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Abstract—The use of selective media is important in bioreactor problems. While the selective
component of the medium (an antibiotic, for example) may be added from an external source,
there seems to be an advantage from having the selective process generated internally. Models
for two common ways of achieving selective media are considered. In the first, proposed
originally by Sardonini and DiBiasio, the plasmid-free organism is auxotrophic for a metabolite
which is produced by the plasmid bearing organism in excess. For this model we are able to
characterize completely the global behavior of solutions, completing that theory. In the second,
the plasmid-bearing organism devotes a portion of its resources to producing a toxin to the
plasmid-free organism. Such a model was proposed by Chao and Levin and the model
considered here is a slight variant of theirs. Again, the global asymptotic behavior of the model
as a function of the parameters is obtained. Copyright © 1996 Elsevier Science Ltd
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1. INTRODUCTION

The ability to manufacture desired products through
genetically altered organisms represents one of the
major developments in biotechnology. The genetic
alteration commonly takes place through the inser-
tion of a plasmid to code for the production of the
desired protein. Although the plasmid reproduces
when the cell divides, it can happen that the plasmid is
not passed to the daughter cell thereby introducing
the plasmid-free organism into the process. Since the
plasmid-free organism does not carry the added meta-
bolic burden imposed by the plasmid, it is potentially
a better competitor. The study of mathematical mod-
els for the competition between plasmid-free and plas-
mid-bearing populations has recently been a problem
of considerable interest (Hsu et al., 1994, 1995; Levin,
1988; Lenski and Hattingh, 1986; Luo and Hsu, 1995;
Macken et al., 1994; Ryder and DiBiasio, 1984; Sim-
onson, 1991; Stephanopoulos and Lapidus, 1988). The
general subject of microbial competition has been
reviewed in Fredrickson and Stephanopoulis (1981).
To avoid ‘capture’ of the process by the plasmid-free
organism, selective media are used for the culture. The
most obvious of these techniques is to induce anti-
biotic resistance into the cell on the same plasmid that
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codes for the production and to introduce an anti-
biotic into the medium. A mathematical model of the
chemostat with an inhibitor has been studied in Hsu
and Waltman (1992), while the system with plasmids
as well as the inhibitor has been studied in Hsu et al.
(1995). For large scale production systems, the use of
large quantities of an antibiotic may be undesirable
either on environmental or cost grounds.

The alternative would be to use a medium where
the selective pressure is generated in the system itself.
Laboratory experiments exist taking advantage of
both commensalism and inhibition to preserve the
plasmid-bearing organism. Both commensalism and
inhibition also occur in nature, and models for both
are discussed and analyzed below in the context of
a chemostat. The resulting model in each case is a set
of four non-linear, ordinary differential equations.
The conservation normally present in chemostat-like
models (indeed, perhaps the defining feature of a
chemostat model) reduces this to three non-linear
equations in the usual way. Even three non-linear
differential equations can have solutions with ex-
tremely complicated behavior and be resistant to
analysis. We will show, however, that the asymptotic
behavior of both models can be analyzed by a further
reduction in the dimension of the system.

The organization of the paper is as follows. In
Section 2 we describe the standard model for the
simple chemostat as a model of a bio-reactor and
describe the modification necessary for the introduction
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of commensalism through a needed metabolite and
for the introduction of inhibition by the emission of
a toxin. In Section 3 we analyze the commensal model
and in Section 4, the inhibitory model. Section 5 dis-
cusses the results and alternative ways to model. Ap-
pendix A contains some technical information on
a convergence result used in reducing the problem to
a tractable, lower-dimensional system.

2. THE MODELS

The models we consider are based on the chemo-
stat. The equations governing the ideal chemostat are
well known and the derivation may be found in almost
any biotechnology text (for example, Shuler and Kargi,
1992), or, in detail, in Smith and Waltman (1995). We
give a brief review here to motivate the changes we must
make to consider plasmid models in selective media.

The chemostat can be viewed as three connected
vessels. The first (the feed bottle) contains all of the
nutrients needed by the microorganism in a medium
with one, hereafter simply called the nutrient, in shor-
test supply. The medium is pumped at a constant rate
into the second vessel, the culture vessel, which con-
tains one or more microorganisms. The contents of
the culture vessel is pumped at a constant rate into the
third vessel, the overflow or collection vessel, keeping
the volume of the culture vessel constant. The culture
vessel is well mixed and all relevant parameters (tem-
perature, pH, etc.) are controlled.

The rate of change of the nutrient in the culture
vessel can be expressed as a function of input, outflow,
and consumption while that of the organism can be
expressed in terms of growth and outflow. The con-
sumption term is based on experimental evidence and
is expressed in Michaelis—Menten or Monod form. If
S(¢) denotes the concentration of the nutrient at time ¢
and x(z) denotes the concentration of the organism, the
consumption term at time ¢ is assumed to be of the form

mS(t) x(t)
a+ St

m is the maximal growth rate and a is the Michaelis—
Menten (or half saturation constant). Both can be
measured in the laboratory. If one assumes that
growth is proportional to the nutrient uptake, the
differential equations take the form

S=GW—$D—x%?

d
= S)—D), '=—
X =x(f8)-D), ‘=
where $© is the input concentration, D is the dilution
rate (flow rate divided by volume), y is a yield con-
stant, and f(S) = mS/(a + S). With two competitors
and the same assumptions, the equations become

AOIRAD)
Y2

§ =(S© —§)D — x, X2

xi = x:(fi(S) — D),
where f,(S) = m;S/(a; + S).

i=12

Qur interest focuses on the case where one organ-
ism, x,, is plasmid-bearing but the plasmid can be lost
in reproduction, resulting in a plasmid-free organism
x,. If the constant g is the fraction of plasmids lost, the
modified equations become

(), 5O

§' = (89 - 8§)D — x, n

Xy =% (1(S)(1 — g — D)
x5 = %2(f2(8) — D) + gx1 f1(S)- Y

We have simply attributed the quantity gx, f;(S),
a fraction of the growth, to the plasmid-free organism,
and, since the two organisms are assumed to be the
same except for the plasmid, set the yield constants to
be equal. These equations appear in Stephanopoulos
and Lapidus (1988), and have been investigated in
Hsu et al. (1994).

