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The nonlinear reflection curve due to a van der Pol type boundary condition at the right
end becomes a multivalued relation when one of the parameters (α) exceeds the characteristic
impedance value (α = 1). From stability and continuity considerations, we prescribe kinematic
admissibility and define hysteresis iterations with memory effects, whose dynamical behavior is
herein investigated. Assume first that the left end boundary condition is fixed. We show that
asymptotically there are two types of stable periodic solutions:

(i) a single period-2k orbit, or
(ii) coexistence of a period-2k and a period-2(k + 1) orbits,

where as the parameter α increases, k will also increase and assume all positive integral values.
Even though unstable periodic solutions do appear, there is obviously no chaos.

When the left end boundary condition is energy-injecting, however, we show that for a cer-
tain parameter range a shift sequence of subintervals of an invariant interval can be constructed
and, therefore, chaos appears. Numerical simulations of chaotic and nonchaotic phenomena are
also illustrated.
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1. Introduction

In Part I [Chen et al., 1998a], we have treated the
one-dimensional wave equation

wtt(x, t)−wxx(x, t) = 0 , x ∈ (0, 1) , t > 0 ,

(1)

with fixed boundary condition at the left end:

w(0, t) = 0 , t > 0 , (2)

and a self-excitation boundary condition of van der
Pol type at the right end:

wx(1, t) = αwt(1, t)− βw3
t (1, t) , t > 0 ; α, β > 0 ,

(3)

plus initial conditions

w(x, 0) = w0(x) , wt(x, 0) = w1(x) , x ∈ (0, 1) .

(4)

We have noted [Chen et al., 1998a, Fig. 5] that
if α > 1 in (3), then the reflection relation F
(cf. [Chen et al., 1998a, (2.11)–(2.21)]) is mul-
tivalued, and thus the system (1)–(4) does not
have the property of uniqueness of solutions. A
single-valued branch of F with jump discontinuities
was chosen in [Chen et al., 1998b, (2.22)] through
the action of some feedback control devices [Chen
et al., 1998a, Appendix C], which provides the
uniqueness of solutions for (1)–(3). Such “unique-
ness” is obtained through artificial intervention.
However, we have learned from examples (see
[Stoker, 1950, p. 95 and p. 137]) of vibrations in
nonlinear mechanical and electronic systems that
responses in such systems with hysteresis generally
are multivalued . Among the several possible (and
mathematically legitimate) multivalued branches,
the physical nature of the system is such that the
“most stable” branch and/or the “most continuous”
route is preferred. These are the criteria we use to
determine the kinematic admissibility of what we
call natural hysteresis iterates. Therefore the per-
plexity of nonuniqueness is resolved. In this pa-
per, we will study the dynamic response (1)–(4) for
α > 1 in (3) in the sense that (3) corresponds to a
natural hysteresis curve.

The determination of a natural hysteresis loop
corresponding to (3) is given in Sec. 2. The new re-
flection relation u = F (v) now is defined through
all three pieces (i.e. branches) of functions with
partially overlapping domains but with a directed

path, containing a memory effect . The study of
the dynamical behavior of iterates of maps defined
through such natural hysteresis curves does not
seem to have been done elsewhere before, to the
best of our knowledge. Several examples of such
hysteresis curves will be given.

In Sec. 3, we prove that for the natural hys-
teresis map corresponding to (3) with α > 1, solu-
tions of (1)–(4) are asymptotically either of a sin-
gle even period (or, a single tone) or the mixing of
exactly two successive even periods (i.e. a combina-
tion tone). The period grows with respect to α, but
there is no chaos.

When energy is pumped in at the left end x = 0
as in Part II [Chen et al., 1998b], the extra energy
may cause instability and excite those (asymptot-
ically) periodic vibrations (in Sec. 3) into chaotic
vibrations. In Sec. 4, we show a sufficient condition
for chaos to occur via the construction of a shift
sequence.

Numerical simulations and graphics are also
given in Secs. 3 and 4 to help visualize the dynam-
ical behavior of solutions.

2. A Natural Hysteresis Map with
Memory Effect

Inheriting the notations from Parts I and II [Chen
et al., 1998a, 1998b], for w in (1) we define the
Riemann invariants

u(x, t) =
1

2
[wx(x, t) + wt(x, t)] ,

v(x, t) =
1

2
[wx(x, t)− wt(x, t)] .

(5)

Then (u, v) satisfies a diagonalized first order hy-
perbolic system

∂

∂t

[
u

v

]
=

[
1 0
0 −1

]
∂

∂x

[
u

v

]
. (6)

Example 2.1. Wave equation with fixed left end
boundary condition and a self-excitation right end
boundary condition. This problem is described by
equations (1)–(4), with the additional constraint
that α > 1 in (3). It will be the focus of our at-
tention in Sec. 3.

From (5), we convert the boundary condition
(2) to the reflection relation

v = u . (7)
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Also, the boundary condition (3) now becomes
the nonlinear reflection u = F (v):

β(u− v)3 + (1− α)(u − v) + 2v = 0 ,

at x = 1 , any t > 0 . (8)

The curve u = F (v) is multivalued when α > 1
for |v| ≤ v∗ ≡ [(α − 1)/3]

√
(α− 1)/(3β), cf. [Chen

et al., 1998a, Fig. 5] and Fig. 1. The overall shape
of F is a “backward S”.

The main objective of this section is to define
the hysteresis iterates un+1 = F (un) = F 2(un−1) =
· · · = Fn+1(u0) which is physically natural for a
multivalued relation F . Once the hysteresis iter-
ates are well defined, the hyperbolic system (6)–(8)
has a unique solution:

t = 2k + τ , k = 0, 1, 2, . . . , 0 ≤ τ < 2 , 0 ≤ x ≤ 1 ,

v(x, t) =


F k(v0(x− τ)), τ ≤ x ,
F k(u0(τ − x)), x < τ ≤ 1 + x ,

F k+1(v0(2− τ + x)), 1 + x < τ ≤ 2 ,

u(x, t) =


F k(u0(x+ τ)), τ ≤ 1− x ,
F k+1(v0(2− x− τ)), 1− x < τ ≤ 2− x ,
F k+1(u0(x+ τ − 2)), 2− x < τ ≤ 2 ,



(cf. [Chen et al., 1998a, (6.1), (6.2)]) (9)

Fig. 1. The multivalued reflection relation u = F (v) corre-
sponding to (3) and (8), where α = 2, β = 1 are used. This
curve has a backward S shape, with three branches F1, F2

and F3. F1 is defined on (−∞, v∗], F2 on [−v∗, v∗], and F3

on [−v∗, ∞). Here θ0 = −v∗. At v = v̂, F1 has a global
maximum. (It happens in this case that −v̂ = ζ0 = 0.)

where

u0(x) =
1

2
[w′0(x) + w1(x)] ,

v0(x) =
1

2
[w′0(x)− w1(x)] , x ∈ [0, 1] ,

from (4) and (5).

The (u, v)-system in Example 2.1 is not alone in
having a backward S-shaped curve. See the follow-
ing for more examples.

Example 2.2. A self-excitation boundary condi-
tion with quadratic nonlinearity. Consider the vi-
brating system (1)–(4), but with (3) being replaced
by

wx(1, t) = αwt(1, t)− β|wt(1, t)|wt(1, t) ,
α ≥ 1, β > 0 . (10)

Then the rate of change of energy satisfies

d

dt
E(t) =

d

dt

1

2

∫ 1

0
[w2
x(x, t) + w2

t (x, t)]dx = · · ·

= αw2
t (1, t)− β|wt(1, t)|3

×


≤ 0, |wt(1, t)| ≥ α/β,

if
> 0, |wt(1, t)| < α/β .

(11)

Therefore the boundary condition (10) is also self-
exciting (and self-regulating). The reflection rela-
tion u = F (v) corresponding to (10) is determined
from

β|u− v|(u − v) + (1− α)(u − v) + 2v = 0 , (12)

see Fig. 2 for an example. The derivative of this
curve has a jump discontinuity at (u, v) = (0, 0).

Example 2.3. Hysteresis curves as the composi-
tion of energy injecting and van der Pol boundary
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Fig. 2. The multivalued reflection relation u = F (v) corre-
sponding to (10) and (12), where α = 2, β = 1 are used.
Note that this curve also has a “backward S” shape similar
to Fig. 1, with three branches F1, F2 and F3.

conditions. We now consider the system (1), (3)
and (4), but with (2) changed to energy injection
(Part II [Chen et al., 1998b, (3)]):

wt(0, t) = −ηwx(0, t) , 0 < η < 1 . (13)

Then as in [Chen et al., 1998a, (1.8)–(1.12)], af-
ter converting the wave equation by (5) into a hy-
perbolic system for (u, v), (13) yields the reflection
relation

v = G(u) ≡ 1 + η

1− η u , (0 < η < 1) ,

at x = 0 , for t > 0 . (14)

Let u = F (v) be the same multivalued hysteresis
curve as determined from (3):

β(u− v)3 + (1− α)(u− v) + 2v = 0 at x = 1 ,

for t > 0 , α > 1, β > 0 ,

which forms the reflection condition at the right
end. Then the solution formulas in Part II [Chen
et al., 1998b, (13), (14)] still formally applies:

For t = 2k + τ , k = 0, 1, 2, . . . , 0 ≤ τ < 2, and for 0 ≤ x ≤ 1,

u(x, t) =


(F ◦G)k(u0(x+ τ)), τ ≤ 1− x ,
G−1 ◦ (G ◦ F )k+1(v0(2− x− τ)), 1− x < τ ≤ 2− x ,
(F ◦G)k+1(u0(τ + x− 2)), 2− x < τ ≤ 2 ;

(15)

v(x, t) =


(G ◦ F )k(v0(x− τ)), τ ≤ x ,
G ◦ (F ◦G)k(u0(τ − x)), x < τ ≤ 1 + x ,

(G ◦ F )k+1(v0(2 + x− τ)), 1 + x < τ ≤ 2 .

