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Abstract

We provide a rigorous stability analysis for a splitting-based second order time

stepping method for linear self-adjoint diffusive equations. The scheme is based on

a suitably chosen stabilizing splitting, combined with an implicit second order dis-

cretization, also known as stabilized predictor-corrector method. We obtain sufficient

conditions on the stabilizing term for the scheme to be unconditionally stable. The

proof utilizes discrete energy estimate together with a key observation that the com-

posite linear system corresponding to the time stepping is in fact symmetrizable.
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1 Introduction

Many dissipative systems can be modeled by

ut + L(u) = f, (1) evo1

where L is a non-negative elliptic operator. For the purpose of stable and efficient time
discretization of (

evo1
1), a conventional wisdom is to perform a suitable operator splitting

L(u) = L0(u) +
(
L(u)− L0(u)

)
, (2) evo2

and treat L0(u) and L(u)−L0(u) separately. Typically, L0 is a dominant linear operator. To
stabilize the time stepping, L0(u) is discretized implicitly, while L(u)− L0(u) is discretized
explicitly. so that the time marching is stable with fast direct solvers for the resulting linear
system:

un+1 − un

∆t
+ L0(un+1) = L0(un)− L(un) + fn, (3) be1

For example, if L = −∇ · (κ(x)∇u) is a variable coefficient elliptic operator, a well know
splitting takes L0 = −C∆ where ∆ is standard Laplacian and C > 0 is large enough to
stabilize the time marching (see, for example,

Du, CeHo01
[6, 3]). Similar stabilization techniques have

been adapted in various applications, such as degenerate diffusion system
XuZh03
[35], phase field

models
XuTa06, ShYa10, ShTaYa16, TaYa16, TaYuZh19
[33, 25, 24, 26, 27] and nonlinear iteration of steady state computation

HoTaYa17
[14].

There have been several generalization of the stabilization to higher order schemes. A
well known 2nd order time discretization (see

WaLi00,JoLi04
[29, 15], for example) combines Crank-Nicolson

method for L0(u) together with 2nd order Adam-Bashforth for L(u)−L0(u) to get (CN-AB2)

un+1 − un

∆t
+ L0(

un+1 + un

2
) =

3

2

(
L0(un)− L(un)

)
− 1

2

(
L0(un−1)− L(un−1)

)
+ fn+ 1

2 . (4) cnab2

This scheme was proposed, for example, in
XuZh03
[35] to simulate surface diffusion along a moving

interface. Up to 3rd order time discretizations based on (stabilized) Backward Differencing
Formula and Extrapolation (BD/EP) were proposed in

XuTa06
[33] for epitaxial growth models,

and proved to be unconditionally stable for 1st and 2nd order BD/EP. A 3rd order BD/EP
scheme with a new stabilizing term is proposed in

HaHuWa21
[12] for the no-slope-selection epitaxial

thin film growth model and proved to be energy stable and convergent.
In this paper, we consider an alternative stabilized semi-implicit second order scheme

(also known as predictor-corrector scheme
ShXu18b
[21]):

un+ 1
2 − un
∆t
2

+ L0(un+ 1
2 ) = (L0 − L)(un) + fn

un+1 − un

∆t
+ L0(

un+1 + un

2
) = (L0 − L)(un+ 1

2 ) + fn+ 1
2 .

(5) rk2

Due to the presence of intermediate step un+ 1
2 in the scheme (

rk2
5), sharp stability estimate is

difficult to obtain in general. It is well believed that the system is stabilized as long as the
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stabilizing term L0 is large enough. On the other hand, we have observed that the overall
absolute error also increases with L0. In this paper, we start with the the simplest linear
nonnegative self-adjoint case. One of the byproduct of our analysis is a precise sufficient
condition on the stabilizing term L0 for the scheme (

rk2
5) to be unconditional stable. See

Theorem
thm2
2.

For general (possibly nonlinear or nonlocal) elliptic operator L, the second order scheme
(
rk2
5) is a natural generalization of (

be1
3) and retains all the numerical advantages. Both steps in

(
rk2
5) are uniquely solvable with fast solvers provided L0 is a suitable chosen constant coefficient

elliptic operator. The stability of (
rk2
5) is not clear in general. numerical evidence in

ShXu18b
[21] (and

rigorous proof in some cases) suggests that (
rk2
5) is robust and accurate for gradient flows with

strong anisotropic free energy.
Our interest in (

rk2
5) originated from previous study on efficient preconditioners for linear

fractional diffusion equations
Ts19
[28]. One can take L0 to be a preconditioner of L whenever

it is available. We have observed that although both (
cnab2
4) and (

rk2
5) are unconditionally stable

for constant coefficient fractional diffusion operators (corresponding to linear self-adjoint
L), (

rk2
5) appears to be more robust and stable than (

cnab2
4) for variable coefficient fractional

diffusion operators (corresponding to linear non-self-adjoint L). Similar performances have
been observed for the problems studied in

ShXu18b
[21]. We believe this is due to lack of extrapolation

steps in (
rk2
5).

We remark here that when both L and L0 are linear, self-adjoint and L0 is large enough
so that

L0 ≥ 0, L0 − L ≥ 0, (6) split1

we can write

L(u) =
∂

∂u
E(u) =

∂

∂u
(Ec(u)− Ee(u)), (7)

where both Ec(u) = 1
2
(u,L0u) and Ee(u) = 1

2
(u, (L0 − L)u) are convex. In this case, (

be1
3)

belongs to the class of convex splitting scheme for gradient flows (
Ey98,GuLoWaWi14,WaWaWi10,WaWi11,WiWaLo09
[8, 10, 30, 31, 32], assuming

f = 0 for simplicity):

un+1 − un

∆t
= −

( ∂
∂u
Ec(un+1)− ∂

∂u
Ee(un)

)
. (8) convex1

The scheme (
convex1
8) is equipped with discrete energy law E(un+1) ≤ E(un) (therefore uncondi-

tionally stable) provided E = Ec − Ee and both Ec and Ee are convex. The convex splitting
scheme (

convex1
8) in its current form is 1st order accurate in time, and can be improved to 2nd

order in some cases
ShWaWaWi12, BaLoWaWi13, WuZwZe14
[19, 2, 34].

In addition to the splitting (
split1
6), a new class of energy stable methods, the Single Auxiliary

Variable (SAV) method
ShXu18, ShXuYa18, ChShYa19, ChYa19
[20, 22, 4, 5] inspired by the Lagrangian multiplier approach

BaGuGu11, GuTi13, Ya16, ZhWaYa17
[1, 11,

36, 39], are based on the splitting

E(u) =
1

2
(u,L0u) + E1(u), (9)
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where L0 is symmetric nonnegative linear operator and E1 is bounded below. This splitting,
when applied to the current case amounts to requiring

L0 ≥ 0, L − L0 ≥ 0, (10) split2

in contrast to (
split1
6). See

ShXuYa19
[23] for a more thorough introduction of SAV.

