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Abstract

N. Bohr proposed in 1913 a model for atoms and molecules by synthesizing Planck’s quantum
hypothesis with classical mechanics. When the atom number Z is small, his model provides good
accuracy for the ground state energy. When Z is large, his model is not as accurate but still
provides a good trend agreeing with the experimental values of the ground state energy of atoms.

The main objective of this paper is to provide a rigorous mathematical analysis for the Bohr
atom model. We have established the following:

(1) An existence proof of the global minimizer of the ground state energy through scaling;

(2) A careful study of the critical points of the energy function. Such critical points include
both the stable steady-state electron configurations as well as unstable saddle-type config-
urations.

(3) Coplanarity of certain electron configurations.

Numerical examples and graphics are also illustrated.
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1 Introduction

In 1913, N. Bohr published a series of three papers [1, 2, 3] describing his approach for modeling
atoms and molecules by synthesizing Planck’s quantum hypothesis with classical mechanics. Bohr
tried to explain the hydrogen spectral lines with a radical “planetary” model of electrons orbiting
around a nucleus. He made a set of assumptions to quantify his model, leading to the existence in
the atom a discrete set of stable, stationary orbits for electrons:

(1) The dynamical equilibrium of the stationary orbits is achieved by balancing the electrostatic
Coulomb forces of attraction against the centrifugal effect and the interelectronic repelling of
the orbital motion in classical mechanics.

(2) Stationary states satisfy the quantization condition that the ratio of the total kinetic energy
of the electron to its orbital frequency be an integral multiple of π}. For circular orbits, this
signifies that the angular momentum of the electron is restricted to integral multiples of }.

(3) Energy is emitted only when an electron makes a “jump” (i.e., non-continuous) transition
between two stationary orbits, and the frequency of such a radiation emission is determined
by ∆E/2π}, where ∆E is the energy difference between the two orbits where the transition
occurs.

From now on, vectors will be denoted by bold letters. For the hydrogen atom, Bohr’s assumptions
work as follows. The total energy of the electron on a circular orbit with radius r and velocity vvv is

E = kinetic energy + potential energy

=
mev

2

2
− Ze2

r
,

(1.1)

where

me = the mass of the electron,
e = the charge of the electron,

Ze = the positive charge of the nucleus.

Since

LLL = the angular momentum
= rrr × ppp (ppp ≡ the linear momentum = mevvv),

|LLL| = L = mevr, (1.2)

which, in turn, by Bohr’s quantization assumption, satisfies

L = n}. (1.3)

From (1.1)–(1.3), we now have

E =
m2

ev
2r2

2mer2
− Ze2

r

=
L2

2mer2
− Ze2

r

=
n2
}

2

2mer2
− Ze2

r

=
1
2

n2

r2
− Z

r
, (1.4)
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in atomic units (by setting e = 1, }2/me = 1).

Electron numbers i Electron shells names Assigned quantum numbers ni

1 ≤ i ≤ 2 K 1
3 ≤ i ≤ 8 L 2
9 ≤ i ≤ 18 M 3
19 ≤ i ≤ 36 N 4
37 ≤ i ≤ 54 O 5
55 ≤ i ≤ 86 P 6
87 ≤ i ≤ 108 Q 7

(1.5)

Table 1. Assignment of quantum numbers ni for the ground state of an atom with atom number
Z from Z = 1 to 108.

Minimizing E = E(r, n, Z) with respect to r for n = 1, 2, 3, . . ., for fixed Z, we obtain

Ên ≡ min
r>0

E(r, n, Z) = −1
2

Z2

n2
, n = 1, 2, 3, . . . . (1.6)

These values and their differences totally determine the hydrogen atom’s spectral lines.
Sommerfeld later in 1916 generalized Bohr’s theory by allowing non-circular orbits and by incor-

porating relativistic effects, leading to the Bohr–Sommerfeld (old) quantum theory of the hydrogen
atom. However, for other atoms, including the simple helium, there are difficulties unaccountable
by the Bohr–Sommerfeld theory; see e.g. [6, 7]. Heisenberg worked under both Bohr and Sommer-
feld trying to resolve such difficulties, eventually gave up but in the process invented the matrix
mechanics during the 1930s.

The objective of the present paper is to analyze, mathematically, a Bohr atom model for the
ground-states of general atoms. Such a general Bohr model seems to be well understood by atomic
physicists (see, e.g., the pictorials on the website of Patton [11]) but we could not provide an exact
citation. The model that we are going to describe below is communicated to us by our colleague,
Dr. S.A. Chin [4]. Consider a neutral atom with atom number Z. There are Z electrons. The kinetic
energy of an electron i moving around a circular orbit of radius ri on the n-th shell, ni = 1, 2, 3, . . .,
is

Ti = −1
2
n2

i /r
2
i , (ri = |rrri|, rrri = (xi, yi, zi) ∈ R

3 is the (1.7)

position vector of electron i)

For a heuristic derivation of (1.7), see [6, Appendix]. The potential energy is attributed to the
Coulomb interactions of electron j with the nucleus and electrons j for j 6= i:

Pi = −Z

ri
+

Z∑
j 6=i
j=1

1
rij

(rij = |rrri − rrrj|). (1.8)

Thus the total energy of the atom is

E = E(rrr1, rrr2, . . . , rrrZ) =
Z∑

j=1

(Tj + Pj)

=
Z∑

i=1

(
n2

i

2r2
i

− Z

ri

)
+

Z∑
i,j=1
i6=j

1
2rij

. (1.9)
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We now pack these Z electrons into the various “electron shells” by the Aufbau Principle1 by
assigning the values of ni according to Table 1. These designated integral values of ni give us the
Bohr atom model in this paper.

The stable stationary orbit or electron configuration, denoted as (rrr∗1, rrr
∗
2, . . . , rrr

∗
Z), and the asso-

ciated ground state energy E(rrr∗1, rrr
∗
2, . . . , rrr

∗
Z), can now be obtained by

min
RRR∈R3Z

E(RRR) ≡ E(RRR∗), RRR∗ ≡ (rrr∗1, rrr
∗
2, . . . , rrr

∗
Z). (1.10)

In Table 2, we have listed the ground-state energy of all the atoms calculated from (1.10) as well
as the known (“exact”) experimental values. The reader may find some agreement between these
two sets of values, especially when Z is small.