From the chemical engineering standpoint, the con-
sumption of nutrient by the plasmid-free organism
represents a loss of production in the bio-reactor.
Moreover, the plasmid-free organism is unencum-
bered by the added metabolic load the plasmid im-
poses, and thus may be a better competitor and elim-
inate the desired organism. The obvious choice is to
alter the medium in such a way as to favor the plas-
mid-bearing organism. An example of this noted
above would be to encode antibiotic resistance on the
plasmid and put an antibiotic into the feed bottle.
Models in this direction have been studied in Lenski
and Hattingh (1986), Hsu and Waltman (1992), and
Hsu et al. (1995). A more desirable (and perhaps more
cost effective in the production stage) solution would
be to have the regulation occur ‘naturally’ in the
culture vessel. We focus on two models where this is
known to occur. From the standpoint of the system
designer (who creates/selects the organisms), one of
these can be regarded as ‘defensive’ (staving off elim-
ination) and the other offensive (inhibiting the com-
petition).

In the first case, suppose that the plasmid-free or-
ganism is auxotrophic for a metabolite M which is
produced by the plasmid-bearing organism in excess.
Then eq. (1) must be modified to account for the
added metabolite. Such a model for the growth of
Saccharomyces cerevisiae was proposed by Sardonini
and DiBiasio (1987). They propose a model and carry
out the relevant experiments along with a steady-state
analysis. The model equations they propose take the
form

as _ (59 - $)D _Sil)x: f2(8, M) o
dt y y )
dx, - s D
‘&?—( — ) f1(8)x; — Dx,
% = f2(S,M)x2 — Dx; + qf1(8) %,
Wy BN
t y
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with

mZS M

S, M) = )
28, M) aa+SK+M

y is an additional yield constant. [These equations
also appear in Shuler and Kargi (1992, p. 420).]

In Section 3, we give a mathematical analysis of the
asymptotic behavior of solutions of system (2) with
a more general form for f5(S, M). The intuition is
clear: if the plasmid-free organism eliminates the plas-
mid-bearing organism, it also eliminates its own sup-
ply of the metabolite M. Thus, one anticipates that
both will coexist or both will be eliminated from the
chemostat (or bio-reactor). This is the ‘defensive’
model referred to above.

The other alternative occurs when the plasmid-
bearing organism devotes a portion of its resource
towards the production of an inhibitor to the plasmid-
free organism. Chao and Levin (1981) and Levin
(1988) document the evolution of ‘anticompetitor
toxins’. They study competition between sensitive and
resistant strains of E. coli in both structured and mass
habitats. Levin (1988) writes chemostat equations in
the same spirit as those below. Their studies are rele-
vant to questions of the evolution of temperate bac-
teriophages, Stewart and Levin (1973).

Consider the basic plasmid model (1) and introduce
an inhibitor (toxin) P produced by the plasmid-bear-
ing organism. The production of the inhibitor comes
at a cost in reproduction, modeled by removing a frac-
tion of the nutrient uptake and attributing that
amount of consumption to the production of the
inhibitor. The equations take the form

§ =89 —8§)D — f1(S) Xze-“Pég

xy =x;[(1 — g — k) f1(5) — D]
xy = %[ [2(8)e ™ — D] + gx, £1(S)
P =kx,fi(Sy— DP. (3)

The term e~ *? represents the effect of the inhibitor,
this form having been used by Lenski and Hattingh
(1986); k is the fraction of consumption devoted to the
production of the inhibitor. Section 4 deals with a
mathematical analysis of the asymptotic behavior of
solutions of a generalization of this system.

Both models (2) and (3) consist of four-dimensional
systems of non-linear ordinary differential equations.
Given the wide range of possible behavior patterns for
such system (for example, even three dimensions is
enough for chaotic behavior) it is most unusual that
global mathematical results are possible.

Finally, as a general hypothesis, we will assume that
all rest points are hyperbolic. This is usually reflected
in the use of strong inequalities in theorem hypothe-
ses. Since the parameters are measured quantities,
they are not known to the precision required to gener-
ate a non-hyperbolic case.

3. THE DEFENSIVE MODEL
In this section, we analyze a generalization of the
system (2). It is not necessary to restrict ourselves to
Monod (or Michaelis-Menten) kinetics. We can re-
strict the functional responses fi(S) and f,(S, M) to
C! functions satisfying

@ 10 =0, fi(S)>0,
(ii) £2(0, M) = £(S,0) =0, 8f,/8S > 0, 8f,/OM > 0.

This includes

71 =
mS M
(S, M) = e +SK+M “

the model of Sardonini and DiBiasio discussed in
Section 2.

First, it is convenient to work with dimensionless
variables. To achieve this, scale the variables by

S Xi

~ _ _ M
S=Fﬁ’ xl-=y—S(—o;, M=§7) 7= Dt.
Let
] S) fl (S(O)S) fl(s)
1
D
and

£EOS5SOM) £ M)
D - D

[Note that in the special case of eq. (2), the terms in
S divide out and a and m have changed their biolo-
gical meaning.] One can also view this scaling as
relating the variables to the environment of the reac-
tor, S©, D, the two variables under control of the
experimenter.

