CHAPTER 2, PRELUDE TO CALCULUS

2.1 TANGENT LINES AND SLOPE PREDICTORS

Slope predictor.

Example.
2 2
(1) The tangent line of f(z) = z? at (a,a?) M, = lim,_ W = 2a

Slope predictor. For general f(x) the slope predictor of the tangent at (a, f(a)) is
fla+h)— f(a)
5 .

M, = lim
h—0

Theorem. If f(x) = pz? + qx +r then M, = 2pa + q

Normal line : y — f(a) = —Mia(as —a)

2.2 THE LiMIT CONCEPT

The Limit. Suppose that f(x) is defined in an open interval containing the point a
(except possibly not at a itself). Then we say that the number L is the limit of f(x)
as x approaches a and we write lim,_., f(x) = L provided that the following criterion is
satisfied: given any € > there exists a corresponding ¢ such that |f(z) — L| < € for all =
such that 0 < |x —a| < 4.

ie.
lim f(z) =L
if and only if
Ve > 0,30¢(e) > 0 such that 0 < |z —a| <dr(e) = |f(z) —L| <e (1)

(Ve is for every €, and 30 is there exists d.)

Remark(1). If (1) holds for € and ¢ < €, then (1) holds for € too. So we may just

concentrate on e < aq or € = % or e = 2%

Remark(2). If (1) holds for a fixed €, then (1) holds for any §' < d, so we may only look
for 6 < b.

Remark(3). If (1) is not true, then for some e, for any n there is x,, such that |z, —a| < +
but |f(z,) — L| > €y. So we have a sequence {x,} goes to a but f(x,) stay away from L
with distance at least ¢g.
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Remark(4). The limit if exists, is unique.

Proof. If lim,_,, f(x) = L and lim,_,, f(z) = M and L # M, then |L — M| > 0. Let
€ = z|L — M|, for = near a we have |f(z) — L| <e, |f(z) — M| < e. But then

|L— M| =|L—f(z) =M+ f(x)] <|f(x) - LI+ [f(z) — M| < 2e < |L - M|

which is a contradiction.
Remark(5). Iflim, ., f(z) = L, then f(x) is bounded on some interval contains a.
Remark(6). If |f(z) — L| < K|z — a|, then § = &.

Rematk(7). If f(z) = g(z) for all 2,0 < |z — a| < A, then lim,_., f(z) = L if and onlu
iflimy_qg(z) =L

Rematk(8). If f(z) < K and limy_,, f(z) = L, then L < K.

Example.

(1) limg_3 x;; =3,

( ) lim, .o 24_74 =

hm 10 \/t+2 —5 — 1
10°
lim, o = ol does not exists,

)
)
5) F(z)=1ifx#0and =0if z =0, lim,_,o F(z) =1
The Li

(S

(3
(4
(

imit Laws. Iflim, ., f(x) = L and limy_., g(z) = M, then

(1) limg—qcf(z) = cL,

(2) lime o/ +9)(x) = L+ M,

(3) limeo(f — 9)(x) = L — M,

(4) limyo(f - g) () = L- M

(5) lim, _o(f/g)(z) = L/M if M #0,

(6) Suppose that a > 0 then lim,_., z'/™ = a'/™ (root law),

(7) Suppose that lim,_,, g(x) = M and lim,_, s f(y) = f(M), then lim,_., fog(z) =
f(M) (substituition law),

(8) Suppose that f(x) > g(x) > h(x) and lim,_, f(z) = L = lim,_,, h(x), then
lim,_., g(x) = L (squeeze law).

1/n

Proof of (1). Since |cf(x) — cL| = ||| f(x) — L], let § = 5f(| |)
Proof of (2). Since |f(x)+g(x)—L—M| < |f(x)—L|+|g(x)—M]|, let § = min(5(5), d4(5))-

Proof of (4). Since |fg(x)— LM| < |f(z )||g( )— M|+ |M||f(x) — L|. Choose d; such that
for 0 < |x — a| < 6; we have |f(z) — L| < arary- Now choose 0z such that for 0 < |z —al,o
we have |g(x) — M| < Let § = min(d1,d2), then for 0 < |z — a] < § we have
|fg(z) — LM| < e.

Proof of (5). Assume that f(x) = 1, then |ﬁ—ﬁ|
Combine with (4) we can prove the general case.

e
2(IL1+461)

T M €
e let § = min(6, (1), & (pyrimreny)-
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Proof of (7). Given e > 0, since limy, .y f(y) = f(M), there is §; > 0 such that |f(y) —
f(M)| < € when 0 < |y — M| < ;. Also since lim,_., g(x) = M, there exists 6 > 0
such that |g(x) — M| < §1 when 0 < |x — a|] < e. Put them together, we have that for if
0<|x—al <d  then |fog(x)— f(M)| <e.

Proof of (8). Let § = min(df(€), dn(€)), then for 0 < |z — a| < J, we have

L—e< f(zr) <g(z) <h(x) <L+e

Example.