The Bohr model of atoms was derived by Bohr in an ad hoc way at first. The rigorous,
wave-mechanical model is the following Schrödinger–Born–Oppenheimer equation describing the
many-particle quantum-mechanical behavior−1

2

Z∑
k=1

∇2
k +

1
2

Z∑
k,k′=1
k 6=k′

1
rkk′

−
Z∑

k=1

Z

rk

φ(RRR) = Eφ(RRR). (1.11)

As Bohr’s model appears to be something of the history, why does it still warrant any attention?
The reasons that motivate our study here are three fold:

(i) Recently, through the dimensional scaling (D-scaling) method [8], Svidzinsky, Scully and Her-
shbach [12, 13] have arrived at Bohr’s model from the totally quantum-mechanical (Schrödinger–
Born–Oppenheimer) model via asymptotics. This has stirred surprise, excitement and inter-
ests [15], especially among the researchers in the Institute for Quantum Studies at Texas
A&M and has rekindled efforts in trying to understand the synergism between D-scaling, the
Schrödinger–Born–Oppenheimer model and the Bohr model for atoms and molecules.

(ii) The Schrödinger–Born–Oppenheimer model (1.11) involves large-scale numerical computation
and is rather theoretically intractable, while the Bohr model (1.5), (1.9) and (1.10) requires
only desk-top computing, producing outcomes of electron configurations highly valuable and
intuitive for atomic experiments and molecular modeling, especially with the incorporation
of the Hartree–Fock and other refinement techniques ([6, 7, 5, 10, 14], e.g.).

(iii) Mathematically speaking, even though Bohr’s atom model is nearly 90 years old, histori-
cally it has not attracted due attention in the mathematics community and, thus, has not
undergone rigorous mathematical analysis it rightfully deserves. Many interesting mathemat-
ical problems are worth investigation. We hope our mathematical analysis carried out here
will improve the understanding of Bohr’s atomic model and that of atoms in general at a
more fundamental level, with an ultimate goal of improving the modeling and compution of
molecules or even building new molecular models.

2 Existence and Algorithm for the Global Minimizer

The following problems are of significant mathematical interests, which also have physical im-
portance:

1The packing of electrons into electron shells by the Aufbau Principle involves also subshells p.d.f , etc. Since here
we are only dealing with ground states of atoms, we pack electrons only into the principal s shells.
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(i) A rigorous existence proof of ground state energies;

(ii) Stable as well as unstable electron steady-state orbits;

(iii) Geometric configurations: co-planarity and symmetries of electron locations.

We discuss them through a sequence of lemmas and theorems.
From now on, to simplify notation, we often write

n∑
i=1

as
∑

i

,

n∑
i,j=1
i6=j

as
∑
i6=j

,

unless more clarity of the summation index is deemed necessary.
We begin by letting Z be a positive number and n be a positive integer; n = 1, 2, 3, . . ., define

(1) For n = 1,

EZ
1 : R

3 → R, EZ
1 (rrr1) =

n2
1

2r2
1

− Z

r1
, rrr1 ∈ R

3 ;

(2) For n ≥ 2 and Z ≥ n, EZ
n : R3n → R,

EZ
n (R) =

n∑
i=1

(
n2

i

2r2
i

− Z

ri

)
+

n∑
i,j=1
i6=j

1
2rij

, (2.1)

where RRR = (rrr1, ..., rrrn), rrri ∈ R
3 , ri and rij are defined as in (1.7) and (1.8). The domain of EZ

n is
then given by R

3n\Sn, where Sn is the singularity manifold of EZ
n given by

Sn = {RRR = (rrr1, ..., rrrn) ∈ R
3n
∣∣∣ rrrj = 000 or rrrj − rrrk = 0, for some j, k, 1 ≤ j, k ≤ n, j 6= k}.

EZ
n is obviously in C∞(R3n\Sn). We are interested in the existence of RRR∗ ∈ R

3n\Sn such that

EZ
n (RRR∗) = inf

RRR∈R3n\Sn

EZ
n (RRR), for n ≥ 2.

Note that the case of n = 1 is already solved in (1.6). From now on, we will abbreviate EZ
n as E

if no ambiguities should arise. Throughout the rest of the section, the reader may find that in all
of the proofs given, as long as ni > 0 for i = 1, 2, . . . , n, then the proofs go through without any
problem, i.e., ni’s do not have to follow the designated values as in Table 1. We further define

Sn
Z =

RRR ∈ R
3n\Sn

∣∣∣ ∑
i

Z

ri
−
∑
i6=j

1
2rij

> 0

 .

Lemma 1 (Scaling along a ray). Let RRR ∈ Sn
Z. The function g : R+ ≡ (0,∞) → R, g(t) ≡ E(tRRR)

has a unique global minimum at

t∗ = t∗(RRR) = arg min
t6=0,t∈R

E(tRRR), (2.2)

where

t∗ > 0, g′(t∗) = 0, g′′(t∗) > 0, (2.3)

E(t∗RRR) = −1
2

∑
i

n2
i

r2
i

1
t∗2

= −1
2

∑
i

Z

ri
−
∑
i6=j

1
rij

2/(∑
i

n2
i

r2
i

)
< 0. (2.4)
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Proof. First, we note that Sn
Z is a nonempty unbounded open set of R3Z . It is easy to see that if

RRR ∈ Sn
Z , then tRRR ∈ Sn

Z for any t 6= 0, i.e., Sn
Z is star-shaped. For t > 0, we have

g(t) =
1
t2

∑
i

(
n2

i

2r2
i

)
+

1
t

−
∑

i

Z

ri
+
∑
i6=j

1
2rij

 , (2.5)

g′(t) = − 2
t3

∑
i

n2
i

2r2
i

+
1
t2

∑
i

Z

ri
−
∑
i6=j

1
2rij

 . (2.6)

Set g′(t∗) = 0 to get the only zero of g′ at

t∗ =

∑
i

n2
i

r2
i∑

i

Z
ri
−∑

i6=j

1
2rij

. (2.7)

Note that the denominator in (2.7) is positive since RRR ∈ Sn
Z . So t∗ is well-defined. Next, we have

g′′(t) =
6
t4

∑
i

n2
i

2r2
i

− 2
t3

∑
i

Z

ri
−
∑
i6=j

1
2rij

 ,

g′′(t∗) =
1

t∗4
∑

i

n2
i

r2
i

> 0.

Therefore g(t) has only a global minimum at t∗ > 0, and φ(t∗) = E(t∗RRR) is given as in (2.4).