Then, the system can be written (dropping all of the
bars) as

§'=01-29)—fi(8)x1 — f2(S; M) x,
xy = [ — @) f1(8) — 1]x,

L(SM) =

Xz = (8, M) x; — x2 + qf1(S)x, (%)
M = kim0,
SO0, x(0)>0, x>0, M0>0.

Although the system (5) is four-dimensional, we
show that it is asymptotic to a two-dimensional sys-
tem. The theory for this is contained in the work of
Thieme (1992), but Appendix A is sufficient for our
purposes. First let £ =1 — 8§ — x; — x,. The system
(5) can be rewritten as

Y=-Z
xi=x[(1—gfil —x; —x, —F)—1]
xy =% [ ol =%y —x3 —Z) ~ 1]
+gx1 /il — x5 — x3 — X)
M =kfil —x; —x, — X)
ol —x; — % — Z, M)
- y

xz—M. (6)
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Clearly, Z(t) = Z(0)e~* or lim,, . Z(t) = 0 and the
last three equations of eq. (6) can be viewed as an
asymptotically autonomous system with limiting sys-
tem-(note the exponential rate of convergence).

x1=x1[(1 = @fi1 =%, —x3) ~ 1]
x3 = X3[ ol = x; — xz, M) — 1]

+ g% /11 — x1 — x5) ™
M =kx; fi(1 —x; — x3)

f2(1 = x3 — x2, M)

It is easy to see that S, x,, x, remain non-negative
if the initial conditions are non-negative. That
lim,.,  Z(t) = 0 shows that the solutions are bounded
and that one should restrict consideration of (7) to the
region x; + x; < 1. It is also easy to see, once f; and
f2 are bounded, that M remains bounded (although
we do not yet have an explicit bound). Moreover, if
M@0)=0, and x; +x, <1, M' >0 (£,(S,0)=0).
Thus, M cannot become negative and the original
system is dissipative.

Now et 2(t) = M (1) + (1/y)x2(t) — [(ky + g)/(1 — @)1/
[x1(t)/y]. Then a direct computation allows one to
rewrite (7) as

M.

.

I'=—2z
xp =x1[1 - fi(l = x; — x3) — 1]
X5 =x2[f2(1 — X —-xz,z—lxz + ky + qﬁ)— 1]
y l~qy
+ax1fi(l — x; — x3). (8)

As above, z(t) = z(0)e™* or lim,.z(t) = 0 and the
convergence is exponential. Hence, one may view the
last two equations in eqs (8) as a two-dimensional,
asymptotically, autonomous system with limiting sys-
tem

x1=x[1 —gfi(l —x; —x3) — 1]
x’2=x2|:2(1—x1 —xz,—f-z—+w§—l>— 1]
y 1l-qy
+gx1fi(l = x; — X3) )
confined to the region

Q= {(xl,xz)lxt 20,%,20,x, +x, <1,

ky+q
1—-gq

Figure 1 illustrates the region Q, a region bounded by
two lines and the x,-axis. This region is shown below
to be positively invariant and is the region where
system (9) is meaningful. The omega limit sets of all
positive trajectories of eqs (5) lie here.

To avoid a great deal of surplus notation, we write
eqgs (9) as

x1=[(1-q)f1(8) =11 x; = g1 (x4,x3)
x2 = (f2(§, M) — 1)x; + qf1(5)x; = g2(x1,X,)

X; — X3 >0}.

%qiq!n‘xf 0

Q x5 +x =1

—

X,

Fig. 1. The region Q: the domain of the limiting system.

(10)

It is the reduced system that we analyze. One way to
interpret this reduction is that, since the system is
dissipative, there is a global attractor which must be
on the intersections of the sets (in R*) given by

ky + g Xy 1

“‘"‘—xZ—M=0

x1+x2+S=1,
l—-gqy vy

and solutions on the attractor satisfy eqs (10).

To verify that the region Q is positively invariant,
one must check the flow on the boundaries. First of
all, (dxp/dt)|;,—0o=qfi(l ~x1)x;, >0 if x;>0.
Futther, (1= x1()) ~ X200 lxy+ 3= 1,530,550 =

— x; — x; < 0. Finally, let M(t) = [{ky + g)/(1 — ¢)]
[x1(¢)/y] — x2(t)/y. Then M'(t)|p = > 0. On all three
pieces of the boundary, the vector field points into
Q except at the rest point at the origin.

The variational matrix for (10) at the origin has the

form

m 0

Mz My
so the two eigenvalues pq, u, are the diagonal ele-
ments. A direct computation yields

my=1-qgfi(1)~1
Mmyy = - 1.

The eigenvector corresponding to u, lies along the
x,-axis and is not relevant. The eigenvector corre-
sponding to pu; lies along the line [g/(1 — q)]x;
— x, = 0 and, hence, points into Q. Thus, the origin is
asymptotically stable if f; (1) < 1/(1 — q) and unstable
iff,(1)>1/01 - g).

The next question is whether there are any addi-

-tional fixed points in . To find them, one must first

solve
(1—g)fi(l = x4 —x;) ~1=0.
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If f(1) < 1/(1 — g), this equation has no solution with
0 < x; + x, < 1. Thus, f(1) > 1/(1 — g) is a necessary
condition for the existence of at least one additional
rest point.

The condition is also sufficient. As noted, the region
Q is positively invariant under the flow. Let T'(t) (xo,
¥o) denote the mapping which takes the point (x;, yo)
to the point (x(t), y(t)) on the unique trajectory
through (xo, ¥o). Then, T(t)Q = Q. The ejective fixed
point theorem (Browder, 1965, Theorem 2) yields the
existence of a non-gjective fixed point, and f(1) >
1/(1 — g) makes the origin ejective. Hence, there is an
additional rest point (x¥, x3%).

