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Abstract

It is known that some predator-prey system can possess a unique
limit cycle which is globally asymptotically stable. For a prototypi-
cal predator-prey system, we show that the solution curve of the limit
cycle exhibits temporal patterns of a relaxation oscillator, or a Heaviside
function, when certain parameter is small.
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1 Introduction

For a class of conventional predator-prey interaction models, it is known that a stable limit
cycle exists for a range of parameters [M]. A typical model is

(1.1)
dU

ds
= γU

(

1 −
U

K

)

− Cφ(U)V,
dV

ds
= −DV + φ(U)V,

where the prey U satisfies a logistic growth pattern; γ > 0 represents the intrinsic growth
rate of the prey; K > 0 is the carrying capacity of the prey; D > 0 is the death rate
of the predator; C > 0 measures the relative loss of the prey; the function φ(U) is the
functional response of the predator, which corresponds to saturation of their appetites and
reproductive capacity, and like effects [Ho, M]. A functional response (of Type II [Ho])
usually satisfies φ(0) = 0, φ(U) is increasing and concave, and φ(U) → M > 0 for some
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M > 0 as U → ∞. Examples include φ(U) = MU/(A + U) (Holling) and φ(U) = 1− e−AU

(Ivlev).

In this paper, we consider the Holling type II functional response, although our results
can be adapted to more general cases. The system considered is

(1.2)
dU

ds
= γU

(

1 −
U

K

)

−
CMUV

A + U
,

dV

ds
= −DV +

MUV

A + U
.

We introduce a change of variables:

(1.3) t = γs, u =
U

K
, and v =

C

K
V,

then we obtain a dimensionless equation:

(1.4)
du

dt
= u (1 − u) −

muv

a + u
,

dv

dt
= −dv +

muv

a + u
,

where

(1.5) m =
M

γ
, d =

D

γ
, and a =

A

K
.

Here a,m, d > 0 are dimensionless parameters. Phase portrait analysis can show for certain
parameters, a prey-only or coexistence equilibrium is globally stable (see Section 2 or [H1]);
and for other parameters, a periodic solution exists. It has been shown that for a class of
systems including (1.4), the periodic solution is unique thus a globally stable limit cycle. The
first such uniqueness result was proved by Cheng [C], and more general uniqueness results for
limit cycle in predator-prey systems have been proved later in [HHK, Hw, KF, SKM, XZ, Z].
A main idea of later result is to transform (1.4) or a more general predator-prey system
into a Lienard equation.

Our interest in this article is on the asymptotic behavior of the limit cycle of (1.4)
when the predator death rate d tends to zero. A bifurcation point of view could ease the
understanding of our result. If we fix other parameters in the system (1.4) so that 0 < a < 1,
and take d as a bifurcation parameter, then the behavior of the system changes as the v-

isocline
mu

a + u
= d slides when d changes. It is more convenient to to solve this v-isocline

as u = λ ≡
ad

m − d
. When λ ≥ 1, the semi-trivial steady state (1, 0) is globally stable; when

(1−a)/2 < λ < 1 (u = λ intersects with the falling part of u-isocline), then the coexistence
steady state is globally stable; and when 0 < λ < (1−a)/2 (u = λ intersects with the rising
part of u-isocline), then the limit cycle is globally stable. Notice that λ = (1 − a)/2 is the
Hopf bifurcation point, where a subcritical Hopf bifurcation occurs, and a small amplitude
periodic solutions emerges for λ < (1 − a)/2.