Remark 1. If RRR /∈ Sn ∪ Sn
Z , then for t > 0,

g(t) = E(tRRR) =
1
t2

∑
i

n2
i

r2
i

+
1
t

−
∑

i

Z

ri
+
∑
i6=j

1
2rij

 .

This function g(t) is always positive and monotonic for t ∈ (0,∞) such that g′(t) = 0 has no
solution t ∈ R+ . In fact, g′(t) < 0 on R+ , i.e., g is strictly decreasing. Since g(t) is smooth on R+ ,
lim
t→0

g(t) = +∞ and lim
t→∞ g(t) = 0, we have g(t) ≥ 0 for any t ∈ R+ . �

From (2.1), by completing the square we have

E(RRR) =
∑

i

(
ni√
2 ri

−
√

2 Z

ni

)2

+
∑
i6=j

1
2rij

−
∑

i

2Z2

n2
i

≥ −
∑

i

2Z2

n2
i

,

therefore E(RRR) is bounded from below, its infimum exists and we have

µZ
n := inf

RRR∈R3n\Sn

EZ
n (RRR) = inf

RRR∈Sn
Z

EZ
n (RRR) < 0. (2.8)

We introduce the following gradient notation: Let f(x1, x2, . . . , xn) be any scalar valued function
of n variables. For any variables xi1xi2 , . . . , xik , where 1 ≤ i1 < i2 < · · · < ik ≤ n, we denote the
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gradient of f with respect to these variables as

D(xi1
xi2

,...,xik
)f(x1, x2, . . . , xn) =



∂f

∂xi1

(x1, x2, . . . , xn)

∂f

∂xi2

(x1, x2, . . . , xn)

...
∂f

∂xik

(x1, x2, . . . , xn)


,

which is regarded as a column vector. If (xi1 , xi2 , . . . , xik) = (x1, x2, . . . , xn), i.e., all the variables
x1, x2, . . . , xn are included, then we simply write the above as Df , i.e.,

Df = [∂f/∂x1 ∂f/∂x2 . . . ∂f/∂xn]T

(where T means transpose). A point yyy ∈ R
n is said to be a critical point of f if Df(y) = 000.

Obviously, any local or global maximum or minimum of E is a critical point, but many critical
points of E may be of the saddle type which are physically unstable.

Later, we will also need to utilize the Hessian matrix of f . The Hessian matrix H of f is an
n × n matrix whose (i, j)-entry, Hij, is Hij ≡ ∂2f/(∂xi∂xj). We denote the Hessian as D2f , i.e.,

D2f =
[

∂2f

∂xi∂xj

]
1≤i,j≤n

. (2.9)

A critical point RRR† ∈ R
3Z of E(RRR) is defined by DE(RRR†) = 000. Thus, at a critical point we

obtain the set of gradient (vector) equations

DrrrjE(RRR†) = 000 for j = 1, 2, . . . , n, (2.10)

i.e., (
n2

j

r†4j

− Z

r†3j

)
rrr†j +

n∑
k=1
k 6=j

1

2r†3kj

rrr†kj = 000 ∈ R3, j = 1, 2, . . . , n. (2.11)

Using rrr†kj = rrr†k − rrr†j , we can write (2.11) alternatively as n2
j

r†4j

− Z

r†3j

+
n∑

k=1
k 6=j

1

2r†3kj

rrr†j −
n∑

k=1
k 6=j

1

2r†3kj

rrr†k = 000, j = 1, 2, . . . , n. (2.12)

These constitute the equations for the steady states of electron orbits, based on the Bohr model.
In particular, if RRR∗ is a global minimum of E established in the preceding section, then RRR∗ is
necessarily a critical point and so the equations in (2.11) or (2.12) hold, with the “†” signs therein
replaced by “∗”s.
Theorem 1 (Virial). Let RRR† = (rrr†1, rrr

†
2, . . . , rrr

†
n) be a critical point of E satisfying DE(RRR†) = 000 ∈

R
3n , then so is RRRR† for any 3-D rotation R, and RRR† ∈ Sn

Z . The ground state energy value is given
by

E(RRR†) = −
n∑

i=1

n2
i

2r†2i

< 0. (2.13)

In addition, along the ray tRRR† for t > 0, E(tRRR†) attains its global minimum at t = 1.
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Proof. Consider, for t 6= 0,

E(tRRR†) =
n∑

i=1

(
n2

i

2t2r†2i

− Z

tr†i

)
+

2∑
i,j=1
i6=j

1

2tr†ij
.

Then, because DE(RRR†) = 000, we have

d

dt
E(tRRR†)

∣∣
t=1

= DE(RRR†) ·RRR† = 0,

i.e., ∑
i

(
− n2

i

r†2i

+
Z

r†i

)
−
∑
i6=j

1

2r†ij
= 0, (2.14)

and ∑
i

Z

r†i
−
∑
i6=j

1

2r†ij
=
∑

i

n2
i

r†2i

> 0,

and, hence, RRR† ∈ Sn
Z . Therefore

E(RRR†) =
∑

i

(
n2

i

2r†2i

− Z

r†i

)
+
∑
i6=j

1

2r†ij

=

∑
i

(
n2

i

r†2i

− Z

r†i

)
+
∑
i6=j

1
2rij

−
∑

i

n2
i

2r†2i

= −
Z∑

i=1

n2
i

2r†2i

.

But from the proof of Lemma 1, the derivative of function g(t) = E(tRRR†), g′(t), has only one
zero t∗ satisfying g′(t∗) = 0. Thus t∗ = 1, and t∗ = 1 necessarily corresponds to the global minimum
of g(t).

The proof is complete.

Corollary 1. Let RRR† = (rrr†1, . . . , rrr
†
n) be a critical point of E satisfying Theorem 1. Define an n× n

matrix M † whose (j, k)-entries Mjk are given by

M †
jk =


− 1

2r†3kj

, k 6= j;

n2
k

r†4k

− Z

r†3k

+
Z∑

i=1
i6=k

1

2r†3ki

, j = k.
(2.15)

Then detM † = 0.