Uniqueness unfortunately requires a computation.
If we denote by 4, 0 < 4; < 1 the unique value such
that f(4,) = 1/(1 — g), then one has at once that

*
1—xr—x2—),1
or

x¥=1-1; —x¥}.

l(1——x1—)q))—1]
y

X(1=x; —4) +qfi(A)x, =0.

Thus, x¥ must be a root of

ky+qx
F(xl)—[fz@,ly 3
ay

We establish uniqueness by showing that if there is
a point x; such that F(x;) =0, then F'(x;) >0. A
straightforward computation yields

F'(x1) = ¢fi(4) = [f2(4, M) — 1]

+ (1 —x; — 1) ofs

ky+qg 1
"[y(l-q)*y]'

However, F(x,) = 0 implies that

(A'l’M)

11

—qfi(A)x;

<0.
1“XX—A.1

LA, M) - 1=

Hence, the terms in F’(x,) are positive or F'(x;) > 0.
This establishes uniqueness. The following lemma
summarizes the discussion.

Lemma 3.1. A necessary and sufficient condition for
the existence of a non-trivial rest point (x¥, x%) of egs
(10) is that £(1) > 1/(1 — q). There is at most one such
interior rest point.

The local stability of the interior rest point is deter-
mined by the eigenvalues of the variational matrix

myy Mi2
J = .
Mmyy My

A straightforward calculation yields that
myy, = xT(1 —q)f1(8%) <0
my; =xT(1 - g)fi (§%) <0

o o

myy = X3 [‘—(S* M*) +

b (5o ey 2214 ky+q ]

yl—g)
+ qf1(8*) — a1 (§¥)xt

maz = [[(S*, M*) — 1] + x3 [—é(s* M¥)

L afz L s M*)] —afi (M)t

_ —ah(EY)xt +x;[ % (57,3

2 (8%, M*)] qfi(8*)xt <0.

Thus, one has at once that m;; + m;, < 0. We com-
pute the sign of the determinant of J, D=
MMz — MyoMsa;. Since myg =My <0, D=
my1(myy — my,). D will be positive if and only if
my1 > my,. We simply check this inequality. To sim-
plify the notation, we use

S*=1—x¥—x3, prp Ry taxi x
-9y ¢
Is
_ At x*[ % 501
X2
laf2

2B ()| - asitsn
<x§[—z—f;(S*,M*) 2 2 (5%, M%)- k+;]
+ qf1(8*) — qf1(8*)x1?

If one cancels equal terms from each side, the ques-
tion is whether

_ Qf1(S:)xf _ic_; afZ (S* M*)
X2
<2 "‘ af (5%, M%) (ky +qq> +afi (%)

This clearly holds since the left-hand.side is negative
and the right-hand side is positive. Thus, one has

Lemma 3.2. If the interior equilibrium exists, it is lo-
cally asymptotically stable.

The problem now is to show that the stability is
global. The next lemma excludes the possibility of
limit cycles for system (10).

Lemma 3.3. System (10) has no periodic trajectories.
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Proof: We apply the Dulac criterion (Andronov et al.,
1973) with h(x4, x5) = 1/(x;x;). Compute

[ 911 + [hgz]

1
=—(1-q)—fill —x; —x3) — lzqf1(s)x1
X2 X1X3

v Lo
X1 X1 as

1o, 1 1
yoMx; x,

X qfi(l = x; = X3) < 0.

Using the Dulac criterion, one can conclude that there
are no limit cycles.

Theorem 3.1. If f(1) < 1/(1 — q), then all solutions of
system (10) with initial conditions in Q satisfy

lim,, o x,(t) =0
lim,, ., x,(t) =0.

If £(1) > 1/(1 — q), then all non-trivial solutions sat-
isfy

lim,. , x,(t) = x¥
lim,. o, X5(t) = x%

where (x¥, x%) is the unique interior rest point of system
(10).

Proof: The proof follows directly from the Poin-
caré-Bendixson Theorem (Levinson, 1955), given
Lemmas 3.1-3.3.

The results of Appendix A allow the same con-
clusion for the larger system — if f; (1) > 1/(1 — g), all
trajectories of eqs (5) will tend to a rest point. The
precise coordinates have to be recovered from the
asymptotics, for example, $* =1-—x} —~x% and
M* =[(ky + /(1 — g@)]x¥ — x%/y. These quantities
are positive by constraints on the domain in which
system (10) was considered.

4. THE OFFENSIVE MODEL
In this Section, we analyze a generalization of (3).
We will assume only that the functions f;(S) are
C?! functions which satisfy f(0) =0 and f;/(S) >0,
i=1,2. As before, the variables are first scaled to
non-dimensional ones. To achieve this let

t=Dt, fji=puySY.
Define the functions f;(S) by

715 =29,

We remind the reader that for Michaelis—Menten
kinetics, this redefines the basic coefficients m; and a;,
i =1,2. Then, dropping the bars, system (3) may be

written as
§'=1—8—x£(5) — x26 ™" £,(5)
xy = [(1 — g —k)f1(S) — 1]
x5 = X2 [ f2(S)e " — 17 + gx1f1(S)
P' = kx, f1(S) — (12)

If the new variable T =1— 8§ — x; — x, — Pisin-
troduced, system (12) can be written as the equivalent
system

=-%

Xi=x[1—-g—-kfil —x; —x,—P—-%)—1]

xy =% [f2(1 =x; —x; —P—E)e ™™ —1]
+gxify(l~x; —x,—P=3Z)

P =kxifi(l—xy—x;,—P—X)— (13)

Since Z(t) = Z(0)e ', one can regard the last three
equations in system (13) as an asymptotically auto-
nomous system with limiting system

