
CHAPTER 9
CONVERGENCEIN Rn

9.1 LIMITS OF SEQUENCES

DEFINITION. Let fxng be a sequence points in Rn.

(1) fxng is said to converge to some point a 2 Rn (called the limit of xn) if
and only if for every ² > 0 there is N 2 N such that

k ¸ N implies kxk ¡ ak < ²:

(2) fxng is said to be bounded if and only if there is M > 0 such that
kxnk ·M for all n 2 N.

(3) fxng is said to be Cauchy if and only if for every ² > 0 there is N 2 N
such that

m;k ¸ N implies kxm ¡ xkk < ²:

Theorem. Let a = (a(1); ¢ ¢ ¢ ; a(n)) and
xk = (xk(1); ¢ ¢ ¢ ; xk(n)) belong to Rn for k 2 N. Then xk ! a as k ! 1, if and only if
the component sequences xk(j)! a(j) as k !1, for all j = 1; 2; ¢ ¢ ¢ ; n.

Theorem. For each a 2 Rn there is a sequence xk 2 Qn such that xk ! a as k !1:

DEFINITION. A set E is said to be separable if and only if there is an at most
countable subset Z µ E such that to each a 2 E there is a sequence xk 2 Z such
that xk ! a as k !1:

Theorem. Let n 2 R.

(1) A sequence in Rn can have at most one limit.
(2) If fxkg is a sequence in Rn that converges to a and fxkjgj2N is any subsequence

of fxkg, then xkj converges to a as j !1.
(3) Every convergent sequence in Rn is bounded ,but not conversely.
(4) Every convergent sequence in Rn is Cauchy.
(5) If fxkg and fykg are convergent sequences in Rn and ® 2 R, then

lim
k!1

(xk + yk) = lim
k!1

xk + lim
k!1

yk;

lim
k!1

(®xk) = ® lim
k!1

xk;

and
lim
k!1

)xk ¢ yk) = ( lim
k!1

xk) ¢ ( lim
k!1

yk):

Moreover, when n = 3,

lim
k!1

(xk £ yk) = ( lim
k!1

xk)£ ( lim
k!1

yk):
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Corollary. limk!1 kxkk = k limk!1 xkk:

Theorem. [BOLZANO-WEIERSTRASS THEOREM]. Every bounded sequence
in Rn has a convergent subsequence.

Theorem. A sequence fxkg in Rn converges if and only if it is Cauchy.

Theorem. A sequence fxkg in Rn converges to a if and only if for every open set V that
contains a, there is an N 2 N such that k ¸ N implies xk 2 V:

Theorem. Let E µ Rn. Then E is closed if and only if E contains all its limit points.
i.e. if fxig ½ E and limi!1 xi = x implies x 2 E.

DEFINITION. Let E be a subset of Rn.

(1) An open covering of E is a collection of sets fVaga2A such that each Va
is open and

E µ [a2AVa:

(2) The set is said to be compact if and only if every open covering of E
has a ¯nite subcovering ; i.e. if fVaga2A is an open covering of E, then
there is a ¯nite subset A0 of A such that 4E µ [a2A0Va:

.

Lemma. [Borel Covering lemma]. Let E be closed bounded subset of Rn . If
r : E ! (0;1), then there exists ¯nitely many points y1; ¢ ¢ ¢ ;yN 2 E such that

E µ [Nj=1Br(yj)(yj):

Theorem. [Heine-Borel Theorem]. Let E be a subset of Rn. Then E is compact
if and only if E is closed and bounded.

Remark. (0; 1) = [1n=1( 1n ; 1¡ 1
n
), [1;1) ½ [1n=1(1¡ 1

n
; n).

9.2 LIMITS OF FUNCTIONS f : A ½ Rn ! Rm:

Example. (a) f(x; y) = (log(xy ¡ y + 2x¡ 2);
p
9¡ x2 ¡ y2)

(b) g(x; y) = (
p
1¡ x2; log(x2 ¡ y2); sinx cos y):

DEFINITION. Let m;n 2 N and a 2 Rn, let V be an open set which contains
a, and suppose that f : V n fag ! Rm. Then f(x) is said to converge to L as x
approaches a , if and only if for every ² > 0 there is a ± > 0(which in general
depends on ²; f; V and a) such that

0 < kx¡ ak < ± implies kf(x)¡ Lk < ²:
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In this case we write
L = lim

x!a
f(x)

and call L the limit of f(x) as x approaches a.