Proof. Note that these M †
jk’s are the coefficients appearing in (2.12). As the matrix equation

M †ααα = 000 ∈ R
n has at least a nontrivial solution ααα ∈ R

n , ααα 6= 000, where ααα is a vector formed by
all of the ith components of the vectors in (rrr†1, rrr

†
2, . . . , rrr

†
n), with i = 1, or 2, or 3, we must have the

determinant of M † equal to 0.
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From (2.14), we obtain that the set

N n
Z =

RRR = (rrr1, ..., rrrn) ∈ R
3n\Sn

∣∣∣ n∑
k=1

[
Z

rk
− n2

i

r2
k

]
=

n∑
j,k=1
j 6=k

1
2rjk

 , (2.16)

contains all critical points of EZ
n . N n

Z is a closed nonempty subset of R3n , and N n
Z ⊂ Sn

Z . We then
have

inf
RRR∈Sn

Z

EZ
n (RRR) = inf

RRR∈Nn
Z

EZ
n (RRR). (2.17)

Furthermore, we obtain from (2.4)

EZ
n (RRR) = −1

2

n∑
i=1

n2
i

r2
i

< 0, ∀RRR = (rrr1, . . . , rrrn) ∈ N n
Z . (2.18)

When n = 1, define N 1
Z = {rrr1 ∈ R

3
∣∣∣ r1 = n2

1/Z}. For any rrr ∈ N 1
Z ,

EZ
1 (rrr) = − Z2

2n2
1

= inf
rrr1∈R3\S1

EZ
1 (rrr1).

Lemma 2. Let n ≥ 2 and Z = n, then

µZ
n ≤ µZ

k , ∀k : 1 ≤ k ≤ n − 1.

If µZ
k = EZ

k (rrr∗1, . . . , rrr∗k) for some (rrr∗1, . . . , rrr∗k) ∈ (R3 )k, then

µZ
n < µZ

k , ∀1 ≤ k ≤ n − 1.

Proof. For any (rrr1, . . . , rrrk) ∈ Sk
Z and (rrrk+1, . . . , rrrn) ∈ Sn−k

Z−k, we have

EZ
n (rrr1, . . . , rrrk, trrrk+1, . . . , trrrn)

=


k∑

j=1

[
n2

j

2r2
j

− Z

rj

]
+

k∑
j,i=1
j 6=i

1
2rij


+


n∑

j=k+1

[
n2

j

2t2r2
j

− Z

trj

]
+

n∑
j,i=k+1

j 6=i

1
2trij

+
n∑

j=k+1

k∑
i=1

1
|trrrj − rrri|


≡ ∆1 +

1
t
∆2

Note that

lim
t→∞∆2 = lim

t→∞


n∑

j=k+1

[
n2

j

2tr2
j

− Z

rj

]
+

n∑
j,i=k+1

j 6=i

1
2rij

+
n∑

j=k+1

k∑
i=1

t

|trrrj − rrri|


= −

 n∑
j=k+1

Z − k

rj
−

n∑
j,i=k+1

j 6=i

1
2rij

 .
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In the special case when k = n − 1, we have rrrn ∈ S1
Z−n+1 and then

lim
t→∞∆2 = −Z − n + 1

rn
< 0;

but if 1 ≤ k ≤ n − 2, which occurs only when n ≥ 3, then (rrrk+1, . . . , rrrn) ∈ Sn−k
Z−k implies

lim
t→∞∆2 = −

 n∑
j=k+1

Z − k

rj
−

n∑
j,i=k+1

j 6=i

1
2rij

 < 0. (2.19)

Thus we obtain, for any (rrrk+1, . . . , rrrn) ∈ Sn−k
Z−k

1
t
∆2 < 0, for t sufficiently large.

Hence, we have for any (rrr1, . . . , rrrk) ∈ Sk
Z , for t sufficiently large,

µZ
n ≤ EZ

n (rrr1, . . . , rrrk, trrrk+1, . . . , trrrn) <

 k∑
j=1

[
n2

j

2r2
j

− Z

rj

]
+

k∑
j,i=1
j 6=i

1
2rij

 . (2.20)

Thus
µZ

n ≤ µZ
k .

If µZ
k = EZ

k (rrr∗1, . . . , rrr
∗
k) for some (rrr∗1, . . . , rrr

∗
k) ∈ (R3)k, then (2.19) and (2.20) leads to

µZ
n < µZ

k .

Theorem 2. Let Z = n. There exists an RRR∗ = (rrr∗1, . . . , rrr
∗
n) ∈ R

3n such that

EZ
n (RRR∗) = inf

RRR∈R3n\Sn

EZ
n (RRR).

Proof. Since the case of n = 1 is trivial, we assume n ≥ 2. From (2.8) and (2.17), we only need to
prove that there exists an RRR∗ = (r∗1 , . . . , r∗n) ∈ N n

Z such that

EZ
n (RRR∗) = inf

RRR∈Nn
Z

EZ
n (RRR) = µZ

n .

Let {RRRm} ⊂ N n
Z be a minimizing sequence such that EZ

n (RRRm) → µZ
n as m → ∞. We first show

that {RRRm} is bounded.
Suppose {RRRm} is unbounded. Let RRRm = (rrrm

1 , . . . , rrrm
n ). By replacing {RRRm} with its subsequence,

if necessary, essentially two cases need to be considered:

(a) |rrrm
k | → +∞, 1 ≤ k ≤ n; and

(b) there exist M > 0 and k0: 1 ≤ k0 ≤ n − 1, such that{
rm
k → +∞, 1 ≤ k ≤ k0,

rm
k ≤ M, k0 + 1 ≤ k ≤ n.
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In general, the index set {1, 2, . . . , n} has two disjoint subsets such that rm
k → ∞ and rm

k < M ,
respectively, as m → ∞ for k in each of these two index subsets. But the proof is the same.

For case (a), since {Rm} ⊂ N n
Z and (2.18), we have

µZ
n = lim

m→∞EZ
n (RRRm) = lim

m→∞

{
−1

2

n∑
i=1

n2
i

rm
i

}
= 0.

This contradicts µZ
n < 0 from (2.8). Thus, case (a) is impossible.

