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Abstract. Therecent broad interest on ratio-dependent based predator functional response
callsfor detailed qualitative study on ratio-dependent predator-prey differential systems. A
first such attempt is documented in the recent work of Kuang and Beretta(1998), where
Michaelis-Menten-type ratio-dependent model is studied systematically. Their paper, while
contains many new and significant results, isfar from completein answering the many subtle
mathematical questions on the global qualitative behavior of solutions of the model. Indeed,
many of such important open questions are mentioned in the discussion section of their
paper.

Through a simple change of variable, we transform the Michaelis-Menten-type ratio-
dependent model to a better studied Gause-type predator-prey system. As aresult, we can
obtain acomplete classification of the asymptotic behavior of the solutions of the Michaelis-
Menten-type ratio-dependent model. In some cases we can determine how the outcomes
depend on the initial conditions. In particular, open questions on the global stability of
all equilibria in various cases and the uniqueness of limit cycles are resolved. Biological
implications of our results are also presented.

1. Introduction

One of the most popular mathematical model describing a predator-prey interac-
tion is the following well-known Lotka-Volterra type predator-prey model with
Michaelis-Menten (or Holling type 1) functional response (Freedman (1980), May
(1974)):

X' () = ax(1—x/K) —cxy/(m + x)

Y(@®) = y(fx/(m+x)—d) (L1

x(0) >0, y0O)0>0
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wherex, y standfor prey and predator density, respectively.a, K, ¢, m, f, d arepos-
itive constants that stand for prey intrinsic growth rate, carrying capacity, capturing
rate, half saturation constant, maximal predator growth rate, predator death rate,
respectively. Thismodel exhibit thewell-known “ paradox of enrichment” observed
by Hairston et al. (1960) and by Rosenzweig (1969) which states that according
to model (1.1), enriching a predator-prey system (increasing the carrying capacity
K) will cause an increase in the equilibrium density of the predator but not in that
of the prey, and will destabilize the positive equilibrium (the positive steady state
changes from stable to unstable as K increases). An equivalent paradox is the so
called “biological control paradox” which was recently brought into discussion by
Luck (1990), stating that according to (1.1), we cannot have both alow and stable
prey equilibrium density. However, in reality, there are numerous examples of suc-
cessful biological control wherethe prey are maintained at densitieslessthan 2% of
their carrying capacities (Arditi and Berryman (1991)). This clearly indicates that
the paradox of biological control isnot intrinsic to predator-prey interactions. An-
other noteworthy prediction from model (1.1) isthat prey and predator species can
not extinct simultaneously (mutual extinction). This, however, clearly contradicts
Gause's classic observation of mutual extinction in the protozoans, Paramecium
and its predator Didinium (Gause (1934), Abrams and Ginzburg (2000)).

Recently there is a growing evidences (Arditi et a. (1991), Akcakaya et al.
(1995), Cosner et al. (1999)) that in some situations, especially when predator have
to search for food (and therefore have to share or compete for food), amore suitable
general predator-prey theory should be based on the so called ratio-dependent the-
ory, which can be roughly stated as that the per capita predator growth rate should
be a function of the ratio of prey to predator abundance. This is supported by
numerous field and laboratory experiments and observations (Arditi and Ginzburg
(1989), Arditi et al. (1991)). Generally, aratio-dependent predator-prey model takes
the form

x'(t) = xf(x) —yp(x/y)
V' (1) = (cq(x/y) —d)y.

Here p(x) isthe so-called predator functional response. Often, ¢ (x) isreplaced by
p(x), in which case ¢ becomes the conversion rate. p(x), g(x) satisfy the usual
properties such as being nonnegative and increasing, and equal to zero at zero.

Geometrically, the differences of prey-dependent and ratio-dependent models
areobvious, theformer hasavertical predator isocline, whilethelatter hasaslanted
one. Thereare even moredifferencesintheir prey isoclines. Local stability analysis
and simulations (Arditi and Ginzburg (1989), Berryman (1992)) show that theratio-
dependent models are capable of producing richer and more reasonable dynamics
biologically. Specifically, it will not produce the paradox of biological control and
the so-called paradox of enrichment. It also allows mutual extinction as a possible
outcome of agiven predator-prey interaction (Kuang and Beretta (1998), Jost et al.
(1999)).

In this paper we study following ratio-dependent predator-prey system which
was discussed in Kuang and Beretta (1998) (see also Jost et al. (1999)):
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x'(t) =ax(1—x/K) —cxy/(my +x) = F(x, y),
Y'(t) = y(=d + fx/(my +x)) = G(x, y), (1.2)
x(0) =x>0, y0O=y=>0

wherea, K, ¢, m, f, d arepositiveconstantsand x (), y(¢) represent the population
density of prey and predator at time ¢ respectively. The prey grows with intrinsic
growth rate a and carrying capacity K in the absence of predation. The predator
consumes the prey with functional response of Michaelis-Menten type cuy/(m +
u), u = x/y and contributes to its growth with rate fuy/(m + u). The constant d
is the death rate of predator. Observe that lim, ). 0,0 F(x,y) = G(x,y) = 0.
We thus define that (0, 0) = G (0, 0) = 0. Clearly, with this assumption, both F
and G are continuous on the closure of R2 where R2 = {(u, y)| u > 0, y > 0}.

