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Consider the initial-boundary value problem of the linear wave equation wtt − wxx = 0 on an
interval. The boundary condition at the left endpoint is linear homogeneous, injecting energy
into the system, while the boundary condition at the right endpoint has cubic nonlinearity of
a van der Pol type. We show that the interactions of these linear and nonlinear boundary
conditions can cause chaos to the Riemann invariants (u, v) of the wave equation when the
parameters enter a certain regime. Period-doubling routes to chaos and homoclinic orbits
are established. We further show that when the initial data are smooth satisfying certain
compatibility conditions at the boundary points, the space-time trajectory or the state of the
wave equation, which satisfies another type of the van der Pol boundary condition, can be
chaotic. Numerical simulations are also illustrated.

1. Introduction

We continue the study from Part I [Chen et al.,
1998a] about chaotic vibrations of the one-dimen-
sional wave equation due to a van der Pol type
boundary condition by identifying some other
sources causing chaos and by analyzing routes to
chaos. In this paper, we focus on the interaction of
this self-excitation nonlinear boundary condition at
the right end x = 1 of the spatial span x ∈ [0, 1]

with a linear boundary condition injecting energy

at the left end x = 0. The injection of energy, or

energy pumping, brings instability into the vibrat-

ing system and excites otherwise (asymptotically)

periodic motions into chaos. Two period-doubling

routes to chaos can be confirmed. There also ex-

ist homoclinic orbits and homoclinic bifurcations.

Unlike the models we have treated in Part I [Chen

et al., 1998a] and the sequel Part III [Chen et al.,
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1998b] where issues of multiplicity (i.e. nonunique-

ness) of solutions must be dealt with first, the PDE

system we treat here has global uniqueness of solu-

tions. Such solutions may even be C∞-smooth on

the space-time domain, allowing us to differentiate

them and then to obtain other further conclusions

(whereas those systems in Parts I and III [Chen

et al., 1998a, 1998b] definitely do not have globally

C1 solutions because the relevant interval maps are

inherently discontinuous).

We proceed to describe the PDE system under

study here. Let w(x, t) satisfy the wave equation

wtt(x, t)− wxx(x, t) = 0 , 0 < x < 1 , t > 0 ,

(1)

with a nonlinear self-excitation boundary condition

at the right end x = 1:

wx(1, t) = αwt(1, t)− βw3
t (1, t) ,

0 < α ≤ 1 , β > 0 ,
(2)

and a linear boundary condition at the left end

x = 0:

wt(0, t) = −ηwx(0, t) , η > 0 , η 6= 1 , t > 0 .

(3)

The remaining two conditions we require are the

initial conditions

w(x, 0) = w0(x) , wt(x, 0) = w1(x) , x ∈ [0, 1] .

(4)

What is new here is the boundary condition

(3). First, if it were true that η = 0 in (3), then

wt(0, t) = 0, for all t > 0; this is an energy-

conserving boundary condition already treated

by us in Part I [Chen et al., 1998a, Sec. 3.1]. We

showed that the Riemann invariants

u(x, t) =
1

2
[wx(x, t) + wt(x, t)] ,

v(x, t) =
1

2
[wx(x, t)− wt(x, t)] ,

(5)

of (1) are uniquely solvable and asymptotically

time-periodic with period-2 for 0 < α ≤ 1, β > 0.

What happens if η 	 0? We may examine the rate

of change of energy of vibration:

d

dt
E(t)=

d

dt

{
1

2

∫ 1

0
[wx(x, t)

2+wt(x, t)
2]dx

}
=ηwx(0, t)

2+wt(1, t)
2[α−βwt(1, t)2] . (6)

We see that if η > 0 in (3), energy is added to
the system from the left boundary point x = 0.
The sign of η is “wrong” in the sense that it is op-
posite to the usual impedance boundary condition
(cf. [Chen & Zhou, 1993, p. 24]) wherein η, signi-
fying the damping coefficient, takes negative val-
ues. From now on, we call (3) an energy injecting
boundary condition. Actually, using the method
wave propagation ([Chen & Zhou, 1993, Sec. 1.6])
it is easy to show that the wave equation (1) subject
to the linear boundary conditions

wt(0, t) = −ηwx(0, t) , (η > 0, η 6= 1) ,

wx(1, t) = 0 , t > 0 ,

and with initial conditions (4) has an exponential
energy growth rate:

E(t) = O(ekt) , k = ln

(∣∣∣∣1 + η

1− η

∣∣∣∣) > 0 ,

for t > 0 large . (7)

This is commonly referred to as instability in the lin-
ear theory of differential equations. What can this
linear instability do to the nonlinear self-excitation
boundary condition (2)? As we will see, it will ex-
cite otherwise periodic vibrations into chaotic vi-
brations when η enters a certain regime. This also
suggests that linear instability can make a non-
chaotic nonlinear system chaotic, an idea which may
prove useful in the recently emerged interests of an-
ticontrol ; see [Chen & Lai, 1997] and the references
therein.

On the other hand, one may also pose the fol-
lowing question from the stabilization and control
point of view: Given a distributed parameter vi-
brating system with a linear unstable boundary
condition such as (3) at the left end, can we de-
sign a self-excitation boundary condition (2) to reg-
ulate the instability of the system? Our answer
here is a qualified yes: Although instability still per-
sists (cf. the unbounded sets U in Lemma 2.5), one
can find bounded invariant intervals (the sets I in
Lemma 2.5) on which the van der Pol type nonlin-
earity can regulate linear instability to yield either
asymptotically periodic or chaotic vibrations.

A reviewer of our paper has called our attention
to some articles of pertinent interest: [Sharkovsky,
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1994] and [Shimura, 1967]; see also the references
therein. In those papers, a lossless transmission line
terminated with a tunnel diode and a lumped par-
allel capacitor on one end, resulting in a nonlinear
boundary condition, was discussed. The capacitor
was then assumed degenerate to ensure mathemati-
cal tractability. The problems obviously have some
flavor similar to ours. However, the nonlinearities
under treatment and the methods used are quite dif-
ferent. Both those papers used the finite difference
equation approach. Shimura [1967] showed the exis-
tence of some periodic solutions (but did not men-
tion chaos), while the work of Sharkovsky [1994]
does not seem to be self-contained. It appears, to
the best of our knowledge, that we have achieved
the most definitive conclusion and classification of
chaotic vibration of the spatio-temporal nature.

Following Part I [Chen et al., 1998a, (1.12),
(1.13)] and using (5), we now convert (1) to an
equivalent hyperbolic system

∂

∂t

[
u(x, t)
v(x, t)

]
=

[
1 0
0 −1

]
∂

∂x

[
u(x, t)
v(x, t)

]
,

0 < x < 1 , t > 0 ,

(8)

with boundary conditions

v(0, t) = G(u(0, t)) = Gη(u(0, t))

≡ 1 + η

1− ηu(0, t) , t > 0 , (9)

u(1, t) = F (v(1, t)) , t > 0 , (10)

and initial conditions

u(x, 0) ≡ u0(x) =
1

2
[w′0(x) + w1(x)] ,

v(x, 0) ≡ v0(x) =
1

2
[w′0(x)− w1(x)] ,

0 ≤ x ≤ 1 .

(11)

Note that in (10), F = Fα,β , where u = Fα,β(v) is
the unique real solution of the cubic equation

β(u− v)3 + (1 − α)(u − v) + 2v = 0 ,
β > 0, 0 < α ≤ 1 ,

(12)

for each given v.
Using the method of characteristics, it is

straightforward to show that the system (8)–(11)
has a unique solution pair (u, v): for t = 2k + τ ,
k = 0, 1, 2, . . . , 0 ≤ τ < 2, and 0 ≤ x ≤ 1,

u(x, t) =


(F ◦G)k(u0(x+ τ)) , τ ≤ 1− x ,
G−1 ◦ (G ◦ F )k+1(v0(2− x− τ)) , 1− x < τ ≤ 2− x ,
(F ◦G)k+1(u0(τ + x− 2)) , 2− x < τ ≤ 2 ;

(13)

v(x, t) =


(G ◦ F )k(v0(x− τ)) , τ ≤ x ,
G ◦ (F ◦G)k(u0(τ − x)) , x < τ ≤ 1 + x ,

(G ◦ F )k+1(v0(2 + x− τ)) , 1 + x < τ ≤ 2 .