In addition to the operator splitting methods mentioned above, the classical Strang split-
ting is one of the most well known and popular operator splitting methods. See

LiQiZh17, ZhWaHuWaYu17,LiWaWa21
[16, 38, 17],

on recent progress on stability and convergence analysis for the Strang splitting scheme ap-
plied to various nonlinear PDEs. See also

ZhHuWaYu18
[37] on an iterative high order time discretization

schemes using lower order operator splitting methods as preconditioners.
The rest of the paper is organized as follows. In section

main
2, we give the fundamental

stability analysis for the linear problem. The novelty of our approach is to recast the 2nd
order Stabilized Predictor-Corrector scheme (

OSRK2
26) in a way that is structurally identical to

the stabilized first order scheme and obtain similar energy estimates that leads to stability
and convergence analysis for linear problems. In section

semil
3, we extend our analysis to a

class of semilinear diffusion equations including the generalized Allen-Cahn equation. The
proof is based on the energy estimate developed for linear problems, combined with discrete
Gronwall’s inequality and leads to. finite time stability and 2nd order in time convergence
rate results. Finally, we conduct various numerical experiments in Section

num
4 to support the

theoretical analysis. We

2 The Schemes and Main Results for Linear Problems
main

We first rewrite (
evo1
1), after spatial discretization, in matrix and vector notations:

ut + sMu = (sM− A)u+ f . (11) evo3

Here u and f are vector valued grid functions in Rp. Denote by Lh and L0,h the spatial
discretization of L and L0,h and their matrix representation by

A : matrix representation of Lh, sM : matrix representation of L0,h

M and A are real symmetric p× p matrices. By assumption M = MT > 0,A = AT > 0. In
practice, we can take M to be a preconditioner of A, if available and s is a constant to be
determined.

For two real symmetric matrices P and Q, we write P > Q provided uTPu > uTQu for
all u 6= 0. Similarly for P ≥ Q. We also denote the standard L2 and weighted inner products
and norms in Rp for any W = WT ≥ 0 by

〈u,v〉 = uTv, 〈u,v〉W = uTWv, (12)

and
‖u‖2 = 〈u,u〉, ‖u‖2

W = 〈u,u〉W. (13)
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2.1 Stabilized Backward Euler Scheme
aos1

In the matrix vector notation, the stabilized Backward Euler method (
be1
3) reads

un+1 − un

∆t
+ sMun+1 = (sM− A)un + fn, (14) be2

We will show that (
be2
14) are stable both in energy norm and L2 norm. The argument is

straight forward, see also
XuTa06
[33], for example. We include it here for readers convenience in

reading section
aos2
2.2.

thmbe1 Theorem 1. If sM ≥ 1

2
A, then the stabilized backward Euler scheme (

be2
14) is unconditionally

stable and satisfies

‖uN‖2
A ≤ ‖u0‖2

A +
∆t

2

N−1∑
n=1

‖fn‖2, (15) aest1

and

‖uN‖2 + ∆t‖uN‖2
sM−A

2

≤ ‖u0‖2 + ∆t‖u0‖2
sM−A

2

+
∆t

2

N−1∑
n=0

‖fn‖2
A−1 . (16) l2est1

Proof. Denote by

S1 ≡
( 1

∆t
I + sM

)
, (17) defQ

and rewrite (
be2
14)

S1(un+1 − un) + Aun = fn, (18)

and therefore (
S1 −

A
2

)
(un+1 − un) +

A
2

(un+1 + un) = fn. (19) BE3

Take 〈un+1 − un, •〉 on both sides of (
BE3
19), we see that

‖un+1 − un‖2
S1−A

2

+
1

2

(
‖un+1‖2

A − ‖un‖2
A
)

= 〈un+1 − un,fn〉. (20) qmha11

From (
defQ
17), we have

‖ · ‖2
S1−A

2

=
1

∆t
‖ · ‖2 + ‖ · ‖2

sM−A
2

, (21) qmha2

therefore

1

∆t
‖un+1−un‖2 +‖un+1−un‖2

sM−A
2

+
1

2

(
‖un+1‖2

A − ‖un‖2
A
)
≤ 1

∆t
‖un+1−un‖2 +

∆t

4
‖fn‖2.

(22)
By assumption, sM− A

2
≥ 0, therefore

1

2

(
‖un+1‖2

A − ‖un‖2
A
)
≤ ∆t

4
‖fn‖2, (23) be_a1

5



which leads to (
aest1
15) after summing over n.

The energy norm estimate (
aest1
15) along is sufficient to assert unconditional stability of (

be2
14).

For sake of completeness, we proceed with the L2 estimate (
l2est1
16). Take the standard inner

product with un+1 + un on both sides of (
BE3
19) to get

‖un+1‖2
S1−A

2

−‖un‖2
S1−A

2

+
1

2
‖un+1 +un‖2

A = 〈un+1 +un,fn〉 ≤ 1

2
‖un+1 +un‖2

A +
1

2
‖fn‖2

A−1 .

(24) qmha1

From (
qmha1
24) and (

qmha2
21), we have(

‖un+1‖2 + ∆t‖un+1‖2
sM−A

2

)
−
(
‖un‖2 + ∆t‖un‖2

sM−A
2

)
≤ ∆t

2
‖fn‖2

A−1 , (25)

which leads directly to (
l2est1
16) upon summing over n. This completes the proof of (

l2est1
16)

2.2 Stabilized Predictor-Corrector Scheme
aos2

In this section, we will give a rigorous stability estimate of the stabilized predictor-corrector
scheme: 

un+ 1
2 − un
∆t
2

+ sMun+ 1
2 = (sM− A)un + fn

un+1 − un

∆t
+ sM

un+1 + un

2
= (sM− A)un+ 1

2 + fn+ 1
2 ,

(26) OSRK2

where M and A are as in section
aos1
2.1. Here sM is the matrix representation of the stabilizing

term L0 and s is another undetermined constant.
The discrete energy estimate for the stabilized Backward Euler method (

be2
14) in section

aos1
2.1 can probably be extended to higher order schemes including the stabilized BD2/EP2 in
XuTa06
[33]. and stabilized CN-AB2 in

ShWaWaWi12
[19] and

FeTaYa13
[9]. See also

Li13
[18] for energy estimate of up to BDF5

scheme for Stokes equations. The authors in
ShXu18b
[21] took a different approach and obtained L2

error estimate of (
rk2
5) applied to the isotropic Cahn-Hilliard equation.

Our goal is to establish similar estimates as in Theorem
thmbe1
1 for the second order scheme

(
OSRK2
26). To this end, we first eliminate the intermediate variable un+ 1

2 by rewriting the first
equation of (

OSRK2
26) as ( 2

∆t
I + sM

)
un+ 1

2 =
( 2

∆t
I + sM− A

)
un + fn, (27)

and substitute it back to get( 1

∆t
I +

sM
2

)
un+1 =

( 1

∆t
I +

sM
2
− A− (sM− A)

( 2

∆t
I + sM

)−1A
)
un

+ (sM− A)
( 2

∆t
I + sM

)−1
fn + fn+ 1

2 .
(28) evol1
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To simplify the expression, we denote by