For case (b), we can further assume that rrrm
k → rrr∗k for k0 + 1 ≤ k ≤ n. Then we have

µZ
n = lim

m→∞En
n(RRRm)

= lim
m→∞


n∑

i=1

(
n2

i

2(rm
i )2

− Z

rm
i

)
+

n∑
i,j=1
i6=j

1
2rm

ij


=


n∑

k=k0+1

[
n2

k

2(r∗k)2
− Z

r∗k

]
+

n∑
j,k=k0+1

j 6=k

1
2r∗jk

+ lim
m→∞

k0∑
j,k=1
j 6=k

1
2rm

jk

≥ µZ
n−ko

+ lim
m→∞

k0∑
j,k=1
j 6=k

1
2rm

jk

≥ µZ
n−k0

,

By applying the first part of Lemma 2, we must have

lim
m→∞

k0∑
j,k=1
j 6=k

1
rm
jk

= 0,

and

µZ
n = µZ

n−k0
=

n∑
k=k0+1

[
n2

i

2(r∗k)2
− Z

r∗k

]
+

n∑
j,k=k0+1

j 6=k

1
2r∗jk

,

which contradicts the second part of Lemma 2. Thus, case (b) is also impossible.
Therefore {RRRm} is bounded and contains a convergent subsequence, denoted by {RRRm} again,

such that RRRm → RRR∗ ∈ R
3n . Since N n

Z is a closed subset of R3n , we have RRR∗ ∈ N n
Z , and

En
n(RRR∗) = µZ

n = inf
RRR∈R3n\Sn

EZ
n (RRR).

Corollary 2. Let Z = n. For any nontrivial subspace V of R3 , the energy function EZ
n defined in

(2.1) attains a minimum in V n. �
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3 Critical Points of the Energy E: Stable and Unstable Electron
Configurations

From here throughout the rest of the paper for all practical interest we assume n = Z for EZ
n ,

which will be written simply as E.
In order to distinguish any global (or, possibly local) minimizer RRR∗ from a saddle-type critical

point RRR∧ of E, we need to examine whether the (3Z) × (3Z) Hessian matrix D2E (cf. (2.9)) is
(semi-) positive-definite at RRR∗, as the second order Taylor approximation gives

E(RRR) = E(RRR∗) + DE(RRR∗) · (RRR −RRR∗) +
1
2
(RRR −RRR∗)T · D2E(RRR∗) · (RRR −RRR∗)

+ O(|RRR −RRR∗|3)
= E(RRR∗) +

1
2
(RRR −RRR∗)T · D2E(RRR∗) · (RRR −RRR∗) + O(|RRR −RRR∗|3),

for |RRR −RRR∗| small,

requiring that

RRRT · D2E(RRR∗) ·RRR ≥ 0 for any RRR ∈ R
3Z ,

for RRR∗ to be a local or global minimum.

Following the terminology of calculus of variations, we say that a critical point RRR∧ is nondegenerate
if D2

RRRE(RRR∧) is an invertible (i.e., nonsingular) (3Z) × (3Z) matrix. Otherwise, RRR∧ is said to be a
degenerate critical point. Thus, a critical point is degenerate if and only if D2

RRRE(RRR∧) has 0 as its
eigenvalue. At a critical point RRR∧, the number of negative eigenvalues is called the Morse index of
that critical point. If a critical point RRR∧ is non-degenerate and has a Morse index greater than or
equal to 1, then RRR∧ must correspond to a saddle point of E(RRR). But here all the critical points are
degenerate according to the following.

Theorem 3 (Degeneracy of critical points). Any critical point RRR∧ of E(RRR) is degenerate. The
dimension of degeneracy is at least 2.

Proof. Any critical point RRR∧
0 satisfies (2.10) and, according to Theorem 1, RRRR∧ is also a critical

point for any 3-D rotation R:
DE(RRRR∧

0 ) = 000 ∈ R
3Z . (3.1)

From the theory of Lie groups in R
3 , we know that the rotation group SO(3) (i.e., the special

orthogonal group) in R
3 can be parametrized by two independent parameters (θ1, θ2). So we may

write R = R(θ1, θ2) and define
RRR∧(θ1, θ2) ≡ R(θ1, θ2)RRR∧

0 . (3.2)

Then by (3.1),
DE(RRR∧(θ1, θ2)) = 000 for all θ1 and θ2. (3.3)

Thus, by the chain rule,

∂

∂θj
DE(RRR∧(θ1, θ2)) = D2E(RRR∧(θ1, θ2)) ·

[
∂

∂θj
RRR∧(θ1, θ2)

]
= 000, j = 1, 2. (3.4)

Since
∂

∂θj
RRR∧(θ1, θ2) 6= 000 for j = 1, 2, (3.5)
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and ∂
∂θ1

RRR∧(θ1, θ2) and ∂
∂θ2

RRR∧(θ1, θ2) are linearly independent, because by holding θ1 = θ0
1 and

θ2 = θ0
2, RRR∧(θ1, θ

0
2) and RRR∧(θ0

1, θ2) form two independent trajectories when only one of θ1 and
θ2 is allowed to vary, and ∂

∂θ1
RRR∧(θ1, θ

0
2) and ∂

∂θ2
RRR∧(θ0

1, θ2) are the tangent vectors along these
two independent trajectories. We conclude from (3.4) that the Hessian matrix D2E(RRR∧) has two
linearly independent eigenvectors corresponding to the eigenvalue 0. The proof is complete.

The determination of all critical point RRR† from either (2.11) or analytically is no easy task. The
following two theorems provide a systematic way to construct (unstable) saddle-type critical points
which are not global minima.

Define a subset R3Z
x of R3Z by

R
3Z
x = {RRR = (rrr1, rrr2, . . . , rrrZ) ∈ R

3Z | rrrj = (xj , yj , zj)T = (xj , 0, 0), for j = 1, 2, . . . , Z;
xj ∈ R}. (3.6)

So R
3Z
x is a Z-dimensional subspace of R3D . The subspaces R3Z

y and R
3Z
z can be defined likewise.

Theorem 4. The minimization problem

min
RRR∈R3Z

x

E(RRR) (3.7)

has at least a (global) minimizer RRR∗
x ∈ R

3Z
x . This RRR∗

x is also a critical point of E in R
3Z , i.e.,

DE(RRR∗
x) = 000. In fact, any critical point RRR†

x of E(RRR) in R
3Z
x is also a critical point of E in R

3Z ,
i.e., DE(RRR†

x) = 000. The same is true if R3Z
x is replaced by R

3Z
y or R3Z

z .

Proof. Because R3Z
x is a closed subspace of R3Z , we can establish that (3.7) has a minimizer RRR∗

x in
R

3Z
x by Corollary 2. The same conclusion follows for R3Z

y and R
3Z
y .

We now show how RRR∗
x satisfies DE(RRR∗

x) = 000. Since RRR∗
x solves (3.7), we have the gradient

equations
∂

∂xj
E(RRR)|RRR=RRR∗

x
= 0, for j = 1, 2, . . . , Z; cf. (3.6) for xj .