(14)

In the explicit representations above, (F ◦ G)k,
e.g. means the kth iterate (composition) of the func-
tion F ◦G with itself, a standard notation we have
inherited from [Chen et al., 1998]. (On the other
hand, for a function f(x), we use f(x)n to denote
its nth power.) From (13) and (14), u and v are
chaotic if F ◦G and/or G ◦ F are chaotic.

In Sec. 2, we first provide quantitative infor-
mation of important data such as derivatives, max
and min, intercepts, etc., of the maps F ◦ G and
G ◦ F .

Section 3 studies the periodic-doubling routes
to chaos. Here we show that F ◦G and G ◦ F can
be essentially treated as a unimodal [Devaney, 1989,
p. 140] map as far as period-doubling bifurcations
are concerned. However, we must emphasize that

G ◦ F is not equivalent to a unimodal map; see

Remark 3.2. Two periodic-doubling bifurcation

theorems are established: one for 0 < η < 1 and

the other for η > 1.

In Sec. 3, we show that homoclinic orbits and

bifurcations exist for both 0 < η < 1 and η > 1 on

a bounded invariant interval.

When η is close to one, the instability becomes

so strong that no bounded invariant intervals exist.

In Sec. 4, we show that chaos can only exist on a

Cantor-like repelling invariant set.

Differentiable solutions are shown to exist in

Sec. 5. By differentiating such solutions, we show

that the trajectory or state itself (rather than the
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gradient or the Riemann invariants) of (1)–(4) can
become chaotic if another type of van der Pol con-
dition (93) holds at x = 1.

Numerical simulations are also illustrated.

2. Preliminary Lemmas

As a visual aid for graphical analysis, we first dis-
play samples of the composite functions G ◦ F and

(a) (b)

Fig. 1. The graphs of u = G ◦ F (v) = Gη ◦ Fα,β(v), where α = 0.5, β = 1 and (a) η = 0.552, (b) η = 1.812. It will be known
later in Sec. 4 that these values of α, β and η make equalities hold in (66) and (67). Therefore homoclinic bifurcations occur;
see Figs. 13 and 14 later.

(a) (b)

Fig. 2. The graphs of u = F ◦G(v) = Fα,β ◦Gη(v), where α = 0.5, β = 1 and (a) η = 0.552, (b) η = 1.812.
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F ◦G in Figs. 1 and 2. We next compile some use-
ful properties of G ◦ F and F ◦ G in the following
lemmas.

Lemma 2.1 (Derivative Formulas). Let 0 < α ≤ 1,
β > 0 and η > 0, η 6= 1, where α and β are given
and fixed, but η is a varying parameter. Define

f1(v, η) = G ◦ F (v) =
1 + η

1− ηF (v) ,

f2(v, η) = F ◦G(v) = F

(
1 + η

1− ηv
)
, v ∈ R .

(15)

Let g(v) be the unique real solution of the cubic
equation

βg(v)3 + (1− α)g(v) + 2v = 0 ,

for given v ∈ R . (16)

Then

∂

∂v
f1(v, η) =

1 + η

1− η

[
1− 2

3βg(v)2 + (1− α)

]
, (17)

∂

∂v
f2(v, η) =

1 + η

1− η

1− 2

3βg

(
1 + η

1− η v
)2

+ (1− α)

 , (18)

∂

∂η
f1(v, η) =

2

(1− η)2 [v + g(v)] , (19)

∂

∂η
f2(v, η) =

2

(1− η)2

1− 2

3βg

(
1 + η

1− η v
)2

+ (1− α)

 , (20)

∂2

∂η∂v
f1(v, η) =

2

(1− η)2
[
1− 2

3βg(v)2 + (1− α)

]
, (21)

∂2

∂η∂v
f2(v, η) =

2

(1− η)2

1− 2

3βg

(
1 + η

1− η v
)2

+ (1− α)

− 24β

(
1 + η

1− η

) v · g
(

1 + η

1− ηv
)

[
3βg

(
1 + η

1− ηv
)2

+ (1− α)

]3

 , (22)

∂2

∂v2
f1(v, η) =

1 + η

1− η · (−24)β · g(v)

[3βg(v)2 + (1− α)]3
, (23)

∂2

∂v2
f2(v, η) =

(
1 + η

1− η

)2

(−24)β ·
g

(
1 + η

1− ηv
)

[
3βg

(
1 + η

1− ηv
)2

+ (1− α)

]3 , (24)

∂3

∂v3
f1(v, η) =

1 + η

1− η ·
48β[−15βg(v)2 + (1− α)]

[3βg(v)2 + (1− α)]5
, (25)
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∂3

∂v3
f2(v, η) =

(
1 + η

1− η

)3

·
48β

[
−15βg

(
1 + η

1− ηv
)2

+ (1− α)

]
[
3βg

(
1 + η

1− η v
)2

+ (1− α)

]5 . (26)

Proof. Straightforward verifications; cf. Part I [Chen et al., 1998a, Sec. 3], for example. �

Lemma 2.2 (Intersections with the Lines u−v = 0 and u+v = 0). Let α: 0 < α ≤ 1, β > 0, η > 0, η 6= 1,
be given. Then

(i) u = G ◦ F (v) intersects the line u = v at the points

(u, v) =

(
−1 + η

2η

√
1 + αη

βη
, −1 + η

2η

√
1 + αη

βη

)
, (0, 0),

(
1 + η

2η

√
1 + αη

βη
,

1 + η

2η

√
1 + αη

βη

)
; (27)

(ii) u = G ◦ F (v) intersects the line u = −v at the points

(u, v) =

(
−1 + η

2

√
α+ η

β
,

1 + η

2

√
α+ η

β

)
, (0, 0),

(
1 + η

2

√
α+ η

β
, −1 + η

2

√
α+ η

β

)
; (28)

(iii) u = F ◦G(v) intersects the line u = v at the points

(u, v) =

(
−1− η

2η

√
1 + αη

βη
, −1− η

2η

√
1 + αη

βη

)
, (0, 0),

(
1− η
2η

√
1 + αη

βη
,

1− η
2η

√
1 + αη

βη

)
; (29)

(iv) u = F ◦G(v) intersects the line u = −v at the points

(u, v) =

(
−1− η

2

√
α+ η

β
,

1− η
2

√
α+ η

β

)
, (0, 0),

(
1− η

2

√
α+ η

β
, −1− η

2

√
α+ η

β

)
. (30)

Proof. We will verify only (i); (ii)–(iv) can be done
in a similar way.

We solve u = G ◦ F (v) = v by taking the defi-
nition of G and F from (12), (15) and (16):

1 + η

1− η [v + g(v)] = v ,

g(v) +
2η

1 + η
v = 0 .

(31)

By (16),

βg(v)3 + (1− α)g(v) + 2v = 0 ,

β

[(
g(v) +

2η

1 + η
v

)
− 2η

1 + η
v

]3
+(1− α)

[(
g(v) +

2η

1 + η
v

)
− 2η

1 + η
v

]
+ 2v = 0 .

Using (31), we get

−β
(

2η

1 + η
v

)3

− (1− α)

(
2η

1 + η
v

)
+ 2v = 0 .

Therefore

v = 0, v = ±1 + η

2η

√
1 + αη

βη
,

and (27) has been verified. �

Lemma 2.3 (v-axis Intercepts). Let α: 0 < α ≤ 1,
β > 0, η > 0, η 6= 1, be given. Then

(i) u = G ◦ F (v) has v-axis intercepts

v = −
√

1 + α

β
, 0 ,

√
1 + α

β
; (32)
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(ii) u = F ◦G(v) has v-axis intercepts

v = −1− η
1 + η

√
1 + α

β
, 0 ,

1− η
1 + η

√
1 + α

β
. (33)

Proof. Straightforward verifications. �

Lemma 2.4 (Local Maximum, Minimum and Piece-
wise Monotonicity). Let α: 0 < α ≤ 1, β > 0,
η > 0, η 6= 1, and α, β, η be fixed.