Kuang and Beretta (1998) presented some global qualitative analysis of so-
lutions of system (1.2). The authors showed that ratio-dependent predator-prey
models are rich in boundary dynamics. For example, for some initial conditions,
both predator and prey can go extinction simultaneously. They also established that
the system has no nontrivial periodic solutions provided the positive steady state
is locally asymptotic stable. Similar results for more general Gause-type ratio-
dependent predator-prey systems can be found in Kuang (1999).

For simplicity, we nondimensionalizesthe system (1.2) asin Kuang and Beretta
(1998) with the following scaling

t—at, x—>x/K, y—>my/K
then the system (1.2) takes the form

X)) =x(1—x)—sxy/(x+y),
V(1) =8y(—=r +x/(x +y)), (1.3
x(0) =x0>0, y(0) =yo>0,

where

s_ma’ 8_a, r_f. 1.9
Results of Kuang and Beretta (1998) and their open questions are summarized in
table 1.

In this paper we shall give an almost compl ete classification for the asymptotic
behavior of the solutions of (1.3). The open questions proposed by Kuang and
Berettain (1998) are al answered here. When relevant, it is determined how the
outcomes depends on the initial conditions. We also establish the uniqueness of
limit cyclesif it exists.

Therest of thispaper isorganized asfollows. In section 2, by asimplebut crucial
change of variables, we transform the system (1.3) into a Gause-type predator-prey
system (2.1) where aweal th of existing methods and results are applicable. Wethus
obtain a better understanding of the rich asymptotic behavior of the solutions of
the system (1.3) through that of system (2.1). Section 3 presents direct biological
implications of al our mathematical results in terms of the original parametersin
system (1.2).
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Table 1. Established results and open questions of Kuang and Beretta (1998) in terms of

s,0,r.
Conditions Results or question

1. r>1s>0, (1, 0) islocally asymptotically stable.
r>1,0<s <1, (1, 0) isglobally asymptoticaly stable.
s> 1+46r, There exists (x(t), y(#))— (0, 0). ast— o0

Hence, the system is not persistent.
4, r>11<s <1+ ér, (1, 0) islocally stable.
OPEN QUESTION 1: Is (1, 0) globally stable?
O0<r<10<s<1, E* isglobally stable.
O<r<l15s> (0, 0) isglobally stable.
= E*islocally stable.
S1-r)>1 OPEN QUESTION 2: Is E* globally stable?

1
1-r"?
O<r<ll<s<

8 O<r<ll<s< ﬁ (i) OPEN QUESTION 3: Isittruethat if 1 < s <14 6r,

s1l-r <1 then E* isglobally stable?
(iHF1+6r <s < 25+ %, E* islocaly.

12
stable and the system is not persistent.
(i) 17 + £& <s < 1= then E* isunstable.
and the system is not persistent.

2. Main results

We make the change of variable (x, y) — (u, y) whereu = x/y in system (1.3).

Thisreducesit to the following Gause-type predator-prey system (2.1)

u'(t) = gu) — o)y,
() =¥y,
u( =u0>0, y(O)=y0>0

where
gw)=ul+6r —s+ A+ 6r—8u) /(L +u),
o) = u?
Yu) =08w/(u+1)—r).

Since (2.1) can also be rewritten as

u'(t) = @) (h(u) — y),
Y =¥y,

we see that the prey isocline of the system (2.1) is given by

y= g(u)
@(u)

=h(u)=QA+d6r—s+ A4+6r —8u)/u(u+1).

2.1)

2.2)

(2.3)

(2.4)
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Clearly, lim,— yo0 A() = 0 and
W) = —[(A+8r —8u?+ 2L+ 8r — Hu + (L+ 6r — $)]/u’(L+ u)?. (2.5)

From(2.4), (2.5) and someroutinecal cul ations, we have thefollowing simplelemma
which describes the qualitative behavior of the function y = h(u) (see Fig.1(a)-
(d)). The proof is omitted.

Lemma2l. leeA=1+6r—Sand B =1+ 68r —s.

(@ IfA>0,B>0and A%+ B2 > Othen h(u) > 0 > K’ (u) for all u > 0.
(b) If AB < 0then h(u), h'(u) has exactly one positive zero 6, 61 respectively

and
B
2
90=—Z <61 =00+ ./65 + 6o.

2.1. Equilibrium analysis

System (2.1) aways has the trivia equilibrium Eg = (0, 0) and the boundary
equilibrium E1 = (6g, 0) provided AB < 0. Clearly, if r > 1then (1) < Ofor all
u > 0.Ontheother hand,if 0 < r < 1then ¥ (u*) = Owhereu™ =r/(1—r) >0
and

Y =81 —r)u—u")/L+u).

Hencethe system (2.1) hasaunique positive equilibrium E* = (u*, y*) if and only
if r € (0,1) and y* = h(u*) > 0. From (2.2), (2.3) the variational matrix of the
system (2.1) is given by
_ [ ¢ @) — y) + o@h’ ) —u?
I, ) _[ 8y/(1+ u)? S(u/(u+ 1) —r)i|' (2:6)
The stability of equilibria Eq, E1 and E* is determined by the eigenvalues of the
matrix J(Ep), J(E1) and J(E*) respectively.

Lemma22.Let A =1+ 6r —§and B = 1+ 6r — s. For the system (2.1), the
following statements are true.