Our main result in the article is on the limiting behavior of the unique limit cycle Σλ

when the death rate of predator d tends to zero (or equivalently λ tends to zero). When d
is not very small, the periodic functions u(t) and v(t) are still sinusoidal-like (see Figure 1).
Some sharp patterns emerge as d → 0 (or λ → 0). For small λ, we show that the period
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Figure 1: Plot of limit cycle. (left) phase portrait; (right) solution curves. Parameters:
a = 0.5, m = 1, d = 0.1, λ = 1/18 ≈ 0.056, period T ≈ 37.
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Figure 2: Plot of limit cycle with small d. (left) phase portrait; (right) solution curves.
Parameters: a = 0.5, m = 1, d = 0.01, λ = 1/198 ≈ 0.005, period T ≈ 336.

of Σλ is in an order of O(λ−1); the prey population u(t) is low in order of O(λ) for a time
scale of O(λ−1), then it has a spike to reach the maximum but only for a time scale of
O(| ln λ|), hence the graph of u(t) is a periodic pulse; the predator population v(t) reaches
the maximum value from the minimum value in a time scale of O(| ln λ|), then it slowly
decays to the minimum value in a time scale of O(λ−1) and the decay is exponentially slow
(see Figure 2). See Theorem 3.5 for a more mathematical description.

The phenomenon which we describe above makes the limit cycle of predator-prey system
(1.4) behave similar to a nonlinear relaxation oscillator. Well-known examples of nonlinear
relaxation oscillators are Van der Pol oscillator in electrical circuits employing vacuum tubes,
Fitzhugh-Nagumo oscillator in action potentials of neurons (see [G, H3, S, V1, V2].) The
existence of relaxation dynamics in predator-prey model (1.4) seems to be first discovered
in this article. For a two competing predators and one prey model considered in [HHW1,
HHW2], it is known that stable relaxation oscillations exist for some parameter ranges by
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using singular perturbation methods [LXY, MR]. In these work, it is assumed that the prey
population has fast dynamics, i.e. the prey population grows much faster than those of the
predators. In the current article, we assume that the predator has small death rate, and our
method is totally different. Notice that from (1.5), fast prey growth rate (large γ) implies
small m and d, and we only assume small d and fix m. Yet another example of singular
perturbation in predator-prey system can be found in Deng et. al. [De].
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Figure 3: Plot of limit cycle. (left) phase portrait; (right) solution curves. Parameters:
a = 0.14, m = 2, d = 1, λ = 0.14, period T ≈ 23.

In comparison we also consider the case as the parameter a tends to zero (λ also tends
to zero in this case). The total period of the limit cycle also tends to infinity as a → 0+.
But the asymptotic profile of the limit cycle is quite different. In this limit, the predator
population v(t) shows a spiky pulse shape, and the temporal length of the pulse is in a
scale of O(| ln λ|); on the other hand, the prey population u(t) shows a profile of Heaviside
function, with slow time scales O(λ−1) when u(t) ≈ 0 or u(t) ≈ 1 (the carrying capacity),
connected by fast time scales of O(| ln λ|) between them (see Figure 3). See Theorem 4.2
for a more mathematical description.

The latter result provides further answer to an old question in ecological studies. In
[R], Rosenzweig argues that enrichment of the environment (larger carrying capacity K in
(1.2)) leads to destabilizing of the coexistence equilibrium, which is so-called paradox of
enrichment. From (1.5), when other parameters are fixed, increasing K is necessarily equiv-
alent to decreasing a. Our result shows that the time interval when the prey is population
near zero is extremely long when the carrying capacity K is extremely large. That could
make the prey population even more vulnerable to catastrophe perturbation with long time
with very low population density.

Our result is rigorously proved by using basic differential and integral calculus, a Lya-
punov function, and phase plane analysis. It is noteworthy that the orbit of the limit cycle
in (1.4) does not follow the slow manifold as other nonlinear relaxation oscillators. It is
well known that (1.4) can be converted to a generalized Lienard equation with a nontrivial
transformation (see [KF]), but the relaxation oscillation found here does not follow from
known results for Lienard equations or Van der Pol equations. In fact, by using the change
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of variables:

u =
ad

m − d
x, v =

m − d

m
y, t =

a + u

ad
τ,

we can convert (1.4) to

(1.6)
dx

dτ
= x

(

a1 + a2x − a3x
2
)

− xy,
dy

dτ
= −y + xy,

where ai (i = 1, 2, 3) are positive constants defined by

a1 =
1

d
, a2 =

1 − a

m − d
, a3 =

ad

(m − d)2
.