The above gives n2
j

x∗4
j

− Z

x∗3
j

+
Z∑

k=1
k 6=j

1
2|x∗

k − x∗
j |3

x∗
j −

∑ 1
2|x∗

k − x∗
j |3

x∗
k = 0, j = 1, 2, . . . , Z, (3.8)

where x∗
j ’s are the first components of rrr∗j , with RRR∗

x = (rrr∗1, rrr
∗
2, . . . , rrr

∗
Z).

Note that (3.8) just represents the first component (i.e., related to x) of the vector equations (2.12),
with “†” therein replaced by “∗”. But the second and third components (related to y and z) are
automatically satisfied because yj = zj = 0 for j = 1, 2, . . . , Z.

Next, define the following subsets of R3Z :

R
3Z
x,y = {RRR = (rrr1, rrr2, . . . , rrrZ) ∈ R

3Z | rrrj = (xj , yj , zj) = (xj , yj , 0), for j = 1, 2, . . . , Z;

xj, yj ∈ R},
R

3Z
x,z = {RRR = (rrr1, rrr2, . . . , rrrz) ∈ R

3Z | rrrj = (xj , yj , zj) = (xj , 0, zj), for j = 1, 2, . . . , Z;

xj, zj ∈ R},
R

3Z
y,z = {RRR = (rrr1, rrr2, . . . , rrrZ) ∈ R

3Z | rrrj = (xj , yj , zj) = (0, yj , zj), for j = 1, 2, . . . , Z;

yj, zj ∈ R}.
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Theorem 5. The minimization problem

min
RRR∈R3Z

x,y

E(RRR)

has at least a (global) minimizer RRR∗
x,y ∈ R

3Z
x,y . This RRR∗

x,y is a critical point of E(RRR) in R
3Z , i.e.,

DE(RRR∗
x,y) = 000. In fact, any critical point RRR†

x,y of E(RRR) in R
3Z
x,y is also a critical point of E(RRR) in

R
3Z , i.e., DE(RRR†

x,y) = 000. The same theorem holds if we replace R
3D
x,y above by R

3D
x,z or R3D

y,z .

Proof. Same as that for Theorem 4.

Corollary 3. Let V be a (coordinate) subspace of R3 with dimension 1 or 2. Then any critical
point of E on V Z is a critical point of E on R

3Z .

Proof. Any such V can be obtained by a rotation from R
3Z
x or R3Z

x,y , respectively, if V has dimension
of, respectively, 1 and 2. The corollary follows because E is rotationally invariant.

With the aid of Theorems 4 and 5, we will be able to obtain many unstable critical points of
E(RRR) in R

3Z . See Examples 2 and 3 in Section 5.
We conjecture that the energy function E as defined in (1.5)–(1.10) has only finitely many

critical points RRR† satisfying DE(RRR†) = 000, which are not rotationally equivalent. But we don’t yet
have a proof.

4 Coplanarity of Stable or Unstable Electron Configurations

Numerical results (see Example in Section 5) indicate that for Z = 3 and 4, the stable electron
configuration (corresponding to a global minimizer of E) has all electrons coplanar with the origin.
For Z = 1 and 2, the coplanarity is trivial. For Z ≥ 5, numerical evidence suggests that coplanarity
no longer holds.

Theorem 6 (Co-planarity of the electrons with the origin: Z = 3). Let Z = 3. If RRR† =
(rrr†1, rrr

†
2, rrr

†
3) is a critical point of E(RRR) (including the global minimizer RRR∗), then rrr†1, rrr

†
2, rrr

†
3, and 000 are

coplanar in R
3 .

Proof. For clarity, we write out the system of equations (2.12):(
1

r†41
− 3

r†31
+

1

r†312
+

1

r†313

)
rrr†1 −

1

r†312
rrr†2 −

1

r†313
rrr†3 = 000,(

1

r†42
− 3

r†32
+

1

r†312
+

1

r†323

)
rrr†2 −

1

r†312
rrr1 − 1

r†323
rrr†3 = 000,(

4

r†43
− 3

r†33
+

1

r†313
+

1

r†323

)
rrr†3 −

1
r3
13

rrr†1 −
1

r†323
rrr†2 = 000.


(4.1)

If any single equation in (4.1) has all 3 coefficients of rrr†1, rrr
†
2 and rrr†3 to be nonzero, then any one

vector in {rrr†1, rrr†2, rrr†3} can be expressed as a linear combination of the other two vectors, and thus
the proof follows. Therefore, the only possibility that rrr†1, rrr

†
2, rrr

†
3 and 000 are not coplanar is when

n2
i

r†4i

− 3

r†3i

−
3∑

j 6=i
j=1

1

r†ij
= 0, for i = 1, 2, 3. (4.2)
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But the above implies, from (4.2), that

1

r†312
rrr†2 +

1

r†313
rrr†3 = 000,

1

r†312
rrr†1 +

1

r†323
rrr†3 = 000,

1

r†312
rrr†1 +

1

r†323
rrr†2 = 000,


Adding up the three equations in (4.2), we have

3∑
i=

 3∑
j=1
j 6=i

1

r†3ij

rrr†i = 000.

Once again, any rrr†i can be expressed as a linear combination of rrr†j for j 6= i. Therefore, rrr†1, rrr
†
2, rrr

†
3

and 000 are coplanar.

At this time, we are not yet able to prove the coplanarity property for the case Z = 4, which
as Fig. 3 in the next section indicates, is true from numerical computation.

5 Numerical Examples and Data

We first list in Table 2 the comparison between the experimental values of atoms’ ground-state
energies and those of the Bohr energies, for atom numbers between 2 and 30. There is a reasonable
agreement between these values when Z is small. When the value of Z increases, the deviations
also grow. Nevertheless, the trend of Bohr’s atom energies look good.