(16)

In (15) and (16), the iterations of two multivalued
relations are involved: G ◦ F and F ◦ G. We have
already seen the curve F in Part I [Chen et al.,
1998a, Fig. 5]. The shapes of G ◦ F and F ◦ G
are illustrated in Figs. 3 and 4. The reader may
find that the shapes of the curves corresponding to
G ◦ F and F ◦ G again form a “backward S”. If
we can make the “hysteresis iterates” of G ◦ F and
F ◦G well-defined in a physically natural way, then
the formulas (15) and (16) will also become well
defined.

This example will be our focus of attention in
Sec. 4.

For our purposes, let us consider a general
“multivalued backward S-shaped” relation u =
H(v) = H(ρ)(v), where ρ represents a parameter or

a set of parameters. Assume that H satisfies the
following properties:

(i)
H = H1 ∪H2 ∪H3 ; (17)

(ii) H1 is a continuously differentiable function de-
fined on (−∞, v∗] for some v∗ = v∗(ρ) > 0,
and H3 is a function defined on [−v∗, ∞) such
that H1(v) = −H3(−v), for all v ∈ (−∞, v∗];

(iii) H2 is an odd function defined on [−v∗, v∗],
continuously differentiable everywhere except
perhaps at v = 0, such that H ′2(v) > 1 for all
[−v∗, v∗]\{0};

(iv) H1(v
∗) = H2(v

∗);
(v) limv→−∞ H1(v) = −∞;
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(vi)

H1(v) > H2(v) > H3(v) , H ′i(v) < H ′2(v) ,

i = 1, 3 , for all v ∈ (−v∗, v∗)\{0} ;
(18)

(vii) There exists a unique v̂ = v̂(ρ) ∈ (−∞, v∗),
which is the (global) maximum of H1. Fur-
ther, H ′1(v̂) = 0,

H ′1(v) > 0 for all v ∈ (−∞, v̂) ,
and H ′1(v) < 0 for all v ∈ (v̂, v∗) .

The reader may observe that all the curves
displayed in Figs. 1–4 satisfy conditions (i)–(vii)
above.

We are now in a position to give the following
important definition.

Definition 2.1 (Hysteresis Iterates). Let H satisfy
properties (i)–(vii) in (17)–(19). Let u0 ∈ R and
k = 1, 2, 3, . . . . We define the hysteresis iterates
uk = Hk(u0) by induction as follows:

(i) For k = 1, u1 ≡ H(u0), where

u1 =


H1(u0), if u0 < −v∗ ,
H2(u0), if u0 ∈ [−v∗, v∗] ,
H3(u0), if u0 > v∗ .

(20)

(ii) For k = 2, u2 ≡ H2(u0), where

u2 =


H1(u1), if either u1 ≤ −v∗ or if u0 < −v∗ and u1 ∈ [−v∗, v∗] ,
H2(u1), if u0 ∈ [−v∗, v∗], u1 ∈ (−v∗, v∗) ,
H3(u1), if either u1 ≥ v∗ or if u0 > v∗ and u1 ∈ [−v∗, v∗] ,

(21)

for u1 = H(u0).
(iii) Assume that uj = Hj(u0) are defined for j = 1, 2, . . . , k, k ≥ 2. We define uk+1 = Hk+1(u0) by

uk+1 =


H1(uk), if either uk ≤ −v∗ or if uk−1 < −v∗ and uk ∈ [−v∗, v∗] ,
H2(uk), if u0 ∈ [−v∗, v∗], u1, u2, . . . , uk ∈ (−v∗, v∗) ,
H3(uk), if either uk ≥ v∗ or if uk−1 > v∗ and uk ∈ [−v∗, v∗] .

(22)

Fig. 3. The composite hysteresis curve u = G ◦ F (v) for
Example 2.2, where η = 1/2, α = 2, β = 1 are used. Note
that the shape of the curve is a “backward S” with three
branches F1, F2 and F3.

Fig. 4. The composite hysteresis curve u = F ◦ G(v) for
Example 2.2, where η = 1/2, α = 2, β = 1 are used. Note
again that the shape of the curve is a “backward S” with
three branches F1, F2 and F3.
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The above definition prescribes the kinematic
admissibility regarding which branch should be cho-
sen when multivaluedness comes into question, on
the interval [−v∗, v∗]. It is based primarily on the
following criteria:

(i) stability: “nature” prefers stabler branches H1

andH3 overH2, cf. (18), except when the initial
state starts from the neighborhood [−v∗, v∗]
of 0;

(ii) continuity: “nature” also prefers continuity;
when an iteration is performed along a certain
branch Hi, it tends to continue along that same
branch Hi until it has “run the entire course”
of Hi.

We articulate these, among other things, in
Remarks 2.1 and 2.2.

Remark 2.1. Intuitively, Definition 2.1 signifies the
following facts:

(i) In (20)2, (21)2 and (22)2, we use the branch
H2 to perform iterations for u0 ∈ [−v∗, v∗],
producing u1, u2, . . . , uj = H

j
2(u0), . . . , which

is an increasing (resp. decreasing) sequence if
u0 : 0 < u0 < v∗ (resp. −v∗ < u0 < 0); cf. (45)
in Sec. 3. This iteration is stopped when
uk > v∗ (resp. uk < −v∗). In that case, we
switch iterations to the H3 (resp. H1) branch,
as signified by (21)3 and (22)3 [resp. (21)1
and (22)1]. The H2 branch is used only for
u0 ∈ [−v∗, v∗]. We may term this sequence of
iterates {u0, u1, . . . , uk} the “maiden voyage”
of u0. Once uk falls outside [−v∗, v∗], the H2

branch will never be used any more because
this branch is less stable than H1 and H3 due
to the derivative condition in (18); H1 and H3

will then be used. Thus the maiden voyage is
mostly a transient response.

(ii) When we use the H3 (resp. H1) branch for
iteration, we produce a decreasing (resp. in-
creasing) sequence uj , uj+1, uj+2, . . . ; cf. (47)
later. This sequence will eventually decrease
(resp. increase) past −v∗ (resp. v∗). In that
case, iteration by H3 (resp. H1) is no longer
possible. We then switch to the H1 (resp. H3)
branch. This is signified by (21)1,3 and (22)1,3.

(iii) Definition 2.1 shows that the hysteresis iter-
ates Hk(u0), k = 1, 2, . . . , have memory ef-
fects: Hk(u0) depends on two preceding states
Hk−1(u0) and Hk−2(u0), if k ≥ 2.

(iv) Visintin [1986] (see also the references therein)
has used set-valued functions to treat hystere-
sis. That approach is also applicable to our
work, but the need to use it here is not really
compelling. We choose instead to emphasize
the physical motivations and connotations; see
the next remark.

Remark 2.2. Definition 2.1 is obviously the most
natural one from the physical point of view. To
make this important point clear, let us present
a plausible argument of kinematic admissibility
as follows.

In a “gedanken experiment”, we may conceive
a backward S-shaped curve H satisfying conditions
(i)–(vii) in (17)–(19) as, say, a plot of stress versus
strain (i.e. u versus v) of a one-dimensional nonlin-
ear material, such as the material testing exemplar
figure shown in [Parker et al., 1982, p. 452]. To
determine the material response from the curve H,
there are four possibilities involving the difficulty of
multivaluedness of H for v ∈ [−v∗, v∗]:
(i) v is originally zero and then begins to increase;
(ii) v is originally zero and then begins to decrease

(to negative values);
(iii) v > v∗ originally and then begins to decrease;
(iv) v < −v∗ originally and then begins to increase.

Other possibilities such as v > v∗ originally and
then begins to increase are not worrisome, because
in such a case the response will be moving along the
H3 branch rightward, without involving any multi-
valuedness of H.

Consider case (i). Experimentally (cf. [Parker
et al., 1982, p. 452]), one finds that a sequence
of increases of v from zero leads to a sequence of
corresponding increasing responses u along the H2

branch. This is the “maiden voyage” we referred
to in Remark 2.1(i). But as v has increased past
v∗, there will be a sudden downward jump of dis-
continuity of the response u, because it is no longer
viable to move along the H2 branch after v > v∗

(and the maiden voyage is over). Let v continue
to increase. Then the response u will also increase,
but along the H3 branch, due to the fact that the
previous downward jump discontinuity has brought
the system to move along H3. This process and the
input-output relation are illustrated in Fig. 5(a).

Case (ii) is similar to (i) by symmetry, so let
us now look at case (iii). Let v > v∗ and con-
sider a sequence of decreases of v. From the mate-
rial’s natural, continuity property, this sequence of
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(a) (b)

Fig. 5. (a) A “maiden voyage”: a sequence of increases of v near v = 0 leads to a corresponding sequence of increases of u
along the H2 branch, until v = v∗, where the system suffers a downward jump discontinuity. For v increasing past v∗, the
system responses u will move rightward along the H3 branch (and the maiden voyage is over in the sense that the system
will never again respond according to the H2 branch). (b) A nonmaiden voyage: let v > v∗ and let v decreases. Then the
corresponding response u will move leftward along the H3 branch, until v = −v∗, where the system cannot move any further
leftward along H3 and must take an upward jump discontinuity to the H1 branch. It will then continue moving leftward along
H1 after v decreases past −v∗.

decreases of v will have the corresponding responses
u on the H3 branch, until v has decreased past −v∗,
when it becomes no longer viable for the system
to move any further leftward along the H3 branch.
The only admissible physical response is for the sys-
tem to take an upward leap of jump discontinuity
to the H1 branch. This is exactly what is said in
Remark 2.1(ii). For v < −v∗, the system response
will move along the branch H1, for decreasing v.
This process is illustrated in Fig. 5(b).