The system (1.6) has a unique coexistence equilibrium point (x, y) = (1, y0 ≡ a1 + a2 − a3)
and

y0 =
1

d
+

1 − a

m − d
−

ad

(m − d)2
.

A further change of variable

(1.7) x = eu, y = y0e
v/y0 ,

transform (1.6) into a generalized Lienard equation:

(1.8)
du

dτ
= −[φ(v) + F (u)],

dv

dτ
= h(u),

where φ(v) = y0(e
v/y0 − 1), F (u) = a2 − a3 − a1e

u + a3e
2u, and h(u) = y0(e

u − 1). Using
this form and a uniqueness result of limit cycle of Lienard equation by Zhang [Z], one can
prove the uniqueness of limit cycle of (1.4) (see [KF]). But when d → 0, we have y0 → ∞
and the profile of the limit cycle does not follow from any existing results. We point out
that the relaxation oscillation property of Van der Pol system

ε
dx

dt
= y − F (x),

dy

dt
= h(x),

when ε → 0 has been studied by Lienard [L], Ponzo and Wax [PW1, PW2], Grasman [G].
More delicate limiting behavior of the limit cycle of the special system

dx

dt
= y −

x2

2
−

x3

3
,

dy

dt
= ε(a − x),

has been recently obtained by Dumortier and Roussarie [DR], Krupa and Szmolyan [KS]
and others.

We recall some well-known results regarding the dynamics of system (1.4) in Section 2,
and we prove our main results in Section 3 and 4 for the case d → 0 and a → 0 respectively.
We will use δi and Ci, (i ∈ N), to denote various positive constants. These constants are
independent of d in Section 3, and are independent of a in Section 4.
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2 Known results

In this section we summarize known results about the predator-prey system (1.4). More
detailed analysis can be found in [H1, H3, HHW1]. The predator-prey system (1.4) has

three steady state solutions: (0, 0), (1, 0), (λ, vλ) ≡ (λ,
(1 − λ)(a + λ)

m
), where λ =

ad

m − d
.

The coexistence equilibrium (λ, vλ) is in the first quadrant if and and if d <
m

a + 1
(or

0 < λ < 1). When d ≥
m

a + 1
(or λ ≥ 1), (1, 0) is globally stable. Hence we always assume

that 0 < d <
m

a + 1
in the following.

Global stability of (λ, vλ) can be established through a Lyapunov function (see [H1, H2,
H3]):

(2.1) W (u, v) =

∫ u

λ

p(ξ) − d

p(ξ)
dξ +

∫ v

vλ

η − vλ

η
dη,

where p(u) =
mu

a + u
. From straightforward calculation,

(2.2) Ẇ (u(t), v(t)) = [p(u) − p(λ)] · [v0(u) − v0(λ)],

where

(2.3) v0(u) =
u(1 − u)

p(u)
=

(a + u)(1 − u)

m
.

When a ≥ 1, v′0(u) < 0 for any u > 0. Hence when a ≥ 1, Ẇ < 0 along an orbit (u(t), v(t))
of (1.4) and Ẇ = 0 only if (u(t), v(t)) = (λ, vλ). Thus (λ, vλ) is globally asymptotically
stable when a ≥ 1. On the other hand, if 0 < a < 1, but vλ ≤ a/m (which is equivalent to
v0(λ) ≤ v0(0)), then [p(u)− p(λ)] · [v0(u)− v0(λ)] ≤ 0 for any u > 0, and in this case (λ, vλ)
is also globally asymptotically stable. We notice that vλ ≤ a/m is equivalent to

(2.4) λ ≥ 1 − a.

That leaves the case: for any a,m > 0,

(2.5) a < 1, and 0 < d < m(1 − a) (or equivalently 0 < λ < 1 − a).