Z Experimental Bohr’s
2.0 −2.903 −3.0615
3.0 −7.478 −7.6889
4.0 −14.667 −14.8377
5.0 −24.652 −24.7906
6.0 −37.842 −37.8128
7.0 −54.584 −54.1540
8.0 −75.059 −74.1726
9.0 −99.719 −97.9746

10.0 −128.919 −125.5152
11.0 −162.233 −156.9173
12.0 −200.026 −192.3112
13.0 −242.315 −231.7757
14.0 −289.322 −275.4952
15.0 −341.208 −323.5122
16.0 −398.601 −376.0176
17.0 −460.102 −433.0846
18.0 −527.494 −494.9136
19.0 −599.924 −561.4195
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20.0 −677.558 −632.8097
21.0 −760.575 −709.3828
22.0 −849.285 −791.0756
23.0 −943.804 −878.0731
24.0 −1044.315 −970.5907
25.0 −1150.866 −1068.6207
26.0 −1263.483 −1172.1997
27.0 −1382.494 −1281.5093
28.0 −1507.990 −1396.5737
29.0 −1640.123 −1517.7809
30.0 −1779.048 −1644.9630

Table 2. Comparison of ground state energies of atoms’ ground-state energies in hartrees (htr)
with atom number Z : 2 ≤ Z ≤ 30, between experimental values and Bohr’s energies. When Z is
small, there is a better agreement, and the trend is basically sound. But none of Bohr’s energies
are within the chemical accuracy of 5 decimal places.

We now provide several examples below to illustrate stable as well as unstable electron con-
figurations according to Bohr’s model.

Example 1 (Stable electron configurations for the ground state of the Bohr atom model, with
Z : 3 ≤ Z ≤ 10). We set up the problem as follows. In order to avoid the 3-D rotational congruence
as stated in Theorem 1, we fix the direction of rrr1 along the positive z-axis and that of rrr2 on the
(x, z)-plane, as follows:

rrr1 = r1kkk,
rrr2 = r2 sin θ2iii + r2 cos θ2kkk,
rrri = ri sin θi cos φiiii + ri sin θi sinφijjj + ri cos θikkk, i ≥ 3,
0 ≤ θi ≤ π, 0 ≤ φi ≤ 2π, i ≥ 2.

(5.1)

Then the relative distances become
r1i = (r2

1 − r2
i − 2r1ri cos θi)1/2, 2 ≤ i ≤ Z,

r2i = [r2
2 + r2

i − 2r2ri(sin θ2 sin θi cos φi + cos θ2 cos φi)]1/2, 3 ≤ i ≤ Z,

rij = [r2
i + r2

j − 2rirj(sin θi sin θj cos(φi − φj) + cos θi cos θj)]1/2, 3 ≤ i < j < Z.

(5.2)

The stable electron configurations corresponding to minimal ground state energy of (1.5) are shown
in the next few figures, along with the data given in the captions.
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
Configuration of Li Atom

92° 

3.848951

0.363806

E = −7.69046 

Fig. 2 For lithium (Li), Z = 3. The electron configuration is shown above. We have

r1 = r2 = 0.363806, r3 = 3.848951,

θ2 = 1.605660 = 91.99754143◦ 6= π

2
,

θ3 = 1.605660 = 91.99754131◦ 6= π

2
, φ3 = π,

E = −7.69046(htr);htr = hartree.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5
Configuration of Be Atom

Fig. 3 For beryllium (Be), Z = 4. We have

r1 = r2 = 0.26690, θ2 = 3.14159 = π,

r3 = r4 = 2.23196, θ3 = θ4 = 1.57080 =
π

2
, φ3 = φ4 = 3.14159 = π,

E = −14.84035(htr).
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2

Configuration of B Atom

E = −24.79358 (htr)

Fig. 4 For boron (B), Z = 5. We have

r1 = r2 = 0.21081, r3 = r4 = r5 = 1.61777,

θ2 = 2.09440 =
2π
3

, θ3 = 2.09440 =
2π
3

, φ3 = 3.14159 = π,

θ4 = 1.57080 =
π

2
, φ4 = 1.57080 =

π

2
,

θ5 = 1.57080 =
π

2
, φ5 = −1.57080 = −π

2
,

E = −24.79358(htr).

−1.5 −1 −0.5 0 0.5 1 1.5
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0
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1.5
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1

Configuration of C atom

E = − 37.81680 (htr)

Fig. 5 For carbon (C), Z = 6. We have

r1 = r2 = 0.17398, r3 = r4 = r5 = r6 = 1.29353, θ2 = 3.14159 = π,

θ3 = 2.10638, φ3 = −0.22466,
θ4 = 1.03522, φ4 = 1.34614,
θ5 = 2.10638, φ5 = 2.91693,
θ6 = 1.03522, φ6 = −1.79546,
E = −37.81680(htr).
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Configuration of N atom

E = −54.16099 (htr)

Fig. 6 For nitrogen (N), Z = 7. We have

r1 = r2 = 0.14822, r3 = r6 = 1.06095, r4 = r5 = 1.05175, r7 = 1.15887,
θ2 = 3.14159 = π,

θ3 = −θ6 = 1.21801, φ3 = φ6 = −0.19528,
θ4 = θ5 = 1.47408, φ4 = 1.37551,
φ5 = −1.76608,
θ7 = 3.14159 = π, φ7 = 0.32885,
E = −54.16099(htr).
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0.5
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1.5

Configuration of O atom

E = − 74.17799 (htr)

Fig. 7 For oxygen (O), Z = 8. We have

r1 = r2 = 0.12910, r3 = r4 = r5 = r6 = 0.87770, r7 = r8 = 1.02674,
θ2 = θ8 = π, θ3 = θ4 = θ5 = θ6 = π/2, θ7 = 0,
φ3 = −0.19720, φ4 = 1.37360, φ5 = 2.94440, φ6 = −1.76800, φ7 = −0.48203, φ8 = −0.73723,
E = −74.17799(htr).
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Configuration of F atom

E = −97.90490 (htr)

Fig. 8 For fluorine (F), Z = 9. We have

r1 = r2 = 0.11435, r3 = r4 = r5 = r6 = r7 = 0.78823, r8 = r9 = 0.86558,
θ2 = θ9 = π, θ3 = θ4 = θ5 = θ6 = θ7 = π/2, θ8 = 0,
φ3 = −0.26152, φ4 = 0.99512, φ5 = 2.25176, φ6 = 3.50839, φ7 = 4.76503, φ8 = −0.21356,
φ9 = −0.02196,
E = −97.90490(htr).
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Fig. 9 For neon (NE), Z = 10. We have

r1 = r2 = 0.10263, r3 = 2.14617, r4 = 0.63726, r5 = 0.63288, r6 = 0.63387,
r7 = 0.63355, r8 = 0.63008, r9 = 0.62496, r10 = 1.87083,
θ2 = 3.13987(6= π), θ3 = −0.06317, θ4 = 0.99093, θ5 = 1.06946, θ6 = 0.98591, θ7 = 2.13822,
θ8 = 2.11486, θ9 = 2.04094, θ10 = 3.01675,
φ3 = −0.16895, φ4 = 0.14127, φ5 = 2.17293, φ6 = 4.25346, φ7 = 1.11058, φ8 = 3.25805,
φ9 = −0.94826, φ10 = −1.32532,
E = −125.99287(htr).