(i) If 0 < η < 1, then G ◦ F has local extremal
values

M=G ◦ F (−vc)=
1+η

1−η
1+α

3

√
1+α

3β
, (34)

m=G ◦ F (vc)=−
1+η

1−η
1+α

3

√
1+α

3β
, (35)

where vc = [(2 − α)/3]
√

(1 + α)/3β, and M,m
are, respectively, the local maximum and mini-
mum of G◦F . The function G◦F is strictly in-
creasing on (−∞, −vc) and (vc, ∞), but strictly
decreasing on (−vc, vc).

On the other hand, if η > 1, then G◦F has
local minimum (m) and maximum (M) values

m=G ◦ F (−vc)=
1+η

1−η
1+α

3

√
1+α

3β
, (36)

M=G ◦ F (vc)=−
1+η

1−η
1+α

3

√
1+α

3β
, (37)

where vc is the same as before. The function
G ◦ F is strictly decreasing on (−∞, −vc) and
(vc, ∞), but strictly increasing on (−vc, vc).

(ii) If 0 < η < 1, then F ◦ G has local extremal
values

M = F ◦G(−ṽc) =
1 + α

3

√
1 + α

3β
, (38)

m = F ◦G(ṽc) = −1 + α

3

√
1 + α

3β
, (39)

where ṽc = |(1 − η)/(1 + η)| · [(2 − α)/3] ·√
(1 + α)/(3β). The function F ◦ G is strictly

increasing on (−∞, −ṽc) and (ṽc, ∞), but
strictly decreasing on (−ṽc, ṽc).

On the other hand, if η > 1, then F ◦ G has
local extremal values

m = F ◦G(−ṽc) = −1 + α

3

√
1 + α

3β
,

M = F ◦G(ṽc) =
1 + α

3

√
1 + α

3β
.

The function F ◦ G is strictly decreasing on
(−∞, −ṽc) and (ṽc, ∞), but strictly increasing on
(−ṽc, ṽc).

Proof. Use (17), etc., and carry out the
computations. �

Lemma 2.5 (Bounded Invariant Intervals). Let
0 < α ≤ 1, β > 0, and η > 0, η 6= 1.

(i) If 0 < η < 1 and

M =
1 + η

1− η
1 + α

3

√
1 + α

3β
≤ 1 + η

2η

√
1 + αη

βη
,

(40)

then the iterates of every point in the set
U ≡ (−∞, −[(1 + η)/2η]

√
(1 + αη)/(βη)) ∪

([(1 + η)/2η]
√

[(1 + αη)/βη], ∞) escape to
±∞, while those of any point in R\U are at-
tracted to the bounded invariant interval I ≡
[−M, M ] of G ◦ F .

(ii) If η > 1 and

M = −1 + η

1− η
1 + α

3

√
1 + α

3β
≤ 1 + η

2

√
α+ η

β
,

(41)

then the same conclusion as in (i) holds, with
U ≡ (−∞, −[(1 + η)/2]

√
[(α+ η)/β]) ∪ ([(1 +

η)/2]
√

(α+ η)/β, ∞) and I ≡ [−M, M ] for
G ◦ F .

(iii) If 0 < η < 1 and

M =
1 + α

3

√
1 + α

3β
≤ 1− η

2η

√
1 + αη

βη
, (42)

then the same conclusion holds, with U ≡
(−∞, −[(1 − η)/(2η)]

√
(1 + αη)/(βη)) ∪

([(1 − η)/(2η)]
√

[(1 + αη)/(βη)], ∞) and I ≡
[−M, M ] for F ◦G.

(iv) If η > 1 and

M =
1 + α

3

√
1 + α

3β
≤ −1− η

2

√
α+ η

β
, (43)
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then the same conclusion holds, with U ≡
(−∞, −[(1 − η)/2]

√
(α+ η)/β) ∪ ([(1 −

η)/2]
√

(α+ η)/β, ∞) and I ≡ [−M, M ] for
F ◦G.

Proof. The results follow easily from Lemmas 2.2
and 2.4 and other piecewise monotonic properties
of G ◦F and F ◦G, as can be directly confirmed by
graphical analysis from Figs. 1 and 2. We omit the
details. �

Remark 2.1.

(i) Note that the two inequalities (40) and (42)
are equivalent, so are (41) and (43).

(ii) We call the sets U in Lemma 2.5 the unstable
sets, and the sets I the bounded stable sets.

(iii) When the condition (40) [equivalently, (41) or
(42)] [equivalently, (43)] is violated, bounded
invariant interval I no longer exists. Instead,
we have a bounded Cantor-like invariant set;
see Sec. 5.

3. Period-Doubling Routes
to Chaos

We show that there are two period-doubling routes
to chaos: one occurring during η: 0 < η < 1, and
the other during η > 1.

We first consider the case 0 < η < 1.
The maps G ◦ F and F ◦ G, as displayed in

Figs. 1(a) and 2(a), have a hump and a dip around
±vc, for the critical value vc given in Lemma 2.4.
Such profiles are definitely not unimodal. In the ex-
ploration of period-2n points, n = 1, 2, . . . , of G◦F
and F ◦ G for varying η: 0 < η < 1 while α and β
are held fixed, as it turns out, for all practical pur-
poses G ◦ F and F ◦G can be treated as unimodal
maps. This is because of a simple correspondence
of period-2n orbits as given below in Lemma 3.1
obtained from the oddness of the maps G ◦ F and
F ◦G.

Lemma 3.1 (Correspondence of Period-2n Orbits
to a Unimodal Map). Let 0 < α ≤ 1, β > 0 and
0 < η < 1. Assume that α, β and η satisfy

M =
1 + η

1− η
1 + α

3

√
1 + α

3β
≤
√

1 + α

β
, (44)

where M is the local maximum value of G ◦ F =
Gη ◦ Fα,β in (34), and

√
(1 + α)/β is the positive

v-axis intercept of G ◦ F from Lemma 2.3. As-
sume that x0 ∈ [−M, M ] is a periodic point of

prime period-2n, for some n ∈ {2, 3, 4, . . .}. Then
|x0| is also a periodic point of H = −G ◦ F of
prime period-2n such that all the points on the orbit
{Hj(|x0|)|j = 0, 1, . . . , 2n − 1} are positive.

Conversely, let x0 > 0 be a periodic point of
prime period-2n of H for some n ∈ {2, 3, 4, . . .}.
Then {(−1)jHj(x0)|j = 0, 1, . . . , 2n− 1} is the full
orbit of x0 of the map G ◦ F of prime period 2n.

The period-2n orbit, n ≥ 2, of G ◦ F is attract-
ing (resp., repelling) if and only if the corresponding
period-2n orbit of H is attracting (resp., repelling).

The same is true for F ◦G.

Proof. The map G◦F is an odd function such that

G ◦ F (x) > 0 if x < 0 ,

G ◦ F (x) < 0 if x > 0 ,

for x ∈
[
−
√

1 + α

β
,

√
1 + α

β

]
.

(45)

Since 0 < η < 1, we have
√

(1 + α)/β ≤
[(1 + η) · (1 + αη)1/2]/[2η · (βη)1/2]; Lemma 2.5 (i)
and Eq. (19) are applicable on the invariant interval
[−M, M ] of G ◦ F . Let x0 be a period-2n point of
G◦F . Then x0 ∈ [−M, M ], and its full orbit forms
a sequence with alternating signs:

x0, x1, x2, . . . , x2n−1 , where xj = (G ◦ F )jx0 .