Theorem. Letm;n 2 N and a 2 Rn, let V be an open set which contains a, and suppose
that f; g : V n fag ! Rm:

(1) If f(x) = g(x) for all x 2 V n fag and f(x) has a limit as x ! a , then g(x) also
has a limit as x! a and

lim
x!a

g(x) = lim
x!a

f(x):

(2) L = limx!a f(x) exists if and only if f(xk) ! L as k ! 1 for every sequence
xk 2 V n fag which converges to a as k !1:

(3) Suppose that ® 2 R. If f(x) and g(x) have limits as x ! a, then so do (f +
g)(x); (®f)(x); f ¢ g(x) and kf(x)k. In fact

lim
x!a

(f + g)(x) = lim
x!a

f(x) + lim
x!a

g(x);

lim
x!a

(®f)(x) = ®( lim
x!a

f(x));

lim
x!a

(f ¢ g)(x) = ( lim
x!a

f(x)) ¢ ( lim
x!a

g(x));

and
k lim
x!a

f(x)k = lim
x!a

kf(x)k:

Moreover when m = 3,

lim
x!a

(f £ g)(x) = ( lim
x!a

f(x))£ ( lim
x!a

g(x));

and when m = 1 and the limit of g is nonzero,

lim
x!a

f(x)=g(x) = ( lim
x!a

f(x))=( lim
x!a

g(x)):

(4) Suppose that f; g; h : V n fag ! R and g(x) · h(x) · f(x) for all x 2 V n fag. If

lim
x!a

f(x) = L = lim
x!a

g(x);

then the limit of h as x! a also exists and

lim
x!a

h(x) = L:

(5) Suppose that U is open in Rm, that L 2 U , and h : U n fLg ! Rp for some p 2 N.
If L = limx!a g(x) and M = limy!L h(y); then

lim
x!a

h ± g(x) = h(L):
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Theorem. Let a 2 Rn, let V be an open ball that contains a, let f = (f1; ¢ ¢ ¢ ; fm) :
V n fag ! Rm; and let L = (L1; ¢ ¢ ¢ ; Lm) 2 Rm. Then

L = lim
x!a

f(x);

if and only if
Lj = lim

x!a
fj(x)

exist for each j = 1; ¢ ¢ ¢ ;m):

Example. (a) Find lim(x;y)!(0;0)(3xy + 1; ey + 2);

(b) lim(x;y)!(0;0) =
2+x¡y

1+2x2+3y2 :

Example. lim(x;y)!(0;0)
3x2y
x2+y2

:

Example. lim(x;y)!(0;0)
2xy
x2+y2

Example. lim(x;y)!(0;0)
xy2

x2+y4
:

Example. Find iterate limits of x2

x2+y2
at (0; 0):

Remark. Suppose that I; J are open intervals, that a 2 I and b 2 J and f : I £
J n f(a; b)g ! R: If g(x) = limy!b f(x; y) exists for each x 2 I n fag, and if h(y) =
limx!a f(x; y) exists for each y 2 J nfbg, and if f(x; y)! L as (x; y)! (a; b) in R2. Then

L = lim
x!a

lim
y!b

f(x; y) = lim
y!b

lim
x!a

f(x; y):

9.3 CONTINUOUS FUNCTIONS

DEFINITION. Let E be a nonempty subset of Rn and f : E ! Rm.

(1) f is said to be continuous at a 2 E if and only if for every ² > 0 there is
a ± > 0 (which in general depends on ²; f;a) such that

kx¡ ak < ± and x 2 E imply kf(x)¡ f(a)k < ²:

(2) f is said to be continuous on E (notation :f : E ! Rm is continuous) if
and only if f is continuous at each x 2 E.

DEFINITION. Let E be a nonempty subset of Rn and f : E ! Rm. Then
f is said to be uniformly continuous on E (notation f : E ! Rm is unformly
continuous) if and only if for every ² > 0 there is a ± > 0 such that

kx¡ ak < ± and x;a 2 E imply kf(x)¡ f(a)k < ²:
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Theorem. Let E be a nonempty compact subset of Rn. If f is continuous on E, then f
is uniformly continuous on E.

Theorem. Let m;n 2 N and f : Rn ! Rm. Thenthe following three conditions are
equivalent.

(1) f is continuous on Rn.
(2) f¡1(V ) is open in Rn for every open subset V of Rm.
(3) f¡1(E) is closed in Rn for every closed subset E of Rm.

Theorem. Let m;n 2 N, let E be a nonempty open subset of Rn and f : E ! Rm.
Then f is continuous on E if and only if f¡1(V ) is open in Rn for every open subset V of
Rm.

