CHAPTER 9

CONVERGENCEIN \mathbf{R}^n

9.1 LIMITS OF SEQUENCES

DEFINITION. Let $\{\mathbf{x}_n\}$ be a sequence points in \mathbb{R}^n .

(1) $\{\mathbf{x}_n\}$ is said to converge to some point $\mathbf{a} \in \mathbf{R}^n$ (called the limit of \mathbf{x}_n) if and only if for every $\epsilon > 0$ there is $N \in \mathbf{N}$ such that

 $k \ge N$ implies $\|\mathbf{x}_{\mathbf{k}} - \mathbf{a}\| < \epsilon$.

- (2) $\{\mathbf{x}_n\}$ is said to be bounded if and only if there is M > 0 such that $\|\mathbf{x}_n\| \leq M$ for all $n \in \mathbf{N}$.
- (3) $\{\mathbf{x}_n\}$ is said to be Cauchy if and only if for every $\epsilon > 0$ there is $N \in \mathbf{N}$ such that

 $m, k \ge N$ implies $\|\mathbf{x}_m - \mathbf{x}_k\| < \epsilon$.

Theorem. Let $\mathbf{a} = (a(1), \cdots, a(n))$ and

 $\mathbf{x}_k = (x_k(1), \cdots, x_k(n))$ belong to \mathbf{R}^n for $k \in \mathbf{N}$. Then $\mathbf{x}_k \to \mathbf{a}$ as $k \to \infty$, if and only if the component sequences $x_k(j) \to a(j)$ as $k \to \infty$, for all $j = 1, 2, \cdots, n$.

Theorem. For each $\mathbf{a} \in \mathbf{R}^n$ there is a sequence $\mathbf{x}_k \in \mathbf{Q}^n$ such that $\mathbf{x}_k \to \mathbf{a}$ as $k \to \infty$.

DEFINITION. A set *E* is said to be separable if and only if there is an at most countable subset $Z \subseteq E$ such that to each $\mathbf{a} \in E$ there is a sequence $\mathbf{x}_k \in Z$ such that $\mathbf{x}_k \to \mathbf{a}$ as $k \to \infty$.

Theorem. Let $n \in \mathbf{R}$.

- (1) A sequence in \mathbf{R}^n can have at most one limit.
- (2) If $\{\mathbf{x}_k\}$ is a sequence in \mathbf{R}^n that converges to \mathbf{a} and $\{\mathbf{x}_{k_j}\}_{j\in\mathbf{N}}$ is any subsequence of $\{\mathbf{x}_k\}$, then \mathbf{x}_{k_j} converges to \mathbf{a} as $j \to \infty$.
- (3) Every convergent sequence in \mathbf{R}^n is bounded, but not conversely.
- (4) Every convergent sequence in \mathbf{R}^n is Cauchy.
- (5) If $\{\mathbf{x}_k\}$ and $\{\mathbf{y}_k\}$ are convergent sequences in \mathbf{R}^n and $\alpha \in \mathbf{R}$, then

$$\lim_{k \to \infty} (\mathbf{x}_k + \mathbf{y}_k) = \lim_{k \to \infty} \mathbf{x}_k + \lim_{k \to \infty} \mathbf{y}_k,$$
$$\lim_{k \to \infty} (\alpha \mathbf{x}_k) = \alpha \lim_{k \to \infty} \mathbf{x}_k,$$

and

$$\lim_{k \to \infty} (\mathbf{x}_k \cdot \mathbf{y}_k) = (\lim_{k \to \infty} \mathbf{x}_k) \cdot (\lim_{k \to \infty} \mathbf{y}_k).$$

Moreover, when n = 3,

$$\lim_{k \to \infty} (\mathbf{x}_k \times \mathbf{y}_k) = (\lim_{k \to \infty} \mathbf{x}_k) \times (\lim_{k \to \infty} \mathbf{y}_k).$$

Corollary. $\lim_{k\to\infty} \|\mathbf{x}_k\| = \|\lim_{k\to\infty} \mathbf{x}_k\|.$

Theorem. [BOLZANO-WEIERSTRASS THEOREM]. Every bounded sequence in \mathbb{R}^n has a convergent subsequence.

Theorem. A sequence $\{\mathbf{x}_k\}$ in \mathbf{R}^n converges if and only if it is Cauchy.