(46)

Without loss of generality, we may assume that
x0 > 0. Obviously,

{(−1)jxj|j = 0, 1, . . . , 2n − 1} (47)

forms a period-2n orbit of H such that (−1)jxj =
|xj | = Hj(x0) > 0, j = 0, 1, . . . , 2n − 1. We now
verify that (46) is also an orbit of prime period-2n

of H. It is easy to see that if all the elements in
the set {|xj | |j = 0, 1, . . . , 2n−1} are distinct, then
because H = −G ◦ F , (46) is a full orbit of prime
period-2n of H. Consider the remaining possibility
that elements in (46) are not distinct. Without loss
of generality, we may assume that j0 is the smallest
positive index such that

x0 = (−1)j0xj0 , for some j0 ∈ {1, 2, . . . , 2n − 1} .
(48)

Since x0 > 0 and xj0 = (−1)j0 |xj0 | by (45) and
(46), we see that (48) holds if and only if j0 =
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odd = 2k + 1 for some nonnegative integer k, and
|xj0| = x0. Therefore the sequence (46) becomes

x0, x1, . . . , xj0−1, xj0 = −x0, −x1, −x2, . . . ,

−xj0−1, −xj0 = x0 .

This gives

x0 = (G ◦ F )2j0(x0) = (G ◦ F )2(2k+1)(x0)

= (G ◦ F )2
n

(x0) . (49)

Since x0 is of prime period-2n for the map G ◦ F ,
we get

2(2k + 1) = 2n .

This is possible if and only if k = 0, or n = 1. If
n > 1, the above will lead to a contradiction. There-
fore if n ∈ {2, 3, 4, . . .}, then any prime period-2n

orbit (46) of G ◦F will have a corresponding prime
period-2n orbit (44) of H.

Conversely, let {y0, y1, . . . , y2n−1} be a prime
period-2n orbit of H. Then this orbit consists of
distinct members. It is easy to see that the set
{y0, −y1, y2, −y3, . . . , −y2n−1} is also distinct, and
therefore it is a full prime period-2n orbit of G ◦F .

The attracting or repelling property of the
period-2n orbit (46) of G◦F implies (and is implied
by) that of the period-2n orbit (47) of H because of
the simple fact that G ◦ F is an odd function.

The proof for F ◦ G is similar under the same
condition (44). �

Remark 3.1. Lemma 3.1 does not hold for n =
1. When n = 1, by (28), G ◦ F has a prime
period-2 orbit {−[(1 + η)/2]

√
(α+ β)/β, [(1 +

η)/2]
√

(α+ η)/β}, while the corresponding orbit of
H has period-1: {[(1 + η)/2]

√
(α+ η)/β}.

Define

η
H

=η
H

(α)=

(
1− 1+α

3
√

3

)/(
1+

1 + α

3
√

3

)
. (50)

Then 0 < η
H
< 1 and (44) holds if and only if

0 < η ≤ η
H

. (The parameter value η
H

will be
known in Theorem 4.1 in Sec. 4 to be related to
degenerate homoclinic orbits.) For such η, the map
H = −G ◦ F (as well as −F ◦ G) is unimodal on

the interval Ĩ ≡ [0,
√

(1 + α)/β]. We can apply
the Period-Doubling Bifurcation Theorem to H on
Ĩ instead of to the non-unimodal G◦F on (−Ĩ)∪ Ĩ .

Theorem 3.1 (Period-Doubling Bifurcation Theo-

rem for H = −G ◦ F on Ĩ, 0 < η < 1). Let

α: 0 < α ≤ 1, β > 0 be fixed, and let η: 0 < η ≤ η
H

be a varying parameter. Let h1(v, η) = −f1(v, η) =
−G ◦ F (v), cf. (15). Then

(i) v0(η) = [(1 + η)/2]
√

(α+ η)/β is a curve of
fixed points of h1:h1(v0(η), η) = v0(η).

(ii) The algebraic equation

1

2

(
1+αη

3βη

)1/2 [1+(3−2α)η

3η

]
=

1+η

2

√
α+η

β

(51)

has a unique solution η = η0: 0 < η0 ≤ ηH , for

any given α: 0 < α ≤ 1 and β > 0. (Actually,
η0 is independent of β.) We have

∂

∂v
h1(v, η)| v=v0(η0)

η=η0

= −1 . (52)

(iii) For η = η0 satisfying (51), we have

A≡
[
∂2h1

∂η∂v
+

1

2

(
∂h1

∂η

)
∂2h1

∂v2

] ∣∣∣∣∣ v=v0(η0)
η=η0

=− [4α(2α+3)+6]η3
0 +(4α+6)η2

0−10η0+6

3(1−η0)3(1+η0)2

6=0 . (53)

(iv) For η0 given in (ii), we have

B≡

1

6

∂3h1

∂v3
+

1

4

(
∂2h1

∂v2

)2
 ∣∣∣∣∣∣ v=v0(η0)

η=η0

=
8βη4

0{(1−η0)[(6α−1)η0+5]+6η0(1+αη0)}
(1−η0)2(1+η0)4

>0 . (54)

Consequently, there is period-doubling bifurca-
tion at (v0(η0), η0). The stability type of the
bifurcated period-2 orbit is attracting.

Proof.

(i) This is an immediate consequence of
Lemma 2.2 (ii).

(ii) We first determine the point(s) v > 0 such that
∂h1/∂v = −1. By (17), with a change of sign
for f1 therein, we get

−1 + η

1− η

[
1− 2

3βg(v)2 + (1− α)

]
= −1 .
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Therefore

3βg(v)2 + (1− α) =
1 + η

η
,

g(v) = ±
(

1 + αη

3βη

)1/2

.

(55)

We choose the “−” sign in (55) because oth-
erwise, as the subsequent calculations would
imply, v becomes negative which is outside Ĩ
and thus undesirable. Hence

g(v) = −
(

1 + αη

3βη

)1/2

. (56)

Since g(v) satisfies (16), from (56) we get

v = −1

2
[βg(v)3 + (1− α)g(v)]

= −1

2

{
β

[
g(v) +

(
1 + αη

3βη

)1/2

−
(

1 + αη

3βη

)1/2 ]3
(57)

+ (1− α)

[
g(v) +

(
1 + αη

3βη

)1/2

−
(

1 + αη

3βη

)1/2 ]}

=
1

2

[
β

(
1 + αη

3βη

)3/2

+ (1− α)

(
1 + αη

3βη

)1/2
]

= LHS of (51) . (58)

Further setting (58) equal to v0(η) in (i), we
get the RHS of (51).

To show that (51) has a unique solution
η0: 0 < η0 ≤ η

H
for given α (as η0 can be

easily seen to be independent of β), only some
elementary arguments (or direct computer ver-
ification) are needed. Since much of this is ge-
ometrically and visually obvious, it is quite un-
necessary to provide the details.

(iii) We apply (17), (19) and (23) to obtain
∂2f1/∂η∂v, ∂f1/∂η and ∂2f1/∂v

2. Because
h1 = −f1, we just need to adjust the signs
to get ∂2h1/∂η∂v, etc. Simplifying, and using

(56), we obtain

A ≡
[
∂2h1

∂η∂v
+

1

2

(
∂h1

∂η

)
∂2h1

∂v2

] ∣∣∣∣∣
v=v0(η),η=η0

{−6(1−η0)
2(1+η0)−[(3+2α)η0−1]

=
· (4αη2

0 +4η0)}
3(1−η0)3(1+η0)2

= (53) .

To show that A 6= 0, one can use a computer-
assisted proof by plotting the graph of η versus
α for the real points η making A = 0:

[4α(3 + 2α) + 6]η3 + (4α+ 6)η2 − 10η + 6 = 0

Our numerical work has shown that for α ∈
[0, 1], η is a monotonically increasing func-
tion with minimum ≈ −2.0506 and maximum
= −1. Therefore A 6= 0 for η0 ∈ [0, 1).

(iv) B can be obtained similarly as in part (iii).
Since 0 < η0 < 1, it is easy to see that B > 0.