(i) If B < Othen Eg islocally asymptotically stable.
If B > Othen Eg isa saddle point with stable manifold {(0, y)|y > 0}.
If A > 0,B = 0 then Ep remains a saddle point with stable manifold
{0, »y > 0}.

(i) If A < 0, B > Othen E; isasaddle point when u™* < 6p and E1 is locally
asymptotically stable when u* > 6. (See Fig. 1(c)).
Let A > 0,B < 0. Then E;1 isasaddlepointwhenr > 1. ForO<r < 1, E1
isa saddle point when 6y < u* and E1 isa unstable node when 6y > u*. (See

Fig. 1(d)).
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(iii) If A < 0, B > Othen E* islocally asymptotically stable when u* < 0g. (See
Fig. 1(c)).
If A > 0, B < 0then E* isaunstable focus or nodeif 6y < u* < 61 and E*
isasymptotically stable if u™ > 6.
If A >0, B > 0then E* isasymptotically stable. (See Fig. 1(a)).

Proof. From(2.6) and (2.4), (2.5), the variational matrix of the system (2.1) at Egis

_|1+4+6r—s O
J(Eo) = [ 0 —8r:|'
Obviously the first two cases of (i) hold. The last case of (i) can be seen directly
from the system (2.1).
For part(ii), the variational matrix at E; is
_ [ @)k’ (60) —05
J(ED) = [ 0 8(60/bo+1) —r) |
YA 1Z
Iu 7\u
(@)A=0, B>0 (b) A>0, B=0.

vl

(c) A<0, B>0. (d)A>0, B<O.

Fig. 1. Scenarios of the shape of y = h(u).
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If A <0, B> 0thenhk/'(8p) < 0(SeeFig. 1(c) ). Similarly if A > 0, B < Othen
h'(6p) > 0 (SeeFig 1(d)). Since§(6p/(Bo+ 1) —r) < Oif andonly if g < u*, the
proof of part(ii) follows.

For part(iii), from (2.6) the variational matrix at E* is

o _ [ o@HH @) —@w*)?
Sincethedeterminant of J (E*) ispositiveand thetraceof J(E*) isp(u™)h' (u*). It
iseasy to verify that E* isaunstable focus or nodeif #’'(u*) > 0 and E* islocaly
asymptotically stable, if »’'(u*) < 0. Then the proof of (iii) follows from the Fig.
1(c), 1(d). |

Remark 2.1. Forthecase A > 0, B < O,if r > 1 or 6 < u*, thenit
is easy to verify that the stable manifold I of the saddle point E; has slope
h’(eo)—(a/eg)(eo/(eo+1)—r) whichisgreater than 1’ (6p), the slopeof u—isocline
y = h(u) at 6p. (See Fig. 4(d))

In the following (Lemma 2.3, Theorem 2.1 and Theorem 2.2), we consider the
caser > 1.

Lemma 23. If r > 1ands € (0,1 + ér], then lim;, o u(#) = +oo and
lim; o0 y() = 0.

Proof. SinceA =1+86r—686 >0,B =1+4+68r —s > 0andr > 1, then from
Lemma 2.1(a), the system (2.1) has only one equilibrium Eg. From Lemma 2.2,
Ep is a saddle point and its stable, unstable manifolds are {(0, y)| y > 0} and
{(u, 0)| u > 0}, respectively. (See Fig. 2(a), (b).)

Recall that Ri ={(u,y)|u >0,y > 0}, and

Q1 ={u,y) e R§| y = h@};

Q2 ={(u,y) e R{10 <y < h(w)}.
Since there is no steady state in 21, the trajectories that start in 1 will enter Q2
by crossing the u—isocline downward vertically. Since Eg is a saddle point and
there is no other equilibrium in ©, we must have y(r) — Oand u(t) — +oo as
t — +o0. Thus we complete the proof of the lemma. O

In the next Theorem we improve a result of Kuang and Beretta (1998) about
the global stahility of the equilibrium (1, 0) of the system (1.3). Note that our result
provides an affirmative answer to their OPEN QUESTION 1.

Theorem 2.1. If r > 1and s € (0, 1+ &r], then the equilibrium (1, 0) is globally
asymptotically stable for system (1.3) in R3.

Proof. For 0 < s < 1, Kuang and Beretta (1998) showed that the equilibrium (1,
0) of the system (1.3) is globally asymptotically stable by a standard phase plane
analysis. Now weconsider thecasel < s < 1+46r. Let (x(¢), y(¢)) bethesolution
of system (1.3) and we divide Ri into two sets:
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YA YA

a4 2

= =
>u >u
(@) r21, O<s<1+56r (B)r21,s=1+ar
Z N YA
I/(— &
N V4 N
\ \b\
L . VIS
u” “u u” “u
(¢) O<r<1, A>0, B>0. (d) O<r<1,A>0, B=0.
yA f‘ yA o
1
N /i |
i
a h Y l b_a. 2 ~
L?‘. eo Iu /eo uﬂ 0, 2 U
() O<r<1, A<0, B>0. (f) O<r<1,A>0, B<O.

Fig. 2. Thedirection field chart for system (2.1) under various conditions.

Z1={(x,y) €RZ| y > h(x), x > 0},
Zy={(x,y) €R{|0 <y <h(x),x € (0, D}

Herey = h(x) = x(1 — x)/((s — 1) + x) isthe prey isocline of the system (1.3).
Consider the following two cases.