Case (iv) is similar to (iii) by symmetry.

Definition 2.1 is made possible because, as ex-
plained in Remarks 2.1 and 2.2, the iterates along
any branch Hi, i = 1, 2, 3, form either a finite in-
creasing or decreasing sequence; cf. (46), (47) and
(49) later. The iterations then undergo an up or
down jump discontinuity, and then the same behav-
ior pattern is repeated. What if the iterates do not
form an increasing or decreasing sequence as shown
in the following Example 2.4? As of now, we do
not know what is the most physically natural way
to define the hysteresis iterates uk = Hk(u0).

Fig. 6. A multivalued relation u = H(v) = G ◦F (v) for Ex-
ample 2.4, where η = 8.0, α = 2, β = 1. Note that iterates
along any branch H1, H2 or H3 will not yield an increasing
or decreasing finite sequence, because two successive iterates
have alternating signs.
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Example 2.4. Consider the same model as in Ex-
ample 2.3, but instead now let η > 1, similar to
what we have done in Part II [Chen et al., 1998b].
Now the multivalued curve u = G ◦ F (v) is dis-
played as in Fig. 6. This curve has an S shape, but
is forward , rather than backward. Since two succes-
sive iterates usually have alternating signs, we will
not get any (locally) increasing or decreasing finite
sequences.

We suspect that the hysteresis iterates uk =
Hk(u0) can still be defined by setting uk =
(−1)k(−H)k(u0), because −H satisfies conditions
(i)–(vii) in (17)–(19). But whether such a defini-
tion is physically natural or not remains debatable.
We therefore will not treat the case of η > 1 in
Sec. 4.

3. Cascades of Stable Periodic
Solutions with Periods 2k
and 2(k +1)

In this section, we consider (1)–(4). The only non-
linearity appears in the van der Pol type boundary
condition (3) at x = 1. The boundary condition (2)
at the left end x = 0 is linear and energy conserv-
ing. In this section, we show, by and large, that the
only asymptotically stable solutions caused by the
nonlinear hysteresis effects are either a single tone
of period 2k, or a combination tone of periods 2k
and 2(k+1). We conjecture that unstable solutions
of period 2k also exist, but there is no chaos.

For clarity, let us summarize the equivalent hy-
perbolic system for (1)–(4) below:



∂

∂t

[
u(x, t)
v(x, t)

]
=

[
1 0
0 −1

]
∂

∂x

[
u(x, t)
v(x, t)

]
, 0, x < 1, t > 0 ,

v(0, t) = u(0, t), t > 0 ,

u(1, t) = F (v(1, t)), t > 0; F = Fα,β , α > 1, β > 0 ,

u(x, 0) = u0(x) =
1

2
[w′0(x) + w1(x)], v(x, 0) = v0(x) =

1

2
[w′0(x)− w1(x)]

0 < x < 1, cf. (4) and (5).

(23)

Note that in (23)3, F has hysteresis and is defined as in Example 2.1. Let us reference Fig. 1 and its
caption, and recall the following notation and facts:

x∗ = x∗(α, β) ≡
√
α− 1

3β
, (cf. [Chen et al., 1998a, (2.15)]) (24)

v∗ = v∗(α, β) ≡ α− 1

3

√
α− 1

3β
=
α− 1

3
x∗, (cf. [Chen et al., 1998a, (2.16)]) (25)

v̂ = v̂(α, β) ≡ α− 2

3

√
α+ 1

3β
, (26)

m = m(α, β) ≡ α+ 1

3

√
α+ 1

3β
= F1(v̂) = −F3(−v̂) , (F1 takes a global maximum value m at v̂) (27)

F1(v
∗) = v∗ + x∗ = −F3(−v∗) , (28)

F3(v
∗) = v∗ − 2x∗ = −F1(−v∗) , (29)

−m < −(v∗ + x∗) < −v∗ < −v̂ < 0 < v̂ < v∗ < v∗ + x∗ < m. (30)

Define the iterates

θ0 = θ0(α, β) = −v∗ = −v∗(α, β) , ζ0 = ζ0(α, β) = −v̂ = −v̂(α, β)

F3(θj+1) = θj , F3(ζj+1) = ζj , j = 0, 1, 2, . . . ,
(31)
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These iterates θi = θi(α, β), ζi = ζi(α, β), i ∈ Z+,
and their relative positions with respect to ±v∗ and
±m, are extremely important . We will be relying on
such information to determine the asymptotic be-
havior of the hysteresis iterates un+1 = F (un); see
Theorems 3.1–3.8.

From the symmetry between F1 and F3, we get

F1(−θj+1) = −θj ,
F1(−ζj+1) = −ζj , j = 0, 1, 2, . . . .

(32)

Lemma 3.1. Let α > 1 and β > 0. Let F =
F1 ∪ F2 ∪ F3 be the multivalued hysteresis rela-
tion as in Example 2.1 (and Fig. 1). Assume that
u = Fi(v), i ∈ {1, 2, 3}, for some v ∈ Dom(Fi).
Then

u = v + cx∗ , (33)

where c is the unique solution of

(c+ 2)(c− 1)2 = − 6

α− 1

v − v∗
x∗

, (34)

subject to the inequality constraint that

c ≥ 1

−1 ≤ c ≤ 1

c ≤ −1

 if


i = 1 ,

i = 2 ,

i = 3 .

(35)

Proof. The ideas are the same as those in Part I
[Chen et al., 1998a, Lemmas 3.1 and 3.2]. So we
omit the details. �

Lemma 3.2. Let α > 1 and β > 0. Then for the
θj defined in (31), we have

θj = F3(θj+1) = θj+1 + cj+1x
∗ , j = 0, 1, 2, . . . ,

(36)

where cj = cj(α), i = 1, 2, 3, . . . , depend only on α

and are the unique solutions of
cj ≤ −1,

(cj + 2)(cj − 1)2 =
6

α− 1

j∑
i=1

ci + 4 .
(37)

Consequently,

θj = −

 j∑
i=1

ci +
α− 1

3

x∗ ,
j = 1, 2, . . . ; θ1 < θ2 < θ3 < · · · . (38)

Proof. The validity of (36) and (37) follows directly
from (33), (34), (35)3, (25) and (31)1.

So let us now establish only (38). For i = 1,
by (36), we have θ0 = F3(θ1) = θ1 + c1x

∗ ⇒ θ1 =
θ0 − c1x∗ = −(c1 + α−1

3 )x∗ by (25) and (31)1. As-
sume that (38) holds for i. Then for i+ 1, by (36),
we have

θi+1 =θi−ci+1x
∗=−

 i∑
j=1

cj+
α−1

3

x∗−ci+1x
∗

=−

i+1∑
j=1

cj+
α−1

3

x∗ .
So the induction process is complete. �

Lemma 3.3. Let α > 1 and β > 0. Then for the
ζj defined in (31) we have

ζj = F3(ζj+1) = ζj+1 + dj+1x
∗ , j = 0, 1, 2, . . . ,

(39)

ζj = −

 j∑
k=0

dk +
α+ 1

3

√
α+ 1

α− 1

x∗ ;
ζ0 < ζ1 < ζ2 < · · · , (40)

where d1, d2, . . . , are the unique solutions of

(dj + 2)(dj − 1)2 − 6

α− 1

j∑
k=0

dk

= 2

(
α+ 1

α− 1

)3/2

+ 2, j = 1, 2, . . . ,

dj ≤ −1 ,

(41)

while

d0 ≡ −
√
α+ 1

α− 1
. (42)

Proof. First, note that if we define d0 through

F3(ζ0) = ζ0 + d0x
∗ = −m,

then from (26), (27) and (31)1 we get (42):

d0 = − 1

x∗
(ζ0 +m) = −

√
α+ 1

α− 1
.

The rest, (41), can be established just as in the
proof of Lemma 3.2. �

We collect a bunch of numerical facts together
to form the following potpourri lemma.
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Lemma 3.4. Let α > 1 and β > 0. Then

(i) m < θ1 if and only if 1 < α < 2.6994, and
m = θ1 if α = 2.6994;

(ii) F1(v
∗) = v∗ + x∗ < θ1 if and only if 1 < α <

2.9131, and v∗ + x∗ = θ1 if α = 2.9131;
(iii) ζ1 < m if and only if 1 < α < 2.9664, and

ζ1 = m if α = 2.9664;
(iv) F3(v

∗) = v∗−2x∗ ≥ −v∗ if and only if α ≥ 4;
(v) F3(v

∗) = v∗ − 2x∗ ≥ −θ1 if and only if
1 < α ≤ 4;

(vi) θ1 ≥ v∗ if and only if 1 < α ≤ 4;
(vii) m < θ2 if and only if 1 < α < 5.2935;
(viii) F ′3(v) < 0 for v ∈ (−v∗, −v̂), F ′3(−v̂) =

0, and 0 < F ′3(v) < 1 for v ∈ (−v̂, ∞).
Similarly,

F ′1(v)<0 for v∈(v̂, v∗), F ′1(v̂)=0 ,

and 0<F ′1(v)<1 for v∈(−∞, v̂) . (43)

Proof. The values of α satisfying the inequalities
can be easily computed by applying Lemmas 3.2
and 3.3. We omit the details. �

For v ∈ (v∗, ∞), F is single-valued and F (v) =
F3(v). Now consider the iterates Fn3 (v0) for some
v0 ∈ (v∗, ∞). Then according to the definition
of hysteresis iterates (20)–(22) by letting H = F
therein, we get

F j3 (v0) = F j(v0) , if F j3 (v0) ∈ [−v∗, ∞) ,

j = 1, 2, . . . .