Q ≡ 2

∆t
I + sM = QT > 0, (29) deftQ

T ≡ (sM− A) = TT, (30) defT

and rewrite (
evol1
28) as

1

2
Qun+1 =

(1

2
Q− A− TQ−1A

)
un + TQ−1fn + fn+ 1

2

=
(1

2
Q−

(
I + TQ−1

)
A
)
un + TQ−1fn + fn+ 1

2

=
(1

2
Q−

(
Q + T

)
Q−1A

)
un + TQ−1fn + fn+ 1

2 ,

(31)

or
un+1 = (I− 2Q−1

(
Q + T

)
Q−1A)un + 2Q−1TQ−1fn + 2Q−1fn+ 1

2

= (I− S−1
2 A)un + 2Q−1TQ−1fn + 2Q−1fn+ 1

2 ,
(32) 2ndeq1

where

S2 ≡
1

2
Q(Q + T)−1Q. (33) defS

It is crucial to note that
S2 = ST

2 > 0, (34) sst

therefore (
OSRK2
26) can be symmetrized and put in a form that completely resembles the 1st order

scheme (
BE3
19):

S2(un+1 − un) + Aun = Gfn + Hfn+ 1
2 , (35) 2ndeq2old

or (
S2 −

A
2

)
(un+1 − un) +

A
2

(un+1 + un) = Gfn + Hfn+ 1
2 , (36) 2ndeq2

where
G ≡ 2S2Q−1TQ−1, H ≡ 2S2Q−1. (37) defg

Upon comparing (
BE3
19) with (

2ndeq1
32), and inspecting the left hand side of (

qmha11
20) and (

qmha1
24), it is

clear that the following estimates are crucial for the estimates of the 2nd order scheme (
2ndeq2
36):

lemma1 Lemma 1. If A = AT > 0, M = MT > 0 and sM ≥ A, then

(i)
1

∆t
I +

A
2
≤ S2, (38) SmhA

(ii)

S2 ≤
Q
2

=
1

∆t
I +

sM
2
, (39) ShtQ

where S2, Q are defined by (
defS
33), (

deftQ
29) and (

defT
30).
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Proof. Part (i): Denote by B = A +
2

∆t
I and λmax, µmax the maximal eigenvalue of

Bv = λQv and Bv = µS2v, (40) eig1

respectively. We will show that

A ≤ sM ⇐⇒ B ≤ Q =⇒ λmax ≤ 1 =⇒ µmax ≤ 2. (41) eig2

The statements in (
eig2
41) are obvious except the last implication. To verify it, we first note

that the pencils in (
eig1
40) are isospectral to

B
1
2Q−1B

1
2w = λw and B

1
2S−1

2 B
1
2w = µw, (42) eig3

respectively, where w = B 1
2v. Therefore

µmax = max
x∈Rp\{0}

2
xTB 1

2S−1
2 B 1

2x

xTx

= max
x∈Rp\{0}

2
xTB 1

2Q−1(2Q− B)Q−1B 1
2x

xTx
(since Q + T = 2Q− B)

= max
x∈Rp\{0}

2
xT
(
B 1

2Q−1B 1
2

)(
B− 1

2 (2Q− B)B− 1
2

)(
B 1

2Q−1B 1
2

)
x

xTx

= max
x∈Rp\{0}

2
xTB̂(2B̂−1 − 1)B̂x

xTx
, where B̂ ≡ B

1
2Q−1B

1
2 .

(43) eig4

From (
eig3
42) and the definition of B̂, we see that

µmax ≤ 2 max
j
λj

(
2

1

λj
− 1
)
λj = max

j

(
4λj − 2λ2

j

)
= max

j
2
(

1−
(
1− λj

)2
)
. (44) tmp7

Since λj ≤ λmax ≤ 1, it follows that µmax ≤ 2. This completes the proof of (
eig2
41), hence (

SmhA
38).

Part (ii): From (
defS
33),

S2 =
1

2
Q(Q + T)−1Q = Q(

4

∆t
I + 4sM− 2A)−1Q. (45) qs1

Since sM ≥ A, we see that

4

∆t
I + 4sM− 2A ≥ 4

∆t
I + 2sM = 2Q. (46) qs2

Therefore (
ShtQ
39) follows from (

qs1
45) and (

qs2
46).
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thm2 Theorem 2. Under the same assumptions in Lemma
lemma1
1, the stabilized predictor-corrector

scheme (
OSRK2
26) (or (

2ndeq2
36)) is unconditionally stable and admits the following estimates:

‖uN‖2
A ≤ ‖u0‖2

A + ∆t
N−1∑
n=0

(
‖fn‖2 + ‖fn+ 1

2‖2
)
, (47) Anormbound

and

‖uN‖2 ≤ ‖u0‖2
Ĩ + ∆t

N−1∑
n=0

(
‖fn‖2

A−1 + ‖fn+ 1
2‖2

A−1

)
, (48) l2bound

where

Ĩ =
∆t

2
Q = I +

∆t

2
sM. (49) tI

Proof. Proof of (
Anormbound
47): Take standard inner product with un+1 − un on both sides of (

2ndeq2
36),

we see that

‖un+1 − un‖2
S2−A

2

+
1

2
(‖un+1‖2

A − ‖un‖2
A) = 〈un+1 − un,Gfn + Hfn+ 1

2 〉. (50)

With (
SmhA
38) and the inequality

〈un+1 − un,Gfn + Hfn+ 1
2 〉 ≤ 1

∆t
‖un+1 − un‖2 +

∆t

4
‖Gfn + Hfn+ 1

2‖2, (51)

we see from (
SmhA
38) that

1

2
(‖un+1‖2

A − ‖un‖2
A) ≤ ∆t

4
‖Gfn + Hfn+ 1

2‖2 ≤ ∆t

2
‖Gfn‖2 +

∆t

2
‖Hfn+ 1

2‖2. (52) Anorm1

To estimate the right hand side of (
Anorm1
52), we note from (

defg
37) that

‖Gfn‖2 = ‖2S2Q−1TQ−1fn‖2, ‖Hfn+ 1
2‖2 = ‖2S2Q−1fn+ 1

2‖2. (53)

From (
ShtQ
39) and the following inequality

T = sM− A ≤ sM ≤ Q, (54) Tineq

we have
‖Gfn‖2 = ‖2S2Q−1TQ−1fn‖2 ≤ ‖TQ−1fn‖2 ≤ ‖fn‖2. (55) gnorm1

Similarly,

‖Hfn+ 1
2‖2 = ‖2S2Q−1fn+ 1

2‖2 ≤ ‖fn+ 1
2‖2. (56) gnorm2

From (
Anorm1
52), (

gnorm1
55), (

gnorm2
56) we obtain

‖un+1‖2
A ≤ ‖un‖2

A + ∆t
(
‖fn‖2 + ‖fn+ 1

2‖2
)
, (57) Anorm3

which completes the proof of (
Anormbound
47) after summing over n.
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The energy norm estimate (
Anormbound
47) alone is sufficient for unconditional stability of (

OSRK2
26). We

proceed with the L2 estimate (
l2bound
48) for sake of completeness.