¥y =x[1-q—kfi(l —x; —x; - P)—1]

Xy =% [fol — %y —x; — P)e™ —1]
+gx1f1(1 —x; — %, — P)

P =kx1fiy(1—x; ~x;~P)~

As before, we must justify the reduction and this is
contained in Appendix A. Introduce the new variable
I'=P —cx; in (14) where ¢ = k/(1 — g — k). Then
(14) may be written as

I''=-T
xp=x[1—-g9g-kAH0-0+x; —x; —T)—1]
Xy = %[ ol = (1 + )%y — x, — [)e #E =) 1]

+ax fil—(1+¢c)x; —x2—1)

(14)

with limiting system
Xy =x {1 —qg—k)fi(1 = (1 +)x; —x3) — 1]
x5 = %[ fo(1 — (1 + ¢)x; — x;)e™ " — 1]
+gx. fi(1 —(Q +c)x; —x3). (15)

The variables are constrained to be in Q=
{Ge,x)|%: 20, i=12, (1+)x;+x2<1, ¢=
k/1 —q — k}. 1t is the system (15) that we analyze.
Note that the region Q is positively invariant under
the solution map for system (15). E; = (0,0) is a rest
point of system (15). The variational matrix about
E, takes the form

0
I3 2
mzy Mz

SO py = my,; and u, = m,, are eigenvalues. A direct
computation yields

p={1—-qg—kKfi()—1
w=f1)—-1

(16)
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Remark: The origin is an attractor if fi(1) <
1/1 —q —k and f,(1) < 1. The origin is unstable if
either of these inequalities is reversed.

If f2(1) > 1, denote by A, the unique number such
that f,(1,) = 1. This is the ‘break-even’ level for x, if
x, were not present. E; = (0,1 — 4,) is also a rest
point. The variational matrix about E; is also of the
form given by (16) and the eigenvalues are given by

pr=1—g—kfi(d)—1
p2 = — (1= 4;) f2(A2).

The eigenvector corresponding to u, lies along the
X,-axis (x; = 0) is an invariant set for the flow corre-
sponding to system (15). Thus, the stable manifold of
E, is at least one-dimensional and E; will be an
attractor if f,(4,) < 1/(1 — g — k).

Theorem 4.1. If f;(1) < 1/(1 —q—k) and f,(1) < 1,
the origin is a global attractor (for Q). If £,(1) > 1 and
fi(A42) < 1/1 — q — k, E; is an attractor. If there are no
interior rest points, B is a global attractor of the
interior of Q.

Proof: If f;(1) < 1/(1 — g — k), every rest point is of
the form (0, z). If f5(1) < 1, then z = 0 and the origin is
the only rest point and is a local attractor. Without an
interior rest point there are no periodic orbits. Hence,
the Poincaré-Bendixson Theorem completes the
proof of the first statement.

If (1) > 1, the origin is unstable and E, exists and
is a local attractor since f;(A,) < 11 — g — k) by hy-
pothesis. It-remains to show that no orbit with initial
conditions in Q tends to the origin (i.c. E; is a global
attractor of Q). Choose ¢ > 0 such that f,(1 — (2 +
c)e)e ™ > 1. (This is possible by continuity.)

If lim,., . x;(t) =0, i = 1,2, then for ¢ sufficiently
large, x5(t) > 0, a contradiction. (Alternatively, one
could use the Butler McGehee lemma to exclude the
origin as an omega limit point) The Poincaré-
Bendixson Theorem completes the proof.

If there is an interior rest point, periodic orbits
might exist. The next lemma eliminates this possibility.

Lemma 4.1. The system (15) has no periodic orbits in
Q.

Proof: The proof makes use of the Dulac criterion
(Andronov et al, 1973). (See Smith and Waltman,
1995, for applications.) Think of the system as

X7 = g1(x1,%3)
X5 = ga(%1,%2)

and compute the divergence of the vector field
(Bg1, Bg2) with B=1/x,x,. A direct computation

gives this quantity as

_(1+c)(1—q~k)
X2

A0 =1+ x; —x3)
— L0 = (1 + xy — x)e
X
g
-1 =Q1 +)x; —x2)
X2

4 a1 — (L + )x; — x;) < 0.
X2

The Dulac criterion then excludes any periodic orbits
in the interior of Q.

The rest point E, represents the total exclusion of
the plasmid-bearing organism and, thus, is an unde-
sirable state from the standpoint of a bio-reactor. No
product is manufactured (and nutrient is consumed).
There is no exclusionary state for the plasmid-free
organism except total washout of both since the plas-
mid may be lost from a plasmid-bearing organism
producing a plasmid-free organism. Thus, the ques-
tion of the existence of interior rest points is para-
mount.

An interior rest point must satisfy

1
Sl = +o)x, —x2)=m~

We have at once the following:

Remark: If f;(1) < 1/(1 — q — k), there is no interior
rest point.

Thus, we can limit ourselves to the case that
fill) > —
! 1—gq—k’

since Theorem 4.1 applies if this inequality is reserved.
(We exclude the non-hyperbolic case fi(1)=

1/1—q—k)
If fi(1) > 1/(1 — g — k), define 4; as the unique
value of z such that

fl(Z)-_-m-

(We tacitly assume A; # A,.) An interior rest point
must be on the line segment
I+)xy+x2=1-— Al,(xl,xz)efz
and the x; coordinate must be a root of
Fx)=[1—4 — (1 +ox][f2(A)e”* —1]
gx 1—4

— 0 < :
+1—q-—k < 1+¢

17

One has at once that
F'x)=—1+c)[fo{d)e"* —1]
+[1 =4, — (A + Jx](epfaldy) e™*%)

q

+l—q—k
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and
F'(x) = 2cp(l + ¢) fo(A) e~ + 2 y?
X[1 =2 = (1 +c)x]e”™** fr(4) >0. (18)

Thus, any zero of F'(x) is a local minimum. Finally,
note that

FO) =(1-4)(f4)—1)

1=4)\_ ql—A)
F(1+c)‘(1+c)(1—q—k)>°‘
Theorem 4.2. If L,(l) <1, f,(1)>1/(1 —q —K),

there exists a unique interior rest point, E*, which is
a global attractor.