Casel. x(r) > 1fordl s > 0. Sincer > 1 and from (1.3), we have x'(r) < 0
and y’(t) < Ofor ¢t > 0. Hence, the limit of (x(¢), y(r)) existsast — +o00. By a
standard argument, we conclude that lim;_, 1o (x(2), y(¢)) = (1, 0).
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Case 2. x(t*) < 1for somet* > 0. Since the set {(x, y) € Ri|0 <x < 1}is
positive invariant, we have x(r) < 1foral ¢ > ¢*. Clam: There exists T > t*
such that (x(7), y(T)) € Z». If the claim does not hold, then (x(¢), y(¢)) € Z1
for all + > t*. Thisimpliesthat x’(t) < 0and y’(t) < Ofor ¢ > t* and hence
lim; s 100 (x (1), y(£)) = (0, 0). Thus we have(since y > ﬁ(x) =x(1—x)/((s —
1) +x))

— x(t) — s—1+x(1)
M oo— <lim_iopo———————= =5 — 1
t ooy(t) = t——+00 1—x(t) s

Ontheother hand, "% = u(t) andfromLemma2.3itfollowsthat lim;_, ;oo u(t) =
+oo. Thisleads to a contradiction and hence we proves the claim.

Since Z» is positively invariant, we have (x(¢), y(¢)) € Z, forr > T. From
(1.3),wehavex’(r) > Oandy’(r) < Ofort > T.Therefore, lim;_, ;o (x (1), y(t)) =
(1, 0). Thus, form both cases, we conclude that the equilibrium (1, 0) is globally
stableinR?. O

Forthecaser > 1ands > 1+ ér , Kuang and Beretta (1998) proved
that the system (1.3) is not persistent by showing the existence of a trajectory
(x(), y(t)) — (0,0) ast — oo. Inthe following we state precisely how the out-
comes depend on the initial condition for the system(1.3) or (2.1).

Theorem 2.2. Letr > 1and s > 1+ §r. For the system (2.1), the stable manifold
" of E1 separates Ri into two regions €21 and Q2 such that if («(0), y(0)) € Q1
then (u(z), y(t)) — (0, 0) ast — oo andif (u(0), y(0)) € Qathen (u(?), y()) —
(00,0) ast — oo. Equivalently for the system (1.3) there exists a separatrix I'’
connecting (0, 0) and two regions 7, 2, such that if (x(0), y(0)) € ] then
(x(), y(r)) = (0,0) ast — oo and if (x(0), y(0)) € ] then (x(r), y(r)) —
(1,0)ast — oo.

Proof.. SinceA > 0, B < 0, fromFigure1(d), Remark 2.1 and phaseplaneanalysis
the stable manifold I" of E1 lies above the prey isocline y = h(u). Obviously for
(u(0), y(0)) € Q1,theregionontheleftof I',wehave (u(t), y(t)) — (0,0) ast —
oo. For (u(0), y(0)) € @2, theregion ontheright of T, it follows directly from the
proof of Lemma 2.3 that (u(z), y(t)) — (00, 0) as t — oo. The statements for
the system (1.3) follows naturally. ]

From now on we discuss the case 0 < r < 1. First we consider the case
§>1/1—r).
Remark 2.2. It is easy to verify that
(i) §=1/A—r)ifandonlyif /(1 —r) <1+ r.
(i) If B>0and A < Othenu* =r/(1—r) < 6o = B/(—A) if and only if
s <1/(1—r).
(iii) f B<0 and A > Othenu* < §pifandonlyifl/(1—r) <s.

Our next theorem provides Y ES as the answer to the OPEN QUESTION 2 of
Kuang and Beretta (1998).
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Theorem 2.3.1fr € (0,1),8 € [1/(1—r), co) and s € (0, 1/(1—r)) thenthe
positive equilibrium E* exists and is globally asymptotically stable in Ri for the
system (2.1).

Proof. From Remark 2.2, r € (0,1) ands < 1/(1 —r) < §, wehave A =
1+6r—86<0andB=1+6r—s>1/(1—r)—s > 0. Now we consider the
following two cases.

Casel. A = 0. Lemma2.1(a) impliesthat 2(u) > 0 > h'(u) foru > 0. (See Fig.
2(c). ) Hence, h(u*) > 0 > h'(u™*). This shows that the system (2.1) has a unique
positive equilibrium E* and it islocally asymptotically stable.

Case2. A < 0. Lemma 2.1(b) gives that #(u) and 4’ (u) has exactly one positive
zero Ho, 01 respectively and 6p < 6. (See Fig. 2(e).) Since B > 0, we have
h(u) > 0 > h'(u) for u € (0, 6p). So, h(u*) > 0if and only if u* < 6y or
equivalently s € (0,1/(1 — r)) by Remark 2.2 . Hence, the system (2.1) has a
positive equilibrium E* and from Lemma 2.2 it islocally asymptotically stable.

Toshow that E* isglobally asymptotically stablein Ri. Consider thefollowing
Lyapunov function

A
(é) Vv

for (u,y) € R2. Notice that (u — u*)(h(u) — h(u*)) < 0, which implies that
Y (w)(h(u) — h(u*)) < 0. Thederivative of V aong the solution of system (2.1) is

V(u,y)=

Vi, y) = () = p)y) ¥ @) /eu) + ¥ (w)y — h@*)y (u) 28)
= Y )(h() — h(u*) <0 '

for (u,y) € Ri. Hence, Theorem 2.3 follows from (2.8) and Lyapunov-LaSalle's
invariance principle (Hale (1980)). O

Theorem 2.4. Letr € (0,1),8 € [1/(1 —r), 00).