Proof of (
l2bound
48):

Recall the derivation that leads to (
qmha1
24) and apply it to (

2ndeq2
36), we get the analogue of (

qmha1
24)

for (
2ndeq2
36):

‖un+1‖2
S2−A

2

− ‖un‖2
S2−A

2

≤ 1

2
‖Gfn + Hfn+ 1

2‖2
A−1 ≤ ‖Gfn‖2

A−1 + ‖Hfn+ 1
2‖2

A−1 . (58) smha1

From (
ShtQ
39), we see that that A− 1

2 (2S2)A− 1
2 ≤ A− 1

2QA− 1
2 . Therefore

‖Hfn+ 1
2‖2

A−1 =‖A−
1
2 2S2Q−1fn+ 1

2‖2 = ‖A−
1
2 2S2A−

1
2 (A−

1
2QA−

1
2 )−1A−

1
2fn+ 1

2‖2

≤‖A−
1
2fn+ 1

2‖2 = ‖fn+ 1
2‖2

A−1 .
(59) Sg2

Similarly, from (
ShtQ
39) and (

Tineq
54),

‖Gfn‖2
A−1 = ‖A−

1
2 2S2Q−1TQ−1fn‖2 ≤ ‖A−

1
2TQ−1fn‖2 ≤ ‖A−

1
2fn‖2 = ‖fn‖2

A−1 . (60) Sg1

After summing (
smha1
58) over n and applying the estimate (

Sg1
60), (

Sg2
59), we get

‖uN‖2
S2−A

2

≤ ‖u0‖2
S2−A

2

+
N−1∑
n=0

(
‖fn‖2

A−1 + ‖fn+ 1
2‖2

A−1

)
. (61) Sg3

From (
SmhA
38) and (

ShtQ
39) and (

Sg3
61), we have

1

∆t
‖uN‖2 ≤ 1

2

( 2

∆t
‖u0‖2 + s‖u0‖2

M
)

+
N−1∑
n=0

(
‖fn‖2

A−1 + ‖fn+ 1
2‖2

A−1

)
. (62) Sg4

Thus (
l2bound
48) follows from multiplying (

Sg4
62) by ∆t.

Remark 1: (Alternative estimates for convergence proof)
An alternative estimate to (

gnorm1
55) is given by

‖Gfn‖2 = ‖2S2Q−1TQ−1fn‖2 ≤ ‖TQ−1fn‖2 ≤ ‖sM(
2

∆t
Ĩ)−1fn‖2 ≤ ‖s

2
M(∆tfn)‖2. (63) gnorm11

where we have used the estimates (
SmhA
38), (

Tineq
54) and (

tI
49).

Similarly, in addition to (
Sg1
60), we also have

‖Gfn‖2
A−1 =‖A−

1
2 2S2Q−1TQ−1fn‖2 ≤ ‖A−

1
2TQ−1fn‖2

≤‖A−
1
2 sM(

2

∆t
Ĩ)−1fn‖2 ≤ ‖s

2
M(∆tfn)‖2

A−1 .
(64) Sg11

We will give a rigorous error estimate for (
OSRK2
26) in the next subsection. There the extra

∆t factor in (
gnorm11
63) and (

Sg11
64) is essential to compensate for first order local truncation error

resulting from the first step of (
OSRK2
26). See section

err_lin
2.3 for details.
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Remark 2: (Relaxing the assumption sM ≥ A)

The assumption sM ≥ A in Lemma
lemma1
1 and Theorem

thm2
2 can be relaxed to sM ≥ 1

2
A,

resulting in estimates slightly different from (
Anormbound
47) and (

l2bound
48). To see this, we denote by θmax

the maximal eigenvalue of
Av = θsMv. (65)

Our original assumption sM ≥ A corresponds to θmax ≤ 1, which eventually leads to (
eig2
41)

and hence (
SmhA
38). We now claim that

sM ≥ A
2
⇐⇒ θmax ≤ 2 =⇒ λmax < 2 =⇒ µmax ≤ 2. (

eig2
41’) eig2’

To see this, we note that the if and only if part in (
eig2’eig2
41’) is obvious, and the first implication

follows from

A ≤ 2sM =⇒ B = A +
2

∆t
I < 2(sM +

2

∆t
I) = 2Q, (66)

As to the last implication, it is not difficult to see the estimates (
eig3
42) and (

eig4
43) remain valid.

Therefore we conclude from (
tmp7
44) that

µmax ≤ max
0<λ<2

2
(

1−
(
1− λ

)2
)

= 2. (
tmp7
44’) tmp7’

It follows that (
SmhA
38) remains valid under the assumption sM ≥ 1

2
A.

As to the counter part of (
ShtQ
39), we note that sM ≥ 1

2
A leads to

4

∆t
I + 4sM− 2A ≥ 4

∆t
I. (

qs2
46’) qs2’

It follows from (
SmhA
38), (

tI
49), (

qs1
45) and (

qs2’qs2
46’) that

1

∆t
I +

A
2
≤ S2 ≤

∆t

4
Q2 =

1

2
ĨQ =

1

∆t
I + sM +

∆t

4
(sM)2. (

ShtQ
39’) ShtQ’

As a result, we have

‖Gfn‖2 =‖2S2Q−1TQ−1fn‖2 = ‖2S2Q−1
(
(sM− A

2
)− A

2

)
Q−1fn‖2

≤2‖2S2Q−1
(
sM− A

2

)
Q−1fn‖2 + 2‖2S2Q−1A

2
Q−1fn‖2

≤4‖2S2Q−1(sM)Q−1fn‖2 ≤ 4‖̃I(sMQ−1)fn‖2 ≤ 4‖̃Ifn‖2,

(
gnorm1
55’) gnorm1’

and
‖Hfn+ 1

2‖2 = ‖2S2Q−1fn+ 1
2‖2 ≤ ‖̃Ifn+ 1

2‖2. (
gnorm2
56’) gnorm2’

11



Accordingly, the estimates (
Anormbound
47) now becomes

‖uN‖2
A ≤ ‖u0‖2

A + ∆t
N−1∑
n=0

(
4‖̃Ifn‖2 + ‖̃Ifn+ 1

2‖2
)
. (

Anormbound
47’) Anormbound’

Similarly, the revised L2 estimate reads:

‖uN‖2 ≤ ‖̃Iu0‖2 + ∆t
N−1∑
n=0

(
4‖̃Ifn‖2

A−1 + ‖̃Ifn+ 1
2‖2

A−1

)
(
l2bound
48’) l2bound’

under the relaxed assumption sM ≥ 1
2
A.

We note that (
Anormbound
47) and (

l2bound
48) are direct analogue of the energy estimates for the PDE∫

Ω

uL(u) dx
∣∣∣T
0
≤ 1

2

∫ T

0

∫
Ω

f 2dxdt, (67) evo31

and ∫
Ω

u2 dx
∣∣∣T
0
≤ 1

2

∫ T

0

∫
Ω

fL−1(f)dxdt. (68) evo32

On the other hand, the right hand sides of (
Anormbound’Anormbound
47’) and (

l2bound’l2bound
48’) involve higher order spatial

derivatives and make subsequent estimates more complicated. For simplicity of presentation,
we shall only focus on the case sM ≥ A in the rest of this paper. Nevertheless, numerical
evidence confirms that sM ≥ 1

2
A is sufficient (and necessary) for unconditional stability and

2nd order in time convergence for both linear and the class of semilinear problems considered
in section

semil
3.