(19)

and

(20)

Proof: In view of the hypothesis, one has that
FO)=(1-4)(f2(4) - 1) <0.

Equation (20) implies the existence of at least one zero
of F(x) and (18) implies exactly one. Hence, there is
a unique interior rest point (x¥, x¥).

E, is unstable. If E, exists, then since

L2(1) <1 =f2(22)
it follows that 1, < 4,. Hence

1ilh) > ) = T

k
by monotonicity, so E; is unstable (a saddle). The
Butler-McGehee Theorem (Smith and Waltman,
1995, p. 12), shows that neither Eq nor E, can be an
omega limit point on a trajectory with initial condi-
tions in Q. The Poincaré~Bendixson Theorem shows
that all orbits tend to (x¥, x}) as ¢ tends to infinity.
It remains only to consider the case f>(4;) > 1. As
we have noted, the plasmid-free organism is likely
a better competitor if there were no inhibition. The
parameter p correlates with the effectiveness of the
inhibitor. It can happen, of course, that the plasmid-
free organism is a better competitor even at the max-
imum attainable level of inhibition. This is the content
of the next statement which is intended as motivation
for the next principal result.

Remark: If f,(4,) > et =4/ +al - ype oply rest
points are Ey and E,. E; is a global attractor of Q.

Proof: Since f,(1) > 1 follows from monotonicity, the
origin is unstable and E, exists. Both terms on the
right-hand side of (17) are positive, so there is no zero
and, hence, no interior equilibrium.

From the hypothesis, it follows that f>(1;) > 1=
f2(42) or A1 > ;. Hence, f1(41) > fi(Az) o1 (1 — g — k)
fi(A4;) < 1. Thus, E; is a local attractor. That it is
a global attractor follows from the Poincaré-Bendix-
son Theorem.

Note that 1, < A, reflects that fact that without the
inhibitor, x, is a better competitor. The remark gives
a sufficient condition since the hypothesis (crudely)

makes both terms in eq. (17) positive. To seek a better
solution, we need to account for the parameter g in
a more delicate way. Before stating the result, we
remind the reader that the existence and (local) stabil-
ity of E, is independent of the parameter u since
x; = 0 there.

Theorem 4.3. If f,(1) > 1/(1 — q — k) and f,(4;) > 1,
there exists a unique number u* such that

(1) if u < u* there are no interior rest points and
E; is a global attractor

@il) if p> u* there are exactly two interior rest
points E* = (x¥,x¥*) and B = (%, %,). E; and one of
(E*, E) are local attractors.

Proof: F(0) >0, F[(1—43)/(1 +¢)] >0, and F"(x)

>0, 0<x<(1—-24y9)/(1+ c). Hence, there is no
root, a double root or exactly two roots of F(x) = 0in
I'=(0,(1 —Ay)/(1 + ¢)). Suppose first that there are
no roots. Then F(x) > 0 for all x.

Since f2(1) > f5(A1) > 1, E, is unstable (a repeller)
and E; exists. Since f5(4;) > 1 = f5(4,) it follows that
Ay > A, and that E; is locally stable. Since there are
no other rest points, the Poincaré-Bendixson The-
orem implies that all trajectories converge to E; .

Suppose there were exactly two roots of F(x) = 0in
I, E* and E. Since E, is a local attractor and is not
a global one, its basin of attraction, f, has a boundary
0f which is invariant. fnQ must contain a rest
point, other than the origin, by the Poincaré-Bendix-
son Theorem. This must be one of E* or £ and that
rest point is necessarily unstable. The other rest point
is outside the basin of attraction (if it is hyperbolic,
our genetic assumption). df separates Q and so the
Poincaré-Bendixson Theorem says that,the remain-
ing rest point must attract all trajectories with initial
conditions in Q/f (where J is the closure of f).

There remains to show the existence of a unique
u* which separates the two cases.

As already noted, the function F(x) in (17) is convex
and, hence, has at most one critical point which must
be a minimum. For each u > 0, let F(x) be defined by
(17). Then define g(x) =lim,., F(x)=4; —1+
(1 +c+ qf1(41))x for xel. For fixed x the conver-
gence is monotone. Since g(x) <0 for 0 <x <
{(@ = 2)/[1 + ¢ + qf1(41)]}, for sufficiently large y,
F,(x) has two zeros on J=(0,(1 —A)/[1+c+
qf1(A41)]). Moreover, if u; < p, and F, (x) has two
zeros on J, so does F, (x). Also, if F, (x) has no zero
on J, then F, (x) has no zeros. Hence,

A ={u|u >0, F,(x) has two zeros on J}
and
B ={u|p >0, F,(x) has no zeros on J}

are open disjoint sets. Let u* =sup B. F.(x) has
exactly one zero on J. This is the u* of the theorem. By
monotonicity, it is unique.

Again, the material in the appendix shows that
similar conclusions hold for the original system. See
the remarks at the end of Section 3.
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Table 1
<=5 LOD<1 E, is a global attractor
L()>1 E, is a global attractor
LD)>== L)< E* is a global attractor
fr(d) > 1 p<u* E, is a global attractor
u>p* bistable attractors

The conclusions of this section are illustrated in
Table 1.

