extrapolation (BD/EP) were proposed in %ﬂ_ﬁr epitaxial growth models,
and proved to be unconditionally stable for 1st and %?aﬁu‘% er BD/EP. A 3rd order BD/EP
scheme with a new stabilizing term is proposed in | or the no-slope-selection epitaxial
thin film growth model and proved to be energy stable and convergent.

In this paper, we consider an alternat; i sfélll)ailized semi-implicit second order scheme
(also known as predictor-corrector scheme %%%7

un—&-% —u" n++ n n

U o) = (Lo — L)) + f .
2

uth — " u"tt +un nal ntl

() = (Lo — L)) +

rk2
Due to the presence of intermediate step u™3 in the scheme (%%sharp stability estimate is
difficult to obtain in general. It is well believed that the system is stabilized as long as the
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stabilizing term Lg is large enough. On the other hand, we have observed that the overall
absolute error also increases with Ly. In this paper, we start with the the simplest linear
nonnegative self-adjoint case. One of the byproduct o%%(éur analysis is a precise sufficient
condition t(i)]%2the stabilizing term Ly for the scheme (H) to be unconditional stable. See
Theorem

. 2F‘or general (possibly nonlinea oF nonlocal) elliptic operator £, the second order scheme
(@28 a natural generalization of (IE')’ and retains all the numerical advantages. Both steps in
() are uniquely solvable with fast s%ﬁers provided L is a suitable chosen constant ¢ effi %ebnt
elliptic operator. The stability of (5)1s not %{?r in general. numerical evidence in 52: %and
rigorous proof in some cases) suggests that (5) is robust and accurate for gradient flows with
strong anisotropic f energy.

Our interest in ( j%{’orlglna rom previous study on efficient preconditioners for linear
fractional diffusion equations One can take Ly t 0 lgg2a r Sondluoner of £ whenever
it is available. We have observed that although both (4) and 35%&&6 unconditionally stable
for constant coefficient fractional diffusion operators %%‘tﬁasponding to linear self-adjoint
L), (E%’appears to be more robust and stable than (4) for variable coefficient fractional
diffusion operators (corresponding to line L u%gself—adjoint L). Similar performances have
been obsTSr%Ed for the problems studied in FZ'ELW(% believe this is due to lack of extrapolation
steps in (

We remark here that when both £ and £ are linear, self-adjoint and £, is large enough

so that
Lo>0,  Lo—L>0, (6)

L) = £ () = S (Euw) — Exlu), g

where both 5 ( ) - 1(u £Ou) and 5 ( ) 1< (EO ) ) ar% Cf%ngefow 1%5| Elaﬁagl ’l(;g:);hll WiWaLoC

belongs to the class of convex splitting scheme for gradient flows (| ([8 10, 30, 31, 32], assuming
f =0 for simplicity):

we can write

n+1

u—_un—_ ﬁ n+1 _ﬁ n
At (aUEC(u )= gt )>' (8)

The scheme (%Coinlgeéqulpped with discrete energy law &(u"*!) < £(u™) (therefore uncondi-
tionally (‘:cable)z 1prowded & =&, — & and both &, and &, are convex. The convex splitting
scheme (%) n 1ts c%ﬁ%atprlrﬁn ig Ist, a(gd‘rq%r aegurate in time, and can be improved to 2nd

order in some cases [19; Z,

In addition to the Splﬂgﬁf(n%s %ﬁ WSCI%%%I?; eﬁer%%ystfngle methods, the Single Auﬁgﬂéa& 11, GuTil3, '
Variable (SAV) method [[20, 22, J inspired by the Lagrangian multiplier approach [T, 11,
36, 39], are based on the sphttmg

E(u) = %(u, Lou) + & (u), ()



where L is symmetric nonnegative linear operator and &; is bounded below. This splitting,
when applied to the current case amounts to requiring

Ly >0, L—Ly>0, (10)
lsplitl [ShXuYal9

in contrast to (6). See [23] for a more thorough introduction of SAV.

In addition to the operator splitting methods mentioned above, the classical t%&%%?,htthaHuWaYu 17
ting is one of the most well known and popular operator splitting methods. See [16, 38, 17],
on recent progress on stability and conver %ﬁa%%ysis for the Strang splitting scheme ap-
plied to various nonlinear PDEs. See also%%miterative high order time discretization
schemes using lower order operator splitting methods as precongi&oners.

The rest of the paper is organized as follows. In section 2, we give the fundamental
stability analysis for the linear problem. The Jx Xglty of our approach is to recast the 2nd
order Stabilized Predictor-Corrector scheme ( in a way that is structurally identical to
the stabilized first order scheme and obtain similar energy S%’gﬁates that leads to stability
and convergence analysis for linear problems. In section B, we extend our analysis to a
class of semilinear diffusion equations including the generalized Allen-Cahn equation. The
proof is based on the energy estimate developed for linear problems, combined with discrete
Gronwall’s inequality and leads to. finite time stability and 2nd order in tirl{lme convergence
rate results. Finally, we conduct various numerical experiments in Section 4 to support the
theoretical analysis. We

2 The Schemes and Main Results for Linear Problems

main

evol
We first rewrite (), after spatial discretization, in matrix and vector notations:

u; + sMu = (sM — A)u + f. (11)

Here w and f are vector valued grid functions in RP. Denote by L) and Ly the spatial
discretization of £ and Ly and their matrix representation by

A : matrix representation of L, sM : matrix representation of Ly,

M and A are real symmetric p X p matrices. By assumption M = MT > 0,A = AT > 0. In
practice, we can take M to be a preconditioner of A, if available and s is a constant to be
determined.