2.3 Error Estimate for Linear Problems
err_lin

Let ue be the exact solution of the linear parabolic equation

∂tue + L(ue) = f in Ω, 0 ≤ t ≤ T,

ue(x, 0) = u0(x), ue ≡ 0 on ∂Ω.
(69) evo4

We first derive the error equation satisfied by e = u− ue. Firstly, we have

∂tue + Lh(ue) = f + τ(x), (70) evo5

where τ(x) = Lh(ue) − L(ue) is the spatial local truncation error. Rewriting (
evo5
70) in matrix

vector notation, we get
∂tue + Aue = f + τ (x), (71) evo6

and 
u
n+ 1

2
e − une

∆t
2

+ sMun+ 1
2

e = (sM− A)une + fn + τ n(x) + τ n(t)

un+1
e − une

∆t
+ sM

un+1
e + une

2
= (sM− A)u

n+ 1
2

e + fn+ 1
2 + τ

n+ 1
2

(x) + τ
n+ 1

2

(t) ,

(72) eest1

12



where the temporal local truncation errors are given by

τ n(t) =
u
n+ 1

2
e − une

∆t
2

− ∂tune + sM(u
n+ 1

2
e − une ), (73)

and

τ
n+ 1

2

(t) =
un+1
e − une

∆t
− ∂tu

n+ 1
2

e +
1

2
sM(un+1

e − 2u
n+ 1

2
e + une ). (74)

After applying the Taylor formula

f(b) =f(a) + f ′(a)(b− a) +

∫ b

a

f ′′(a)(b− t) dt

=f(a) + f ′(a)(b− a) +
1

2
f ′′(a)(b− a)2 +

1

2

∫ b

a

f ′′′(a)(b− t)2 dt,

(75)

on the intervals (a, b) = (tn+ 1
2 , tn) and tn+ 1

2 , tn+1), it is easy to see that

τ n(t) =
2

∆t

∫ tn+1
2

tn
∂2
tue(t)(t

n+ 1
2 − t) dt+ sM

∫ tn+1
2

tn
∂tue(t) dt, (76) ttn

τ
n+ 1

2

(t) =
1

2∆t

∫ tn+1

tn
∂3
tue(t)

(∆t

2
− |t− tn+ 1

2 |
)2

dt+
1

2
sM
∫ tn+1

tn
∂2
tue(t)

(∆t

2
− |t− tn+ 1

2 |
)
dt, (77) ttnh

and conclude that τ n(t) = O(∆t), τ
n+ 1

2

(t) = O(∆t2).

From (
OSRK2
26) and (

eest1
72), we can derive the equation for the error e = u− ue:

en+ 1
2 − en
∆t
2

+ sMen+ 1
2 = (sM− A)en − τ n(x) − τ n(t)

en+1 − en

∆t
+ sM

en+1 + en

2
= (sM− A)en+ 1

2 − τ n+ 1
2

(x) − τ
n+ 1

2

(t) .

(78) eest2

Since (
eest2
78) is structurally identical to (

OSRK2
26), we can directly apply the estimates (

Anormbound
47) together

with (
defg
37) to get

‖eN‖2
A ≤‖e0‖2

A + ∆t
N−1∑
n=0

(∥∥G(τ n(x) + τ n(t))
∥∥2

+
∥∥H(τ

n+ 1
2

(x) + τ
n+ 1

2

(t) )
∥∥2)

≤‖e0‖2
A + ∆t

N−1∑
n=0

2
(∥∥s

2
M(∆tτ n(t))

∥∥2
+ ‖τ n(x)‖2 + ‖τ n+ 1

2

(x) ‖
2 + ‖τ n+ 1

2

(t) ‖
2
)
.

(79) eA

Here we have used (
gnorm11
63), (

gnorm1
55) and (

gnorm2
56) in the last inequality. Similarly, from (

l2bound
48), (

Sg11
64), (

Sg1
60)

and (
Sg2
59), we also have

‖eN‖2 ≤‖e0‖2
Ĩ + ∆t

N−1∑
n=0

2
(∥∥s

2
M(∆tτ n(t))

∥∥2

A−1 + ‖τ n(x)‖2
A−1 + ‖τ n+ 1

2

(x) ‖
2
A−1 + ‖τ n+ 1

2

(t) ‖
2
A−1

)
.

(80) el2

13



In (
eA
79) and (

el2
80), The first order local truncation error τ n(t) is compensated by the extra ∆t

factor. More precisely, from (
ttn
76), we have

∥∥s
2
M(∆tτ n(t))

∥∥2
=
∥∥∥sM ∫ tn+1

2

tn
∂2
tue(t)(t

n+ 1
2 − t) dt+

∆t

2
(sM)2

∫ tn+1
2

tn
∂tue(t) dt

∥∥∥2

≤2
∥∥∥∫ tn+1

2

tn
sM∂2

tue(t)(t
n+ 1

2 − t) dt
∥∥∥2

+
(∆t)2

2

∥∥∥∫ tn+1
2

tn
(sM)2∂tue(t) dt

∥∥∥2

≤(∆t)3

12

∫ tn+1
2

tn
‖sM∂2

tue(t)‖2dt+
(∆t)3

4

∫ tn+1
2

tn
‖(sM)2∂tue(t)‖2dt.

(81) eA1

Similarly,

‖τ n+ 1
2

(t) ‖
2 ≤(∆t)3

320

∫ tn+1

tn
‖∂3

tue(t)‖2dt+
(∆t)3

48

∫ tn+1

tn
‖sM∂2

tue(t)‖2dt. (82) eA2

The estimates for ‖τ n(t)‖2
A−1 and ‖τ n+ 1

2

(t) ‖2
A−1 are similar. We can now summarize these esti-

mates as the following

thm3 Theorem 3. Let ue be the exact solution of the PDE (
evo4
69). Denote by ue the grid values

of ue and un the numerical solution of (
OSRK2
26) at time tn = n∆t, 0 ≤ n ≤ N , ∆t = T

N
. If

A = AT > 0, M = MT > 0 and sM ≥ A, then

‖uN − ue(T )‖2
A ≤ ‖u0 − ue(0)‖2

A + ∆t
N−1∑
n=0

2
(
‖τ n(x)‖2 + ‖τ n+ 1

2

(x) ‖
2
)

+ C(∆t)4

∫ T

0

(
‖∂3

tue(t)‖2 + ‖M∂2
tue(t)‖2 + ‖M2∂tue(t)‖2

)
dt

(83) eA3

and

‖uN − ue(T )‖2 ≤ ‖u0 − ue(0)‖2
Ĩ + ∆t

N−1∑
n=0

2
(
‖τ n(x)‖2

A−1 + ‖τ n+ 1
2

(x) ‖
2
A−1

)
+ C(∆t)4

∫ T

0

(
‖∂3

tue(t)‖2
A−1 + ‖M∂2

tue(t)‖2
A−1 + ‖M2∂tue(t)‖2

A−1

)
dt

(84) el23

for some constant C.

The estimates in Theorem
thm3
3 are generic. They can be characterized more specifically in

terms of ue when A and M are explicitly given.
Example: Let A be the matrix representation of Lh = −∇h · (κ(x)∇h), the second order
central difference discretization of the elliptic operator L = −∇(κ(x)∇) with κ(x) smooth
and positive, and zero Dirichlet boundary condition. We take L0,h = −∆h to be the discrete
Laplacian and denote by M its matrix representation. It follows that

|τ(x)(x, t)| ≤ C1(∆x)2‖ue‖C4
x(Ω)(t), (85)

14



|L0,h∂
j
tue(x, t)| ≤ C1‖∂jtue‖C2

x(Ω)(t). (86)

Denote by en = un − ue(tn) and rewrite (
eA3
83) as

‖eN‖2
A ≤‖e0‖2

A + C2|Ω|(∆x)4∆t
N−1∑
n=0

(
‖ue‖2

C4
x(Ω)(t

n) + ‖ue‖2
C4

x(Ω)(t
n+ 1

2 )
)

+C2|Ω|(∆t)4

∫ T

0

(
‖ue‖2

C3
t C

0
x(Ω) + ‖ue‖2

C2
t C

2
x(Ω) + ‖ue‖2

C1
t C

4
x(Ω)

)
(t) dt.