(1) limg_3 22+ 2x +4 = 19,
hmx_>3 2z+5 11

) z24+2c+4 — 197
3) limg,_.q @ 11)2 does not exist,
)

2
—4
4) lim, .2 ma

(2
(
(
(
(
(
(
(
1

5) hmﬁ4(3\/ +20/x)'/3 = 4,
6) px? + qx + r(slpoe predictor) ,
7) T(slope predictor),
8) z ; (slope predictor),
9) limgy_oxsin i,

)

(10) Let F(x) = 1 1fa: # 0 and F(0) =0, g(z) = zsin 1, then lim, .o F o g(x) does not
exist,

(11) limg_psinz = 0,

(12) limgz_pcosx = 1.

2.3 MORE ABOUT LIMITS

Theorem. lim,_ o 32Z = 1.

Example.

(1) hmx_)ow =0,

(2) lim, 0
(3) lim, .o sm— does not exist,
(4) g(z) = zsin L for z # 0, then lim,_.o g(z) = 0.

tan 31’ — 3

One Side Limit.

Right side limit. lim, ,,+ f(z) = L iff for any ¢ > 0 there exists § > 0 such that
0 < x —a < ¢ implies that |f(z) — L| < e.

Left side limit. lim,_,,- f(x) = L iff for any ¢ > 0 there exists § > 0 such that 0 <
a —x < § implies that |f(x) — L| < e.
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Theorem. lim, ., f(z) = L iff lim, .+ f(z) = L = lim, .- f(x).

Example.
(1) [f=]] ,
(2) v,
(3) f(z) =2?ifx <0and f(z) =xsinlifz >0,
(4) hmx—>3 21,_7_1 + V - fL'2
(5) Exists of tangant line at a = 0 for |x|.
Limit oco.

Limit oo. limy,_., f(x) = oo iff for any K > 0 there exists 6 > 0 such that 0 < |z —a| < 6
implies that f(x) > K.

Rematk. Iflim,_,,+ f(x) = +o0o, then x = a is an asymptote of the graph of f.

Example.

(1) limy—y =gy = oo,

(2) lim,_, g+ % = oo and lim,_,o- - 1 - 0,

: 2041
(3) lim,_ 1+ 2;_+11 = oo and hmx_)l_ ;—Jrl = —00,
(4) limy—o1sinl does not exist.

2.4 THE CONCEPT OF CONTINUITY

Continuous at a point. Suppose that f(x) is defined in am open interval contains a,
then f(x) is contiuous at a iff lim,_,, f(z) = f(a).
If f is continuous at every point in the doamin, we say that f is a continuous function.

Example.
(1) —L5 continuous at = # 2,

2

(2) g(x) =1if £ > 0 and g(x) = —1 if x < 0, then g has a jump discontinuity at 0,
(3

(4

)
) flz) ==L if 3 £ 0 and f(0) = 0, then f(z) has a removable discontinuity at 0.
)  — [[z]] has jump discontinuity at every integer point.

Combinations of Continuous Functions.
Theorem. Suppose that f,g are continuous functions, then cf,f + g,f — g,f - g are

continuous functions and f/g is continuous x whenever g(x) # 0

Example.

(1) 2% — 322 + 1,
(2) #‘fw is continuous at all x # 1, 2.

Trigonometric Functions.
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Theorem. cosx,sinx are continuous functions on R.
Corollary. tanz,cot x,sec x, csc x are continuous functions on its domain.
Composition of Continuous Functions.

Tneorem. If g is continuous at a and f is continuous at g(a), then f o g is continuous at
a.

z—7 )2/3
242242 .

Example. (

Continuous Functions on Closed Interval. A function f defined on [a,b] if it is
continuous on (a,b) and lim,_,,+ f(x) = f(a),lim,_,,- f(x) = f(b).

Theorem. Suppose that f is a continuous on [a,b|, then tere exist x1,z2 in [a,b] such
that f(z1) > f(x) and f(z2) < f(x) for all z € [a,b).

Remark. The theorem above means that continuous function on bounded closed interval
takes both maximun and minmum. Ingeneral this not true for function continuous on open
interval.

Theorem. Suppose that f is continuous at a and f(a) > 0 then there is an open interval
I contains a such that f(z) >0 for all x € I.

Corollary. Suppose that f is continuous at a and f(a) > ¢,(f(a) < c¢) then there is an
open interval I contains a such that f(x) > ¢, (f(x) > ¢) for all x € I.

Intermediate Value Theorem.

Theorem. Suppose that f is continuous on |a,b] and f(a) # f(b). Then for any k between
f(a), f(b), there is a ¢ € [a.b] such that f(c) = k.

Proof. Let S = {x € [a,b] : f(x) <k}, it is clear that a € S and b is an upper bound of S.
Let ¢ be the least upper bound of S. If f(¢) < k then there is an open interval I contains
¢ such that f(z) < k for all z € I, that means there are x > ¢ such that f(z) < K, which
is a contradiction to that ¢ is the least bound of S. If f(c¢) > k, then for smoe ¢ > 0 such
that f(x) > K for all z € (¢ — d,¢+ 9). But then ¢ — J is not a upper bound of S, there
will be a x; € S such that ¢ — § < z1 < ¢, that is a contradiction too. So f(c) =k

Example.

(1) g( ) =0 for x <0 and g(z) =1 for z > 0,
(2) 93 -2,
(3) 2 —x — 2 has root in (0, 2).
(4) 10[[1000s]) 4905
10000 ’
(5) If f is a continuous function on [0, 1] with value in [0, 1], then there is a € [0, 1]

such that f(a) =






