CHAPTER 2, PRELUDE TO CALCULUS

2.1 TANGENT LINES AND SLOPE PREDICTORS

Slope predictor.

Example.

(1) The tangent line of $f(x) = x^2$ at (a, a^2) $M_a = \lim_{h \to 0} \frac{(a+h)^2 - a^2}{h} = 2a$

Slope predictor. For general f(x) the slope predictor of the tangent at (a, f(a)) is

$$M_a = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Theorem. If $f(x) = px^2 + qx + r$ then $M_a = 2pa + q$

Normal line : $y - f(a) = -\frac{1}{M_a}(x - a)$

2.2 The Limit Concept

The Limit. Suppose that f(x) is defined in an open interval containing the point a (except possibly not at a itself). Then we say that the number L is the limit of f(x) as x approaches a and we write $\lim_{x\to a} f(x) = L$ provided that the following criterion is satisfied: given any $\epsilon >$ there exists a corresponding δ such that $|f(x) - L| < \epsilon$ for all x such that $0 < |x - a| < \delta$.

i.e.

$$\lim_{x \to a} f(x) = L$$

if and only if

 $\forall \epsilon > 0, \exists \delta_f(\epsilon) > 0 \text{ such that } 0 < |x - a| < \delta_f(\epsilon) \implies |f(x) - L| < \epsilon$ (1)

 $(\forall \epsilon \text{ is for every } \epsilon, \text{ and } \exists \delta \text{ is there exists } \delta.)$

Remark(1). If (1) holds for ϵ and $\epsilon < \epsilon'$, then (1) holds for ϵ' too. So we may just concentrate on $\epsilon \le a$ or $\epsilon = \frac{1}{n}$ or $\epsilon = \frac{1}{2^n}$.

Remark(2). If (1) holds for a fixed ϵ , then (1) holds for any $\delta' < \delta$, so we may only look for $\delta < b$.

Remark(3). If (1) is not true, then for some ϵ_0 , for any *n* there is x_n such that $|x_n - a| < \frac{1}{n}$ but $|f(x_n) - L| \ge \epsilon_0$. So we have a sequence $\{x_n\}$ goes to a but $f(x_n)$ stay away from *L* with distance at least ϵ_0 .

Remark(4). The limit if exists, is unique.

Proof. If $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} f(x) = M$ and $L \neq M$, then |L - M| > 0. Let $\epsilon = \frac{1}{3}|L - M|$, for x near a we have $|f(x) - L| < \epsilon$, $|f(x) - M| < \epsilon$. But then

$$|L - M| = |L - f(x) - M + f(x)| \le |f(x) - L| + |f(x) - M| < 2\epsilon < |L - M|$$

which is a contradiction.

Remark(5). If $\lim_{x\to a} f(x) = L$, then f(x) is bounded on some interval contains a.

Remark(6). If $|f(x) - L| \leq K|x - a|$, then $\delta = \frac{\epsilon}{K}$.

Rematk(7). If f(x) = g(x) for all $x, 0 < |x - a| < \lambda$, then $\lim_{x \to a} f(x) = L$ if and only if $\lim_{x \to a} g(x) = L$

Rematk(8). If $f(x) \leq K$ and $\lim_{x \to a} f(x) = L$, then $L \leq K$.

Example.

- (1) $\lim_{x \to 3} \frac{x-1}{x+2} = \frac{2}{5},$ (2) $\lim_{x \to 2} \frac{x^2-4}{x^2+x-6} = \frac{4}{5},$ (3) $\lim_{t \to 0} \frac{\sqrt{t+25}-5}{t} = \frac{1}{10},$ (4) $\lim_{x \to 0} \frac{x}{|x|}$ does not exists,
- (5) F(x) = 1 if $x \neq 0$ and = 0 if x = 0, $\lim_{x \to 0} F(x) = 1$

The Limit Laws. If $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, then

- (1) $\lim_{x \to a} cf(x) = cL$,
- (2) $\lim_{x \to a} (f+g)(x) = L + M$,
- (3) $\lim_{x \to a} (f g)(x) = L M$,
- (4) $\lim_{x \to a} (f \cdot g)(x) = L \cdot M$
- (5) $\lim_{x \to a} (f/g)(x) = L/M$ if $M \neq 0$,
- (6) Suppose that a > 0 then $\lim_{x \to a} x^{1/n} = a^{1/n}$ (root law),
- (7) Suppose that $\lim_{x\to a} g(x) = M$ and $\lim_{y\to M} f(y) = f(M)$, then $\lim_{x\to a} f \circ g(x) = f(M)$ f(M) (substituition law),
- (8) Suppose that $f(x) \ge g(x) \ge h(x)$ and $\lim_{x\to a} f(x) = L = \lim_{x\to a} h(x)$, then $\lim_{x\to a} g(x) = L$ (squeeze law).