For two real symmetric matrices P and Q, we write P > Q provided uTPu > uTQu for
all u # 0. Similarly for P > Q. We also denote the standard L? and weighted inner products
and norms in R? for any W = W' > 0 by

(u,v) = u'v, (u,v)w = u' Wo, (12)

and
Jul* = (u, u), Jul[fy = (w, w)w. (13)



aosi

2.1 Stabilized Backward Euler Scheme

el
In the matrix vector notation, the stabilized Backward Euler method (%’)’reads

n

n+l
4 T L sMu! = (sM— A)u” + f7 (14)

At

be
We will show that (hﬂ% a u'ISE;C@Gble both in energy norm and L? norm. The argument is
straight forwarc? L see also , for example. We include it here for readers convenience in
reading section 2.2.

1
Theorem 1. If sM > QA’ then the stabilized backward Euler scheme (E)?el% 15 unconditionally

stable and satisfies

Ag VL
lu™[7 < HUOHXJr?Z 17117, (15)
n=1
and
Ag N1
a2+ AV, < B0+ A0+ S ST (16)
n=0
Proof. Denote by
1
S; = (—I+ sM 17
N 1 (At +s )’ ( )
e
and rewrite (hﬂ%
Si(u" —u) + Au" = £, (18)
and therefore
A n+1 n A n+1 n n
(SI_E)(U —u)+§(u +u") = f". (19)
BE
Take (u™*' — u™, o) on both sides of (%9%, we see that
n n 1 n n n n n
lw™ " =g s+ ("R = 7)) = (™ =, 7). (20)
2 2
d
From (leT ), we have
1
2 2 2
- lls, s = g - 17+ 0 s (21)
therefore
1 1 1 At
ol = P e = Gy 5 (R = ) < Sl =P =
(22)
By assumption, sM — % > 0, therefore
1 " " At
5 (2 = un2) < S0 (23

5
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which leads to (ﬁ'%%fter summing over 7. be

The energy norm estimate (I5) along is sufficient to assert gcgggitional stability of (hﬂ%
For sake of completeness, we proceed Wlﬂﬁ—%e L? estimate (ﬂﬁ_Take the standard inner
product with ™ + w" on both sides of (T9) to get

1 1 1
a2y — 2+ Sl = e, ) <ttt S

mhal mha?2 <24)
From (24) and (21), we have
(a2 A2, ) = (P + At s ) < I (25)

12estl 12estl
which leads directly to (lG;Supon summing over n. This completes the proof of (6 ;S
O

2.2 Stabilized Predictor-Corrector Scheme

In this section, we will give a rigorous stability estimate of the stabilized predictor-corrector
scheme:

nt+i __ayn
% + sMu"tz = (sM — A)u” + f" 26)
2
n+l_ ., mn n+1 n
% + SM% — (SM _ A)un—&-% + fn—&-%’

where Ml and A are as in section b._l._lHere sM is the matrix representation of the stabilizing
term Lo and s is another undetermined constant. .
aoslThe discrete energy estimate for the stabilized Backward Euler method (Fl)l% in section
@aco%n probably be extended t }R}%]vn%rl c11e§a 1(:;1em including the stabilized BD2/EP2 in
and stabilized CN-AB2 in \ 19] and \ for energy estimate of up to BDF5

scheme for Stokes egnations. The authors mﬁé%_@k a different approach and obtained L?
error estimate of (%%’apphed to the isotropic Cahn-Hilliard e lﬁmgleoln.

S (Q&lr goal is to establish similar estimates as in Theorem he second order scheme
(bﬁ%*To thi WShy we first eliminate the intermediate variable u”+2 by rewriting the first
equation of (26) as

(éﬂ-i—SM) ntz — (%]IA—SM—A)’LL”—F]M, (27)

and substitute it back to get

1 sM (1 sM BNYZ2 -1 n
(1+ 5w = (1+5 é (sM = A) (L + M) A )u o
+ (sM — A) (=T + sM) "+ frrz,

At



To simplify the expression, we denote by

2
QEEH+SM:QT>O, (29)
T=(sM-A)=T", (30)

. evoll
and rewrite (28) as

<%@ —A-TQ'A)u" + TQ'f" + f"+4
— <%@ — (I + TQ*)A) u' + TQ ' f" 4 s (31)
(50 (@+T)Q'A)u" +TQ' " + 44,

or
u"t = (I1-2Q! (@ + T)Q‘lA)u” + QQ_ITQ*]:” + QQ—lf”Jf% (32)
= ([ —-S;"A)u™ +2Q ' TQ 1 £ +2Q 1 2,
where .
Sy = §Q(Q +T)'Q. (33)
It is crucial to note that
Sy =S; >0, (34)

scheme

OSRK2
thereforj%%ﬁfcan be symmetrized and put in a form that completely resembles the 1st order
(19):

Sy(u™ — u) + Au" = G + Hf 2, (35)
or A A
(82— 3) (@™ —u") + T (w4 ut) = Gf" H HFE (36)
where

G =25,Q0°'TQ!, H=2S,Q" 37)

(
BE 2 1 11 1
Upon comparing (h’Q% with (%n?;? and inspecting the left hand side of (CZImU;aand (Emzli,agtn%'fe 5

clear that the following estimates are crucial for the estimates of the 2nd order scheme (
Lemma 1. I[f A = AT >0, M =M" > 0 and sM > A, then
(i) X
— I+ = <8y, (38)

(i1)
=TI+, (39)

defS |d defT
where Sy, Q are defined by (%%% (beg ;tand ( 0.