The dynamics of (1.4) under (2.5) is completely understood. The local stability of (λ, vλ)
can be determined from the linearization at the equilibrium. We use λ as the bifurcation
parameter. The Jacobian at (λ, vλ) is

(2.6) J =







λ(1 − a − 2λ)

a + λ
−

mλ

a + λ
a(1 − λ)

a + λ
0






≡

(

A(λ) B(λ)
C(λ) 0

)

.
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Then λ∗ =
1 − a

2
is a Hopf bifurcation point. When

1 − a

2
< λ < 1, (λ, vλ) is locally

asymptotically stable. Indeed the local stability indeed implies the global asymptotical
stability of (λ, vλ) from the Poincaré-Bendixon theory [HHW1], and the global stability of
(λ, vλ) can also be proved through a mixed type Lyapunov function (see [AR, CH, H2].

Finally when 0 < λ <
1 − a

2
, (λ, vλ) is locally unstable, and (1.4) possesses a unique limit

cycle which is globally asymptotically orbital stable (see [C, KF]).

3 Asymptotic behavior of the limit cycle for d small

In the equation, we define

f(u, v) = uf1(u, v) = u

(

1 − u −
mv

a + u

)

g(u, v) = vg1(u, v) = v

(

−d +
mu

a + u

)

.

(3.1)

In the first part we construct an invariant region where the limit cycle is located. For
this part, we always assume that m,d > 0, 0 < a < 1, and λ = ad/(m − d) satisfies
0 < λ < (1 − a)/2.

We first give an estimate of the unstable manifold U = {(u1(t), v1(t)) : t ∈ R} at the
saddle point (1, 0). From the phase portrait, it satisfies 0 < u1(t) < 1 for all t ∈ R; U

is above the isocline v0(u) =
(1 − u)(a + u)

m
when λ < u < k. Since it is monotone for

λ < u < 1, we denote this portion by {(u, v1(u)) : λ ≤ u ≤ 1} with v1(1) = 0. We define

v2(u) =

(

1 +
a + 1

m

)

(1 − u),

v3(u) =
m − d

m
(1 − u) +

da

m
lnu.

(3.2)

Lemma 3.1. The unstable manifold satisfies

(3.3) v2(u) ≥ v1(u) ≥ v3(u), λ ≤ u ≤ 1.

Proof. From the equation (1.4), we have

dv

du
=

v

−mv + (1 − u)(a + u)
·
(m − d)u − da

u
.

Since the unstable manifold satisfies 0 < u1(t) < 1 for all t ∈ R, then along U , we have

dv

du
≤

v

−mv
·
(m − d)u − da

u
= −

(m − d)u − da

mu
.

Integrating along the portion of U from u = 1 to some u < λ, we obtain

v ≥
m − d

m
(1 − u) +

da

m
ln u = v3(u),
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if (u, v) ∈ U and λ ≤ u ≤ 1.

For the upper bound, we notice that the tangent line of the unstable manifold is v =
(

1 +
(a + 1)(1 − d)

m

)

(1 − u), which is below v = v2(u). Hence we only need to show that

the vector field (f(u, v), g(u, v)) points towards the region below the line v = v2(u) when
(u, v) = (u, v2(u)) and λ < u < 1. That is equivalent to

∣

∣

∣

∣

dv

du

∣

∣

∣

∣

≤ 1 +
a + 1

m
.

Let l = 1 +
a + 1

m
. Indeed on (u, v) = (u, v2(u)),

∣

∣

∣

∣

dv

du

∣

∣

∣

∣

=
l(1 − u)[(m − d)u − da]

|u[(1 − u)(a + u) − ml(1 − u)]|
≤

l(m − d)

ml − a − u
≤

ml

ml − a − 1
= l.

That proves the upper bound v1(u) ≤ v2(u).