Example. (a) f(x) = 1
x2+1 ; E = (0; 1], (b) f(x) = x2; E = (1; 4).

Example. (a) f(x) = x2; V = (¡1; 1), (b) f(x) = 1=x;E = [1;1):

Theorem. Let m;n 2 N. If H is a compact subset in Rn and f : H ! Rm is continuous
on H, then f(H) is a compact subset of Rm:

Theorem. Let m;n 2 N. If E is a connected subset in Rn and f : E ! Rm is continuous
on E, then f(E) is a connected subset of Rm:

Remark.The graph of a continuous real function f on an interval [a; b] is compact and
connected.

Theorem. [EXTREME VALUE THEOREM]. Suppose that H is a nonempty
compact subset of Rn and f : H ! R is continuous, then

M = supff(x) : x 2 Hg and m = infff(x) : x 2 Hg
are ¯nite real numbers. Moreover there exist points xM ;xm 2 H such that
M = f(xM );m = f(xm):

Theorem. Let m;n 2 N. If H is a compact subset in Rn and f : H ! Rm is 1-1 and
continuous on H, then f¡1 is continuous on f(H).

Remark. If aj · bj for j = i; ¢ ¢ ¢ ; n, then
R = f(x1; ¢ ¢ ¢ ; xn) : aj · xj · bjg

is conncted.

9.4 COMPACT SETS

Remark. All ¯nite sets are compact.

Remark. A closed subset of a compact set is compact.
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Theorem. [LINDERLÄOF]. Let n 2 N and E be a subset of Rn. If fVaga2A
is a familly of open subsets such that E ½ [a2AVa, then there is an at most
countable subset A0 of A such that E ½ [a2A0

Va:

9.5 APPLICATIONS

Theorem. [DINI]. Suppose that H is a compact subset in Rn and fk : H ! R is a
sequence of pointwise monotone sequence of continuous functions. If fk ! f pointwise on
H as k !1 and f is continuous on H, then fk ! f uniformly on H. In particular if Ák is
a pointwise monotone sequence of continuous functions on [a; b] that converges pointwise
to a continuous function, then

lim
k!1

Z b

a

Ák(x)dx =

Z b

a

lim
k!1

Ák(x)dx:

DEFINITION.

(1) A set E ½ R is said of measure zero if and only if for every ² > 0 there
is a countable collection of intervals fIkgk2N that covers E such thatP

1

k=1 jIkj < ²:
(2) A function f : [a; b] ! R is said to be almost everywhere continuous on

[a; b] if and only if the set of points x 2 [a; b] where f is discontinuous is
a set of measure zero.

Remark. Every at most countable set of real numbers is a sets of measure zero.

Remark. Let fEkgk2N be a sequence of set of measure zero, then [k2 N is a set
of measure zero.

DEFINITION. Let f : [a; b]! R be bounded.

(1) The oscillation of f on an interval J that intersects with [a; b] is de¯ned
to be

−f (J) = sup
x;y2J\[a;b]

jf(x)¡ f(y)j:

(2) The oscillation of f at a point t 2 [a; b] is de¯ned to be

!f (t) = lim
h!0+

−f ((t¡ h; t+ h))

when the limit exists.

Remark. If f : [a; b] ! R is bounded, then !f (t) exists for all t 2 [a; b] and is
¯nite.

Remark. Let f : [a; b] ! R be bounded. If E represents the set of point of
discontinuity of f on [a; b], then

E = [1j=1ft 2 [a; b] : !f (t) ¸
1

j
g:
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Lemma. Let f : [a; b]! R be bounded. For each ² > 0, the set H = ft 2 [a; b] : !f (t) ¸
²g is compact.

Lemma. Let I be a bounded closed interval and f : I ! R be bounded. If ² > 0 and
!f (t) < ² for all t 2 I, then there is a ± > 0 such that −f (J) < ² for all closed intervals
J µ I that satisfy jJ j < ±:

Theorem. [LEBESGUE]. Let f : [a; b] ! R be bounded. Then f is Riemann integrable
on [a; b] if and only if f is almost everywhere continuous on [a; b]. In particular if f has at
most countable many discontinuity points on [a; b], then f is integrable on [a; b].

Corollary. If f : [a; b]! [0;1) is Riemann integrable, then so is f® for every ® > 0.

Theorem. [CLOSED GRAPH THEOREM]. Let I be a closed interval and f : I ! R.
Then f is continuous on I if and only if the graph of f is closed and connected in R2.