(87) el24

The estimate (
el24
87) together with the Poincaré inequality

‖e‖2 ≤ CP‖e‖2
A, (CP ≡

(
λmin(A)

)−1
= O(1)) (88) CP

results in optimal second order convergence rate in discrete H1 norm:

‖eN‖2
H1

h
= ‖eN‖2 + ‖eN‖2

M ≤ ‖e0‖2
H1

h
+ C

(
(∆x)2 + (∆t)2

)2
,

where the constant C depends on κmin > 0 and the norms and constants in (
el24
87) and (

CP
88).

3 Application to Semilinear Problems
semil

We now generalize the estimates in sections
aos2
2.2 and

err_lin
2.3 to the semilinear equation

vt + L(v) = g(v, `(v), x, t), (89) nevo1

with Dirichlet boundary condition, where L(·) is linear self-adjoint and `(·) is a lower order
differential operator satisfying

〈 `(v), `(v) 〉 ≤ C`〈 v,L(v) 〉 (90) lnorm

together with the discrete analogue

‖`h(v)‖2 ≤ C`‖v‖2
A (91) lnorm1

for some fixed constant C`. We further assume that g is Lifchitz continuous in the first two
arguments:

|g(v1, p1, x, t)− g(v2, p2, x, t)|2 ≤ L2
(
(v1 − v2)2 + ‖p1 − p2‖2

)
, (92) Lif1

where L is a fixed constant.
A typical example satisfying these assumption is given by

L(v) = −∇(κ(x)∇v) + c(x)v, g(v, `(v), x, t) = −w(x, t) · ∇v − h(v) + g0(x, t), (93)

with |h′| ≤ L and κ > 0, c > 0, w and g0 sufficiently smooth.
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Assuming sM ≥ A, the 2nd order stabilized predictor-corrector scheme for semilinear
equation (

nevo1
89) is similar to the linear one:

vn+ 1
2 − vn
∆t
2

+ sMvn+ 1
2 = (sM− A)vn + gn

vn+1 − vn

∆t
+ sM

vn+1 + vn

2
= (sM− A)vn+ 1

2 + gn+ 1
2 ,

(94) Nl2

where
gn ≡ g(vn, `h(v

n), tn), gn+ 1
2 ≡ g(vn+ 1

2 , `h(v
n+ 1

2 ), tn+ 1
2 ). (95) Nl3

Following the derivation in Theorem
thm2
2, we get the same estimate as (

Anorm1
52):

1

∆t

(
‖vn+1‖2

A − ‖vn‖2
A
)
≤ ‖Ggn‖2 + ‖Hgn+ 1

2‖2, (96) Anorm4

where G and H are defined in (
defg
37). To estimate the right hand side of (

Anorm4
96), we decompose

gn as
gn = δ1

0g
n + δ2

0g
n + gn0, (97) df1

where

δ1
0g

n ≡ g(vn, `h(v
n), tn)− g(0, `h(v

n), tn),

δ2
0g

n ≡ g(0, `h(v
n), tn)− g(0,0, tn),

gn0 ≡ g(0,0, tn).

(98) df2

From (
Lif1
92) and (

lnorm1
91), we can estimate the first term in right hand side of (

Anorm4
96):

‖Ggn‖2 ≤ ‖gn‖2 ≤ 3
(
‖δ1

0g
n‖2 + ‖δ2

0g
n‖2 + ‖gn0‖2

)
≤ 3
(
L2‖vn‖2 + L2‖`h(vn)‖2 + ‖gn0‖2

)
≤ 3
(
L2(CP + C`)‖vn‖2

A + ‖gn0‖2
)
.

(99) Lif2n

Here we have used the discrete Poincaré inequality (
CP
88) in the last inequality. Similarly,

‖Hgn+ 1
2‖2 ≤ ‖gn+ 1

2‖2 ≤ 3
(
L2(CP + C`)‖vn+ 1

2‖2
A + ‖gn+ 1

2
0 ‖2

)
. (100) Lif2nh

Upon comparing the first equation of (
Nl2
94) with the first order scheme (

be2
14), we immediately

obtain the following estimate from (
be_a1
23):

‖vn+ 1
2‖2

A ≤ ‖vn‖2
A +

∆t

4
‖gn‖2. (101) Anorm5

From (
Anorm4
96), (

Lif2n
99), (

Lif2nh
100) and (

Anorm5
101) that

1

∆t

(
‖vn+1‖2

A − ‖vn‖2
A
)
≤ 6L2(CP + C`)

(
‖vn‖2

A + ‖gn0‖2 + ‖gn+ 1
2

0 ‖2
)
. (102) Anorm6

After applying the discrete Gronwall’s inequality to (
Anorm6
102), we obtain the following
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thm4 Theorem 4. Let vn be the numerical solution of the stabilized predictor-corrector scheme
(
Nl2
94) at time tn = n∆t, 0 ≤ n ≤ N , ∆t = T

N
. If A = AT > 0 satisfies the discrete Poincaré

inequality (
CP
88), M = MT > 0 and sM ≥ A, then under the conditions (

Lif1
92) and (

lnorm1
91), the

scheme (
Nl2
94) is unconditionally stable and satisfies

‖vN‖2
A ≤ eCT

(
‖v0‖2

A + C∆t
N−1∑
n=0

(
‖gn0‖2 + ‖gn+ 1

2
0 ‖2

))
(103) Anorm7

for some constant C.

An a priori bound for ‖vN‖2 can be obtained similarly from (
smha1
58) following the same

procedure as above, or by applying the discrete Poincaré inequality (
CP
88) to (

Anorm7
103) directly.

We now proceed to give an error estimate for (
Nl2
94). Let ve be the solution of the semilinear

equation (
nevo1
89),

∂tve + L(ve) = g(ve, `(ve), x, t). (104) nevo2

After spatial discretization, we have

∂tve + Lh(ve) = g(ve, `h(ve), x, t) + τ(x), (105) nevo3

where
τ(x) = Lh(ve)− L(ve)−

(
g(ve, `h(ve), x, t)− g(ve, `(ve), x, t)

)
(106) nevo31

is the spatial local truncation error. Next, we recast (
nevo3
105) in matrix vector notation:

∂tve + Ave = ge + τ (x), (107) nevo4

which leads to
v
n+ 1

2
e − vne

∆t
2

+ sMvn+ 1
2

e = (sM− A)vne + gne + τ n(x) + τ n(t)

vn+1
e − vne

∆t
+ sM

vn+1
e + vne

2
= (sM− A)v

n+ 1
2

e + g
n+ 1

2
e + τ

n+ 1
2

(x) + τ
n+ 1

2

(t) ,

(108) nleest1

where
gne ≡ g(vne , `h(v

n
e ), tn), g

n+ 1
2

e ≡ g(v
n+ 1

2
e , `h(v

n+ 1
2

e ), tn+ 1
2 ), (109)

and the temporal local truncation errors are given by

τ n(t) =
v
n+ 1

2
e − vne

∆t
2

− ∂tvne + sM(v
n+ 1

2
e − vne ), (110)

and

τ
n+ 1

2

(t) =
vn+1
e − vne

∆t
− ∂tv

n+ 1
2

e +
1

2
sM(vn+1

e − 2v
n+ 1

2
e + vne ). (111)
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Subtract (
Nl2
94) from (

nleest1
108), we obtain the equation for the error e = v − ve:

en+ 1
2 − en
∆t
2

+ sMen+ 1
2 = (sM− A)en + δgn

en+1 − en

∆t
+ sM

en+1 + en

2
= (sM− A)en+ 1

2 + δgn+ 1
2 ,

(112) nleest2

where

δgn =
(
gn − gne

)
− τ n(x) − τ n(t) = δ1

eg
n + δ2

eg
n − τ n(x) − τ n(t),

δgn+ 1
2 =
(
gn+ 1

2 − gn+ 1
2

e

)
− τ n+ 1

2

(x) − τ
n+ 1

2

(t) = δ1
eg

n+ 1
2 + δ2

eg
n+ 1

2 − τ n+ 1
2

(x) − τ
n+ 1

2

(t) ,
(113) tmp0

with

δ1
eg

n ≡g(vn, `h(v
n), tn)− g(ve(t

n), `h(v
n), tn),

δ2
eg

n ≡g(ve(t
n), `h(v

n), tn)− g(ve(t
n), `h(ve(t

n)), tn),
(114)

and similarly for δ1
eg

n+ 1
2 and δ2

eg
n+ 1

2 .

thm5 Theorem 5. Let ve be the exact solution of the semilinear equation (
nevo1
89), ve the grid values

of ve and vn the numerical solution of (
Nl2
94), (

Nl3
95) at time tn = n∆t, 0 ≤ n ≤ N , ∆t = T

N
.

Then under the same assumptions in Theorem
thm4
4, the error v − ve satisfies

‖vN − ve(T )‖2
A ≤eCT

(
‖v0 − ve(0)‖2

A + C
(

∆t
N−1∑
n=0

(
‖τ n(x)‖2 + ‖τ n+ 1

2

(x) ‖
2
)

+ (∆t)4

∫ T

0

(
‖∂3

t ve(t)‖2 + ‖M∂2
t ve(t)‖2 + ‖M2∂tve(t)‖2

)
dt
)) (115) nleest

for some constant C.

Proof: We first derive the error equation. In view of the similarity between (
Nl2
94) and (

nleest2
112),

we see from (
Anorm4
96) that

1

∆t

(
‖en+1‖2

A − ‖en‖2
A
)
≤ ‖Gδgn‖2 + ‖Hδgn+ 1

2‖2. (116) nleest21

We now proceed with the estimates on the right hand side of (
nleest21
116). From (

Lif2n
99), (

Lif2nh
100), (

Lif1
92),

(
CP
88) and (

lnorm1
91), we have

‖Gδgn‖2 ≤ 4
(
‖Gδ1

eg
n‖2 + ‖Gδ2

eg
n‖2 + ‖Gτ n(x)‖2 + ‖Gτ n(t)‖2

)
≤ 4
(
‖δ1

eg
n‖2 + ‖δ2

eg
n‖2 + ‖τ n(x)‖2 + ‖s

2
M(∆tτ n(t))‖2

)
≤ 4
(
L2(CP + C`)‖en‖2

A + ‖τ n(x)‖2 + ‖s
2
M(∆tτ n(t))‖2

)
,

(117) nleest2n
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‖Hδgn+ 1
2‖2 ≤ ‖δgn+ 1

2‖2 ≤ 4
(
L2(CP + C`)‖en+ 1

2‖2
A + ‖τ n+ 1

2

(x) ‖
2 + ‖τ n+ 1

2

(t) ‖
2
)
. (118) nleest2nh

It remains to estimate ‖en+ 1
2‖2

A in terms of ‖en‖2
A. To this end, we rewrite the first equation

of (
Nl2
94) as (

I +
∆t

2
sM
)
en+ 1

2 =
(
I +

∆t

2
(sM− A)

)
en +

∆t

2
δgn, (119) tmp1

or

Ĩ en+ 1
2 =

(̃
I− ∆t

2
A
)
en +

∆t

2
δgn, (120) tmp2

where Ĩ = I +
∆t

2
sM. It follows from (

tmp2
120) that

‖en+ 1
2‖2

A ≤2
∥∥̃I−1

(̃
I− ∆t

2
A
)
en
∥∥2

A + 2
∥∥∆t

2
Ĩ−1δgn

∥∥2

A ≡ (I) + (II). (121) nleest3

Since sM ≥ A by assumption, we have

Ĩ−1 ≤
(̃
I− ∆t

2
A
)−1 ≤ I, Ĩ−1 ≤

(∆t

2
A
)−1

(
=⇒ ∆t

2
A

1
2 Ĩ−1 ≤ A−

1
2

)
. (122) tmp3

From (
tmp3
122), (

tmp0
113), (

Lif1
92) and (

lnorm1
91),

(I) = 2
∥∥A 1

2 Ĩ−1
(̃
I− ∆t

2
A
)
en
∥∥2 ≤ 2‖A

1
2en‖2 = 2‖en‖2

A. (123) nleest4

Note that τ n(t) is only O(∆t) and needs to be treated separately:

(II) ≤ 4
∥∥∆t

2
Ĩ−1
(
δ1
eg

n + δ2
eg

n − τ n(x)

)∥∥2

A + 4
∥∥∆t

2
Ĩ−1τ n(t)

∥∥2

A ≡ (II1) + (II2), (124) nleest5

(II1) =4
∥∥∆t

2
A

1
2 Ĩ−1

(
δ1
eg

n + δ2
eg

n − τ n(x)

)∥∥2

A

≤4
∥∥A− 1

2

(
δ1
eg

n + δ2
eg

n − τ n(x)

)∥∥2 ≤ 4CP

∥∥δ1
eg

n + δ2
eg

n − τ n(x)

∥∥2

≤12CP

(
CPL

2‖en‖2
A + C`L

2‖en‖2
A + ‖τ n(x)‖2

)
,

(125) nleest6

(II2) = ‖A
1
2 Ĩ−1(∆tτ n(t))‖2 ≤

∥∥A 1
2 (∆tτ n(t))

∥∥2 ≤ ‖C
1
2
PsM(∆tτ n(t))‖2. (126) nleest7

We can further estimate the τ (t) terms as (see the derivation of (
eA1
81) and (

eA2
82))

‖M(∆tτ n(t))‖2 ≤ C(∆t)3

∫ tn+1
2

tn

(
‖M∂2

t ve(t)‖2 + ‖M2∂tve(t)‖2
)
dt, (127) eA1n

‖τ n+ 1
2

(t) ‖
2 ≤ C(∆t)3

∫ tn+1

tn

(
‖∂3

t ve(t)‖2 + ‖M∂2
t ve(t)‖2

)
dt. (128) eA2n
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From (
nleest21
116), (

nleest2n
117), (

nleest2nh
118), (

nleest3
121) and (

nleest4
123)- (

eA2n
128), we have

1

∆t

(
‖en+1‖2

A − ‖en‖2
A
)
≤ CG

(
‖en‖2

A + ‖τ n(x)‖2 + ‖τ n+ 1
2

(x) ‖
2

+ (∆t)3

∫ tn+1

tn

(
‖∂3

t ve(t)‖2 + ‖M∂2
t ve(t)‖2 + ‖M2∂tve(t)‖2

)
dt
)
.