We can now quote the Period-Doubling Bifur-
cation Theorem (see [Chow & Hale, 1982; Robinson,
1995, p. 220]) to conclude the proof. �

We now consider the period-doubling of G ◦ F
for η > 1. Define

ηH=ηH(α)=

(
1+

1+α

3
√

3

)(
1− 1+α

3
√

3

)−1

. (59)

Then ηH > 1. This parameter value ηH will also
be related to degenerate homoclinic orbits in Sec. 4;
see Theorem 4.2. Then η ∈ [ηH , ∞) if and only if

0 < M ≡ −1 + η

1− η
1 + α

3

√
1 + α

3β
≤
√

1 + α

β
,

where M comes from (41). For η ∈ [ηH , ∞), the

map G ◦F is unimodal on Ĩ ≡ [0,
√

(1 + α)/β] and

−Ĩ, separately. Period-2n orbits of G ◦ F will exist
on Ĩ and −Ĩ separately, and thus extra work such
as Lemma 3.1 will no longer be needed.

Theorem 3.2 (Period-Doubling Bifurcation Theo-

rem for G ◦ F on Ĩ, η > 1). Let α: 0 < α ≤ 1,
β > 0 be fixed, and let η ∈ (ηH , ∞) be a varying
parameter. Let f1(v, η) be given as in (15). Then

(i) v0(η) = [(1 + η)/2η]
√

(1 + αη)/βη is a curve
of fixed points of f1: f1(v0(η), η) = v0(η).
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(ii) The algebraic equation

1

6

(
α+ η

3β

)1/2

(3 + η − 2α) =
1 + η

2η

√
1 + αη

βη

(60)

has a unique solution η = η0: ηH ≤ η0 <∞ for
any given α: 0 < α ≤ 1 and β > 0. (Actually,
η0 is independent of β.) We have

∂

∂v
f1(v, η)| v=v0(η0)

η=η0

= −1 .

(iii) For η = η0 satisfying (60), we have

A≡
[
∂2f1

∂η∂v
+

1

2

(
∂f1

∂η

)(
∂2f1

∂v2

)] ∣∣∣∣∣ v=v0(η0)
η=η0

=−6η3
0−10η2

0+(4α+6)η0+[4α(2α+3)+6]

3(1−η0)3(1+η0)2

6=0 .

(iv) For η0 given in (ii), we have

B≡

1

6

∂3f1

∂v3
+

1

4

(
∂2f1

∂v2

)2
 ∣∣∣∣∣∣v=v0(η0)

η=η0

=
8β{(η0−1)[5η0−(6α−1)]+6(α+η0)}

(1−η0)2(1+η0)4

>0 .

Consequently, there is period-doubling bifurca-
tion at (v0(η0), η0). The stability type of the
bifurcated period-2 orbit is attracting.

Proof. Similar to that of Theorem 3.1. �

By Theorems 3.1 and 3.2, and the unimodal
properties of the maps involved, it is now obvious
that a renormalization procedure as indicated by
Feigenbaum [1978] and Collet and Tresser [1978]
can be applied. Therefore the map G◦F = Gη◦Fα,β
undergoes two period-doubling routes to chaos: one
for η ∈ (0, η

H
] and the other for η ∈ [ηH , ∞). After

the completion of period-doubling, therefore, u and
v become chaotic.

Similar Period-Doubling Bifurcation Theorems
for the map F ◦ G for the cases 0 < η < 1 and
η > 1 can be established as Theorems 3.1 and 3.2.
However, the calculations of the constants A and B

[cf. (53) and (54)] are somewhat more involved and
quite cumbersome as well. As it turns out, such
work is unnecessary, because F ◦ G and G ◦ F are
topologically conjugate, as the following commuta-
tive diagram shows:

R Gη ◦ Fα,β−−−−−−→ R
G−1
η ↓ ↓ G−1

η

R −−−−−−→Fα,β ◦Gη R

Therefore the period-doubling behavior and
the associated stability of bifurcated solutions of
F ◦ G also follow immediately from Theorems 3.1
and 3.2.

Example 3.1. Fix α = 0.5 and β = 1. Consider
G ◦ F = Gη ◦ Fα,β , and let η vary in (0, 1). We
plot the orbit diagram of G ◦F , as shown in Fig. 3.
According to (51) in Theorem 3.1, the first period-

Fig. 3. The orbit diagram of Gη ◦ Fα,β, where α = 0.5,
β = 1, and η varies in [0.4, 2/3], for Example 3.1. Note that
the first period-doubling occurs near η0 ≈ 0.433, agreeing
with (61).
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doubling should occur at η0 satisfying

1

2

(
1 + 0.5η0

3η0

)1/2 [1 + 2η0

3η0

]

=
1 + η0

2

√
0.5 + η0 , 0 < η0 < 1 . (61)

The above has a solution η0 ≈ 0.433, consistent
with Fig. 3.

Example 3.2. Again, fix α = 0.5 and β = 1. Con-
sider G◦F = Gη ◦Fα,β and let η vary in (1, ∞). We
plot the orbit diagram of G◦F in Fig. 4. According
to (60) in Theorem 3.2, the first period-doubling
should occur at η0 satisfying

1

5

(
0.5 + η0

3

)1/2

(2 + η0)

=
1 + η0

2η0

√
1 + 0.5η0

η0
, η0 > 1 . (62)

Fig. 4. The orbit diagram of Gη ◦ Fα,β, where α = 0.5,
β = 1, and η varies in [1.5, 2.5], for Example 3.2. Note that
the first period doubling occurs near η0 ≈ 2.312, agreeing
with (62).

It has a solution η0 ≈ 2.312, consistent with
Fig. 4.

Remark 3.2. Although in the proof of Theorem 3.1,
we have taken advantage of the unimodal prop-
erty of H = −G ◦ F for the case of η ∈ (0, 1)
to prove the period-doubling of G ◦ F itself, we
must emphasize that G ◦ F is by no means equiv-
alent to a unimodal map. This may be articulated
as follows. For a true unimodal map such as the
quadratic map Fµ(x) = µx(1−x) on the unit inter-
val, it is well known that its orbit diagram has some
“windows” after the completion of period-doubling;
see [Devaney, 1989, Fig. 17.7, p. 136], for exam-
ple, where an attracting period-3 orbit “sucks up
most of the chaos”. Here in Figs. 3 and 4, we also
observe some conspicuous windows. We zoom in
Fig. 3 for η ∈ [0.58, 0.61] and display that major
window in Fig. 5, where it is clear that an attract-
ing period-4 orbit has “sucked up most of the chaos
for η: 0.5885 ≤ η ≤ 0.5971. This period-4 seems
somehow to defy the period-3-ness in Sharkovsky’s

Fig. 5. Zoom-in of the window in Fig. 3, for η ∈ [0.58, 0.61];
see Remark 3.2. Note that a period-4 orbit has sucked up
chaos for 0.5885 ≤ η ≤ 0.5971.
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Fig. 6. The globally attracting period-4 orbit referred to in
Remark 3.2 and Fig. 5.

Theorem. Such an attracting period-4 orbit is dis-
played in Fig. 6. The graph of this orbit is obviously
non-unimodal in nature.

Example 3.3. We furnish a PDE example. Con-
sider (1)–(4), wherein we set

α = 0.5 , β = 1 , η = 0.525 ,

w0(x) = 0.2 sin

(
π

2
x

)
, (63)

w1(x) = 0.2 sin(πx) , x ∈ [0, 1] .

Then

u0(x) = 0.1

[
π

2
cos

(
π

2
x

)
+ sin(πx)

]
,

v0(x) = 0.1

[
π

2
cos

(
π

2
x

)
− sin(πx)

]
,

 x ∈ [0, 1] .

(64)

For this special choice of η = 0.525 in (63), the map
Gη◦Fα,β has just completed its period-doubling pro-
cess, as can be measured from the orbit diagram in
Fig. 3. Therefore the solutions u and v of (8)–(11)
are both chaotic.

The spatio-temporal profiles of u and v for
0 ≤ x ≤ 1, 50 ≤ t ≤ 52 are plotted in Figs. 7
and 8. Snapshots for u and v at t = 52 are pro-
vided in Fig. 9. When t = 102, from the snapshots
in Fig. 10 we see that even higher frequencies of
vibration have appeared.

Fig. 7. The spatio-temporal profile of the u-component of
the system (8)–(11), as given in Example 3.3, for t ∈ [50, 52],
x ∈ [0, 1], α = 0.5, β = 1, η = 0.525.