The above remains valid even for j = n, where
Fn3 (v0) /∈ [−v∗, ∞] but Fn−1

3 (v0) ∈ [−v∗, ∞). But
for j > n, it is no longer possible to form the iter-
ates F j3 (v0). By the definition of hysteresis iterates,
we leap up and iterate along the F1 branch, and get

F1 ◦ Fn3 (v0) = Fn+1(v0) . (44)

This simple observation also shows that in gen-
eral F1 ◦ F k3 (v0) 6= F k+1(v0) even though F k3 (v0) ∈
Dom(F1), because F k3 (v0) “has not run the entire
course along the branch F3”. The following simple
proposition is useful in deciding whether (44) holds.

Proposition 3.1. Let α > 1, β > 0 and v0 ∈ R.

(i) If v0 ∈ (0, v∗) such that F2(v0), F
2
2 (v0), . . . ,

F
j
2 (v0) ∈ (0, v∗], then

0 < F2(v0) < F 2
2 (v0) < · · · < F j2 (v0) . (45)

Similarly, if v0 ∈ (−v∗, 0) such that

F2(v0), F
2
2 (v0), . . . , F

j
2 (v0) ∈ [−v∗, 0), then

0 > F2(v0) > F 2
2 (v0) > · · · > F

j
2 (v0) . (46)

(ii) Let i ≥ 1 such that F i−1(v0), F
i(v0) ∈

(v∗, ∞). If for w = F i(v0), we have

F3(w), F 2
3 (w), . . . , F j3 (w) ∈ [−v∗, ∞), then

F3(w) > F 2
3 (w) > · · · > F

j
3 (w) ≥ −v∗ ,

F
j
3 (w) = F

j
3 (F i(v0)) = F i+j(v0) .

(47)

Furthermore, if Fn−1
3 (w) ∈ [−v∗, θ1), then

Fn+1(w) = F1 ◦ Fn3 (w) = Fn+1+i(v0) . (48)

Conversely, if Fn−1(w) /∈ [−v∗, θ1), then (48)
does not hold.

(iii) Let i ≥ 1 such that F i−1(v0), F
i(v0) ∈

(−∞, −v∗). If for w = F i(v0), we have F1(w),

F 2
1 (w), . . . , F j1 (w) ∈ (−∞, v∗], then

F1(w) < F 2
1 (w) < · · · < F j1 (w) ≤ v∗ ,

F j1 (w) = F j1 (F i(v0)) = F i+j(v0) .
(49)

Furthermore, if Fn−1
1 (w) ∈ (−θ1, v∗], then

Fn+1(w) = F3 ◦ Fn1 (w) = Fn+1+i(v0) . (50)

Conversely, if Fn−1
1 (w) /∈ (−θ1, v∗], then (50)

does not hold.

Proof. Because F2 is odd, strictly increasing on
[−v∗, v∗] and lying above the diagonal line u = v
on [0, v∗], we easily get (45) and (46).

Now, consider (ii). The memory effect that
F i−1(v0), F

i(v0) ∈ (v∗, ∞) implies that for w =
F i(v0), the iterates F (w), F 2(w), . . . , are obtained
by iterations along the F3 branch. The F3 branch
lies below the diagonal line u = v, is strictly increas-
ing on (−v̂, ∞] but strictly decreasing on [−v∗, −v̂).
Using Lemma 3.1 and the same ideas as in the proof
of (38) in Lemma 3.2, we can easily show the mono-
tonicity of (47). Details are omitted.

To show (48), first we note that since
Fn−1

3 (w) ∈ [−v∗, θ1], we can still make a final it-
eration along the F3 branch and get

Fn3 (v0) = F3(F
n−1
3 (w)) = Fn(w)

= Fn(F i(v0)) = Fn+i(v0) .
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Using the fact from (31) and Lemma 3.4 that

F3([−v∗, −v̂] ∪ [−v̂, θ1)) = F3([−v∗, −v̂]) ∪ F3([−v̂, θ1))
= [−m, −(v∗ + x∗)] ∪ [−m, −v∗) = [−m, −v∗) ,

we get Fn(w) = F3(F
n−1(w)) ∈ [−m, −v∗), and therefore

Fn+1(w) = F (Fn(w)) = F1(F
n(w)) = F1 ◦ (Fn3 (F i(v0)))

= Fn+1(F i(v0)) = Fn+1+i(v0) ,

and (48) is proved.
The converse part can be argued the same way. We omit the details. Part (iii) follows from part (ii)

by symmetry. �

3.1. Asymptotically stable solutions of periods two and four for α close to 1

Theorem 3.1. Let α : 1 < α ≤ 2.6694 so that v∗ < m ≤ θ1. Then there exists a unique period-2 point
ξ : ξ = F 2(ξ), ξ ∈ [v∗, m], which is a global attractor.

Proof. Since v∗ < m ≤ θ1 and F3 is strictly monotonically increasing on [v∗, θ1], we have

−m = min
v≥−v∗

F3(v) < F3(v
∗) < F3(m) ≤ F3(θ1) = −v∗ .

Therefore
F3([v

∗, m]) = [F3(v
∗), F3(m)] ⊆ [−m, −v∗] .

By symmetry,
F1([−m, −v∗]) = [F1(−m), F1(−v∗)] ⊆ [v∗, m] .

Hence by Proposition 3.1(ii), we have

F 2 = F ◦ F = F1 ◦ F3 : [v∗, m]→ [v∗, m] .

Therefore, by using the Intermediate Value Theorem, we obtain a point ξ ∈ [v∗, m] such that F 2(ξ) = ξ.
This ξ is unique and attracting because by Lemma 3.4(viii) we have some c : 0 < c < 1 such that

0 < F ′3(v) < c < 1 , for v ∈ [v∗, m] ; 0 < F ′1(v) < c < 1 , for v ∈ [−m, −v∗] .

Now it remains to show that the iterates of any point v will eventually enter [v∗, m]. Since the interval
[−m, m] is a global attractor for the hysteresis iterates vn+1 = F (vn), cf. Part II [Chen et al., 1998b,
Lemma 2.5], we need only show that points in [−v∗, v∗] are attracted to [−m, −v∗] by the action of F3,
and that points in [−v∗, v∗] are attracted to [v∗, m] by the action of F1. This is easy:

F3([−v∗, v∗]) ⊆ [−m, F3(v
∗)] = [−m, v∗ − 2x∗] ⊆ [−m, −v∗] [cf. (29) and Lemma 3.4(iv)].

A similar statement holds for F1.
The proof is complete. �

Next, we increase α and consider the situation v∗ + x∗ < θ1 < m. By Lemma 3.4, this holds if and
only if 2.6994 < α < 2.9131. This situation turns out to be a little complicated.
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Theorem 3.2. Let α : 2.6994 < α < 2.9131 so that
v∗ + x∗ < θ1 < m. Then

(i) there exists a unique period-2 point ξ ∈ (v∗, θ1)
such that F 2(ξ) = ξ;

(ii) if, in addition, α < α∗ = 2.8284, then the
period-2 orbit in (i) is globally attracting;

(iii) if α > α∗, then there exist an unstable period-4
orbit as well as another period-4 orbit.

Proof.

(1) We first show the existence of a period-2 orbit.
Since F3(θ1) = −v∗, and

F3(v
∗) = v∗ − 2x∗ [by (29)]

> −θ1 [by Lemma 3.4(v)] , (51)

we have

F3 : [v∗, θ1]
into−−−−→ [−θ1, −v∗] .

Similarly, F1 : [−θ1, −v∗] into−→ [v∗, θ1]. From
the strict contraction property in (43), we
see that F1 ◦ F3 : [v∗, θ1] → [v∗, θ1] is a
strict contraction. Therefore, there exists a
unique period-2 point ξ ∈ (v∗, θ1) such that
F 2(ξ) = ξ.

(2) Let us determine the domain of attraction of
the period-2 orbit of ξ. Since v∗+x∗ < θ1 and
F3(v

∗) > −θ1 > −m by the assumption and
(51), there exist δ1 , δ2 : −v∗ < δ2 < δ1 < v∗

such that F3(δ2) = F3(δ1) = −θ1. Therefore

[−v∗, δ2) ∪ (δ1, θ1) ⊆W s(ξ) ,

the stable set of ξ , (52)

F3 : [δ2, δ1]→ [−m, −θ1] ,
F1 : [−m,−θ1]→ [F1(−m), v∗] .

(53)

There are two possibilities:

(a) If F1(−m) > −δ2, then F1([−m, −θ1]) ⊆
[−δ2, v∗] from (53), and F1 ◦ F1([−m, −θ)] ⊆
F1([−δ2, v∗]) ⊆ [v∗ + x∗, θ1]. Thus [δ2, δ1] ⊆
W s(ξ).