(129) nleest8

Therefore (
nleest
115) follows from Gronwall’s inequality.

4 Numerical Results
num

In this section, we conduct various numerical experiments to verify the stability and error
estimates.

Example 1: In the first example, we consider the linear diffusion equation

ut = (κ(x)ux)x + f, x ∈ (−1, 1), t ∈ [0, T ], (130)

with degenerate diffusion coefficient κ(x) = (1 − x2). For this test problem, we take the
exact solution to be

ue(x, t) = esin(t) cos
(πx

2

)
(131)

and use ue to generate the source term f , the initial value u(x, 0) and the boundary values
u(±1, t). Here A is the matrix representation of Lh:

Lh(u)i = −Dx

(
κDxu

)
i

= − 1

∆x

(
κi+ 1

2

(ui+1 − ui
∆x

)
− κi− 1

2

(ui − ui−1

∆x

))
. (132)

We can choose the stabilizing term to be sM, where s > 0 is the stabilizing constant and M
is the matrix representation of the standard discrete Laplician Lh,0:

L0,h(u)i = −D2
xui = −ui+1 − 2ui + ui−1

(∆x)2
. (133)

From Remark 2 in Section
aos2
2.2, sM ≥ 1

2
A is sufficient for stability of (

OSRK2
26) applied to linear

problems. Since κ(x) ≤ 1, we have M ≥ A. Therefore s ≥ 0.5 will do. In Table
linear_example
4, we present

the supnorm errors and orders of convergence of the stabilized predictor-corrector scheme
(SPC) for both s = 1 and s = 0.5 at time T = 1. In addition, we also include the result of
Crank-Nicolson scheme (CN) for comparison.

As we can see from Table
linear_example
4, the performances of CN and SPC are comparable, exhibiting

near or full 2nd order accuracy. Also note that in this example, smaller (but large enough)
stabilizing term (s = 0.5) results in better performance. This is consistent with similar
observations reported in the literature.

Example 2:
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linear_example

Table 1: Errors and orders of convergence for Example 1 at T = 1 using Crank-Nicolson
method (CN), Stabilized Predictor-Corrector method (

OSRK2
26) (SPC) with s = 1 and s = 0.5.

∆t(= ∆x) 1/64 1/128 1/256 1/512
CN L∞ error 6.717e-4 1.659e-4 4.111e-5 1.020e-5

order – 2.02 2.01 2.01

SPC L∞ error 6.884e-4 2.038e-4 5.764e-5 1.580e-6
s = 1 order – 1.76 1.82 1.87

SPC L∞ error 5.435e-4 1.276e-4 3.027e-5 7.249e-6
s = 0.5 order – 2.09 2.08 2.06

In the second example, we consider the following 1D semilinear equation:

vt + c1w(x)vx = c2(κ(x)vx)x − c3h(v) + g0(x, t), x ∈ (−1, 1), t ∈ [0, T ] (134) gAC

with various parameters c1, c2 and c3. From the proof of Theorem
thm4
4, we know the constant

C in (
Anorm7
103) depends mostly on L and C`, while

L = O(max c3, c1) and C` = O(c2
1

c2|)
(135)

from (
lnorm1
91) and (

Lif1
92). In the following tests, we choose the time scale with max(

c21
c2
, c1, c3) =

O(1) in order to resolve the time evolution properly.
Example 2a: w(x) = sin(x), κ(x) = 1, h(v) = v3 − v.
Example 2b: w(x) = sin(πx), κ(x) = 1− x2, h(v) = sinh(v).
Although the nonlinear part h(v) = (v3−v) does not satisfy the Lifchitz assumption (

Lif1
92),

it is known that the generalized Allen-Cahn equation (without the source term g0) satisfies
the maximum principle:

|v(x, 0)| ≤ 1 =⇒ |v(x, t)| ≤ 1 for any t > 0. (136)

Therefore the assumption (
Lif1
92) is practically satisfied with the effective Lifchitz constant

L = max
|v|≤1
|h′(v)| = 2. (137)

This is equivalent to replacing h(v) by

h̃(v) =


2(v − 1), v > 1
(v3 − v), v ∈ [−1, 1]
2(v + 1), v < −1

(138)

in the scheme without affecting the solution.
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For this test problem, we take the exact solution to be

ve(x, t) = sin(t) · (1− x2) (139)

and use it to generate the initial value, boundary value and source term g0(x, t). Since the
leading order linear part ε2∂2

x has constant coefficient, our analysis shows that we can take

A = matrix representation of − ε2D2
x. (140)

That is, A need not include the transport term vx. As a result, we can simply take M = A.
In view of Remark 2, we test it with s = 0.5001 using the Stabilized Predictor-Corrector
scheme (

Nl2
94), (

Nl3
95) for semilinear equations. The result of the convergence test with ∆x = ∆t,

T = 1 and various ε2 is listed in Table
eg_nl1
2.

Table 2: Results of Example 2 at T = 1 using Stabilized Predictor-Corrector scheme (
Nl2
94),

(
Nl3
95) with M = A, s = 0.5001 and various ε.

eg_nl1

∆t(= ∆x) 1/32 1/64 1/128 1/256 1/512 1/1024
ε2 = 1 L∞ error 3.622e-4 8.931e-5 2.216e-5 5.517e-6 1.376e-6 3.437e-7

order – 2.02 2.01 2.01 2.00 2.00

ε2 = 0.1 L∞ error 3.432e-4 8.619e-5 2.157e-5 5.393e-6 1.349e-6 3.372e-7
order – 1.99 2.00 2.00 2.00 2.00

ε2 = 0.01 L∞ error 8.642e-4 1.840e-4 3.779e-5 9.417e-6 2.356e-6 5.893e-7
order – 2.23 2.28 2.00 2.00 2.00

5 Conclusion and discussion

In this paper, we give a rigorous stability and convergence proof of the Stabilized Predictor-
Corrector method applied to linear diffusion equations in Section

main
2 and a class of semilinear

diffusion equations described in Section (
semil
3). For simplicity of representation, these results are

proved under the assumption sM ≥ A where sM is the artificially splitted stabilizing term
and A is the matrix representation of the leading order linear part of the diffusion operator.
The main advantage of the stabilization is the freedom to choose the splitting operator sM
so that the resulting linear system is easier to solve, for example, using an FFT package on
simple domains. In addition to the main Theorems, our analysis the linear problems shows
that sM ≥ 1

2
A is sufficient.

Limitations of our approach include:

1. The analysis relies on the assumption A = AT > 0, which is not satisfied when the
underlying boundary condition is Neumann or periodic.
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2. The class of semilinear diffusion equations considered in Section
semil
3 does not include some

well known equations such as the isotropic Cahn-Hillard equations or more complicated
gradient flows.

3. The discrete energy estimate is based on the new symmetrized formulation (
2ndeq2old
35). It

is not clear whether similar formulation exists for other 2nd order or higher order
stabilized schemes of predictor-corrector type.

These problems are currently under consideration and will be reported elsewhere, if success-
ful.
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