Fig. 8. The spatio-temporal profile of the v-component of
the system (8)–(11), as given in Example 3.3, for t ∈ [50, 52],
x ∈ [0, 1], α = 0.5, β = 1, η = 0.525.

In our visualization of chaotic vibrations of the
wave equation due mainly to period-doubling, we
have found that the solution (u, v) seems to some-
how manifest a “macroscopically coherent periodic
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(a)

(b)

Fig. 9. The snapshots of (a) u (b) v, at t = 52, for Example 3.3. One may observe some macroscopically coherent periodic
pattern. Chaos is visible mainly at a more microscopic scale.

structure”. Chaos is visible only at a more micro
scale, such as Figs. 9 and 10 have shown.

4. Homoclinic Orbits

Recall the definition of homoclinic points and or-
bits for a continuously differentiable interval map
f : I → I from [Devaney, 1989, pp. 122–124]. Let p
be a repelling fixed point of f : f(p) = p, |f ′(p)| > 1.
Let W u

loc(p) be the local unstable set at p. A point

q ∈ I is said to be homoclinic to p if q ∈ W u
loc(p)

and fn(q) = p for some n ∈ {1, 2, 3, . . .}. For a ho-
moclinic point q, the set {f j(q)|j = 1, 2, . . . , n} is
said to be the homoclinic orbit of q. The homoclinic
orbit of q is said to be nondegenerate if f ′(x) 6= 0 for
all points x on the orbit. Otherwise, the homoclinic
orbit is said to be degenerate.

Theorem 4.1 (Homoclinic Orbits for the Case 0 <
η < 1). Let α: 0 < α ≤ 1 and β > 0 be fixed, and
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(a)

(b)

Fig. 10. The snapshots of (a) u (b) v, at t = 102, for Example 3.3. In comparison with Fig. 9, we see that even higher
frequencies have appeared.

let η ∈ (0, 1) be a varying parameter. Let η
H

be
given by (50). If

η
H
≤ η < 1 , (65)

then the repelling fixed point 0 of G ◦ F and F ◦G
has homoclinic orbits. Furthermore, if η = η

H
, then

there are degenerate homoclinic orbits.
Consequently, if η ∈ [η

H
, 1), then the maps

G◦F and F ◦G are chaotic on some invariant sets
of G ◦ F and F ◦G.

Proof. By (17) and (18), because g(0) = 0 we
easily get

∂

∂v
fi(v, η)|v=0 =

1 + η

1− η

[
1− 2

1− α

]

=
1 + η

1− η ·
(
−
∣∣∣∣1 + α

1− α

∣∣∣∣)
< −1 , i = 1, 2 .
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Fig. 11. The graph of G ◦ F , with α = 0.5, β = 1, η = 0.8. Since the local maximum is larger than the positive v-axis
intercept of the graph, we see that homoclinic orbits exist. (Six dotted vertical segments drooped from the curve into the
v-axis, making six abscissas −ṽ0, −ṽ1, −ṽ2, ṽ2, ṽ1 and v0 as given in (74). See Sec. 5.)

Therefore 0 is a repelling fixed point of G ◦ F and
F ◦G. The existence of homoclinic orbits near 0 can
be first checked by graphical analysis from Figs. 11
and 12: For a homoclinic orbit to exist, the local
maximum of G ◦ F (resp., F ◦ G) must be larger
than or equal to the positive v-axis intercept of G◦F
(resp., F ◦G). By (32) and (34), we get

1 + η

1− η
1 + α

3

√
1 + α

3β
≥
√

1 + α

β
. (66)

This gives (65) for the map G ◦ F . For the map
F ◦G, we use (33) and (38) instead:

1 + α

3

√
1 + α

3β
≥ 1− η

1 + η

√
1 + α

β
. (67)

This is exactly the same as (66). We then further
check that the backward iterates of the v-axis inter-
cept(s) converge to the origin such that |f ′(x)| > 1
for each x on this backward orbit. Details are
omitted.

When equality holds in (66) and (67), we see
that the local maximum is mapped exactly into the
repelling fixed point 0. Therefore there exist degen-
erate homoclinic orbits.

It is well known that chaos occurs when
there are homoclinic orbits; see [Devaney, 1989,
pp. 124–129]. �

Theorem 4.2 (Homoclinic Orbits for the Case η >
1). Let α: 0 < α ≤ 1 and β > 0 be fixed, and let
η ∈ (1, ∞) be a varying parameter. Let ηH be given
as in (59). If

ηH ≥ η > 1 , (68)

then the repelling fixed point 0 of G ◦ F and F ◦G
has homoclinic orbits. Furthermore, if η = ηH , then
there are degenerate homoclinic orbits.

Consequently, if η ∈ (1, ηH ], then the maps
G◦F and F ◦G are chaotic on some invariant sets
of G ◦ F and F ◦G.

Proof. The arguments are the same as in the proof
of Theorem 4.1. Here, for G ◦ F , we use (32) and
(37):

M = −1 + η

1− η
1 + α

3

√
1 + α

3β
≥
√

1 + α

β
, (69)

which leads to (68). For F ◦ G, we use (33) and
(38):

M =
1 + α

3

√
1 + α

3β
≥ −1− η

1 + η

√
1 + α

β
,

which is equivalent to (69). �

Incorporating Lemma 2.5 with Theorems 4.1
and 4.2, we obtain the following two corollaries.
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Fig. 12. The graph of G ◦ F , with α = 0.5, β = 1, η = 1.2. Since the local maximum once again is larger than the positive
v-axis intercept of the graph, we also have homoclinic orbits. (Also note the six points of intersections of the curve with the
horizontal lines u = ±[(1 + η)/2]

√
(α+ β)/β, which are needed in Sec. 5.)

Corollary 4.1. Let 0 < α ≤ 1, β > 0, and
η ∈ (0, 1). If η

H
≤ η ≤ η

B
, where η

B
∈ (0, 1)

is the unique solution of

2η
B

1− η
B

√
η
B

1 + αη
B

=
3
√

3

(1 + α)3/2
, (70)

then the maps G ◦ F and F ◦ G are chaotic on
the invariant interval I ≡ [−M, M ], where M =
[(1 + η)/(1 − η)][(1 + α)/3]

√
(1 + α)/(3β).

Proof. The inequalities (40) and (42) are equiva-
lent, and give

2η

1− η

√
η

1 + αη
≤ 3

√
3

(1 + α)3/2
. (71)

Note that the LHS of (71) is a strictly increas-
ing function of η for η ∈ (0, 1). Therefore it has
a unique solution η

B
∈ (0, 1) satisfying (70) af-

ter an application of the Intermediate Value The-
orem. The rest is obvious from Lemma 2.5 and
Theorem 4.1. �

Corollary 4.2. Let 0 < α ≤ 1, β > 0 and η > 1.
If ηB ≤ η ≤ ηH , where ηB ∈ (1, ∞) is the unique

solution of

(ηB − 1)
√
α+ ηB = 2

(
1 + α

3

)3/2

then the maps G ◦ F and F ◦ G are chaotic on
the invariant interval I ≡ [−M, M ], where M =
[(1 + α)/3]

√
(1 + α)/3β.

Proof. Same as in the proof of Corollary 4.1. Here,
instead, we incorporate Lemma 2.5 (ii) and (iv)
with Theorem 4.2. �

The degenerate homoclinic orbits as promised
in Theorems 4.1 and 4.2 enable us to establish the
existence of an ergodic invariant measure for the
map G ◦ F .

Corollary 4.3. Let η∗ = η
H

or ηH in Theorems 4.1
and 4.2. Then there exists a set E of η-values,
where E has positive Lebesgue measure, such that
for all η ∈ E, the map Gη ◦ F has an absolutely
continuous, ergodic, invariant Sinai–Bowen–Ruelle
measure (on an invariant set of Gη ◦ F ).