Since F1(−m) > −δ2 if and only if F3(m) <
δ2, we also have [θ1, m] ⊆ W s(ξ). We con-
clude that the period-2 orbit of ξ is globally
attracting.

(b) If F1(−m) ≤ −δ2, equivalently, F3(m) ≥ δ2,
then there exists γ1 : θ1 < γ1 ≤ m such that
F3(γ1) = δ2. It follows that F3([θ1, γ1]) =

[−v∗, δ2], and by (52), we have [θ1, γ1] ⊆
W s(ξ).

For case (b) above, since we have F3(γ1) =
δ2 as well as F1(−γ1) = −δ2, we can find δ3 and
δ4 such that

−v∗ < δ2 < δ4 < δ3 < δ1 < v∗ ,

F3(δ4) = F3(δ3) = −γ1 .

Then we obtain F3((δ4, δ3)) ⊆ (−m, −γ1).
Again, two possible cases occur:

(c) If F1(−m) > −δ4, then

F1◦F1((−m, −γ1)) ⊆ F1(−δ4, −δ2) = (θ1, γ1) ,

and thus (δ4, δ3) ∪ (−m, −γ) ⊆ W s(ξ), and
hence the period-2 orbit of ξ is a global
attractor.

(d) If F1(−m) ≤ −δ4, equivalently, F3(m) ≥ δ4,
then there exists γ2 : θ1 < γ1 < γ2 ≤ m such
that F3(γ2) = δ4. We can further find δ5 and δ6
such that

−v∗ < δ2 < δ4 < δ6 < δ5 < δ3 < δ1 < v∗ ,

F3(δ5) = F3(δ6) = −γ2 .

According to the discussions in (a)–(d) above,
we can continue the process to construct δ1, δ2, . . . ,
δ2n−1, δ2n; γ1, γ2, . . . , γn. If F3(m) < δ2n for some
n ∈ Z+, we stop and conclude that the period-2 or-
bit of ξ is a global attractor. Otherwise, F3(m) >
δ2n holds for all n ∈ Z+ and we have sequences
{γn}, {δ2n}, {δ2n+1} such that

γ1 < γ2 < · · · < γn < · · · ↑ γ̃ ,
δ1 > δ3 > · · · > δ2n+1 > · · · ↓ δR ,
δ2 < δ4 < · · · < δ2n < · · · ↑ δL .

for some γ̃, δR, 4δL ∈ R as the unique limits of
these bounded monotonic sequences. By the same
reasoning as in (a)–(d), we conclude that

(−v∗, δL) ∪ (δR, v
∗) ⊆W s(ξ) ,

F3(γ̃) = δL , F3(δL) = −γ̃ ,
F1(−γ̃) = −δL , F1(−δL) = γ̃ .

The above gives F 2
1 ◦ F 2

3 (γ̃) = F 4(γ̃) = γ̃, and thus
{γ̃, δL, −γ̃, −δL} forms a period-4 orbit. This orbit
is obviously unstable.

In addition, we also have

F 2
3 ([γ̃, m]) ⊆ F3([δL, δR]) ⊆ [−m, −γ̃] ,

F 2
1 ([−m, −γ̃]) ⊆ F1([−δR, −δL]) ⊆ [γ̃, m] .
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Therefore F 4([γ̃, m]) ⊆ [γ̃, m], and a period-4 orbit
exists which is distinct from the previous unstable
period-4 orbit.

Denote

α∗ ≡ inf{α ∈ (2.6994, 2.9131)|
F3(m) = F3(m(α)) > δ2n, ∀n = 1, 2, . . .} .

Then at least two period-4 orbits exist if α > α∗.
If α < α∗, then the period-2 orbit of ξ is globally
attracting.

Through direct computations, we have found

α∗ ≈ 2.8284 �

Remark 3.1. More elaborate analysis [Chern, 1995,
Lemma 4.7] shows that besides the unstable period-
4 orbit in Theorem 3.2(iii), the second period-4 or-
bit is unique and attracting. Furthermore, α = α∗

is a value where saddle-node (tangent) bifurcation
occurs.

In Theorem 3.2, the condition v∗ + x∗ < θ1 is
required. What happens if θ1 ≤ v∗ + x∗, i.e. α ≥
2.9131? This is answered in the following by in-
creasing α past 2.9131.

Theorem 3.3. Let θ1 ≤ v∗ + x∗ and ζ1 < m,
equivalently, 2, 9131 ≤ α < 2.9664. Then there
exists a unique period-2 point ξ1 ∈ [v∗, θ1) whose
period-2 orbit is globally attracting on [v∗, θ1), and
a unique period-4 point ξ2 ∈ [ζ1, m] whose period-4
orbit is globally attracting on [ζ1, m].

Proof. Since 2.9131 ≤ α < 2.9664, by Lemma 3.4,
we have

v∗ < θ1 < m < θ2 and v∗ < θ1 < ζ1 < m.

Also

F3(v
∗) = v∗ − 2x∗ > −θ1 , by Lemma 3.4(v) .

Therefore

F3 : [v∗, θ1]
onto−−−−→ [v∗ − 2x∗, −v∗] ⊆ [−θ1, −v∗] .

Similarly,

F1 : [−θ1, −v∗] −→ [v∗, θ1] .

By (43), F 2 = F1 ◦F3 : [v∗, θ1]→ [v∗, θ1] is a strict
contraction. Therefore F 2 has a unique fixed point
ξ1 ∈ [v∗, θ1) with domain of attraction containing
[v∗, θ1). This point ξ1 has period-2.

Next, consider

[ζ1, m]
F3−−−−→ [F3(ζ1), F3(m)]

= [−v̂, F3(m)]
F3−−−−→ [F3(−v̂), F 2

3 (m)]

= [−m, F 2
3 (m)] ⊆ [−m, −ζ1] ,

where we have used the strict contraction prop-
erty (43) of F3 to get F 2

3 (m) ≤ −ζ1 < −v∗.
Therefore F 2

3 : [ζ1, m] → [−m, −ζ1]. Similarly,
F 2

1 : [−m, −ζ1]→ [ζ1, m]. Hence

F 4 = F 2
1 ◦ F 2

3 : [ζ1, m]→ [ζ1, m]

is a strict contraction by Lemma 3.4(viii). There-
fore, there exists a unique fixed point ξ2 ∈ [ζ1, m]
with domain of attraction containing [ζ1, m]. This
point ξ2 has period-4. �

Further increasing α, we obtain the following.

Theorem 3.4. Let v∗ < θ1 < m < θ2, m < ζ1,
−m < F3(−v∗) = −(v∗ + x∗) < −θ1, equivalently,
2.9664 < α < 4. Then there exists a period-4 point
ξ ∈ [v∗ + x∗, m].

Proof. We have

[θ1, ζ1]
F3−−−−→ [−v∗, −v̂] F3−−−−→ [−m, F3(−v∗)]

⊆ [−m, −(v∗ + x∗)] ⊆ [−m, −θ1] ,

Similarly,

[−ζ1, −θ1]
F1−−−−→ [v̂, v∗]

F1−−−−→ [F1(v
∗), m]

= [v∗ + x∗, m] ⊆ [θ1, m] .

Therefore by Proposition 3.1, F 4 = F 2
1 ◦ F 2

3 :
[v∗+x∗, m]→ [v∗+x∗, m], and there exists a fixed
point ξ ∈ [v∗ + x∗, m]. It is a period-4 point. �

Theorem 3.5. Let θ1 ≤ v∗ and m < θ2,
equivalently, 4 ≤ α < 5.2935. Then there ex-
ists a unique period-4 orbit, and no other peri-
ods exist. Furthermore, let ψ ∈ (−v∗, −v̂) satisfy
F ′3(ψ) = −1. If F (v∗) > ψ is satisfied, then the
period-4 orbit is unique and globally attracting.

Proof. By Lemma 3.4(v)–(vii), we have

θ1 ≤ v∗ < m < θ2

and − v∗ ≤ F3(v
∗) = v∗ − 2x∗ < −θ1 .
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Then v∗ < m < θ2 implies F3(m) < F3(θ2) = θ1, and

[v∗, m]
F3−−−−→ [F3(v

∗), F3(m)] ⊆ [−v∗, θ1) ,

[F3(v
∗), F3(m)]

F3−−−−→ [F 2
3 (v∗), F 2

3 (m)] ⊆ [−m, −v∗) .

Similarly,

[−m, −v∗] F1−−−−→ [F1(−m), F1(−v∗)] ⊆ (−θ1, v∗] ,

[F1(−m), F1(−v∗)]
F1−−−−→ [F 2

1 (−m), F 2
1 (−v∗)] ⊆ (v∗, m] .

Hence by Proposition 3.1, F 4 = F 2
1 ◦ F 2

3 : [v∗, m]
−→ [v∗, m]. Using the Intermediate Value Theo-
rem, we see that F 4 has a fixed point, which in turn
is a prime period-4 point of F . From the itinerant
intervals of F 4 = F1 ◦ F1 ◦ F3 ◦ F3 as shown above,
one can show that the intersection of u = F 4(v)
and u = v on [v∗, m]× [v∗, m] can happen at most
at four points. Each point has period-4, and hence
intersection happens at exactly four points. There
exists a unique period-4 point ξ ∈ [v∗, m].

Making a slightly more detailed argument, one
can show that all points on [−m, m] are eventually
mapped into [v∗, m]∪[−v∗, θ1]. Therefore, no other
periods exist but period-4.