Example 2 (Saddle-type unstable colinear electron configurations, Z = 3). Consider the case of Li,
Z = 3. Write {

rrr3 = r3kkk,rrr1 = r1 sin θ1iii + r1 cos θ1kkk,
rrr2 = r2 cos θ2kkk + r2 sin θ2 cos φ2iii + r2 sin θ2 sin φ2jjj.

(5.3)
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We consider

min
RRR∈R9

z

E(RRR), RRR = (rrr1, rrr2, rrr3) =

 0
0
r1

 ,

 0
0
r2

 ,

 0
0
r3

 , (5.4)

i.e., all 3 vectors rrr1, rrr2 and rrr3 are required to be colinear on the z-axis. This can be done by setting
φ2 = π and by requiring θ1 and θ2 to be equal to either 0 or π in (5.3).

For problem (5.4), we have found 5 critical points RRR†
i , i = 1, 2, 3, 4, 5, with respect to the 3

scalar variables r1, r2 and r3. See Table 3 below.

coordinates (cf. (5.3)) (set φ2 = π)critical points
r1 r2 r3 θ1 θ2

Energies

RRR†
1 1.0334 0.3133 7.2778 0 0 −5.5985

RRR†
2 0.3622 0.3647 4.1865 0 π −7.6837

RRR†
3 0.3647 0.3622 4.1865 π 0 −7.6837

RRR†
4 1.0967 0.3174 2.2462 π π −5.7752

RRR†
5 0.3174 1.0967 2.2462 π π −5.7752

Table 3 Locations of four critical points of problem (5.4). Note that only RRR†
2 and RRR†

3 are true
minimizers for (5.4), while RRR†

1, RRR†
4 and RRR†

5 are just local minima for (5.4).

Note that by Theorem 4, all these points RRR†
i , i = 1, 2, 3, 4, 5, are critical points of E on R

3Z . On
the other hand, fix φ2 = π only. Then rrr1, rrr2 and rrr3 are coplanar and

E(rrr1, rrr2, rrr3) =
1

2r1
+

1
2r2

+
4

2r3
−

3∑
i=1

3
ri

+
(

1
|rrr1 − rrr2| +

1
|rrr1 − rrr3| +

1
|rrr2 − rrr3|

)
≡ E(r1, r2, r3, θ1, θ2). (5.5)

Numerical computations of the Hessian matrix H = [∂2E/∂θi∂θj ]1≤i,j≤2 and Lemma 1 show
that, indeed, these RRR†

i are saddle-type critical points. See Table 4.

point two eigenvalues of Hessian [∂2E/∂θi∂θj] eigenvectors
RRR†

1 −1.7530, −0.0187 (−0.7120, −0.7022)T , (0.7022, −0.7120)T

RRR†
2 −0.0061, 0.6831 (−0.7290, 0.685)T , (0.6845, 0.7290)T

RRR†
3 −0.0061, 0.6831 (0.6845, −0.7290)T , (−0.7290, −0.6845)T

RRR†
4 −1.4170, 0.0542 (0.7014, 0.7128)T , (−0.7128, 0.7014)T

RRR†
5 −1.4170, 0.0542 (0.7014, 0.7128)T , (−0.7128, 0.7014)

Table 4 Eigenvalues of the Hessian with respect to the angular variables θ1 and θ2.

In Fig. 10, we plot the energy surfaces of E with respect to the angular variables θ1 and θ2 in
a neighborhood of these critical points RRR†

i .
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Fig. 10 The energy surface E plotted against the angular variables θ1 and θ2 (cf. (5.3)) near the
critical points RRR†

i , i = 1, 2, 3, 4, 5, (cf. Table 3) in sequential order, whose locations are pin-pointed
by an arrow. These surfaces are all of the saddle type.

It is quite interesting to note from Fig. 2 earlier that the global minimum value of E on R
9 is

−7.69046 htr, while the global minimum value of E in (5.4) by restricting all rrri, i = 1, 2, 3, to lie
on the z-axis is −7.6837 htr, (cf. Table 3), which differs from −7.69046 by less than 0.1%. �

Example 3 (Saddle type unstable coplanar electron configurations, Z = 5). In order to find unstable
coplanar electron configurations, Z must be greater than or equal to 5, as Section 4 has proved
that Z = 3 can only have stable configurations and Fig. 2 has provided a numerical evidence that
Z = 4 also has stable coplanar electron configurations. For Z = 5, we apply Theorem 6 to find
coplanar configurations, which must be of the saddle-type and unstable, as Fig. 4 shows that a
stable configuration cannot be coplanar. Several unstable configurations can be seen in Fig. 11.
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Fig. 11 For Z = 5 (boron), the above three configurations are obtained according to Theorem
6 by finding critical points of E on the (x, y)-plane numerically. They should be contrasted with
the one in Fig. 4. Coordinates of the five vectors, as well as the corresponding energy values, given
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from top to bottom for these three configurations, are:

(−0.2045,−0.0156, 0), (0.2050, 0.0014, 0), (0.8625, 0.6741, 0), (−0.8524, 0.6777, 0), (0.,−1.0604, 0)
with Emin = −28.9146

(−0.3532, 0, 0), (−0.1808, 0.0011, 0), (0.9884,−0.0419, 0), (0.1128, 1.0034, 0), (0.,−1.0610, 0)
with Emin = −24.9439

(0.0661, 0.1942, 0), (0.0628,−0.1781, 0), (−6.4876, 0.3784, 0), (−0.9024, 0.2594, 0), (0.,−1.5647, 0)
with Emin = −27.5713

6 Conclusions

In this paper, we have conducted basic mathematical analysis for existence of minimal energy
configurations and certain properties of critical points for the Bohr energy function. Relevant
numerical results are also developed and presented.

There are still interesting problems remaining open. One among them is the coplanarity of the
stable electron configuration for Z = 4, which we have not yet been able to prove in Section 4.
Also, the determination of the many symmetries manifested in Figs. 2–9 has not been achieved.

Bohr’s original model for molecules [3] (which generalized the atomic case studied here) had
some difficulties which has recently been improved by Svidzinsky, Scully and Hershbach [13]. It
has many interesting mathematical features therein worth investigation and we hope to be able to
do it in the near future.
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