The reader will note that we have not used the
exponential character of the term e *F which ex-
presses the effect of the inhibitor. The term e~ #f can
be replaced by a general function h(u, P) which is
continuously differentiable and which satisfies:

() h(1,0)=h(0,P) = 1;

(ii) for u >0, P > 0, 0h/ou <0, dh/6P < 0;
(iii) h(yu, P) is convex in P;
(iv) for fixed P > 0, lim, ., h(y, P) = 0.

h(u,P) = e ** satisfies these conditions. Another
example is h(y, P) = 1/(1 + uP).

5. DISCUSSION

Since the plasmid-bearing organism can always
lose the plasmid thereby, perhaps, creating a better
competitor, the designer of a bio-reactor must con-
tend with this reality. The obvious aid to the plasmid-
bearing organisms is to alter the medium in such
a way as not to allow the plasmid-bearing organism
to be out-competed. Hence the idea of selective me-
dium is introduced. A typical solution is to encode an
antibiotic resistance in the plasmid and to put an
antibiotic in the feed bottle. Thus, if the plasmid is
lost, so is the antibiotic resistance. For long-running
reactors, the cost of the antibiotic might be significant,
and there are environmental concerns. A generally
more desirable solution might be to create the selec-
tive medium from within.

In this paper, we have considered models for two
ways of doing this. The first involves using an organ-
ism that is auxotrophic for a metabolite that is pro-
duced in the normal reproduction of the plasmid-
bearing organism. Thus, if the plasmid free organism
out-competes the plasmid-bearing one, it destroys its
source of the metabolite. We have viewed this as
a defensive strategy (from the standpoint of the engin-
eer, not the organism). Another alternative is to have
the plasmid-bearing organism produce a toxin against
the plasmid-free one, at some expense, of course, to its
own reproductive abilities. This, more aggressive
strategy, we have viewed as an offensive strategy.
Experiments exist in the literature showing both.

The chemostat models for each are formulated as
four non-linear ordinary differential equations. By an
appropriate change of variables, the system can be
viewed as an asymptotically autonomous system
where the limiting equations are two-dimensional.
The theory for asymptotically autonomous equations

exists as does a very complete theory for two-dimen-
sional autonomous differential equations. In the latter
case, the Dulac criterion and the Poincaré-Bendixson
Theorem are standard, powerful tools. In both cases
the Dulac criterion allowed us to eliminate the possi-
bility of limit cycles which are known to occur (in
theory) for an external inhibitor (Hsu and Waltman,
1992). In the first (the defensive) case, we are able to
give a complete answer to the asymptotic behavior of
the model in terms of the parameters involved. We
view this as the completion of the analysis of Sar-
donini and DiBiasio (1984). In the offensive case, we
are able to give an explicit answer for a large region of
the parameter space and show the existence of a criti-
cal parameter which determines the behavior in the
remaining cases. While the critical value is not explicit
for the general case, it could be numerically deter-
mined in any specific case. The most interesting result
here was the conditions for the existence of two attrac-
tors, with the asymptotic behavior being dependent
upon the initial conditions. One of the two attractors
eliminates the plasmid-bearing organism. The user of
the bio-reactor must begin his system in the proper
region if he is to have a useful outcome. While it is
theoretically possible to begin with only plasmid-
bearing organisms and be in the domain of attraction
of the coexistence steady state, this could be a prob-
lem in practice. The numerical solutions of Levin
(1988, Fig. 1) illustrated the possibility (for a slightly
different model) of the existence of two attractors.
Again, we view the current work as a rigorous demon-
stration of this phenomenon and provide the relevant
parameters regions for it to occur. The model is very
close to that of Levin (1988).

In the inhibitor case, there is some choice of
modeling strategies and we wished to comment on
our approach. Obviously, the model should reduce
the plasmid-free population when the inhibitor is
present. One could view this as ‘contact’ between the
inhibitor and the organisms which results in the death
of the organisms. Such modeling is common in pred-
ator-prey modeling and in epidemic modeling where
mass action terms are used. We have chosen to follow
the work of Lenski and Hattingh (1986), who model
the inhibitor as having a negative effect on the nutri-
ent uptake—and hence on the reproduction (assumed
proportional to consumption) of the organism, result-
ing in smaller numbers of the population. This
preserves the conservation that is natural to the
chemostat. The basic premise is that if all variables are
taken into account (everything is expressed in nutrient
equivalents), then the chemostat with no organism
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and the chemostat with nutrient consumption would
in sum have the same behavior. The organism is just
another manifestation of the nutrient — at least in the
limit. It is this conservation that allows us to reduce
the dimension of the system.

The theorems have been stated in terms of scaled
quantities; in particular, the variables under control,
$© and D, have been scaled out of the system. We
now restate the results in terms of the original para-
meters and provide operating diagrams to display the
regions of common behavior. The operating diagrams
show the functional responses as being of Michaelis—
Menten type but, of course, they are more general
than this. The major result of Section 3, Theorem 3.1,
provides only two regions. Region 1 gives total
washout and occurs when

Hi8D) (1 —q) <D.

Region II represents convergence to a coexistence
steady state and occurs when

[i8D (1 —q)>D.

This is illustrated in Fig. 2.

The material in Section 4 is more complex. Table 1
provides four possible regions. We show two repre-
sentative cases. Two curves are plotted

Li:(1-q—-kfi(59) =D
and
Ly:f2(8®) =D.