Since F ′3(−v∗+) = −∞ and F ′3(−v̂) = 0, there
exists a point ψ ∈ (−v∗, −v̂) such that F ′3(ψ) = −1.
If F3(v

∗) > ψ, then since 0 < F ′3(v) < 1 on [v∗, m]
and |F ′(v)| < 1 on [F3(v

∗), F3(m)] ⊆ [ψ, θ1),
F 2 = F3 ◦ F3 is a contraction on [v∗, m]. Similarly,
F 2 = F1 ◦F1 is a contraction on [−m, −v∗]. There-
fore F 4 = F 2

1 ◦ F 2
3 is a contraction on [v∗, m] and

therefore the period-4 orbit is unique and globally
attracting. �

3.2. Existence of period 2k and
coexistence of periods 2k and
2(k + 1) for k > 1

We are now in a position to continue the mathe-
matical induction process for k. Let α keep increas-
ing past those values α̃1 = 2.6694, α̃2 = 2.9131,
α̃3 = 2.9664, α̃4 = 4, α̃5 = 5.2935, given in the
statements of Theorems 3.1–3.5. We obtain the
following.

Lemma 3.5 (Key Lemma). Let θn, n = 1, 2, . . . ,
be defined as in (31). Then for each n ∈ Z+, there
exists a unique strictly increasing sequence {αn|n =
1, 2, . . . , αn ≥ 4} such that v∗ = v∗(α, β) ≥ θn =
θn(α, β) if and only α ≥ αn.

Proof. We use mathematical induction.

For n = 1, by Lemma 3.4(vi), we have v∗ ≥ θ1
if and only if α ≥ α1 ≡ 4.

Let it be true that v∗(α, β) ≥ θn−1(α, β) if and
only if α ≥ αn−1 > αn−2 > · · · > α1 = 4.

We make two claims:

(i) For each α > 1, −v̂(α, β) < θ1(α, β)

< θ2, (α, β) < · · · < θk(α, β) < · · · ; (54)

(ii) For each α > 1 and cj = cj(α), the

solution of (37), cj(α) is an increasing

function of α such that cj(α) ↑ −1

as α ↑ ∞, for any j ∈ Z+ . (55)

Their verifications are straightforward and omitted.
Now let α ≥ αn−1. Then since θn > −v̂ by (i),

by Lemmas 3.2 and 3.4(viii) we have v∗ ≥ θn if and
only if F3(v

∗) = v∗ − 2x∗ ≥ F3(θn) = θn−1 and,
thus,

v∗ − 2x∗

x∗
≥ θn−1

x∗
,

α− 1

3
− 2 ≥ −

(
n−1∑
i=1

ci +
α− 1

3

)
, by (25), (38) ,

2α− 8

3
≥ −

n−1∑
i=1

ci(α) .

(56)

The RHS of (56) is a decreasing function of α by
claim (ii) above, and

lim
α→∞

[
−
n−1∑
i=1

ci(α)

]
= n− 1 ,

while the LHS of (56) grows to +∞ as α → ∞.
Obviously, the inequality (56) will be satisfied if
α ≥ αn, where α = αn makes (56) an equal-
ity. This αn is unique satisfying αn > αn−1, as
shown in Fig. 7. Therefore v∗ ≥ θn if and only if
α ≥ αn > αn−1.

The proof is complete. �
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Fig. 7. The determination of αn as the intersection of the
line y = (2/3)(α−4) and a decreasing curve y = c1(α)+ · · ·+
cn−1(α).

Since −v∗ < −v̂, from the strictly monotone in-
creasing property of F3 on [−v̂, ∞), (31)2 and (54),
we have

θk < ζk , k ∈ Z+ .

The possible relative positions between θk, ζk and
m are:

m < θk < ζk , θk ≤ m < ζk and θk < ζk ≤ m.
(57)

We discuss each of them sequentially in
Theorems 3.6–3.8.

Theorem 3.6 (Existence of a Period-2k orbit). Let
αk−1 ≤ α < αk so that θk−1 ≤ v∗ < θk, for some
k > 2. If m < θk < ζk, then there exists a period-2k
point ξ ∈ [v∗, m].

If, in addition, F k−1
3 (v∗) > ψ is satisfied,

where ψ is the unique point in (−v∗, −v̂) such that
F ′3(ψ) = −1, then the period-2k orbit is unique and
globally attracting.

Proof. Since θk−1 ≤ v∗ < m < θk, by the mono-

tonicity of F3 on [−v̂, ∞), we have F j3 (θk−1) =

θk−j−1 ≤ F j3 (v∗) < F j3 (m) < F j3 (θk) = θk−j, for
j = 1, 2, . . . , k − 1. Therefore

F k−1
3 : [v∗, m]

F3−−→ [F3(v
∗), F3(m)]

F3−−→ · · · F3−−→ [F k−1
3 (v∗), F k−1

3 (m)] (58)

⊆ [F k−1
3 (θk−1), F

k−1
3 (θk)] = [−v∗, θ1] ,

F k3 ([v∗, m]) ⊆ [F3(−v∗), F3(θ1)] ⊆ [−m, −v∗] , by Proposition 3.1 ,

Similarly, by symmetry, F k1 ([−m, −v∗]) ⊆ [v∗, m]. Therefore

F 2k = F k1 ◦ F k2 : [v∗, m]→ [v∗, m] .

By the Intermediate Value Theorem, F k1 ◦ F k2 has a fixed point ξ ∈ [v∗, m], which is a period-2k point
of F .

If F
(k−1)
3 (v∗) > ψ, then using (58) we get

F k−1
3 : [v∗, m]

F3−−−−→ · · · F3−−−−→ [F k−1
3 (v∗), F k−1

3 (m)] ⊆ [ψ, F k−1
3 (θk)] = [ψ, θ1] ,

F k3 : [v∗, m]
F3−−−−→ · · · F3−−−−→ [ψ, θ1]

F3−−−−→ [−m, −v∗] , by Proposition 3.1 , (59)

where on each leg of the mapping chain (59), F3 is contractive. By symmetry, the same can be said about

F k1 : [−m, −v∗] F1−−−−→ · · · F1−−−−→ [−θ1, −ψ]
F1−−−−→ [v∗, m] .

Therefore F 2k = F k1 ◦F k3 : [v∗, m] −→ [v∗, m] is a contraction, with a unique fixed point ξ ∈ [v∗, m] which
is a periodic point of prime period 2k of F .

A little further discussion shows that every point on [−m, m] will be eventually mapped into [v∗, m],
and so the period-2k orbit of ξ is globally attracting. We omit the details. �

The second case in (57) is now covered in the following theorem, which indicate the presence of
combination tones.

Theorem 3.7 (Existence of a Period 2k Attracting Orbit or Coexistence of Period-2k and 2(k + 1)
Orbits). Let k > 2, αk−1 ≤ α < αk so that θk−1 ≤ v∗ < θk. If θk ≤ m < ζk, then there exists a unique
period-2k point ξ1 ∈ (ζk−1, m] whose period-2k orbit has a domain of attraction containing [ζk−1, m].
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If in addition, v∗ + x∗ > θk, then there also exists a period-2(k + 1) point ξ2 ∈ [θk, m]\[ζk−1, m].

Proof. Since θk ≤ m < ζk, we have v∗ < ζk−1 < θk ≤ m < ζk, and so

F k3 : [ζk−1, m]
F3−−−−→ [ζk−2, F3(m)]

F3−−−−→ · · · F3−−−−→ [ζ1, F
k−2
3 (m)]

F3−−−−→ [−v̂, F k−1
3 (m)]

F3−−−−→ [−m, F k3 (m)] ⊆ [−m, −ζk−1) ,

because F3 is contractive on each leg of the above chain. Similarly,

F k1 : [−m, −ζk−1]
F1−−−−→ · · · F1−−−−→ (ζk−1, m] .

Therefore by Proposition 3.1, F 2k = F k1 ◦F k3 : [ζk−1, m] −→ [ζk−1, m], and there exists a unique period-2k
point ξ1 ∈ (ζk−1, m] whose orbit has a domain of attraction containing [ζk−1, m].

If in addition, v∗ + x∗ > θk, then

F3(−v∗) = −(v∗ + x∗) < −θk ,

and so we have

F k+1
3 : [θk, ζk]

F3−−−−→ [θk−1, ζk−1]
F3−−−−→ · · · F3−−−−→ [θ1, ζ1]

F3−−−−→ [−v∗, −v̂]
F3−−−−→ [−m, F (−v∗)] = [−m, −(v∗ + x∗)] ⊆ [−ζk, −θk] .

Similarly, F k+1
1 : [−ζk, −θk] → · · · → [F1(v

∗), m] ⊆ [θk, ζk]. Therefore F 2(k+1) = F k+1
1 ◦ F k+1

3 :
[θk, ζk]→ [θk, ζk] has a fixed point ξ2 ∈ [θk, ζk], which has prime period 2(k + 1). In view of the first half
of the proof, we therefore have ξ2 ∈ [θk, ζk]\[ζk−1, m]. But (m, ζk] is outside the global attractor [−m, m].
Hence we have ξ2 ∈ [θk, m]\[ζk−1, m]. �

Finally, consider the third case in (57).

Theorem 3.8 (Coexistence of Period 2k and 2(k + 1) Attracting Orbits). Let αk−1 ≤ α < αk so that
θk−1 ≤ v∗ < θk, where k ∈ Z+, k > 1. If θk < ζk ≤ m, then there exists a unique period-2k point
ξ1 ∈ [v∗, θk) whose period-2k orbit is attracting on [v∗, θk], and there exists a unique period-2(k + 1) point
ξ2 ∈ (ζk, m] whose period-2(k + 1) orbit is attracting on [ζk, m].