(i) f1/(1—r) < s < 1+ ér then the equilibrium E1 = (69, 0) of the system
(2.1) isglobally asymptotically stable.

(i) Ifs > 14 &r then the equilibrium Eg = (0, 0) of the system (2.1) is globally
asymptotically stable.

Proof . From the assumption s > 1/(1 — r) and Remark 2.2 , we have u™* > 6p. If
1/(1—r) <s <1+dérthen A < 0and B > 0. Thepreyisocliney = h(u) satisfies
hwu) <0for0O<u < 61,h(u) <Oforu > Ggandh(u) > Ofor0 < u < 6.
From the phase plane analysis it is easy to verify that E1 = (6o, 0) is globally
asymptotically stable and (i) is proved.

Ifs > 14+3rthenA < 0and B < 0.Obviously h(u) < Oforalu > 0, u'(r) <
Oforaltz > 0andy'(t) < 0if andonly if u < u*. From phase plane analysis, the
equilibrium Eg = (0, 0) isglobally asymptatically stable. ]

Remark 2.3.If wereturnto theoriginal system (1.3), both (i) and (ii) of Theorem 2.4
say that the solution (x(¢), y(¢)) — (0, 0) ast — oo. Theonly difference between



Ratio-dependent predator-prey model 499

() and (ii)isthat x(¢)/y(t) — 6g ast — ooin(i)whilex()/y() - 0ast — oo

in (ii).

Next we consider thecase 0 < § < 1/(1 — r). From Remark 2.2 , we have
1+8r < 1/(1—r). There arethree subcases, namely,0 < s <1+ 6r, 1+ 8r <
s<1/(1—-r)ands > 1/(1 — r) to be discussed.

First we consider the caser € (0,1),6 € (0,1/(1 —r)) ands € (0,1 + 8r].
Thenwehave A =1+46r—8§ >0 and B=1+8r —s > 0, and Lemma 2.1(a)
impliesh(u) > 0 > h (u) foru > 0. Hence the system (2.1) has a unique positive
equilibrium E* anditislocally asymptotically stable. (SeeFigs.2(c),(d).) Applying
the same Lyapunov function in the proof of Theorem 2.3, we have the following
theorem which gives positive answer to the OPEN QUESTION 3 of Kuang and
Beretta (1998).

Theorem 25.1f r € (0,1),8 € (0,1/(1 —r)) and s € (0,1 + ér] then E* is
globally asymptotically stable in Ri for the system (2.1).

Now we consider thecaser € (0,1),6 € (0,1/(1—r))ands > 1/(1 —r).
Then A > 0and B < 0and from Remark 2.2, we haveu™ < 6p. FromLemma?2.2,
E1 = (6p, 0) is an unstable node and (0, 0) islocally asymptotically stable. From
the phase plane analysis, it is easy to show that (O, 0) is globally asymptotically
stable (See Fig. 1(d)). Hence we have:

Theorem 26.Ifr € (0,1),6 € (0,1/(1—r))ands > 1/(1 —r) the Eg = (0, 0)
is globally asymptotically stablein Ri for the system (2.1).

Thelast case
re0,1),5e€0,1/1—r),1+6r<s<1/1—r) (2.9

is easily the most interesting and important case in this paper.

For therest of this section, we assume that (2.9) holds. SinceA = 14 6r —§ >
0, B =146r—s < 0, from Remark 2.2 (iii) the system (2.1) hasthree equilibria
Eqg =(0,0), E1 = (6p,0) and E* = (u*, h(u™)). Moreover from Lemma 2.2,
Egislocally asymptotically stable, 1 isasaddle point and E* is unstable(stabl€)
if 0o < u™ < 61(u* > 61). Inthefollowing Theorem 2.7 we assert that the system
(2.1) has at most one positive limit cycle.

Theorem 2.7. Let (2.9) hold. Then the system (2.1) has at most one limit cyclein
Ri. Moreover, if it exists, then it is a stable limit cycle.

Proof. Let Q* = (0, 6p] x R+. Thenfor (u(0), y(0)) € Q* wehaveu'(r) < 0and
y'(t) < Ofort > 0.and hence (u(z), y(t)) — Eg as t — oo. Thusit sufficesto
show that system (2.1) has at most onelimit cyclein Ri\Q*. According to Hwang
(1999), it suffices to show that

_ 9@l () — ou)h' ()

q ) 70

(2.10)
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isCc! and ¢'(u) < 0 for u > 0. From (2.4) and a straight forward computation,

it follows that
_6=s (A4+nru+r)

f 0. 2.11
qu) 3 Tru or u > ( )
Sinced < 1+ 8r < s, wehave
S—s 1
"(u) = ——— <0 for 0. 2.12
q'(u) T u > (212)

Hence the system (2.1) has at most onelimit cyclein Ri —Q*anditisstablewhen
exists. O

As aresult of the above theorem, we see that if E* islocally asymptotically
stable, then there is no positive periodic solution surrounding it. Thisis precisely
the main statement of Theorem 3.1 in Kuang and Beretta (1998).