Proof. We use a theorem due to Benedicks and
Carleson [de Melo & van Strien, 1993, Theorem 6.1,
p. 403]; we need to verify the Collet–Eckman
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condition:∣∣∣∣∣ ddv f i(v)
∣∣∣∣
v=f(vc)

∣∣∣∣∣ ≥ CLi , i = 1, 2, . . . , (72)

is satisfied for f = h1(v, ηH) and f = f1(v, ηH),
respectively, for Theorems 4.1 and 4.2, where vc (or
ṽc) is the critical point as given in Lemma 2.4, for
some C > 0, L > 1. We have

d

dv
f i(v)

∣∣∣∣
v=f(vc)

= f ′(ti−1)f
′(ti−2) · · · f ′(t0) ;

tj = f j+1(vc) , j = 0, 1, . . . , i− 1 .

But t1 = t2 = · · · = ti−1 = 0 because f maps f(vc)
to the fixed point 0. Therefore we get

LHS of (72) = |f ′(0)|i−1 · |f ′(f(vc))| ≥ C(1 + ε)i ,

for some small ε > 0 ,

because f ′(f(vc)) 6= 0 (as can be easily verified) and
|f ′(0)| > 1 because the fixed point 0 is repelling.

Therefore, (72) holds with C ≡ |f ′(f(vc))/
f ′(0)| > 0, L = 1 + ε for some small ε > 0. �

Example 4.1. Let α = 0.5, β = 1. Choose the
value η = η

H
given in (50):

η
H

=

(
1− 1.5

3
√

3

)/(
1 +

1.5

3
√

3

)
≈ 0.552 .

The graph of G ◦ F has been previously plotted
in Fig. 1. The orbits of G ◦ F are now displayed
in Fig. 13, obtained with 1200 iterations of a few
points chosen on the invariant interval I in Corol-
lary 4.1. Degenerate homoclinic orbits can be easily
confirmed. There is very strong chaos due to ho-
moclinic bifurcations, encompassing many period-
doubling and saddle-node bifurcations.

Example 4.2. Let α = 0.5, β = 1. Choose η = ηH
in (58):

ηH =

(
1 +

1.5

3
√

3

)(
1− 1.5

3
√

3

)−1

≈ 1.812 . (73)

The orbits of G ◦ F on the invariant interval I in
Corollary 4.2 are plotted in Fig. 14. Degenerate ho-
moclinic orbits are again confirmed visually. There
is very strong chaos due to homoclinic bifurcations.

Fig. 13. “Space-filling” orbits of G◦F , with α = 0.5, β = 1,
η = 0.552 in Example 4.1. Note the presence of degener-
ate homoclinic orbits and the ensuing strong chaos due to
homoclinic bifurcations.

Fig. 14. “Space-filling” orbits of G◦F , with α = 0.5, β = 1,
η = 1.812 in Example 4.2. Note the presence of degener-
ate homoclinic orbits and the ensuing strong chaos due to
homoclinic bifurcations.

Example 4.3. Consider the very same Exam-
ple 3.3, with only η in (63) changed to

η = 1.520 .

It is straightforward to check that (68) is satisfied:
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Fig. 15. Orbits of G ◦ F , with α = 0.5, β = 1, η = 1.520 in
Example 4.3. Note the presence of nondegenerate homoclinic
orbits and the ensuing strong chaos.

Fig. 16. The spatio-temporal profile of u in Example 4.3,
where α = 0.5, β = 1, and η = 1.520, for 0 ≤ x ≤ 1 and
50 ≤ t ≤ 52.

ηH = 1.812 > 1.520 > 1 . cf. (73)

Therefore there exists nondegenerate homoclinic or-
bits ofG◦F . This can be easily confirmed in Fig. 15.

The spatio-temporal profiles of u and v are plot-
ted in Figs. 16 and 17, respectively, for 0 ≤ x ≤ 1
and 50 ≤ t ≤ 52. Snapshots of u and v are given
in Fig. 18 at t = 52. The profiles look almost like
“random white noise”. Note that in contrast to

Fig. 17. The spatio-temporal profile of v in Example 4.3,
where α = 0.5, β = 1 and η = 1.520, for 0 ≤ x ≤ 1 and
50 ≤ t ≤ 52.

Fig. 9, u and v no longer shows any macroscopically
coherent periodic structure.

5. Chaos on a Bounded Cantor-like
Invariant Subset

When (40) or (41) [equivalently, (42) or (43)] is
violated, the maps G ◦ F and F ◦ G will not
have a bounded invariant interval as promised in
Lemma 2.5. Consider the case 0 < η < 1 for
G ◦ F , for example. The two horizontal lines
u = ±[(1 + η)/(2η)]

√
(1 + αη)/(βη) will intersect

the graph of u = G ◦ F (v) at a total of six points,
as can be seen from Figs. 11 and 12. Two of the six
points [see −ṽ0, ṽ0 in (74)] have already been given
in (27). We denote the ordered abscissas of these
six points by

−ṽ0 ≡ −
1 + η

2η

√
1 + αη

βη
,−ṽ1, −ṽ2, ṽ2, ṽ1, ṽ0 ,

(74)
where

G ◦ F (ṽ1) = G ◦ F (ṽ2) = −1 + η

2η

√
1 + αη

βη
,

0 < ṽ2 < ṽ1 < ṽ0 =
1 + η

2η

√
1 + αη

βη
.

(75)

We then define five intervals

I0 = [−ṽ0, −ṽ1] , I1 = [−ṽ2, ṽ2] , I2 = −I0 ,
A0 = (−ṽ1, −ṽ2) , A1 = −A0 .

(76)
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(a)

(b)

Fig. 18. The snapshots of (a) u and (b) v, at t = 52, for Example 4.3. In contrast to Fig. 9, macroscopically coherent
structures no longer exist.

It is easy to see that

v ∈ I = [−ṽ0, ṽ0], (G ◦ F )n(v) ∈ A0 ∪A1

for some n ∈ {0, 1, 2, . . .}
⇒ lim

k→∞
|(G ◦ F )k(v)| =∞ . (77)

The set

S ≡
∞⋂
n=0

(G ◦ F )nI (78)

is a closed bounded invariant subset of the map
G ◦ F . For every point v ∈ S, we can assign an
itinerary s(v) of v by

s(v) = (s0 · s1s2 · · · sn · · · )

sn =


0
1
2

 if (G ◦ F )nv ∈


I0
I1
I2

, n = 0, 1, 2, . . . .

(79)
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Then s(v) is a tri-nary number: We have s(v) ∈∑3,
where∑

3
= {s = (s0 · s1s2 · · · sn · · · )|sj = 0, 1, or 2 ,

j = 0, 1, 2, . . .} ; (80)∑
3 is endowed with a natural metric for tri-nary

numbers.
We can further make the set S a hyperbolic re-

pelling set .

Lemma 5.1. Let α: 0 < α ≤ 1 and β > 0 be given.
Then there exists an ηD = ηD(α, β): 0 < ηD < 1
such that if η satisfies ηD < η < 1, then∣∣∣∣ ∂∂v f1(v, η)

∣∣∣∣ > 1 , ∀v ∈ S . (81)

Proof. For given α, β, increase η so that

min

{∣∣∣∣ ∂∂vf1(v, η)

∣∣∣∣ ∣∣∣∣v = ±ṽ1, ±ṽ2
}

= 1 . (82)

It can be shown that there exists a unique ηD (de-
pending on α and β) such that (82) holds. We then
have∣∣∣∣ ∂∂vf1(v, η)

∣∣∣∣ ≥ 1 , ∀v ∈ I0 ∪ I1 ∪ I2 , η ≥ ηD ,

∣∣∣∣ ∂∂vf1(v, η)

∣∣∣∣ < 1 , ∀v ∈ A0 ∪A1 , η ≥ ηD .

(83)

(Note that the sets I0, I1, I2, A0 and A1 also vary
with η.) From (82) and (83), we have∣∣∣∣ ∂∂vf1(v, η)

∣∣∣∣ > 1 , ∀v ∈ I0 ∪ I1 ∪ I2 , η > η0 .

Hence (81) holds. �

Theorem 5.1. For given α: 0 < α ≤ 1 and β > 0,
let η satisfy ηD(α, β) < η < 1. Then S is a Can-
tor set with measure zero, and the map G ◦ F on S
is topologically conjugate to the shift map on

∑
3.