7
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defT
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2ndeql
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2ndeq2o0ld

2ndeq2

defg

Q.
®
ct Hh
n



2
Proof. Part (i): Denote by B = A + EH and Apax, fmax the maximal eigenvalue of

Bv=AQuv and Bov =S, (40)
respectively. We will show that
A<sM < B<Q = Max <1 = fipax < 2. (41)

eig?2
The statements 'Ieli %I ; are obvious except the last implication. To verify it, we first note
that the pencils in (40] are isospectral to

B:Q 'Bzw = Aw  and B%SQ_IB%’U) = pw, (42)
respectively, where w = Bzv. Therefore

Laoimpl
x"B2S,'Bix
fmax = max 2 ———2F

zcRP\{0} T
TB2Q !(2Q — B)Q'B:
— max 22 Q QT )Q T (since Q+ T = 2Q — B)
zcRP\{0} zTx
43 igl
2T (E%@—llaa%) <IB—%(2@ _ B)B—%) (B%@—llﬂa%)m (43)
= max 2 T
zcRP\{0} zTx
TB2B! — 1)B o
= max 2  B( T ) :137 where BEB%@_lB%.
zcRP\{0} zTx

03 R
From (helﬂ and the definition of B, we see that
1 2
fmax < 2mjax A (2/\—] — 1)/\j = max (4X; — 2)\?) = mjax2<1 —(1-X) ) (44)

ig2 SmhA
Since Aj < Apax < follows that pimax < 2. This completes the proof of hll i, hence (%%LX)L

t
Part (11) From‘bB%’

S, = %Q(Q +T)'Q = @(éﬂ +4sM — 24)7'Q. (45)

Since sM > A, we see that

4 4
_ — > = 20.
L 4sM —2A > 14 25M = 2Q (46)

Sh
Therefore (%9) follows from (E’% and (E%% O



TheoreIES%KZUnc{f{dgézg same assumptions in Lemma I, the stabilized predictor-corrector

scheme (26) (or (36))1s unconditionally stable and admits the following estimates:

N-1
™I < w2 + A" (1£712 + £ ]), (47) [Anormboun
n=0
and
N-1 )
)P < flal2 + At (1R + 1215, (48)
n=0
where AL AL
E:7Q:H+73M. (49)
A bound 2 2
Proof. Proof of (hn? - Take standard inner product with "™ — 4™ on both sides of (%HG ;?
we see that
=2, + SR ) = (w7 G HFTE)(50)

SmhA

With (k3m8; and the inequality
n—i—l_nGn Hn-{—% <i n+l . n||2 ﬁ@n Hn—&—%Q 1
Wt G HFY) < et P S EPE (5L
SmhA

we see from (%mS; that

1 n+1)2 n||2 At n nilye o At 2 At n+3 12

S ) < Shes e < e s Smee. 6

A 1 d.
To estimate the right hand side of (%HZ fnxl;ve note from (&3% that
1 1 enitd
IGF™1* = 1128:Q " TQ "I, [HF""2||* = [|28,Q " f"2||". (53)
Sh
From (%395 and the following inequality
T=sM-A<sM<Q, (54) |Tineq

we have
IGF"||? = [128Q7 ' TQ 1|12 < ITQ 7)1 < || £ (55) [gnorm1

Similarly,
IHF 22 = [|28,Q L 2 |12 < || 72 2. (56) [gnorm2

[Anormfnormgnorm?2 .
From (b2), (b5), (%b ] we obtain

n n n n 1
l™ IR < w7+ At(LFP + 1772 ]7). (57) [Anorm3

Anormbound
which completes the proof of (h/ ; affer summing over n.

9



. Anormbound . . . OSRK2
The energy norm estimate ) algne is sufficient for unconditional stability of (26). We
proceed wi Ethe éﬂ estimate ( or sake of completeness.

Proof of (

for (
n n 1 n n+l n n+1
|w +1||SQ_, |w ||§2_% < §||Gf +H 250 <GSR + IHF 25 (58)

From (bgi, we see that that A2(2S,)A"2 < A~2QA~z. Therefore

[P 215 =A7228,Q7 f7 43| = [|A7228,A7% (A2 QA3 A= 70

—5 £n+5 |2 n+ (59>
<|ATEFEP = (£

Tine

Sh
Similarly, from (%395 and (H4),
IGS" I3+ = A7228,Q7 TQ ' f"* < AT=TQ f° < A= 7P = | f"]Z.  (60)
1 S S
After summing (EmS;aover n and applying the estimate (%6%, (%6%, we get

