
CHAPTER 2, PRELUDE TO CALCULUS

2.1 Tangent Lines and Slope Predictors

Slope predictor.

Example.

(1) The tangent line of f(x) = x2 at (a, a2) Ma = limh→0
(a+h)2−a2

h = 2a

Slope predictor. For general f(x) the slope predictor of the tangent at (a, f(a)) is

Ma = lim
h→0

f(a + h) − f(a)

h
.

Theorem. If f(x) = px2 + qx + r then Ma = 2pa + q

Normal line : y − f(a) = − 1
Ma

(x − a)

2.2 The Limit Concept

The Limit. Suppose that f(x) is defined in an open interval containing the point a
(except possibly not at a itself). Then we say that the number L is the limit of f(x)
as x approaches a and we write limx→a f(x) = L provided that the following criterion is
satisfied: given any ǫ > there exists a corresponding δ such that |f(x) − L| < ǫ for all x
such that 0 < |x − a| < δ.

i.e.
lim
x→a

f(x) = L

if and only if

∀ǫ > 0,∃δf (ǫ) > 0 such that 0 < |x − a| < δf (ǫ) =⇒ |f(x) − L| < ǫ (1)

.

(∀ǫ is for every ǫ, and ∃δ is there exists δ.)

Remark(1). If (1) holds for ǫ and ǫ < ǫ′, then (1) holds for ǫ′ too. So we may just
concentrate on ǫ ≤ a or ǫ = 1

n or ǫ = 1
2n

.

Remark(2). If (1) holds for a fixed ǫ, then (1) holds for any δ′ < δ, so we may only look
for δ < b.

Remark(3). If (1) is not true, then for some ǫ0, for any n there is xn such that |xn−a| < 1
n

but |f(xn) − L| ≥ ǫ0. So we have a sequence {xn} goes to a but f(xn) stay away from L
with distance at least ǫ0.
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Remark(4). The limit if exists, is unique.

Proof. If limx→a f(x) = L and limx→a f(x) = M and L 6= M , then |L − M | > 0. Let
ǫ = 1

3 |L − M |, for x near a we have |f(x) − L| < ǫ, |f(x) − M | < ǫ. But then

|L− M | = |L − f(x) − M + f(x)| ≤ |f(x) − L| + |f(x) − M | < 2ǫ < |L − M |

which is a contradiction.

Remark(5). If limx→a f(x) = L, then f(x) is bounded on some interval contains a.

Remark(6). If |f(x) − L| ≤ K|x − a|, then δ = ǫ
K .

Rematk(7). If f(x) = g(x) for all x, 0 < |x − a| < λ, then limx→a f(x) = L if and onlu
if limx→a g(x) = L

Rematk(8). If f(x) ≤ K and limx→a f(x) = L, then L ≤ K.

Example.

(1) limx→3
x−1
x+2 = 2

5 ,

(2) limx→2
x2−4

x2+x−6 = 4
5 ,

(3) limt→0

√
t+25−5

t
= 1

10
,

(4) limx→0
x
|x| does not exists,

(5) F (x) = 1 if x 6= 0 and = 0 if x = 0, limx→0 F (x) = 1

The Limit Laws. If limx→a f(x) = L and limx→a g(x) = M , then

(1) limx→a cf(x) = cL,
(2) limx→a(f + g)(x) = L + M ,
(3) limx→a(f − g)(x) = L− M ,
(4) limx→a(f · g)(x) = L ·M
(5) limx→a(f/g)(x) = L/M if M 6= 0,
(6) Suppose that a > 0 then limx→a x1/n = a1/n (root law),
(7) Suppose that limx→a g(x) = M and limy→M f(y) = f(M), then limx→a f ◦ g(x) =

f(M) (substituition law),
(8) Suppose that f(x) ≥ g(x) ≥ h(x) and limx→a f(x) = L = limx→a h(x), then

limx→a g(x) = L (squeeze law).

Proof of (1). Since |cf(x) − cL| = |c||f(x) − L|, let δ = δf ( ǫ
|c|).

Proof of (2). Since |f(x)+g(x)−L−M | ≤ |f(x)−L|+|g(x)−M |, let δ = min(δf ( ǫ
2), δg( ǫ

2)).

Proof of (4). Since |fg(x)−LM | ≤ |f(x)||g(x)−M |+ |M ||f(x)−L|. Choose δ1 such that
for 0 < |x − a| < δ1 we have |f(x) − L| < ǫ

2|M | . Now choose δ2 such that for 0 < |x − a|, δ
we have |g(x) − M | < ǫ

2(|L|+δ1)
Let δ = min(δ1, δ2), then for 0 < |x − a| < δ we have

|fg(x) − LM | < ǫ.

Proof of (5). Assume that f(x) = 1, then | 1
g(x)− 1

M | = |g(x)−M |
|g(x)||M | , let δ = min(δg(1), δg( ǫ

|M |(|M |+1))).

Combine with (4) we can prove the general case.
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Proof of (7). Given ǫ > 0, since limy→M f(y) = f(M), there is δ1 > 0 such that |f(y) −
f(M)| < ǫ when 0 < |y − M | < δ1. Also since limx→a g(x) = M , there exists δ > 0
such that |g(x) − M | < δ1 when 0 < |x − a| < ǫ. Put them together, we have that for if
0 < |x − a| < δ ,then |f ◦ g(x) − f(M)| < ǫ.

Proof of (8). Let δ = min(δf (ǫ), δh(ǫ)), then for 0 < |x − a| < δ, we have

L − ǫ < f(x) ≤ g(x) ≤ h(x) < L + ǫ

.

Example.