In the following Lemma 2.4 we classify the behavior of the stable manifold T’
of the equilibrium E1.

Lemma 2.4. Let (2.9) hold and I" be the stable manifold of E1. Then

(i) If T intersectsthe prey isocline y = h(u), then " connects E1 and E*.

(ii) IfI" doesnotintersectsthepreyisocliney = h(u) thenT = {(u(z), y(t))}j;oioo
satisfies lim,_, _ oo u(t) = oo and lim,_, _, y(¢) = 0. Moreover either I'' =
y or T liesabove y whereT" = {(x, y) : x = yu, (u, y) € T'} and y isthe
unstable manifold of the equilibrium (1, O) for the system (1.3), connecting (1,
0) to (0, 0) or (x*, y*) inxy—plane.

Proof . From Remark 2.1, the stable manifold I" of E; lies above the prey isocline
y = h(u) whenu > 6p and u isnear 6p. From the phase plane analysis, I' is above
theprey isocliney = h(u) until I' meetsthe predator isoclineu = u*atr = t*. If T
intersectsthe prey isocline y = h(u) at point P, thenT" will meetu = u* at P3, Ps
and meet y = h(u) at P4 (See Fig. 3). Consider the region 2 bounded by the arc
P1 P> P3 P4 Ps and segment PsPr. Q isnegatively invariant. Thea-limit set o ( Ps)
is contained in Q. Claim that a(Ps) = {E*}. If not, then «(Ps) isaperiodic orbit.
However from Theorem 2.7, «(Ps) is a unique stable limit cycle for the system
(2.1). Thisisacontradiction since a(Ps) is unstable from outside. Thus we prove
theclaim and I" connects E1 and E*.

If ' does not intersect the prey isocline y = h(u) then " isabove y = h(u).
Let t = —r, then

W' (1) = —(u(®)?[hu(x) — y()]
V(1) = =8y(@)(w(r)/(u(xr) + 1) —r).

Thenu'(r) > 0and y'(r) < 0 for t > *. Obviously lim;_, o u(7) = co. Hence
thereisar > r*, suchthat u(1) = 2u*. Let

(2.13)

a=2u*/2u*+1) —r.
Thena > 0. For ¢t > 11, we have

V(1) = =8y(@) () /(u(r) + 1) —r) < —ady(r).
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Fig. 3. lllustration for the proof of Lemma 2.4.

Thisshowsthat lim;_, o, y(t) = 0.
Since I isabove y = h(u), we have
Au(t) + B
— = h .
() > 20 Lt ae) (u(7))
Fromlim; o u(t) =occand 0 < § < 1/(1—r),itfollowsthatlim,_, » inf x(z) >
A,0 < A < 1. T connects (0, 0) because I" connects (6p, 0). If I'" # y then
lim;_, o x(7) = oo and obviously y liesbelow I'" and y connects (0, 0) to (1, 0)
or (x*, y*) inxy—plane. |

Our next theorem deals with the case when E* is stable.

Theorem 2.8. Let (2.9) hold and u* > 6;. Then the following are true.

(i) ThestablemanifoldI" of E1 liesabovethepreyisocliney = h(u) and separates
Ri into two regions 21 (lying above I') and 2, (lying below I').
(i) 1f (0), y(0)) € Q1, thenlim;_, o (u(1), y(1)) = (0, 0). If (u(0), y(0)) € o,
then we have lim;_, o (u(2), y(t)) = E*.
Proof. If T intersects the prey isocline y = h(u) then from Lemma 2.4 (i),
I connects E1 and E*. However E* is locally asymptotically stable for u* >
01. This leads to a contradiction. Hence I' lies above y = h(u). Obviously for
@(0), y(0)) € Q1 iMoo (u(t), y(1)) = (0, 0). To prove that (u(0), y(0)) € 22
implieslim;_ oo (u(?), y(t)) = E* , we shall use Theorem 2.7. Since E* islocally
asymptotically stable, we see that there is no nontrivial positive periodic solution
surrounding it(from Theorem 2.7). Since all solutions are either forward or back-
ward bounded, a simple application of the Poincaré-Bendixson theorem yields our
conclusion. o

QOur last theorem in this section deals with the case when E* is unstable.

Theorem 2.9. Let (2.9) hold and 6y < u™ < 61. Then the following are true.
(i) Thestablemanifold I of E1 intersectsthe preyisocline y = h(u). Inthiscase,
theequilibria E* and E1 will be connected by T at two ends. Each point except
those on I is attracted to the equilibrium Eq = (0, 0). (See Fig. 4(a))
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(ii) The stable manifold I' lies above y = h(u) separating R?r into two regions
Qj(abovel’) and Qa(belowT). If (1 (0), y(0)) € Q1thenlim;_ o (u(2), y(t)) =
(0,0). If (u(0), y(0)) € Q2 or equivalently (x(0), y(0)) € Q5 (where @, =
{(x,y):x = yu, (u, y) € Q2}), then there are two possible cases:

(@ The w-limit set w(x(0), y(0)) = y J{(x,y) : y = 0,0 < x < 1}. (See
Fig. 4(c))
(b) (x(2), y(¢)) approaches a unique limit cycleast — oo. (See Fig. 4(€))

Proof. If T intersects the prey isocline y = h(u) then from Lemma 2.4 (i), E*
and E1 will be connected by T" as two ends. For any (u(0), y(0)) € Rﬁ\l‘, itis
easy to show by phase plane analysis that (u(t), y(¢)) € @* = (0, 6o] x R4 for ¢
sufficiently large. Thuslim;_, o (u(2), y(¢)) = Eo.