Proof. We have

F k3 : [v∗, θk]
F3−−−−→ [F3(v

∗), θk−1]
F3−−−−→ [F 2

3 (v∗), θk−2] −→ · · ·
F3−−−−→ [F k−1

3 (v∗), θ1]
F3−−−−→ (−θk,−v∗] , (60)

where the last leg of the chain in (60) holds because

−v̂ = F k3 (ζk) < F k−1
3 (v∗) < F k−1

3 (θk) = θ1 , and 0 < F ′3(v) < 1 on [F j3 (v∗), θk−j] , j = 0, . . . , k − 1 .
(61)

Similarly,

F k1 : [−θk, −v∗]
F1−−−−→ [−θk−1, F1(−v∗)]

F1−−−−→ [−θk−2, F
2
1 (−v∗)] −→ · · · F1−−−−→ [v∗, θk) . (62)

By (60)–(62), we have

F 2k = F k1 ◦ F k3 : [v∗, θk] −→ [v∗, θk]

is a contraction with a unique fixed point ξ1 ∈ [v∗, θk). The point ξ1 has period 2k, the domain of attraction
of whose orbit contains [v∗, θk].
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Next, let ζk < m. Then

F k+1
3 : [ζk, m]

F3−−−−→ [ζk−1, F3(m)]
F3−−−−→ · · · F3−−−−→ [ζ1, F

k−1
3 (m)]

F3−−−−→ [−v̂, F k3 (m)]
F3−−−−→ [−m, −ζk) ⊆ [−m, −v∗)

because 0 < F ′3(v) < 1 holds on each leg of the mapping chain. Similarly,

F k+1
1 : [−m, −ζk]

F1−−−−→ [F1(−m), −ζk−1] −→ · · ·
F1−−−−→ (ζk, m] ⊆ (v∗, m] .

Therefore F 2k+2 = F k+1
1 ◦ F k+1

3 : [ζk, m] −→
[ζk, m] is a contraction with a unique fixed point
ξ2 ∈ (ζk, m]. This point ξ2 has period 2(k + 1),
the domain of attraction of whose orbit contains
[ζk, m].

If ζk = m, from the argument in the above
paragraph, by letting ζk → m we easily see that
ζk itself has prime period 2(k + 1). The period-
2(k+ 1) orbit of ζk has a domain of attraction con-
taining [ζk− ε, ζk+ ε] for some small ε > 0 because
0 = F ′3(−v̂) = F ′3(F

k
3 (ζk)). �

Remark 3.2.

(1) In Theorem 3.6, if the additional assumption
F k−1

3 (v∗) > ψ is violated, then we suspect
that there may exist both stable and unstable
orbits of periods other than 2k, such as what
Theorem 3.2 has shown. We conjecture that
if they do exist, they are of periods 2(k + 1).

(2) In Theorems 3.7 and 3.8, we have established
the existence and some partial uniqueness
and stability results of period-2k and period-
2(k + 1) orbits. Through numerical simula-
tions, we have found that these orbits appear
to be the only stable orbits in existence. See
Examples 3.1–3.3. We suspect that these peri-
odic orbits captured by us constitute the only
stable periodic orbits under the assumptions
of Theorems 3.7 and 3.8.

Example 3.1. Let α = 45, β = 1. Using (25),
(27) Lemmas 3.2 and 3.3, we have computed and
obtained the following values:

v∗ = 56.1691 , m = 60.0420 , θ17 = 52.7489 ,

ζ17 = 52.8225 , θ18 = 60.4728 , ζ18 = 60.5475 .

We get the following relative positioning of these
points:

θ17 < ζ17 < v∗ < m < θ18 < ζ18 . (63)

Therefore Theorem 3.6 applies with k = 18. There
exists a period-36 orbit. This orbit is clearly dis-
played in Fig. 8. It is the only stable periodic
orbit which has emerged after thorough numerical
simulations.

Example 3.2. Let α = 45.15, β = 1. Then we
obtain

v∗ = 56.4565 , m = 60.3359 , x∗ = 3.8362 ,

θ17 = 52.5666 , ζ17 = 52.6400 ,

θ18 = 60.2965 , ζ18 = 60.3710 .

These values satisfy

θ17 < ζ17 < v∗ < θ18 < m < ζ18 . (64)

Therefore the first part of Theorem 3.7 applies with
k = 18. There exists a stable period 2k = 36 orbit.

The second part of Theorem 3.7 does not apply
because

v∗ + x∗ = 60.2927 < θ18 = 60.2965 .

From numerical simulations, we nevertheless have
found that a second stable period-38 (2(k + 1) =
2(18 + 1) = 38) orbit exists.

This example seems to suggest that the condi-
tion of θk < ζk < v∗ < θk+1 < m < ζk alone is
sufficient to guarantee the coexistence of the sta-
ble period-2k and period-2(k + 1) orbits, without
requiring v∗ + x∗ > θk+1. But so far we have not
been able to prove it.

The coexistence of stable period-36 and 38 or-
bits can be seen in Fig. 9.

When α = 45.16, we have

v∗ = 56.4757 , m = 60.3555 , x∗ = 3.8367 ,

v∗ + x∗ = 60.3124 , θ17 = 52.5544 ,

ζ17 = 52.6278 , θ18 = 60.2847 , ζ18 = 60.3592 ,

hence

θ17 < ζ17 < v∗ < θ18 < v∗ + x∗ < m < ζ18 ,
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Fig. 8. A stable period-36 orbit for the hysteresis map F in
Example 3.1, where α = 45, β = 1 and k = 18 (in Theo-
rem 3.6). The dotted line represents the F2 branch.

Fig. 9. Coexistence of stable period-36 and period-38 orbits
for the hysteresis map F in Example 3.2, where α = 45.15,
β = 1. The dotted line represents the F2 branch. Note
that the assumption of the second half of Theorem 3.7
is violated.

and all the conditions in Theorem 3.7 are fulfilled
for k = 18. By Theorem 3.7, there is of course the
coexistence of stable period-36 and 38 orbits (which
look almost identical to those in Fig. 9 and therefore
are omitted).

Fig. 10. Coexistence of stable period-36 and period-38 or-
bits for the hysteresis map F in Example 3.3, where α = 46
and β = 1. Theorem 3.8 applies for k = 18. The dotted line
represents the F2 branch.

If α = 45.14, then (63) still holds but (64) is
violated. Theorem 3.6 now applies. We have found
only a stable period-36 orbit through simulations.

Example 3.3. Let α = 46, β = 1. Then

v∗ = 58.0948 , m = 62.0105 , θ17 = 51.5214 ,

ζ17 = 51.5939 , θ18 = 59.2850 , ζ18 = 59.3585 ,

θ19 = 67.1623 , ζ19 = 67.2369 .

We have

θ17 < ζ17 < v∗ < θ18 < ζ18 < m < θ19 < ζ19 .

Therefore Theorem 3.8 is applicable with k = 18.
There is the coexistence of a stable period-36 orbit
with another stable period-38 orbit. See Fig. 10.

Example 3.4. Let α = 45, β = 1. Let the initial
conditions for u0 and v0 in (23)4 be

u0(0) = v0(0) = 100 ,

u0(1) = F3(v0(1)) , v0(1) ≡ 100 ,

u0(x) = u0(0) + x[u0(1) − u0(0)] , x ∈ (0, 1) ,

v0(x) = u0(x)
2 + bα,βu0(x) + cα,β , x ∈ (0, 1),

(65)

where bα,β = −191.74 and cα,β = 9274.07 are two
constants chosen to satisfy v0(0) = v0(1) = 100.
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(a) u

(b) v

Fig. 11. The solution profiles for u(x, t) and v(x, t), for
t ∈ [0, 2], in Example 3.4.

We solve the solution (u(x, t), v(x, t)) of the
system of (9). Note that the initial conditions in
(65) satisfy the compatibility conditions

v0(0)=u0(0) ,

β[u0(1)−v0(1)]3+(1−α)[u0(1)−v0(1)]+2v0(1)=0 .

Also, u0 and v0 are continuous on [0, 1].
The solution profiles of u(x, t), v(x, t) for t ∈

[0, 2] are displayed in Fig. 11. They are again dis-
played for t ∈ [200, 202] in Fig. 12. The reader

(a) u

(b) v

Fig. 12. The solution profiles for u(x, t) and v(x, t), for
t ∈ [200, 202] in Example 3.4. A staircase-platform shape
has emerged. Each platform value corresponds to one of the
u values in the period-36 orbit shown in Fig. 8. A small
window in (a) is zoomed in and displayed in Fig. 14(a).

may find that solutions u and v have evolved into a
staircase-platform shape. Each platform value cor-
responds to one of the u values in the period-36
orbit shown in Fig. 8.

Example 3.5. We choose α = 46, β = 1. Ev-
erything else remains the same as in Example 3.4
(Note: now bα,β = −191.69 and cα,β = 9268.94).
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(a) u (b) v

Fig. 13. The solution profiles for u(x, t) and v(x, t), for t ∈ [200, 202] in Example 3.5, again with a staircase-platform shape.
Each platform value corresponds to one of the u values in the period-36 or period-38 orbits shown in Fig. 10. A small window
in (a) is zoomed in and displayed in Fig. 14(b) for comparison.

(b)

(a)

Fig. 14. Magnifications of the windows in Figs. 12(a) and
13(a) to show the difference between these profiles.