Consequently, G ◦ F is chaotic on S.

Proof. The method of proof is now standard, see
[Devaney, 1989, Sec. 1.7], for example. �

Cantor-like bounded invariant sets of G ◦F for
the case η > 1, and of F ◦G for both 0 < η < 1 and
η > 1 cases, can be similarly constructed where-
upon G ◦ F and F ◦ G are topologically conjugate
to a shift map. We omit the details.

6. Differentiable Solutions

All except the trivial solution (u(x, t), v(x, t)) ≡
(0, 0) proven to be chaotic in Parts I and III [Chen
et al., 1998, 1998] are discontinuous solutions on
the space-time domain {(x, t)|0 < x < 1, t > 0}.
However, for the problem which we are treating in
this paper, the solutions (u, v) and w can have arbi-
trarily high order of differentiability, provided that
the initial conditions are smooth and certain com-
patibility conditions are met.

To examine the questions of continuity and dif-
ferentiability of the solutions w and (u, v), we are
first reminded that discontinuities of w and (u, v),
as solutions of hyperbolic PDEs, can only propa-
gate along characteristics [Courant & Hilbert, 1962,
Sec. V.1]. This fact is well reflected in the represen-
tation formulas for (u, v) given in (13) and (14).
The “fault lines”, where the representation formu-
las for u and v switch from one region to another,
have six possibilities as indicated on the right half
of (13) and (14). Substituting τ = t − 2k therein
and changing inequality to equality, we get

t− 2k = 1− x , t− 2k = 2− x ,
t− 2k = 2 ,

(84)

t− 2k = x , t− 2k = 1 + x , t− 2k = 2 . (85)

The two horizontal line segments t− 2k = 2 on the
rightmost of (84) and (85) should be excluded be-
cause they are not really the characteristic lines of
discontinuities. Therefore, simplifying the rest of
(84) and (85), we get four families of line segments
along which discontinuities may propagate:

x+ t = 2k , x+ t = 2k + 1 , t− x = 2k ,

t− x = 2k + 1 , for 0 ≤ x ≤ 1, t ≥ 0, k ∈ Z+ .
(86)

Theorem 6.1. Let (u, v) be the solution of the sys-
tem (8)–(11) in the sense of method of characteris-
tics as represented by (13) and (14). Assume that
the initial conditions u0, v0 ∈ Cm([0, 1]) for some
m ∈ Z+. In addition, assume that at the left end
x = 0, we have

v
(k)
0 (0) = (−1)k · 1 + η

1− ηu
(k)
0 (0) , k = 0, 1, . . . , m .

(87)
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Also at the right end x = 1, assume that we have

u
(k)
0 (1) = (−1)k · Fk(F, F ′, . . . , F (k), v0(1), v′0(1), . . . , v

(k)
0 (1)) , k = 0, 1, . . . , m , (88)

where
F0 = F (v0(1)) , F1 = F ′(v0(1))v′0(1) ,

F2 = F ′′(v0(1))v′0(1)
2 + F ′(v0(1))v′′0 (1) ,

F3 = F ′′′(v0(1))[v′0(1)]
3 + 3F ′′(v0(1))v′′0 (1)v′0(1) + F ′(v0(1))v′′′0 (1) ,

· · ·

Fm = F (m)(v0(1))[v
′
0(1)]

m + · · ·+ F ′(v0(1))v
(m)
0 (1) .

(89)

Then the solution (u, v) is Cm-continuous on the space-time domain [0, 1]× [0, T ] for any T > 0.

Proof. Let
⇀
a = (a1, a2) ∈ R2 be any unit vector on the (x, t)-plane, and let D⇀

a
be the directional

derivative along
⇀
a . We want to show that (D⇀

a
)ju and (D⇀

a
)jv are continuous across the characteristics

line segments in (86), for j = 0, 1, . . . , m, for any k ∈ Z+.
Take (14)1 and (14)2 across the characteristics t− x = 2k, for example:

v(x, t) =


(G ◦ F )k(v0(x− τ)) = (G ◦ F )k(v0(x− t+ 2k)) , t− 2k ≤ x ≤ 1 ,

G ◦ (F ◦G)k(u0(τ − x)) = (G ◦ F )k
(

1 + η

1− ηu0(t− x− 2k)

)
, x < t− 2k ≤ 1 + x .

To have v(x, t) Cm-continuous across t − x = 2k,
we must have

D
j
⇀
a
[(G ◦ F )k(v0(x−t+2k))]|x−t+2k=0

=Dj
⇀
a

[
(G ◦ F )k

(
1+η

1−ηu0(t−x−2k)

)] ∣∣∣∣
x−t+2k=0

,

j=0, 1, 2, . . . , m .

This is easily seen to lead to (87).

Similarly, using (13)1,2 and comparing their Dj
⇀
a

along x+ t = 2k + 1 for j = 0, 1, 2, . . . , m, we get
(89).

All the other cases also lead to the same com-
patibility conditions (87) and (89). We omit the
details. �

Corollary 6.1. Let w be the solution of (1)–(4)
such that the initial conditions (w0, w1) satisfy w0 ∈
Cm+1([0, 1]) and w1 ∈ Cm([0, 1]), for some non-
negative integer m. Let (u0, v0) be defined as in
(11), and satisfy (87)–(89). Then w is Cm+1-
continuous on [0, 1]× [0, T ] for any T > 0.

Example 6.1. Let w0, w1 ∈ C∞([0, 1]). Further-

more, w
(j)
0 (0) = w

(j)
1 (0) = w

(j)
0 (1) = w

(j)
1 (1) = 0,

for all j ∈ Z+. Then the solution w of (1)–(4) is

C∞-continuous on [0, 1]× [0, T ] for any T > 0.

Let w be a Cm+1-continuous solution of (1)–(4)
for some m ≥ 1, and let W (x, t) = wt(x, t). Then
W again satisfies the wave equation

Wtt(x, t)−Wxx(x, t) = 0 , 0 < x < 1 , t > 0 ,

(90)

as well as the linear boundary condition at the left
end x = 0:

Wt(0, t) = −ηWx(0, t), η > 0 , η 6= 1 , t > 0 .
(91)

The initial conditions now become

W (x, 0) = w1(x) ∈ Cm([0, 1]) ,

Wt(x, 0) = wtt(x, 0) = wxx(x, 0) (92)

= w′′0(x) ∈ Cm−1([0, 1]) .

How about the right end boundary condition?
Differentiating (2) with respect to t, we get

wxt(1, t) = αwtt(1, t)− 3βw2
t (1, t)wtt(1, t) ,

or

Wx(1, t) = [α− 3βW 2(1, t)]Wt(1, t) , t > 0 .

(93)
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Note that the boundary condition (93) is also a self-
excitation boundary condition, analogous to the van
der Pol ODE

ẍ+ (−α+ 3βx2)ẋ+ ω2
0x = 0 ,

which we have mentioned in Part I [Chen et al.,
1998a] but have not been able to treat it by directly
applying the method of characteristics.

Theorem 6.2. Let w and (u, v) be, respectively,
the solutions of the hyperbolic PDEs given in Corol-
lary 6.1 and Theorem 6.1, with m ≥ 1 therein. Let
W (x, t) = wt(x, t). Assume that α: 0 < α ≤ 1,
β > 0 and η > 0, η 6= 1 are given such that accord-
ing to Secs. 3–Sec. 5, u and v are chaotic. Then
W is the unique solution of (90)–(93), W is Cm-
continuous on [0, 1]× [0, T ] for any T > 0, and W
is (generically) chaotic.

Proof: Since W (x, t) = wt(x, t), using the topolog-
ical conjugacy in Part I [Chen et al., 1998, Sec. 5],
we immediately see that W is chaotic. The rest is
obvious. �

Theorem 6.2 tells us that it is possible to have
smooth, unique solutions of the system (90)–(93),
whose trajectory (or state) W itself is chaotic,
with the boundary condition (93) which is much
harder to treat than (2). In our other work [Chen
et al., 1996, 1998, 1998], chaos has been shown to
exist only at the (u, v) or the gradient (wx, wt)
level.
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