If I" does not intersect the prey isocline y = h(u), then T liesabove y = h(u).
Obvioudly if (#(0), y(0)) € Q1 then lim,_ o (u(¢), y(t)) = Eg. From Lemma
24 (i) T/ = y or I' lies above y. Since E* = (x*, y*) is a unstable fo-
cus or node, the unstable manifold y obviously connects to (0, 0). In this case,
we must have I'" = y. Otherwise, for (x(0), y(0)) in & lying between I'" and
Y, im0 (x (1), y(¢)) = (0, 0). This indicates that the solutions of system (2.1)
withinitial data (x(0)/y(0), y(0)) will tend to E1. (can not tend to the origin since
it isbelow the stable manifold I'.) Thisimpliesthat the stable manifold I has more
than one trgjectories. However, since system (2.1) is continuously differentiablein
the neighborhood of E1, we must have a unique trgjectory in I'.(Theorem 3.6.1 in
Hale (1980)) Thisis a contradiction.

For (x(0), y(0)) lying in the region bounded by y and {(x,y) : y = 0,0 <
x < 1}, there are two possible cases. If the w-limit set w(x(0), y(0)) contains
an equilibrium, then from Butler-McGehee Lemma (Smith and Waltman (1995),
pl2), w(x(0), y(0)) = y U{(x,y) : y = 0,0 < x < 1}, i.e (ii)(a) holds. If
(x(0), y(0)) contains no equilibrium, then from Poincaré-Bendixson Theorem,
Theorem 2.7 and that fact that E* isunstable, thetrgjectory (x(¢), y(t)) approaches
aunique limit cycle. |

While the case (ii)(a) seemsto be unlikely, it can not be ruled out by standard
phase plane analysis or from our extensive numerical simulations.

3. Discussion

In this paper we provide acomplete classification of the asymptotic behavior of the
solutions of ratio-dependent predator-prey model (1.2). As a result, we solved all
the three open questions listed in Kuang and Beretta (1998) (Theorems 2.1, 2.3,
2.5 provide positive answer to OPEN QUESTIONS 1, 2, 3, respectively). Theonly
issue left open ishow to determine therelative location of the stable manifold
I' of equilibrium E1 of system (2.1).

Comparing with the classical prey-dependent predator-prey model (1.1), the
ratio-dependent models (1.2) are capable of producing richer and more reasonable
dynamics and the paradox of biological control isno longer valid. In the classical
model (1.1), thefollowing resultsare well known: (Kuang and Freedman (1988))
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(i) If (K —m)/2 < x* thenlim;_, oo (x(2), y(1)) = E* = (x*, y*) where x* =
m/((f/d)—1) > 0,y* > 0.

(i) If (K —m)/2 > x* then the solution (x(7), y(¢)) approaches a unique limit
cycleast — .

We observe that in the model (1.1), the carrying capacity K plays the key role
in determining the asymptotic behavior of solutions of (1.1). However, for the
ratio-dependent model (1.2), the asymptotic behavior of the solutions of (1.2) is
independent of the carrying capacity K. On the other hand, the capturing rate ¢
is independent of the behavior of the solution of model (1.1) while ¢ plays an
important role in the model (1.2). We will elaborate this below.

Inthefollowing, weshall discussthemany biological implicationsof our results
(Theorem 2.1-2.9). To facilitate this, recall that s = ¢/ma, 8 = f/a,r =d/f.

First we consider thecaser > 1, i.e. the predator death rate d islarger or equal
toitsmaximal growthrate f, then from Theorem 2.1 and Theorem 2.2 the predator
will goto extinction. Sinces > 1+ érif only if ¢/m > (a 4+ d). Theorem 2.1 says
if c/m, theratio of capturing rate ¢ to the half saturation constant m, is small then
the prey survives and goesto its carrying capacity K . However if ¢/m islarge, for
fixed predator initial population y(0), if theratio x(0)/y(0) issmall then both prey
and predator go to extinction while if x(0)/y(0) islarge then prey survivesto its
carrying capacity.

Next, we consider thecase 0 < r < 1, i.e. the predator death rate d islessthan
itsmaximal growthrate f. Sinces > 1/(1—r)ifandonlyif f >d+a and 0 <
s <1/AQ—-r)ifandonly if 0 < ¢/m < a/(1 —d/f), Theorem 2.3 says if
f =d+a,i.e, themaximal growthrate f islargeor the prey intrinsic growth rate
a issmall, then the prey and predator coexist in the form of equilibrium provided
¢/m issmall. Under the same conditions of Theorem 2.3, Theorem 2.4 saysthat if
¢/m islarge, then both predator and prey go to extinction.

If the prey intrinsic growth rate a > f — d, then predator and prey coexist
in the form of equilibrium if ¢/m is small. Sinces > 1/(1 — r) if and only if
c/m > a/(1—(d/f)), Theorem 2.6 statesthatif « > f —d, then both predator and
prey go to extinction provided ¢/m islarge. Whena +d < ¢/m < a/(1— (d/f)),
Theorem 2.7 saysthat if theratio at equilibrium (u* = x*/y*)islarge,i.e., u* > 01,
and if x(0)/y(0) is small then both predator and prey go to extinction while if
x(0)/y(0) islarge then predator and prey coexist in the form of equilibrium.