N-1
n n 1
2, < s+ 3 (1 + 1), (61)
n=0
SmhA Sh S
From (k3m8; and (%9) and (%%%, we have
LT 2 1.2 g0 0 - n||2 n+1 12
Al < G I+ sl lf) + 3 (17 B+ 7). (@)
n=0
12bound Sgd
Thus (hS Ffotfows from multiplying (%57 by At. O

Remark 1: (Alternative estim tes Hfl(fr convergence proof)
An alternative estimate to (bb) 1s given by

&£ = 128,07 TQ £ < ITQ £ < M) £ < [ SM(ALF) (63)

SmhA [Ti I
where we have used the estirgﬁ%es (}3m8 ;, (%2[1 and (EC[Q)
(

Similarly, in addition to , we also have

1G22 =[A228,Q ' TQ ' £ < |A~2TQ ! £7|2

1 - (64)
<IAEM( D) < | SMALE

We will give rlignorou for estimate for bG; in the next subsection. There the extra

At factor in (63) and ( 1s e bal to comp nsatie for first order local truncation error
resulting from the first step of ( ee section or details.

10

1
Rze(?ll the derlvatlon that leads to BZI; and apply it to (%6; we get the analogue of (Emziia

Sg2

Sg3

Sg4



Remark 2: (Relaxing the assumption sM > A)

lemmal
The assumption sM > A in Lemma I and Theorem }’Z can be relaxed to sM > A

[Anormbounfl 2bound
resulting in estimates slightly different from (47) and (48). To see this, we denote by Hmax

the maximal eigenvalue of

Av = 0sMw. (65)

ig2
Our origina Asumptiom sM > A corresponds to 0., < 1, which eventually leads to (Ell i
and hence (B8). We now claim that

A eig?
SMZE<Z>9max§2:>>\max<2:>,umax§2- (thT

eig2’
To see this, we note that the if and only if part in (IZI [ i is obvious, and the first implication
follows from

2 2
A < 2sM B=A+—IT<2(sM+ —1I) =2
< 2sM = +At < 2(s +At) Q, (66)

o3 -
As to the last implication, it is ot difficult to see the estimates (EIZE and (&13; remain valid.
Therefore we conclude from (&ﬂ%that

prs < ax 2(1— (1= 1)°) =2. (4

<A<L2

SmhA , . 1
It follows that (b’S%’remams valid under the assumption sM > —A.
2
Sh 1
As to the counter part of (lBQi, we note that sM > §A leads to
1 I+ 4sM — 2A > 1 I E’%% ’
A T4sM—2A 2> L (

It follows from (ES%’A (t ) &5‘% and %tha‘c
1 1~ 1 At Sht
ST0 = T+ sM o+ S (M) (385 [sma]

A
—I4+= <_2_
At <5 Q

As a result, we have

A A

IGF" 2 =]128:Q 7 TQ £ = 1|28,Q " ((sM — 5) -
<2250 (M - D)o + 2ls0 Bg e 555
<4[28:Q 7 (sM)Q 7P < AT(sMQ ) 7P < 4T
and
[+ |2 = [128,Q £ 3P < ([T (567 gnomm2’|

11



err_lin

. . Anormbound
Accordingly, the estimates (47) now becomes

N—-1
~ ~ Anorm

™2 < lullf2 + At (4lTF ) + [T 2)12). (1™ Tormboun

n=0

Similarly, the revised L? estimate reads:
~ o~ ~ o 12bound
I < Tl + At Y7 (AT 50+ (T2 15 )
n=0

under the relaxed \%ﬁ%%%%%ﬁ%%% dZ %A.

We note that (A7) and (48) are direct analogue of the energy estimates for the PDE

T T
/Q ul(u) de ’0 < % /0 /Q FRdudt, (67)

T
/u2 dz
Q

and

1 T
. < 5/0 /fﬁ_l(f)dxdt. (68) |evo32

. . IAI?ormbound fl2bound’ . .
On the other hand, the right hand sides of (A7) and (AR’) mvolve higher order spatial

derivatives and make subsequent estimates more complicated. For simplicity of presentation,
we shall only focus on the case sM > A in the rest of this paper. Nevertheless, numerical
evidence confirms that sM > %A is sufficient (and necessary) for unconditional stability and
2nd order %%le convergence for both linear and the class of semilinear problems considered
in section 3.

2.3 Error Estimate for Linear Problems
Let u. be the exact solution of the linear parabolic equation

ue + L(ue) = f inQ, 0<t<T,

69 4
ue(x,0) = u’(x), u.=0 on 0N (69) Levo

We first derive the error equation satisfied by e = u — u.. Firstly, we have

Oyue + Lp(ue) = f + T(z)5 (70) |evo5

: . . L evob .
where 7(;) = Ly, (ue) — L(u.) is the spatial local truncation error. Rewriting (7(); in matrix
vector notation, we get
Oue + Au, = f + 7y, (71) |evo6

and
un+% —u” +1
—ar— tsMuc = (M= Aug + "+ 7l + T

—~
~
N

N—
]
[0}
n
ot
=

2
n+l _ ,,n n+1 n
u, U, + SMue + 2

n+i n+ n+i n+i
A 5 =(sM—-Au, >+ f""2+71 T

12



where the temporal local truncation errors are given by

n—l—% n
Ue —Uu n+i
n __ e n 2 n
T ==& — O+ sM(ue 2 —ul),
2
and
n+* upt! —uy nty 1 n+1 n+3 n
Ty = == Ar Oue 2 + 55M(ue —2u. ?+ul).