Proof of (1). Since
$$|cf(x) - cL| = |c||f(x) - L|$$
, let $\delta = \delta_f(\frac{\epsilon}{|c|})$.

Proof of (2). Since $|f(x)+g(x)-L-M| \leq |f(x)-L|+|g(x)-M|$, let $\delta = \min(\delta_f(\frac{\epsilon}{2}), \delta_g(\frac{\epsilon}{2}))$.

Proof of (4). Since $|fg(x) - LM| \leq |f(x)||g(x) - M| + |M||f(x) - L|$. Choose δ_1 such that for $0 < |x - a| < \delta_1$ we have $|f(x) - L| < \frac{\epsilon}{2|M|}$. Now choose δ_2 such that for $0 < |x - a|, \delta_1$ we have $|g(x) - M| < \frac{\epsilon}{2(|L| + \delta_1)}$ Let $\delta = \min(\delta_1, \delta_2)$, then for $0 < |x - a| < \delta$ we have $|fg(x) - LM| < \epsilon.$

Proof of (5). Assume that f(x) = 1, then $\left|\frac{1}{g(x)} - \frac{1}{M}\right| = \frac{|g(x) - M|}{|g(x)||M|}$, let $\delta = \min(\delta_g(1), \delta_g(\frac{\epsilon}{|M|(|M|+1)}))$. Combine with (4) we can prove the general case.

Proof of (7). Given $\epsilon > 0$, since $\lim_{y \to M} f(y) = f(M)$, there is $\delta_1 > 0$ such that $|f(y) - f(M)| < \epsilon$ when $0 < |y - M| < \delta_1$. Also since $\lim_{x \to a} g(x) = M$, there exists $\delta > 0$ such that $|g(x) - M| < \delta_1$ when $0 < |x - a| < \epsilon$. Put them together, we have that for if $0 < |x - a| < \delta$, then $|f \circ g(x) - f(M)| < \epsilon$.

Proof of (8). Let $\delta = \min(\delta_f(\epsilon), \delta_h(\epsilon))$, then for $0 < |x - a| < \delta$, we have

$$L - \epsilon < f(x) \le g(x) \le h(x) < L + \epsilon$$

Example.

- (1) $\lim_{x\to 3} x^2 + 2x + 4 = 19,$ (2) $\lim_{x\to 3} \frac{2x+5}{x^2+2x+4} = \frac{11}{19},$ (3) $\lim_{x\to 1} \frac{1}{(x-1)^2}$ does not exist, (4) $\lim_{x\to 2} \frac{x^2-4}{x^2+x-6},$ (5) $\lim_{x\to 4} (3\sqrt{x^3} + 20\sqrt{x})^{1/3} = 4,$ (6) $px^2 + qx + r$ (slpoe predictor), (7) $\frac{1}{\sqrt{x}}$ (slope predictor), (8) $x + \frac{1}{x}$ (slope predictor), (9) $\lim_{x\to 0} x \sin \frac{1}{x},$ (10) Let F(x) = 1 if $x \neq 0$ and F(0) = 1
- (10) Let F(x) = 1 if $x \neq 0$ and F(0) = 0, $g(x) = x \sin \frac{1}{x}$, then $\lim_{x \to 0} F \circ g(x)$ does not exist,
- (11) $\lim_{x \to 0} \sin x = 0$,
- (12) $\lim_{x \to 0} \cos x = 1.$

2.3 More about Limits

Theorem. $\lim_{x\to 0} \frac{\sin x}{x} = 1.$

Example.

(1) $\lim_{x \to 0} \frac{1 - \cos x}{x} = 0,$ (2) $\lim_{x \to 0} \frac{\tan 3x}{x} = 3,$ (3) $\lim_{x \to 0} \sin \frac{\pi}{x}$ does not exist, (4) $g(x) = x \sin \frac{1}{x}$ for $x \neq 0$, then $\lim_{x \to 0} g(x) = 0.$

One Side Limit.

Right side limit. $\lim_{x\to a^+} f(x) = L$ iff for any $\epsilon > 0$ there exists $\delta > 0$ such that $0 < x - a < \delta$ implies that $|f(x) - L| < \epsilon$.

Left side limit. $\lim_{x\to a^-} f(x) = L$ iff for any $\epsilon > 0$ there exists $\delta > 0$ such that $0 < a - x < \delta$ implies that $|f(x) - L| < \epsilon$.

Theorem. $\lim_{x\to a} f(x) = L$ iff $\lim_{x\to a^+} f(x) = L = \lim_{x\to a^-} f(x)$.

Example.

- (1) [[x]],(2) \sqrt{x} , (3) $f(x) = x^2$ if $x \le 0$ and $f(x) = x \sin \frac{1}{x}$ if x > 0, (4) $\lim_{x \to 3^{-}} \frac{x^2}{x^2+1} + \sqrt{9-x^2},$
- (5) Exists of tangant line at a = 0 for |x|.