Fig. 15. The bouquet-shaped orbit diagram of the hystere-
sis map F = Fα,β in Example 3.6. We hold β = 1 fixed and
let α ∈ [1, 36]. Note that α∗ is the first bifurcation point
cited in Remark 3.1.
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Now the hysteresis map F (in Example 3.3)
has the coexistence of stable period-36 and period-
38 orbits. The solution profiles of u and v for
t ∈ [200, 202] are illustrated in Fig. 13. To show the
difference between Figs. 12 and 13, we have zoomed
in on portions of Figs. 12 and 13 and made the com-
parison in Fig. 14.

Example 3.6. To conclude this section, we show
the orbit diagram of the hysteresis map F = Fα,β ,
where β = 1 is fixed, but α ∈ [1, 36]. See Fig. 15.
Note that α∗ is the first bifurcation point cited in
Remark 3.1.

4. Chaotic Vibrations Due to Natural
Hysteresis and Energy Injection

We now consider the system (23), but with the left
end boundary condition changed to (13). The over-
all system becomes

PDE (6) ;

left end boundary condition v = G(u) ≡ 1 + η

1− ηu,

at x = 0, for t > 0 ;

right end boundary condition u = F (v),

at x = 1, for t > 0 ,

where F is defined through (8) ;

initial conditions u(x, 0) =
1

2
[w′0(x) + w1(x)],

v(x, 0) =
1

2
[w′0(x)− w1(x)], x ∈ (0, 1),

cf. (4), (5) .
(66)

As discussed in Example 2.3, the solution can be
determined by the multivalued, composite hystere-
sis curves G◦F and F ◦G, whose hysteresis iterates
are already defined by Definition 2.1.

We may use Figs. 3 and 4 as a visual aid. Let
v∗, v̂, and m be defined as in (24)–(27). The treat-
ments for G◦F and F ◦G are essentially similar, so
we will only treat G ◦ F here. Let us assume that
for 0 < η < 1, 1 < α <∞, β > 0,

m̃ =
1 + η

1− ηm ≤
1 + η

2η

√
1 + αη

βη(
m =

1 + α

3

√
1 + α

3β

)
(67)

is satisfied, cf. Part II [Chen et al., 1998b, (40)].
Consequently, hysteresis iterates (vk, uk), uk =

H̃(vk), H̃ ≡ G ◦ F , stay within a bounded trap-
ping region [−m̃, m̃]× [−m̃, m̃], for vk ∈ [−m̃, m̃].

Now, cf. (31) and define

θ̃0 = θ0 , ζ̃0 = ζ0 , ṽ∗ = v∗ ,

F̃i = G ◦ Fi, i = 1, 2, 3 ,

F̃3(θ̃j+1) = θ̃j , F̃3(ζ̃j+1) = ζ̃j , j = 0, 1, 2, . . .
(68)

Since G is just the multiplication by (1+η)/(1−η),
Lemmas 3.1–3.4 in Sec. 3 are essentially appli-
cable to F̃i, i = 1, 2, 3, after a straightforward
adaptation. We easily observe that we have the
monotonicity

θ̃0 < ζ̃0 < θ̃1 < ζ̃1 < · · · < θ̃j < ζ̃j < · · · .

Theorem 4.1 (Sufficient Condition for Chaos for the
One-Dimensional Wave Equation with Energy In-
jecting and van der Pol Boundary Conditions). Let
0 < η < 1, α > 1, β > 0, such that (67) holds.
If for some j ≥ 1, we have θ̃j−1 < ṽ∗; θ̃j, θ̃j+1,

θ̃j+2 ∈ [ṽ∗, m̃], then the hysteresis map u = H̃(v),

H̃ = G ◦ F, is chaotic on the interval [−m̃, m̃].

Proof. We can ignore the “maiden voyage” part of
the hysteresis iteration uk = H̃k(u0) as it only rep-
resents transient response. Thus now the hysteresis
iteration is done only by iterations of F̃1 and F̃3.
We construct the following shift sequence:

I0 = [θ̃j+1, θ̃j+2], I1 = [θ̃j, θ̃j+1], . . . , Ij

= [θ̃1, θ̃2], Ij+1 = [θ̃0, θ̃1] .

Then F̃3(Ij+1) ⊆ [−m̃, −ṽ∗]. Further, let

Ij+2 =[−θ̃j+1, −θ̃j], Ij+3=[−θ̃j, −θ̃j−1], . . . , I2j+1

=[−θ̃2, −θ̃1], I2j+2 =[−θ̃1, −θ̃0] .

Then

F̃1(I2j+2) = [ṽ∗, m̃] ⊇ I0 ∪ I1 ,

so we have the following shift sequence

I0
F̃3−−−−→ I1

F̃3−−−−→ I2 −→ · · · F̃3−−−−→ Ij

F̃3−−−−→ Ij+1
F̃3−−−−→ Ij+2

F̃1−−−−→ Ij+3 −→ · · ·
F̃1−−−−→ I2j+2

F̃1−−−−→ I0 ∪ I1 . (69)
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Note that in the above, H̃i+j+1(u0) = F̃ i1◦F̃
j+1
3 (u0)

for any i = 0, 1, . . . , j + 2 by (an adapted version
of) Proposition 3.1.

From the shift sequence (69), one can either use
the rotation number as in [Keener, 1980] or Part I
[Chen et al., 1998a, Appendix A] or do symbolic
dynamics as in [Devaney, 1989] [with a slight modi-
fication of the intervals in the sequence (69)] to show
that H̃ is chaotic. �

Example 4.1. Theorem 4.1 offers a concrete way
to verify the occurrence of chaos. Let us choose
η = 1/2, α = 2, β = 1. Then applying (a slightly
modified version of) Lemmas 3.1–3.4, we have com-
puted the following values:

m̃ = 3 ,
1 + η

2η

√
1 + αη

βη
= 3 , so (67) holds ,

ṽ∗ = 0.1925 , θ̃0 = −0.1925 , θ̃1 = 1.6461 ,

θ̃2 = 2.4408 , θ̃3 = 2.7710 , θ̃4 = 2.9065 ,

. . . , lim
j→∞

θ̃j = 3 ; cf. Fig. 3 .

Therefore, for j = 1, we have θ̃j−1 = θ̃0 = −ṽ∗ < ṽ∗,
and

ṽ∗ < θ̃1 < θ̃2 < θ̃3 < · · · < θ̃n < · · · → 3 = m̃ ,

(70)

i.e.

θ̃1, θ̃2, . . . , θ̃n, . . . ∈ [ṽ∗, m]

for any positive integer n .

Therefore very strong chaos occurs.
Let us choose initial conditions u0(x) and v0(x)

to be, respectively, linear and quadratic functions
in the following way:

u0(x) = u0(0) + x[u0(1) − u0(0)] ,

v(x) = u0(x)
2 + bu0(x) + c ,

(71)

u0(0) = 0.5, v0(0) = 1.5, v0(1) = 1.5, u0(1) =
F (v0(1)). The unspecified constants b and c can
then be determined as follows:

v0(0) = u0(0)
2 + bu0(0) + c , v0(1) = u0(1)

2 + bu0(1) + c ,

b =
v0(1) − v0(0)
u0(1) − u0(1)

− [u0(0) + u0(1)] ; (b = −0.32830)

v0(0)u0(1)− v0(1)u0(1) = u0(0)
2u0(1)− u0(1)

2u0(0) + c[u0(1) − u0(0)] ,

c =
v0(0)u0(1) − v0(1)u0(0)

u0(1) − u0(0)
+ u0(0)u0(1) ; (c = 1.41415) .

It is easy to check that, with the above choices, (C0)
compatibility conditions at the boundary points
x = 0, x = 1, are satisfied by the initial data. We
then compute u(x, t), v(x, t) according to (15) and
(16). The profiles for u and v, for t ∈ [0, 2] and
t ∈ [200, 202], are displayed in Figs. 16 and 17.
The reader may find strong chaotic vibrations in
the spatio-temporal profiles in Fig. 17, as well as in
the snapshots in Fig. 18.

Remark 4.1

(i) If the condition (67) is violated, one can still
construct a Cantor-like invariant set C ⊆
[−m̃, m̃] where H̃ is chaotic, similar to Part II
[Chen et al., 1998b, Sec. 5]

(ii) Example 4.1, particularly (70) shows that there
exists an η̃ : 0 < η̃ < 0.5 such that The-
orem 4.1 holds for all η ∈ (η̃, 0.5), α = 2,
β = 1.

Remark 4.2. When η = 0 in (66), the system (66)
reduces to system (23) in Sec. 3, and θ̃i in (68) re-
duces to the θi in Lemma 3.2. One can easily show
that the condition θj , θj+1, θj+2 ∈ [v∗, m] will never
be satisfied. Thus Theorem 4.1 is definitely not ap-
plicable when η = 0. This offers some additional
credence that the hysteresis map in Sec. 3, without
additional energy injection from the left end x = 1,
is not chaotic.



(a) u (b) v

Fig. 16. The solution u(x, t) and v(x, t), for t ∈ [0, 2] in Example 4.1, where α = 2, β = 1, η = 1/2.

(a) u (b) v

Fig. 17. The solution u(x, t) and v(x, t), for t ∈ [200, 202] in Example 4.1. Observe the spatiotemporal chaotic profiles.

(a) (b)

Fig. 18. Snapshots of the solution (a) u(x, t) and (b) v(x, t), 0 ≤ x ≤ 1, for t = 202, for Example 4.1, where α = 2, β = 1,
η = 1/2.
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