From Lemma 3.1, the unstable manifold reaches its maximum v-value when u = λ, and
the maximum value v∗ can be estimated as

(3.4)
m − d

m
(1 − λ) +

da

m
ln λ ≤ v∗ ≤

(

1 +
a + 1

m

)

(1 − λ).

From the phase portrait of the system, the limit cycle is below the unstable manifold
U , then we also have the following upper bound for the location of limit cycle.

Lemma 3.2. Define

(3.5) v4(u) =

{

v2(u), λ ≤ u ≤ 1,

v2(λ), 0 ≤ u ≤ λ.

Then the orbit of the limit cycle Σ = {(u(t), v(t)) : 0 ≤ t ≤ T} satisfies

Σ ⊂ {(u, v) : 0 < u < 1, 0 < v < v4(u)} ≡ R1.

In constructing a more precise region R2 ⊂ R1 containing Σ, we prove that for a sub-
region R3 containing (λ, vλ), Σ ∩ R3 = ∅. Define

(3.6) R3 = {(u, v) ∈ R2
+ : W (u, v) ≤ W (1 − a − λ, vλ)},

where W (u, v) is the function defined in (2.1). We notice that (1−a−λ, vλ) is the reflection
of (λ, vλ) with respect to the line u = (1−a)/2. Such reflection technique is a key in proving
the uniqueness of the limit cycle of (1.4) ([C]).

Lemma 3.3. Let R3 be defined as in (3.6). Then R3 is a bounded convex subset of R2
+

containing (λ, vλ), and Σ ∩ R3 = ∅. In particular Σ ⊂ R2 ≡ R1\R3.
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Figure 4: Illustration of the phase portrait (not up to scale) and the limit cycle in the proof. The

isoclines are the thin solid curves: u = 0, v = 0, u = λ and the parabola v = v0(u); the limit cycle

is the thick solid curve O1O2O3O4; the boundary of the invariant region R3: v = v4(u) is the outer

boundary (together with u = 0 and v = 0; v = v5(u) and v = v6(u) are the upper and lower portions

of inner boundary respectively; the line u = 1 − a − λ is the reflection of u = λ with respect to

u = (1 − a)/2.

Proof. From the definition in (2.1), W (u, v) = W1(u)+W2(v), where W1(u) =

∫ u

λ

p(ξ) − d

p(ξ)
dξ

and W2(v) =

∫ v

vλ

η − vλ

η
dη. It is easy to see that W1(u) is strictly decreasing in [0, λ) and is

strictly increasing in (λ,∞); and W2(v) is strictly decreasing in [0, vλ) and is strictly increas-
ing in (vλ,∞). Hence W achieves the global minimum at the unique critical point (λ, vλ),
and every level curve of W (u, v) is a bounded closed curve. The level curves have convex
boundary since W1 and W2 are both convex one-variable functions. For R3 defined in (3.6),
(1− a−λ, vλ) is the right-most point of R3. Thus for any solution orbit (u(t), v(t)) passing
through (u, v) ∈ R3\{(1 − a − λ, vλ)}, Ẇ (u(t), v(t)) = [p(u) − p(λ)] · [v0(u) − v0(λ)] > 0.
In particular, for (u, v) ∈ ∂R3\{(1 − a − λ, vλ)}, the vector field (f(u, v), g(u, v)) points
outwards. Hence from the properties of periodic orbit, Σ ∩ R3 = ∅.