One way to view the curves is as plots of 4; and
A, for a given value of D. If the curves cross, as in
Fig. 3, this is a common value—at this point the
values of S and D make A, = 4,. Above the first

Dilution
Rate |
my S(o)
D=
3+ ;ﬁs
)i
D 1K) Ill§°)
e
v
Input Concentration of Substrate
Fig. 2. Operating diagram for the defensive case.
Dilution 1
Rate

Input Concentration of Substrate

Fig. 3. Operating diagram for the offensive case with intersecting functional responses and p > p*.
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Dilution
Rate I

(U]

D=(1-<l).1+

Input Concentration of Substrate

Fig. 4. Operating diagram for the offensive case with non-intersecting functional responses and pu > p*.

curve, the plasmid-bearing organisms wash out of the
system; in particular there are no interior steady
states. Above both curves, both organisms wash out.
Hence, Region I illustrates the total washout that
occurs when

(1-g9-0fi(§") <D
and
£(89) < D.

Region II represents the washout of only the plas-
mid-bearing organism. This occurs in two different
scenarios. First, it can happen when the origin is
unstable and there are no interior rest points (inde-
pendent of p), ie. when exactly one of the above
inequalities are violated: the other case is described
below when the parameter u enters the discussion.

Region III represents the part of the parameter
space where a unique interior rest point, called E¥, is
the global attractor. This region must be below the
curve L, and in the region defined by

Sf2(44) > D.

The last condition is simply the region where 4, < ;.
This is marked III in Fig. 3.

The bistable case, marked IV, requires that the
parameter u be sufficiently large (4 > u,), the region
be below the curve Ly, and be in the region where
Ay < 4y (below the line indicated in Fig. 3). If the
parameter u is not sufficiently large, the region
marked IV becomes IL

Finally, the curves may not cross. We illustrate the
case where the curve L, is above L, so A; < 4, for all
values of the input concentration and the dilution
rate. Thus it is always the case that A; > A, and so the
region below L, is either II or IV depending on the
size of u. We illustrate the case u > u* in Fig. 4.

If the curves are ordered the other way, the lower
region becomes IIL
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NOTATION

a Michaelis—Menten constant

D dilution rate

E, rest point

E, rest point

E* rest point

E rest point

J variational matrix

k fraction of consumption devoted to pro-
duction of inhibitor

m maximal growth rate

M metabolite concentration

M* metabolite concentration at a rest point

P inhibitor concentration

P* inhibitor concentration at a rest point

q fraction of plasmids lost

S nutrient concentration

S* nutrient concentration at a rest point

SO input nutrient concentration

t time

Xy plasmid-free organism concentration

X2 plasmid-bearing organism concentration

x¥ plasmid-free organism concentration at
a rest point

x% plasmid-bearing organism concentration
at a rest point

B basin of attraction
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yield constant

combination of dependent variables
combination of dependent variables
region in R?

dimensionless time

inhibition constant

= bM'—j\!
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APPENDIX A

In several cases, we were able to change variables and
write the system under investigation as an asymptotically
autonomous system of one dimension lower. The standard
theory easily yields that the global attractor lies in a space of
one dimension lower. However, it is not trivial that the
dynamics are the same for the two systems even if the limit
sets are the same. The original work in this direction is
a paper of Markus (1953), which has been greatly improved
in a recent paper of Thieme (1992). Thieme’s result is very
general but also difficult to explain briefly. The material that
we present is a very special case of Thieme’s work and the
statement and proofs can be found in Appendix F of Smith
and Waltman (1995).

Consider two systems of ordinary differential equations of
the form

Z = Az

(A1)
yl =f(ya Z)

and

x =f(x,0) (A2)

where
z€R™, (y,2)e D =« R*xR™,
xeQ = {x|(x,0)e D} = R".

It will be assumed that fis continuously differentiable, D is
positively invariant for (A1), and that solutions of eq. (A1) are
bounded. The following hypotheses will be needed.

(H1) All of the eigenvalues of 4 have negative real parts.

(H2) Equation (A2) has a finite number of rest points in Q,
each of which is hyperbolic for eq. (A2). Denote these rest
points by x;, x; ..., X,.

(H3) The dimension of the stable manifold of x; is n for
1 < i <r and the dimension of the stable manifolds of x; is
less than n for j = r + 1, ... p. In symbols, dim(M *(x,)) = n,
i=1,..,ndimM"(x)) <nforj=r+1,..,p
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(H4) Q={ ) M*(x).
(H5) Equation (A2) does not have a cycle of rest points.

Theorem A.l. Let (H1) — (H5) hold and let (y(t), z(t)) be
a solution of (A1). Then for some i,

Iim!-"oo(y(tL Z(t)) = (xia 0)

In our case, the first equation in (A1) was one-dimensional,
that is, 4 was a 1x1 matrix with entry —1. We only
considered limit sets that were hyperbolic rest points, so
hypotheses (H1)-(H4) were automatically satisfied. In all
cases where there was no interior rest point, (H5) was clearly
satisfied. Moreover, a rest point that is an attractor or
a repeller cannot be a part of a cycle. These observations are
sufficient to apply Theorem A.1 to all of the reductions and
to support convergence of all solutions of the four-dimen-

sional system to rest points on the basis of the convergence
established for the two-dimensional system. The only
troublesome case is the case of two stable equilibria in
Section 4 (the last case). The origin can be connected to the
interior unstable rest point which in turn is connected to
E, or the other interior rest point. However, no further
connections are possible and no cycle exists.

We note, however, that the possibility remains for a solu-
tion of the higher-dimensional system to converge to a rest
point which, for the corresponding two-dimensional system,
is unstable. The totality of these stable manifolds (of rest
points which are unstable for the two-dimensional limiting
system) has (four-dimensional) Lebesque measure zero. Ex-
cept for trivial cases on the boundary (take x,(0)=
x,(0) = 0, S(0) >0, p(0) > 0), this can only happen in the
models being considered here in the last case of Section 4, for
the interior, unstable rest point.