Theorem. A sequence $\{\mathbf{x}_k\}$ in \mathbf{R}^n converges to **a** if and only if for every open set V that contains **a**, there is an $N \in \mathbf{N}$ such that $k \geq N$ implies $\mathbf{x}_k \in V$.

Theorem. Let $E \subseteq \mathbf{R}^n$. Then E is closed if and only if E contains all its limit points. i.e. if $\{\mathbf{x}_i\} \subset E$ and $\lim_{i\to\infty} \mathbf{x}_i = \mathbf{x}$ implies $\mathbf{x} \in E$.

DEFINITION. Let E be a subset of \mathbb{R}^n .

(1) An open covering of E is a collection of sets $\{V_a\}_{a \in A}$ such that each V_a is open and

$$E \subseteq \cup_{a \in A} V_a$$

(2) The set is said to be compact if and only if every open covering of E has a finite subcovering; i.e. if $\{V_a\}_{a\in A}$ is an open covering of E, then there is a finite subset A_0 of A such that $4E \subseteq \bigcup_{a\in A_0} V_a$.

Lemma. [Borel Covering lemma]. Let E be closed bounded subset of \mathbb{R}^n . If $r: E \to (0, \infty)$, then there exists finitely many points $\mathbf{y}_1, \cdots, \mathbf{y}_N \in E$ such that

$$E \subseteq \cup_{j=1}^N B_{r(\mathbf{y}_j)}(\mathbf{y}_j).$$

Theorem. [Heine-Borel Theorem]. Let E be a subset of \mathbb{R}^n . Then E is compact if and only if E is closed and bounded.

Remark. $(0,1) = \bigcup_{n=1}^{\infty} (\frac{1}{n}, 1 - \frac{1}{n}), [1,\infty) \subset \bigcup_{n=1}^{\infty} (1 - \frac{1}{n}, n).$

9.2 LIMITS OF FUNCTIONS $f : \mathbf{A} \subset \mathbf{R}^n \to \mathbf{R}^m$.

Example. (a) $f(x,y) = (\log(xy - y + 2x - 2), \sqrt{9 - x^2 - y^2})$ (b) $g(x,y) = (\sqrt{1 - x^2}, \log(x^2 - y^2), \sin x \cos y).$

DEFINITION. Let $m, n \in \mathbb{N}$ and $\mathbf{a} \in \mathbb{R}^n$, let V be an open set which contains a, and suppose that $f: V \setminus \{\mathbf{a}\} \to \mathbb{R}^m$. Then $f(\mathbf{x})$ is said to converge to \mathbf{L} as \mathbf{x} approaches a, if and only if for every $\epsilon > 0$ there is a $\delta > 0$ (which in general depends on ϵ, f, V and a) such that

$$0 < \|\mathbf{x} - \mathbf{a}\| < \delta \text{ implies } \|f(\mathbf{x}) - \mathbf{L}\| < \epsilon.$$

In this case we write

$$\mathbf{L} = \lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x})$$

and call L the limit of $f(\mathbf{x})$ as x approaches a.

Theorem. Let $m, n \in \mathbb{N}$ and $\mathbf{a} \in \mathbb{R}^n$, let V be an open set which contains \mathbf{a} , and suppose that $f, g: V \setminus {\mathbf{a}} \to \mathbb{R}^m$.

(1) If $f(\mathbf{x}) = g(\mathbf{x})$ for all $\mathbf{x} \in V \setminus \{\mathbf{a}\}$ and $f(\mathbf{x})$ has a limit as $\mathbf{x} \to \mathbf{a}$, then $g(\mathbf{x})$ also has a limit as $\mathbf{x} \to \mathbf{a}$ and

$$\lim_{\mathbf{x}\to\mathbf{a}}g(\mathbf{x})=\lim_{\mathbf{x}\to\mathbf{a}}f(\mathbf{x}).$$