(1) limx→3 x2 + 2x + 4 = 19,
(2) limx→3

2x+5
x2+2x+4 = 11

19 ,

(3) limx→1
1

(x−1)2 does not exist,

(4) limx→2
x2−4

x2+x−6
,

(5) limx→4(3
√

x3 + 20
√

x)1/3 = 4,
(6) px2 + qx + r(slpoe predictor) ,
(7) 1√

x
(slope predictor),

(8) x + 1
x (slope predictor),

(9) limx→0 x sin 1
x
,

(10) Let F (x) = 1 if x 6= 0 and F (0) = 0, g(x) = x sin 1
x , then limx→0 F ◦ g(x) does not

exist,
(11) limx→0 sinx = 0,
(12) limx→0 cos x = 1.

2.3 More about Limits

Theorem. limx→0
sin x

x = 1.

Example.

(1) limx→0
1−cos x

x = 0,

(2) limx→0
tan 3x

x = 3,
(3) limx→0 sin π

x does not exist,

(4) g(x) = x sin 1
x for x 6= 0, then limx→0 g(x) = 0.

One Side Limit.

Right side limit. limx→a+ f(x) = L iff for any ǫ > 0 there exists δ > 0 such that
0 < x − a < δ implies that |f(x) − L| < ǫ.

Left side limit. limx→a− f(x) = L iff for any ǫ > 0 there exists δ > 0 such that 0 <
a − x < δ implies that |f(x) − L| < ǫ.
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Theorem. limx→a f(x) = L iff limx→a+ f(x) = L = limx→a− f(x).

Example.

(1) [[x]] ,
(2)

√
x,

(3) f(x) = x2 if x ≤ 0 and f(x) = x sin 1
x if x > 0,

(4) limx→3−
x2

x2+1 +
√

9 − x2,

(5) Exists of tangant line at a = 0 for |x|.

Limit ∞.

Limit ∞. limx→a f(x) = ∞ iff for any K > 0 there exists δ > 0 such that 0 < |x− a| < δ
implies that f(x) > K.

Rematk. If limx→a± f(x) = ±∞, then x = a is an asymptote of the graph of f .

Example.

(1) limx→1
1

(x−1)2 = ∞,

(2) limx→0+
1
x

= ∞ and limx→0−
1
x

= −∞,

(3) limx→1+
2x+1
x−1 = ∞ and limx→1−

2x+1
x−1 = −∞,

(4) limx→0
1
x sin 1

x does not exist.

2.4 The Concept of Continuity

Continuous at a point. Suppose that f(x) is defined in am open interval contains a,
then f(x) is contiuous at a iff limx→a f(x) = f(a).

If f is continuous at every point in the doamin, we say that f is a continuous function.

Example.

(1) 1
x−2

continuous at x 6= 2,

(2) g(x) = 1 if x ≥ 0 and g(x) = −1 if x < 0, then g has a jump discontinuity at 0,
(3) f(x) = sin x

x if x 6= 0 and f(0) = 0, then f(x) has a removable discontinuity at 0.
(4) x − [[x]] has jump discontinuity at every integer point.

Combinations of Continuous Functions.

Theorem. Suppose that f, g are continuous functions, then cf, f + g, f − g, f · g are
continuous functions and f/g is continuous x whenever g(x) 6= 0

Example.

(1) x3 − 3x2 + 1,
(2) x−2

x2−3x+2 is continuous at all x 6= 1, 2.

Trigonometric Functions.
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Theorem. cos x, sin x are continuous functions on R.

Corollary. tan x, cot x, sec x, csc x are continuous functions on its domain.

Composition of Continuous Functions.

Tneorem. If g is continuous at a and f is continuous at g(a), then f ◦ g is continuous at
a.

Example. ( x−7
x2+2x+2)2/3.

Continuous Functions on Closed Interval. A function f defined on [a, b] if it is
continuous on (a, b) and limx→a+ f(x) = f(a), limx→b− f(x) = f(b).

Theorem. Suppose that f is a continuous on [a, b], then tere exist x1, x2 in [a, b] such
that f(x1) ≥ f(x) and f(x2) ≤ f(x) for all x ∈ [a, b].

Remark. The theorem above means that continuous function on bounded closed interval
takes both maximun and minmum. Ingeneral this not true for function continuous on open
interval.

Theorem. Suppose that f is continuous at a and f(a) > 0 then there is an open interval
I contains a such that f(x) > 0 for all x ∈ I.

Corollary. Suppose that f is continuous at a and f(a) > c, (f(a) < c) then there is an
open interval I contains a such that f(x) > c, (f(x) > c) for all x ∈ I.

Intermediate Value Theorem.

Theorem. Suppose that f is continuous on [a, b] and f(a) 6= f(b). Then for any k between
f(a), f(b), there is a c ∈ [a.b] such that f(c) = k.

Proof. Let S = {x ∈ [a, b] : f(x) ≤ k}, it is clear that a ∈ S and b is an upper bound of S.
Let c be the least upper bound of S. If f(c) < k then there is an open interval I contains
c such that f(x) < k for all x ∈ I, that means there are x > c such that f(x) < K, which
is a contradiction to that c is the least bound of S. If f(c) > k, then for smoe δ > 0 such
that f(x) > K for all x ∈ (c − δ, c + δ). But then c − δ is not a upper bound of S, there
will be a x1 ∈ S such that c − δ < x1 ≤ c, that is a contradiction too. So f(c) = k

Example.

(1) g(x) = 0 for x < 0 and g(x) = 1 for x ≥ 0,
(2) x2 − 2,
(3) x3 − x − 2 has root in (0, 2).

(4) 10[[1000x]]−4995
10000 ,

(5) If f is a continuous function on [0, 1] with value in [0, 1], then there is a ∈ [0, 1]
such that f(a) = a.