After applying the Taylor formula
b
F(b0) =F(a) + J'(@)(b —a) + / F(a) (b~ 1) di

=(a) + F/(a)(b— a) + 5 f"(a) / (a .

on the intervals (a,b) = (t"2,¢") and "2, "+1), it is easy to see that

1

2 tn-‘rg ) tn+§
T = Ag / Oue(t)(t"2 —t) dt + sM / dyu(t) dt,
tm n
1 ¢+l At ) 1 ¢t At )
nt2 _ - 3 = n+i 1L 2 B ol
Tt = 5y tnat“e(t)< 5 —lt—t 2|> di + 5sM | O u.(t )<_2 It —t 2|> dt,

2
and conclu‘lodse that Téé)s_ O(At), T (t) = O(At?).

From (ub) and (I72), we can derive the equation for the error e = u — u,:

en+§ —e" nt+i n n n
T+SM€ T3 = (SM—A)G —T(x) _T(t)
2
en—l—l — e en+1 +en 1 g1 g1
M = (M A)e -

(75)

(76) |[ttn

(77

(78)

eest2 OSRK2 Anormbound
Since (3) 15 structurally identical to (bG;, we can directly apply the estimates (&[r i fogether
(

with to get

N-1
eV I3 <l + At Y (IG (e + )| + B + 7 D)
n=0
0|2 -« 2 +2 2 N+2
<Jlel + At Y 2([SM@ETEI + I 12+ 16?12 + Iy 211).

n=0

(79)

1 12 18
Here e have used %d)r?%g&jrgnd (L%Itl)) {nn the last inequality. Similarly, from (hS Eou( %%i, (%6%

and (h9), we also have

N-1

S n 2 n nti nt+i
e I? <l + At 3 2([ISMtTi - + Il + 17 2 s + I 2151,

n=0

13
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= el : .
In ([79) and (%U%, The first orc%%r local truncation error 7{}) is compensated by the extra At
factor. More precisely, from ([76), we have

s
||§M(At73))|\2:HsM/afue(t)(tn+é )dt+A_ sM) /Otue dtH

n+§

2 (At)?
<2H/ sMOPu, (1) ("3 — 1) dt H/ V2du.(t) (81)
N L )
g( i ||sMa§ue(t)||2dt+—/ ||(5M)28tue(t)||2dt.
12 Jm 4 Jm
Similarly,
n+1 3 tn+1
i <2 Mo opas €0 [ or
14 M t)||~dt. 82
I 12 <t ot i+ S [ ool (52)
The estimates for ||7 t)H 4-1 and ||7‘ || s -1 are similar. We can now summarize these esti-

mates as the followmg

4
Theorem 3. Let u, be the exact solutio e ng PDE (%VQ;. Denote by u. the grid values
of ue and u™ the numerical solution of ( at time t" = nAt, 0 < n < N, At = % If
A=AT>0, M=M" >0 and sM > A, then

N-1
n nty
lu® = we (DI < [lu’ = we(0)[F + At Y 2(|r) 1P + 6 1)
0 (83)

T
+ C(At)‘% (107 ue (I + MO e (8)* + M Oyue (£)]|*) dt

and
N—1 1
[ — we(T)]” < [[u® = we(0) 2 + ALY 2177 + 1700 2 17+)
n=0 (84)

T

+ C(At)‘y (107 we ()2 + MO we(®)][5 -+ + M Opuae () |31 ) dt

0

for some constant C'.

The estimates in Theorem %h%?e generic. They can be characterized more specifically in
terms of u, when A and M are explicitly given.
Example: Let A be the matrix representation of £, = —V, - (k(x)V}), the second order
central difference discretization of the elliptic operator £ = —V (k(x)V) with x(x) smooth
and positive, and zero Dirichlet boundary condition. We take Ly = —Ay, to be the discrete
Laplacian and denote by M its matrix representation. It follows that

7w (2, 1)] < C1(A)*[[uell ey (8), (85)
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[Londue(@,t)] < Cul|0fuel| oz (D)- (86)
. cA
Denote by " = u™ — u,(t") and rewrite (%3% as

N-1
eI <lle®l12 + Calel (A At 3 (lellZg oy (¢) + el gy ()
= (87)

T

+O2|Q|(At)7 (||Ue||2c§cg(ﬂ) + ||“e||2c§cg(g) + ”ueHé}C’g(Q))(t) dt.

0
el24
The estimate (%/ ; together with the Poincaré inequality
~1
el < Cellellz,  (Cp = (Aun(A)) " =O(1)) (88)

results in optimal second order convergence rate in discrete H' norm:

M3 = lle™? + eV 13 < e°l3; + C((Az)? + (At)%),

. el124 %%
where the constant C' depends on Ky, > 0 and the norms and constants in (%/; and (88).