- (2) $\mathbf{L} = \lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x})$ exists if and only if $f(\mathbf{x}_k) \to \mathbf{L}$ as $k \to \infty$ for every sequence $\mathbf{x}_k \in V \setminus \{\mathbf{a}\}$ which converges to \mathbf{a} as $k \to \infty$.
- (3) Suppose that $\alpha \in \mathbf{R}$. If $f(\mathbf{x})$ and $g(\mathbf{x})$ have limits as $\mathbf{x} \to \mathbf{a}$, then so do $(f + g)(\mathbf{x}), (\alpha f)(\mathbf{x}), f \cdot g(\mathbf{x})$ and $||f(\mathbf{x})||$. In fact

$$\begin{split} \lim_{\mathbf{x} \to \mathbf{a}} (f+g)(\mathbf{x}) &= \lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) + \lim_{\mathbf{x} \to \mathbf{a}} g(\mathbf{x}), \\ \lim_{\mathbf{x} \to \mathbf{a}} (\alpha f)(\mathbf{x}) &= \alpha (\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x})), \\ \lim_{\mathbf{x} \to \mathbf{a}} (f \cdot g)(\mathbf{x}) &= (\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x})) \cdot (\lim_{\mathbf{x} \to \mathbf{a}} g(\mathbf{x})), \end{split}$$

and

$$\|\lim_{\mathbf{x}\to\mathbf{a}}f(\mathbf{x})\| = \lim_{\mathbf{x}\to\mathbf{a}}\|f(\mathbf{x})\|.$$

Moreover when m = 3,

$$\lim_{\mathbf{x}\to\mathbf{a}}(f\times g)(\mathbf{x}) = (\lim_{\mathbf{x}\to\mathbf{a}}f(\mathbf{x}))\times(\lim_{\mathbf{x}\to\mathbf{a}}g(\mathbf{x})),$$

and when m = 1 and the limit of g is nonzero,

$$\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x})/g(\mathbf{x}) = (\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}))/(\lim_{\mathbf{x}\to\mathbf{a}} g(\mathbf{x})).$$

(4) Suppose that $f, g, h: V \setminus \{\mathbf{a}\} \to \mathbf{R}$ and $g(\mathbf{x}) \leq h(\mathbf{x}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in V \setminus \{\mathbf{a}\}$. If

$$\lim_{\mathbf{x}\to\mathbf{a}}f(\mathbf{x})=\mathbf{L}=\lim_{\mathbf{x}\to\mathbf{a}}g(\mathbf{x}),$$

then the limit of h as $\mathbf{x} \to \mathbf{a}$ also exists and

$$\lim_{\mathbf{x}\to\mathbf{a}}h(\mathbf{x})=\mathbf{L}$$

(5) Suppose that U is open in \mathbf{R}^m , that $\mathbf{L} \in U$, and $h: U \setminus \{\mathbf{L}\} \to \mathbf{R}^p$ for some $p \in \mathbf{N}$. If $\mathbf{L} = \lim_{\mathbf{x} \to \mathbf{a}} g(\mathbf{x})$ and $\mathbf{M} = \lim_{\mathbf{y} \to \mathbf{L}} h(\mathbf{y})$, then

$$\lim_{\mathbf{x}\to\mathbf{a}}h\circ g(\mathbf{x})=h(\mathbf{L}).$$

Theorem. Let $\mathbf{a} \in \mathbf{R}^n$, let V be an open ball that contains \mathbf{a} , let $f = (f_1, \dots, f_m)$: $V \setminus \{\mathbf{a}\} \to \mathbf{R}^m$, and let $\mathbf{L} = (L_1, \dots, L_m) \in \mathbf{R}^m$. Then

$$\mathbf{L} = \lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}),$$

if and only if

$$L_j = \lim_{\mathbf{x} \to \mathbf{a}} f_j(\mathbf{x})$$

exist for each $j = 1, \dots, m$).

Example. (a) Find $\lim_{(x,y)\to(0,0)} (3xy+1, e^y+2)$, (b) $\lim_{(x,y)\to(0,0)} = \frac{2+x-y}{1+2x^2+3y^2}$.

Example. $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2}$.

Example. $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2}$

Example. $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$.

Example. Find iterate limits of $\frac{x^2}{x^2+y^2}$ at (0,0).