From Lemmas 3.2 and 3.3, we have obtained an invariant region R2 where the limit
cycle is located. Next we give some estimates for the extremal points on the orbit of limit
cycle as d → 0+. The other two parameters 0 < a < 1 and m > 0 are fixed, while
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λ = ad/(m − d) → 0 as d → 0+. Hence d and λ are two equivalent parameters which tends
zero. Define

uλ,− = min{u(t) : (u(t), v(t)) ∈ Σ}, uλ,+ = max{u(t) : (u(t), v(t)) ∈ Σ},

vλ,− = min{v(t) : (u(t), v(t)) ∈ Σ}, vλ,+ = max{v(t) : (u(t), v(t)) ∈ Σ}.
(3.7)

Notice that the both the upper and lower portions of the limit cycle are monotone functions,
thus we define

(3.8) Σ = {(u, v+(λ, u)) : uλ,− ≤ u ≤ uλ,+}
⋃

{(u, v−(λ, u)) : uλ,− ≤ u ≤ uλ,+},

such that v−(λ, u) < v0(u) < v+(λ, u) for uλ,− < u < uλ,+. That is, {(u, v+(λ, u))} is
the upper portion of the limit cycle Σ, and {(u, v−(λ, u))} is the lower portion. From the
equations, it is easy to see that uλ,− and uλ,+ are achieved when Σ intersects with the
isocline v = v0(u), and vλ,− and vλ,+ are achieved when Σ intersects with the line u = λ.
Our estimates are mainly based on the inner boundary of the region R2, i.e. the level curve
Σ1 = {(u, v) : W (u, v) = W (1 − a − λ, vλ)}. Hence we also define

u1,λ = min{u : (u, v) ∈ Σ1}, u2,λ = max{u : (u, v) ∈ Σ1},

v1,λ = min{v : (u, v) ∈ Σ1}, v2,λ = max{v : (u, v) ∈ Σ1},
(3.9)

and

(3.10) Σ1 = {(u, v5(u)) : u1,λ ≤ u ≤ u2,λ}
⋃

{(u, v6(u)) : u1,λ ≤ u ≤ u2,λ},

such that v6(u) < v0(u) < v5(u) for u1,λ < u < u2,λ. Notice that ∇W = (
p(u) − d

p(u)
,
v − vλ

v
),

hence v1,λ and v2,λ are the two intersects of W (u, v) = W (1−a−λ, vλ) with the line u = λ.
Also u2,λ = 1 − a − λ, and u1,λ satisfies W (u1,λ, vλ) = W (1 − a − λ, vλ) with u1,λ < λ. We
notice that

(3.11) W (u, v) = W1(u) + W2(v) =
a

a + λ
h(u, λ) + h(v, vλ),

where

(3.12) h(x, b) = x − b − b ln
(x

b

)

.

The function h(x, b) satisfies

(3.13)
∂h

∂x
(x, b) = 1 −

b

x
,

∂h

∂b
(x, b) = − ln

(x

b

)

;

and for fixed b > 0, h(·, b) achieves its global minimum 0 at x = b, and limx→0+ h(x, b) =
limx→∞ h(x, b) = ∞. Thus for any b > 0, h(x, b) = c has exactly two roots for any c > 0.

Lemma 3.4. Assume that 0 < a < 1 and m > 0 are fixed. For any δ0 > 0, there exists
δ1 > 0 such that for 0 < λ < δ1,

1. 0 < vλ,− < v1 +δ0 and v2−δ0 < vλ,+ where v1 and v2 are the two roots of h(v, a/m) =
1 − a such that v1 < a/m < v2;
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2.

(3.14) 0 < uλ,− < (1 + δ1) exp

(

−
1 − a

λ

)

.

Proof. From Lemma 3.3, vλ,− < v1,λ and v2,λ < vλ,+. By definition v = vi,λ (i = 1, 2)
satisfy W (λ, v) = W (1 − a − λ, vλ). From the form of W (u, v) in (3.11), v = vi,λ (i = 1, 2)
satisfy

(3.15) h(v, vλ) =
a

a + λ
h(1 − a − λ, λ).

Clearly v = vi,λ is continuously differentiable in λ, and differentiating (3.15) with respect
to λ with v = vi,λ, and from (3.13), we obtain

(

1 −
vλ

vi,λ

)

∂vi,λ

∂λ
− ln

(

vi,λ

vλ

)

·
1 − a − 2λ

m

= −
a

(a + λ)2

[

1 − a − 2λ

1 − a − λ
+ a ln

(

1 − a − λ

λ

)]

.