3 Application to Semilinear Problems

semil laos2 lerr_lin

We now generalize the estimates in sections 2.2 and 2.3 to the semilinear equation

v+ L(v) = g(v, l(v), z,1), (89)

with Dirichlet boundary condition, where £(-) is linear self-adjoint and £(-) is a lower order
differential operator satisfying

(), ) < Celv, £(v)) (90)
together with the discrete analogue

1€x(v)|1* < Cillv][Z (91)

for some fixed constant C;. We further assume that ¢ is Lifchitz continuous in the first two
arguments:

lg(v1,p1, 2, t) — g(va, po, @, ) > < L?((01 — v2)? + |Ip1 — p2||?), (92)

where L is a fixed constant.
A typical example satisfying these assumption is given by

L(v) ==V ((x)Vv) + c(x)v, g(v,l(v),z,t) =—w(x,t)-Vv—h(v)+ go(z,t), (93)

with |h'| < L and k > 0, ¢ > 0, w and g, sufficiently smooth.

15



AssumE'IP%OqM > A, the 2nd order stabilized predictor-corrector scheme for semilinear

equation (R9)1s similar to the linear one:
,Un—&-% —v" n+i n n
———— T sMv""2 = (sM - A)v" +g
,Un—&—lT ,Un ,vn+1 + ,Un (94)
- 1 1
T —+ SMT = (SM — A)Un+§ —+ gn+§,
where ) ) ) 1
g" =g(v", £, (v"),t"), , gt = g(’u”+5,£h(’v”+5),t’:“5). , (95)
th
Following the derivation in Theorem }'Z,H{?V(e get the same estimate as (%DZ irm
1 n n n n 1
7 (" = om2) < I1Gg™|I” + g™ =, (96)

d A 4
where G and H are defined in (be? 5 To estimate the right hand side of (bHB ifnxlzve decompose
g" as

g" =d,9" + 0ag" + g5, (97)
where
5(1)9” =g(v", L,(v"),t") — g(0,£,(v"),t"),
539” =g(0,£,(v"),t") — g(0,0,t"), (98)
go =9(0,0,t").

Lifl 1norml Anormd
From (bIZE and (bnl ;fnxlzve can estimate the first term in right hand side of (bnG B
1G> < llg" > < 3( /139" |1 + 39" 1> + 9311
< 3(L2 0" | + L2en(w™) | + llgi1?) (99)
<3(L3(Co + Collo"13 + g1,
. . /- . JCP . . . o
Here we have used the discrete Poincaré inequality (%'8) in the last inequality. Similarly,
ntd
g™ 3|12 < llg™*3|I* < 3(LA(Co + Collv™*F I + llgo ). (100)

N1 be
Upon comparing the first equation e(kﬁ% with the first order scheme (hﬂ%, we immediately
obtain the following estimate from (23]:

n+i n At n
o™ 2% < "1l + - llg™ ™ (101)

Anorm&.if2n|L.if2nh Anormb
From (\90), BY), (100) and (\lUl) that

1 n n n n n+y
O~ o 3) < 622(Ce + €0 (072 + gl + g 7). (02)

. . . . Anorm6 . )
After applying the discrete Gronwall’s inequality to (102 i, we obtain the following
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%lzigorem 4. Let v"™ be the numerical solution of the stabilized predictor-corrector scheme
(

at tim 1§” =nAt, 0 <n <N, At = % If A = AT > 0 satisfies the chi frete Pl%mr(fnqré
3@ %8 bZ; (bﬂ, th

inequality (88), M = M > 0 and sM > A, then under the conditions (92) and e
scheme ( 18 unconditionally stable and satisfies

N-1

n ”+%
o112 < e (1l + 0At Y (lgsll> + ligs 1) (103)

n=0
for some constant C'.

An a priori bound for [|[v¥]|? can be obtained similarly from (Sm

al .
| : ' la: : %8 olloxﬁlﬁg _Fhe same
procedure as above, or by applying the discrete Qipcaré inequality (88) to ( irectly.
We noy gfroolceed to give an error estimate for (94). Let v, be the solution of the semilinear

equation (%95,
Ove + L(ve) = g(ve, £(ve), x, t). (104)
After spatial discretization, we have
Opve + Ly (ve) = g(ve, ln(ve), T, 1) + Tay, (105)

where

Tw) = Ln(ve) — L(ve) — (9(ve, lh(ve), z,t) — g(ve, £(ve), 2, 1)) (106)

. : : nevo3, . .
is the spatial local truncation error. Next, we recast (lUSi in matrix vector notation:
atve + Ave =g.+ T (z), (107)

which leads to

n+3 n
e — U, n+i n n n n
At + sMwv, 2 = (SM — A)'Ue -+ g, + T(x) + T(t) (108)
2
IR Vi e e T n+l o ntl nt+i n+3
A7 + sM 5 :(SM—A)’Ue 2+ge 2+T(I)2+T(t)2a
where 1 1 1 1
gr =gl 6y (vl). "), gi? =glul 7 (vl 7)), (109)
and the temporal local truncation errors are given by
”""% — " 41
T = ° ~ & — Q! + sM(ve 2 — v, (110)
2
and I 1
n+3 ’UZ B /UZ n+3 n n+3 n
Ty = g Owe F o+ osM(uIT = 200 o). (111)
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N1 nleestl
Subtract (bﬂ% from (TO8 ;, we obtain the equation for the error e = v — v.:

6n+% n

L e = (M- e +dg”
5 (12)
en+1_en+ Men+1—|—€ (M A) 2+5 n+l
" 4 s
At 2 g
where
09" =(g" —g¢) — Ty — 'r(t = 0" +02g" — Tl — TP,
n+i nt+l n+2 nti n+ n n nti n+t (1].3)
0g"E = (g =gl Syt STt =0 Ol T T
with

0eg" =g(v", €y(v"), ") — g(ve(t"), £, (V") 17),
) =

526" =g(0. ("), £(6"), ") — 9w, (1), £ (v, (™), ), (114)

and similarly for §1g"*z and §2g"+z.

of v, and v™ the numerical solution of M time 1" = nAt, 0 <n <N, At =

. mevol .
Theorem 5. Let v, be the exact solutzo th‘ﬁ milinear equation ( %95 v, the grid values
Then under the same assumptions in Theorem ; lihe error v — v, satisfies

N-1
0¥~ 0,11 e (0~ 0,00 + (A0 X (Il + I751)
) (115)
+80" [ (0200l + [M0Fo. (O] + 100,01 )
0

for some constant C'.

N1 leest2
Proof: We ﬁFt leyive the error equation. In view of the similarity between (bﬂ% and (I [2 ;,

we see from ( at

1

1
(e~ ") < Gag"? + [Hog™ (116)
. . . . nleest21 if2n|Lif2nh|Li
pE%c%%c} with the estimates on the right hand side of hTG%_F'fom b?ff)_(h'UU%_(bZI)’

now
and ( we have

&

1Gog"|1* < 4(IG3g" |2 + Ga2g" P + Gy |2 + IG5 1)

< 4(119g" | + 1929”11 + iy |2 + IS M(ALTG) 1) (117)
< 4(LX(Co + COlle I} + iy I + IsM(ALTE)2),

18



n+i n+x n+l n+z n+i
[Hog™ 42 < [log™*3|1* < 4(ZA(Cr + Colle™ 312 + {712 + Iy *112). (118)

It r@gins to estimate ||€™2||2 in terms of ||e”]|2. To this end, we rewrite the first equation

of (94) as
I+ %SM)&% =(I+ %(SM —A))e" + %59”, (119)
o At At
where [ =1 + %SM. It follows from (% that
~ .~ At At~
len*z]2 <2|[T-H(I - TA)e”Hi + 2}}7]1—159”“2 = (I) + (II). (121)
Since sMl > A by assumption, we have
< (i- %A)l <1, T'< (%A)l (= %A%i-l <At (122
From (85, ({15, (537 'ana G15
(1) = 2 ([ SLa)er|[* < 2aber)? = 2" (123)
Note that 7, is only O(At) and needs to be treated separately:
At~ At~
(1) < 4H7H_1(5;9n +02g" — T?x)) Hz + 4“71[_17'7&)”1 = (II) + (ILy), (124)
At 1~
() =4|5-AT ! (819" + 629" — 70,y [,
<dl|at (olg" + 029" — 7| <aCe|lg” + a2g" — iy F U2
<12Cp (CoL?||e"|[% + CoL?|le™[[& + 17y 1),
1~ 1 1
(IL) = [[ART N (At [P < ||AZ(Atr])|]” < (|02 sM(AtTE) |12 (126)

. . . e eA
We can further estimate the 7 terms as (see the derivation of (81) and (%2%)

1

t"ta
)P <@ [ (1Mo + MO O )d (20

tn

tn+1

n-‘,—%
I < c(a? /

tn

(11870 ()12 + M. ()] ) dt. (128)
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mleestRlleestRrleestinleest3 nleestdelA2
From (\llb), Ull{), Ullté), UlZl) and (123%— { 128;, we have

1 n n n n n+i
— (lle"12 = lle[2) < Callle™Z + ImillP + I 2117
At (=)

tn+l

T (At / (15300 + MO, ()] + MO0, (1)) dt ).

(120)

leest
Therefore (nl%;sfollows from Gronwall’s inequality.

4 Numerical Results

In this section, we conduct various numerical experiments to verify the stability and error
estimates.
Example 1: In the first example, we consider the linear diffusion equation

u = (k(x)ug)z + f, re(-1,1), telo,T], (130)

with degenerate diffusion coefficient x(x) = (1 — z?). For this test problem, we take the
exact solution to be .
ue(z,1) = 5™ cos (==

(2,1) (%)

(131)

and use u, to generate the source term f, the initial value u(x,0) and the boundary values
u(£1,t). Here A is the matrix representation of Lp:

Ly(u); = =Dy (kDgu), = —é <mi+; (%) — K1 <%>) . (132)

We can choose the stabilizing term to be sM, where s > 0 is the stabilizing constant and M
is the matrix representation of the standard discrete Laplician L o:

Uip1 — 2U; + Uiy

;Coﬁ('d)i = —Diul = (Agj)z

(133)

. . aos2 1A - . . 0SRK2 . .
From Remark 2 in Section 2.2, sM > ;A is sufficient for stability of ( appﬂll%leglg g}{la%% .
problems. Since k(z) < 1, we have Ml > A. Therefore s > 0.5 will do. In Table &, we present
the supnorm errors and orders of convergence of the stabilized predictor-corrector scheme
(SPC) for both s =1 and s = 0.5 at time 7" = 1. In addition, we also include the result of
Crank-Nicolson scheme (CN)_for comparison.
[Linear_example e

As we can see from Table &, the performances of CN and SPC are comparable, exhibiting
near or full 2nd order accuracy. Also note that in this example, smaller (but large enough)
stabilizing term (s = 0.5) results in better performance. This is consistent with similar
observations reported in the literature.