Remark. Suppose that I, J are open intervals, that $a \in I$ and $b \in J$ and $f : I \times J \setminus \{(a,b)\} \to \mathbf{R}$. If $g(x) = \lim_{y\to b} f(x,y)$ exists for each $x \in I \setminus \{a\}$, and if $h(y) = \lim_{x\to a} f(x,y)$ exists for each $y \in J \setminus \{b\}$, and if $f(x,y) \to L$ as $(x,y) \to (a,b)$ in \mathbf{R}^2 . Then

$$L = \lim_{x \to a} \lim_{y \to b} f(x, y) = \lim_{y \to b} \lim_{x \to a} f(x, y).$$

9.3 CONTINUOUS FUNCTIONS

DEFINITION. Let *E* be a nonempty subset of \mathbf{R}^n and $f: E \to \mathbf{R}^m$.

(1) f is said to be continuous at $\mathbf{a} \in E$ if and only if for every $\epsilon > 0$ there is $\mathbf{a} \ \delta > 0$ (which in general depends on ϵ, f, \mathbf{a}) such that

$$\|\mathbf{x} - \mathbf{a}\| < \delta \text{ and } \mathbf{x} \in E \text{ imply } \|f(\mathbf{x}) - f(\mathbf{a})\| < \epsilon.$$

(2) f is said to be continuous on E (notation $:f : E \to \mathbb{R}^m$ is continuous) if and only if f is continuous at each $\mathbf{x} \in E$.

DEFINITION. Let *E* be a nonempty subset of \mathbb{R}^n and $f : E \to \mathbb{R}^m$. Then *f* is said to be uniformly continuous on *E* (notation $f : E \to \mathbb{R}^m$ is unformly continuous) if and only if for every $\epsilon > 0$ there is a $\delta > 0$ such that

$$\|\mathbf{x} - \mathbf{a}\| < \delta$$
 and $\mathbf{x}, \mathbf{a} \in E$ imply $\|f(\mathbf{x}) - f(\mathbf{a})\| < \epsilon$

Theorem. Let E be a nonempty compact subset of \mathbb{R}^n . If f is continuous on E, then f is uniformly continuous on E.

Theorem. Let $m, n \in \mathbb{N}$ and $f : \mathbb{R}^n \to \mathbb{R}^m$. Then the following three conditions are equivalent.

- (1) f is continuous on \mathbb{R}^n .
- (2) $f^{-1}(V)$ is open in \mathbb{R}^n for every open subset V of \mathbb{R}^m .
- (3) $f^{-1}(E)$ is closed in \mathbb{R}^n for every closed subset E of \mathbb{R}^m .

Theorem. Let $m, n \in \mathbf{N}$, let E be a nonempty open subset of \mathbf{R}^n and $f : E \to \mathbf{R}^m$. Then f is continuous on E if and only if $f^{-1}(V)$ is open in \mathbf{R}^n for every open subset V of \mathbf{R}^m .

Example. (a) $f(x) = \frac{1}{x^2+1}, E = (0, 1]$, (b) $f(x) = x^2, E = (1, 4)$.

Example. (a) $f(x) = x^2, V = (-1, 1)$, (b) $f(x) = 1/x, E = [1, \infty)$.

Theorem. Let $m, n \in \mathbf{N}$. If H is a compact subset in \mathbf{R}^n and $f : H \to \mathbf{R}^m$ is continuous on H, then f(H) is a compact subset of \mathbf{R}^m .

Theorem. Let $m, n \in \mathbf{N}$. If E is a connected subset in \mathbf{R}^n and $f : E \to \mathbf{R}^m$ is continuous on E, then f(E) is a connected subset of \mathbf{R}^m .

Remark. The graph of a continuous real function f on an interval [a, b] is compact and connected.

Theorem. [EXTREME VALUE THEOREM]. Suppose that H is a nonempty compact subset of \mathbb{R}^n and $f: H \to \mathbb{R}$ is continuous, then

 $M = \sup\{f(\mathbf{x}) : \mathbf{x} \in H\}$ and $m = \inf\{f(\mathbf{x}) : \mathbf{x} \in H\}$

are finite real numbers. Moreover there exist points $\mathbf{x}_M, \mathbf{x}_m \in H$ such that $M = f(\mathbf{x}_M), m = f(\mathbf{x}_m).$

Theorem. Let $m, n \in \mathbb{N}$. If H is a compact subset in \mathbb{R}^n and $f : H \to \mathbb{R}^m$ is 1-1 and continuous on H, then f^{-1} is continuous on f(H).