Under the same condition of Theorem 2.7,i.e.a+d < c¢/m < a/(1— (d/f)),
Theorem 2.8 says if 6p < u™ < 01, there are three possible cases. (i): There
is an orbit I" connecting E1 = (61, 0) and E* = (u*, y*) for the system (2.1)
such that for any (u(0), y(0)) ¢ T' lim;_ o (u(t), y(t)) = (0, 0) (See Fig. 4(b)).
Equivaently for system (1.2), there is an orbit I'” connecting (0, 0) and (x*, y*)
such that for al (x(0), y(0)) ¢ I, lim;— o (x(2), y(¢)) = (0, 0). In this case,
except (x(0), y(0)) = (x*, y*) both predator and prey go to extinction (See Fig.
4(a)). (ii): The stable manifold I" of E; = (01, 0) does not intersect the prey iso-
cliney = h(u). For (u(0), y(0)) above ', lim,_ (u(t), y(¢)) = (0, 0) while for
(u(0), y(0)) # E* below T, the w-limit set of ((0), y(0)) equalsto I" (J{(u, y):
y = 0,u > 61}, i.e, the solution (u(¢), y(¢)) exhibit aperiodic oscillation. (See
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Fig. 4(d)). Equivalently for system (1.2), the unstable manifold y of the equilib-
rium (1, 0) isconnected to the origin (0, 0). For (x(0), y(0)) above y, both predator
and prey goto extinction, whilefor (x(0), y(0)) below y, (x(0), y(0)) # (x*, y*),
the w-limit set of (x(0), y(0)) equalstoy [ J{(x,y) :0<x < K,y = 0} i.e, the
predator and prey population oscillate aperiodically (See Fig. 4(c)). (iii): This case
is similar to case (ii). The only difference is that for (1(0), y(0)) # E* below
[ (or (x(0), y(0)) # (x*, y*) below y for system (1.2)) the solution (u(t), y(t))
approaches a unique limit cycle. Thus the predator and prey population exhibit
periodic oscillation (See Fig. 4(e) and Fig. 4(f)).

In Abramsand Ginzburg (2000), the authors claimed that thereisthe possibility
that mutual (deterministic) extinction of both prey and predator may result from
functional responses that are not ratio-dependent, but there is a time lag in the
predator’s numeric response to food intake. While delay plays anatural rolein the
predator-prey dynamics (Harrison(1995), Jost and Arditi (2000), Jost and Ellner

y y
; X + u
E;
y y m
Y
E;

-
(®)
-
E 10 Eo i ‘
@
\
C
¥ u
0

u
u
v
c’

X E B u

= (e
Fig. 4. (a) and (b) illustrate the case when originisthe global attractor. (c) and (d) illustrate

the case when a heteroclinic cycle is the global attractor. (€) and (f) illustrate the case when
alimit cycleisthe global attractor.



Ratio-dependent predator-prey model 505

(2000)), wewouldliketo point out that delay alonedoesnot cause mutual extinction.
Infact, onthe contrary, the delayed numeric response can often moderate the mutual
extinction dynamics, due to the fact that in a declining population, the delayed
numeric response which in positive correlation to past more robust population
density can bring in larger recruitment to the predator population than that can be
brought in by the current smaller population. Near the origin, where both species
face the possibility of extinction, the predation in the prey-dependent form can
be approximated by a linear form of the product of prey and predator densities,
which is no match to the strong recruitment of prey from specific growth. In other
words, time delay alone will not cause, nor prevent the mutual extinction of both
speciesin both prey-dependent and ratio-dependent cases (aswell asfor the general
predator-dependent cases)(Kuang(1993), Beretta and Kuang (1998)).

Deterministic extinction of both speciesis an extreme outcome of the predator-
prey interaction, but seems to become ever more frequent and worrisome. The
public believesthis resulted from the fragmentation of habitats and the ever shrink-
ing sizes of these patches which may diminish or deprive of prey refugees (Fischer
(2000)). The consensus view isthat ratio dependent formulation breaks down when
the patch size is large and both the prey and predator densities are low (Arditi and
Ginzburg (1989), Cosner et a. (1999), Abrams and Ginzburg (2000)), since in
such case, predatorswill spend most effort in searching rather than interfering each
other. Hence, the functional response is likely to be much more sensible to prey
density than predator density. However, if the habitat is small and free of refugees
for prey, then ratio dependence formulation may remain valid even when densities
arelow, since predators can remain effectively interfering each other. In such case,
rati o-dependence suggests that mutual extinction is possible. This provides an ex-
planation for Gause's classic observation of mutual extinction in the protozoans,
Paramecium and its predator Didinium (Abrams and Ginzburg (2000)). In short,
deterministic mutual extinction is an extreme outcome calls for extreme measures.
Ratio dependence, while a special case of the general predator dependence ones,
such as the Beddington-DeAngelis or Hassel-Varley type (Cosner et a. (1999)),
is currently the only one that provides a simple and plausible explanation of such
extinction dynamics.

Acknowledgements. The authors would like to thank the referees for their helpful sugges-
tions that improved the presentations of both introduction and discussion sections.
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