Example 2:
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1ear_example

Table 1: Errors and orders of convergence for Examp t T = 1 using Crank-Nicolson
method (CN), Stabilized Predictor-Corrector method ( PC) with s =1 and s = 0.5.

At(= Ax) 1/64 1/128 1/256 1/512

CN L> error | 6.717e-4 | 1.659¢-4 | 4.111e-5 | 1.020e-5
order — 2.02 2.01 2.01

SPC L™ error | 6.884e-4 | 2.038¢e-4 | 5.764e-5 | 1.580e-6
s=1 order - 1.76 1.82 1.87

SPC L error | 5.43b5e-4 | 1.276e-4 | 3.027e-5 | 7.249¢-6
s=0.5 order - 2.09 2.08 2.06

In the second example, we consider the following 1D semilinear equation:

v + cw()v, = co(k(x)vy)e — c3h(v) + golx, t), re(-1,1), te|0,T] (134)

thm4
with V%(ijog§ parameters ci, co and c¢3. From the proof of Theorem h, we know the constant
C in (I(B:i depends mostly on L and C,, while

L =0O(maxc3,¢;) and Cp = O(c3

cal)

(135)

from (%%%Illd (%ﬁ% In the following tests, we choose the time scale with max(%, c1,03) =
O(1) in order to resolve the time evolution properly.

Example 2a: w(z) = sin(z), x(z) =1, h(v) =03 — 0.

Example 2b: w(z) = sin(rz), x(z) = 1 — 2%, h(v) = sinh(v). Lif1

Although the nonlinear part h(v) = (v®—v) does not satisfy the Lifchitz assumption (bZI)T
it is known that the generalized Allen-Cahn equation (without the source term go) satisfies
the maximum principle:

[v(z,0)] <1 = |v(x,t)] <1 for any ¢t > 0. (136)
. Lif1l . . . . P
Therefore the assumption (bZi is practically satisfied with the effective Lifchitz constant

L = max | (v)| = 2. (137)

lv[<1
This is equivalent to replacing h(v) by
2 —1), v>1
h(v) =< (v*—v), vel-1,1] (138)
2w +1), v<-1

in the scheme without affecting the solution.
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For this test problem, we take the exact solution to be
ve(z,t) = sin(t) - (1 — 2?) (139)

and use it to generate the initial value, boundary value and source term go(z,t). Since the
leading order linear part €29 has constant coefficient, our analysis shows that we can take
A = matrix representation of — ¢2D2. (140)

That is, A need not include the transport term v,. As a result, we can simply take M = A.

In view ﬁ
scheme (

2@5%1

rk 2, we test it with s = 0.5001 using the Stabilized Predictor-Corrector
for semilinear equatlons ’1F1he result of the convergence test with Ax = At,
T=1 and various €? is listed in Table

N1
e 2: Results of Example 2 at T' = 1 using Stabilized Predictor-Corrector scheme (bzl%,
with M = A, s = 0.5001 and various e.

At(= Ax) 1/32 1/64 1/128 1/256 1/512 1/1024

=1 L error | 3.622e-4 | 8.931e-5 | 2.216e-5 | 5.517e-6 | 1.376e-6 | 3.437e-7
order 2.02 2.01 2.01 2.00 2.00

€2 =0.1 | L*® error | 3.432e-4 | 8.619e-5 | 2.157e-5 | 5.393e-6 | 1.349e-6 | 3.372e-7
order 1.99 2.00 2.00 2.00 2.00

€2 =0.01 | L*® error | 8.642e-4 | 1.840e-4 | 3.779e-5 | 9.417e-6 | 2.356e-6 | 5.893e-7
order 2.23 2.28 2.00 2.00 2.00

5 Conclusion and discussion

In this paper, we give a rigorous stability and convergence proof of the Stabilized Predictor-
Corrector method applied to linear diffu sié)n{ll 1equations in Section B-and a class of semilinear
diffusion equations described in Section (E‘)_l?or simplicity of representation, these results are
proved under the assumption sM > A where sM is the artificially splitted stabilizing term
and A is the matrix representation of the leading order linear part of the diffusion operator.
The main advantage of the stabilization is the freedom to choose the splitting operator sM
so that the resulting linear system is easier to solve, for example, using an FF'T package on
simple domains. In addition to the main Theorems, our analysis the linear problems shows
that sMl > %A is sufficient.
Limitations of our approach include:

1. The analysis relies on the assumption A = AT > 0, which is not satisfied when the
underlying boundary condition is Neumann or periodic.
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2. The class of semilinear diffusion equations considered in Section 3 does not include some
well known equations such as the isotropic Cahn-Hillard equations or more complicated
gradient flows.

. . . . . 2ndeqg2o0ld
3. The discrete energy estimate is based on the new symmetrized formulation (%5}. [t
is not clear whether similar formulation exists for other 2nd order or higher order
stabilized schemes of predictor-corrector type.

These problems are currently under consideration and will be reported elsewhere, if success-
ful.
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