Remark. If $a_j \leq b_j$ for $j = i, \dots, n$, then

$$R = \{(x_1, \cdots, x_n) : a_j \le x_j \le b_j\}$$

is connected.

9.4 COMPACT SETS

Remark. All finite sets are compact.

Remark. A closed subset of a compact set is compact.

Theorem. [LINDERLÖF]. Let $n \in \mathbb{N}$ and E be a subset of \mathbb{R}^n . If $\{V_a\}_{a \in A}$ is a family of open subsets such that $E \subset \bigcup_{a \in A} V_a$, then there is an at most countable subset A_0 of A such that $E \subset \bigcup_{a \in A_0} V_a$.

9.5 APPLICATIONS

Theorem. [DINI]. Suppose that H is a compact subset in \mathbb{R}^n and $f_k : H \to \mathbb{R}$ is a sequence of pointwise monotone sequence of continuous functions. If $f_k \to f$ pointwise on H as $k \to \infty$ and f is continuous on H, then $f_k \to f$ uniformly on H. In particular if ϕ_k is a pointwise monotone sequence of continuous functions on [a, b] that converges pointwise to a continuous function, then

$$\lim_{k \to \infty} \int_a^b \phi_k(x) dx = \int_a^b \lim_{k \to \infty} \phi_k(x) dx.$$

DEFINITION.

- (1) A set $E \subset \mathbf{R}$ is said of measure zero if and only if for every $\epsilon > 0$ there is a countable collection of intervals $\{I_k\}_{k \in \mathbf{N}}$ that covers E such that $\sum_{k=1}^{\infty} |I_k| < \epsilon$.
- (2) A function $f : [a, b] \to \mathbb{R}$ is said to be almost everywhere continuous on [a, b] if and only if the set of points $x \in [a, b]$ where f is discontinuous is a set of measure zero.

Remark. Every at most countable set of real numbers is a sets of measure zero.

Remark. Let $\{E_k\}_{k \in \mathbb{N}}$ be a sequence of set of measure zero, then $\cup_k \in \mathbb{N}$ is a set of measure zero.

DEFINITION. Let $f : [a, b] \rightarrow \mathbb{R}$ be bounded.

(1) The oscillation of f on an interval J that intersects with [a, b] is defined to be

$$\Omega_f(J) = \sup_{x,y \in J \cap [a,b]} |f(x) - f(y)|.$$

(2) The oscillation of f at a point $t \in [a, b]$ is defined to be

$$\omega_f(t) = \lim_{h \to 0^+} \Omega_f((t-h, t+h))$$

when the limit exists.

Remark. If $f : [a,b] \to \mathbf{R}$ is bounded, then $\omega_f(t)$ exists for all $t \in [a,b]$ and is finite.

Remark. Let $f : [a,b] \to \mathbb{R}$ be bounded. If *E* represents the set of point of discontinuity of *f* on [a,b], then

$$E = \bigcup_{j=1}^{\infty} \{ t \in [a,b] : \omega_f(t) \ge \frac{1}{j} \}.$$

Lemma. Let $f : [a, b] \to \mathbf{R}$ be bounded. For each $\epsilon > 0$, the set $H = \{t \in [a, b] : \omega_f(t) \ge \epsilon\}$ is compact.

Lemma. Let I be a bounded closed interval and $f: I \to \mathbf{R}$ be bounded. If $\epsilon > 0$ and $\omega_f(t) < \epsilon$ for all $t \in I$, then there is a $\delta > 0$ such that $\Omega_f(J) < \epsilon$ for all closed intervals $J \subseteq I$ that satisfy $|J| < \delta$.

Theorem. [LEBESGUE]. Let $f : [a, b] \to \mathbf{R}$ be bounded. Then f is Riemann integrable on [a, b] if and only if f is almost everywhere continuous on [a, b]. In particular if f has at most countable many discontinuity points on [a, b], then f is integrable on [a, b].

Corollary. If $f : [a, b] \to [0, \infty)$ is Riemann integrable, then so is f^{α} for every $\alpha > 0$.

Theorem. [CLOSED GRAPH THEOREM]. Let I be a closed interval and $f: I \to \mathbf{R}$. Then f is continuous on I if and only if the graph of f is closed and connected in \mathbf{R}^2 .