Limit ∞ .

Limit ∞ . $\lim_{x\to a} f(x) = \infty$ iff for any K > 0 there exists $\delta > 0$ such that $0 < |x-a| < \delta$ implies that f(x) > K.

Rematk. If $\lim_{x\to a^{\pm}} f(x) = \pm \infty$, then x = a is an asymptote of the graph of f.

Example.

- (1) $\lim_{x \to 1} \frac{1}{(x-1)^2} = \infty$, (2) $\lim_{x\to 0^+} \frac{1}{x} = \infty$ and $\lim_{x\to 0^-} \frac{1}{x} = -\infty$, (3) $\lim_{x\to 1^+} \frac{2x+1}{x-1} = \infty$ and $\lim_{x\to 1^-} \frac{2x+1}{x-1} = -\infty$, (4) $\lim_{x\to 0} \frac{1}{x} \sin \frac{1}{x}$ does not exist.

2.4 The Concept of Continuity

Continuous at a point. Suppose that f(x) is defined in am open interval contains a, then f(x) is continuous at a iff $\lim_{x\to a} f(x) = f(a)$.

If f is continuous at every point in the doamin, we say that f is a continuous function.

Example.

- (1) $\frac{1}{x-2}$ continuous at $x \neq 2$,
- (2) g(x) = 1 if $x \ge 0$ and g(x) = -1 if x < 0, then g has a jump discontinuity at 0,
- (3) $f(x) = \frac{\sin x}{x}$ if $x \neq 0$ and f(0) = 0, then f(x) has a removable discontinuity at 0. (4) x [[x]] has jump discontinuity at every integer point.

Combinations of Continuous Functions.

Theorem. Suppose that f, g are continuous functions, then $cf, f + g, f - g, f \cdot g$ are continuous functions and f/g is continuous x whenever $g(x) \neq 0$

Example.

(1) $x^3 - 3x^2 + 1$, (2) $\frac{x-2}{x^2 - 3x + 2}$ is continuous at all $x \neq 1, 2$.

Trigonometric Functions.

Theorem. $\cos x$, $\sin x$ are continuous functions on \mathbb{R} .

Corollary. $\tan x$, $\cot x$, $\sec x$, $\csc x$ are continuous functions on its domain.

Composition of Continuous Functions.

Theorem. If g is continuous at a and f is continuous at g(a), then $f \circ g$ is continuous at a.

Example. $(\frac{x-7}{x^2+2x+2})^{2/3}$.

Continuous Functions on Closed Interval. A function f defined on [a,b] if it is continuous on (a,b) and $\lim_{x\to a^+} f(x) = f(a), \lim_{x\to b^-} f(x) = f(b)$.

Theorem. Suppose that f is a continuous on [a,b], then tere exist x_1, x_2 in [a,b] such that $f(x_1) \ge f(x)$ and $f(x_2) \le f(x)$ for all $x \in [a,b]$.

Remark. The theorem above means that continuous function on bounded closed interval takes both maximum and minmum. Ingeneral this not true for function continuous on open interval.

Theorem. Suppose that f is continuous at a and f(a) > 0 then there is an open interval I contains a such that f(x) > 0 for all $x \in I$.

Corollary. Suppose that f is continuous at a and f(a) > c, (f(a) < c) then there is an open interval I contains a such that f(x) > c, (f(x) > c) for all $x \in I$.

Intermediate Value Theorem.

Theorem. Suppose that f is continuous on [a, b] and $f(a) \neq f(b)$. Then for any k between f(a), f(b), there is a $c \in [a,b]$ such that f(c) = k.

Proof. Let $S = \{x \in [a, b] : f(x) \leq k\}$, it is clear that $a \in S$ and b is an upper bound of S. Let c be the least upper bound of S. If f(c) < k then there is an open interval I contains c such that f(x) < k for all $x \in I$, that means there are x > c such that f(x) < K, which is a contradiction to that c is the least bound of S. If f(c) > k, then for smoe $\delta > 0$ such that f(x) > K for all $x \in (c - \delta, c + \delta)$. But then $c - \delta$ is not a upper bound of S, there will be a $x_1 \in S$ such that $c - \delta < x_1 \leq c$, that is a contradiction too. So f(c) = k

Example.

- (1) g(x) = 0 for x < 0 and g(x) = 1 for $x \ge 0$,
- (2) $x^2 2$,
- (3) $x^3 x 2$ has root in (0, 2).
- $(4) \quad \frac{10[[1000x]] 4995}{10000}$
- (5) If f is a continuous function on [0,1] with value in [0,1], then there is $a \in [0,1]$ such that f(a) = a.