(3.16)

Since v1,λ < vλ, then (3.16) implies that
∂v1,λ

∂λ
> 0 for all 0 < λ < (1 − a)/2. In particular,

lim
λ→0+

v1,λ = v1 exists. On the other hand, when λ → 0+, the right hand side of (3.16) tends

to −∞ while the second term on the left hand side is bounded. Since v2,λ > vλ, then there

exists δ1 > 0 such that when 0 < λ < δ1,
∂v2,λ

∂λ
< 0, and again lim

λ→0+
v2,λ = v2 exists. Take

the limit of (3.15) as λ → 0+, then we obtain that v1 and v2 satisfy h(v, a/m) = 1−a. From
the definitions of v1 and v2, it is clear that v1 < a/m < v2. From the monotone properties
of vi,λ, we can assume that when 0 < λ < δ1, v1,λ < v1 + δ0, and v2,λ > v2 − δ0. Thus when
0 < λ < δ1, vλ,− < v1,λ < v1 + δ0, and vλ,+ > v2,λ > v2 − δ0.

For part 2, it is clear that uλ,− < λ from the phase portrait. For the more precise
estimate of uλ,−, we observe that uλ,− < u1,λ. So it suffices to give an estimate of u1,λ.
Indeed u1,λ satisfies W (u1,λ, vλ) = W (1− a− λ, vλ), thus from (3.11), we have h(u1,λ, λ) =
h(1 − a − λ, λ), which implies that

(3.17) u1,λ − λ ln(u1,λ) = 1 − a − λ − λ ln(1 − a − λ).

Taking the limit of (3.17) as λ → 0+, we obtain that

(3.18) lim
λ→0+

[u1,λ − λ ln(u1,λ)] = 1 − a.

But 0 < u1,λ < λ, hence limλ→0+ [−λ ln(u1,λ)] = 1 − a. This implies that

(3.19) u1,λ = exp

(

−
1 − a

λ

)

+ higher order terms,

which in turn implies the estimate in part 2.
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To obtain the global asymptotical behavior of the limit cycle Σ, we divide the orbit
with four reference points (see Figure 4):

O1 = (λ, vλ,+), O2 = (λ, vλ,−),

O3 =

(

1 − a

2
, v−

(

1 − a

2

))

, O4 =

(

1 − a

2
, v+

(

1 − a

2

))

.
(3.20)

Let T = T (λ) be the period of Σ. Then T = T1 + T2 + T3 + T4, where Ti is the time taken
from Oi to Oi+1 (with O5 = O1). We also assume that u(0) = λ and v(0) = vλ,+, i.e. the
orbit starts from the highest point of v(t). Our main result in this section is

Theorem 3.5. Let Σ = {(u(t), v(t) : t ∈ R} be the orbit of the unique periodic solution of
(1.4) when 0 < λ < (1 − a)/2. Assume that 0 < a < 1 and m > 0 are fixed, the extremal
points of Σ are defined as in (3.7), and Oi, Ti (i = 1, 2, 3, 4) and the period T are defined as
above. When λ > 0 is sufficiently small (or equivalently d > 0 is small), then there exists a
constant C4, C5 > 0 independent of λ, such that C5λ

−1 ≥ T ≥ C4λ
−1. Moreover, for λ > 0

sufficiently small, there exists some C6 > 0, such that

(3.21) C5λ
−1 ≥ T1 ≥ C6λ

−1, T2 = O(| ln λ|), T3 = O(1), and T4 = O(| ln λ|),

as λ → 0+.

Proof. We prove the theorem in several steps.

Step 1: We show that

(3.22) T1 ≥ d−1
(

1 −
uλ,−

λ

)−1

ln

(

vλ,+

vλ,−

)

.

We define uλ,− = λ(1− δ2) for some 0 < δ2 < 1. Then for 0 < t < T1, λ(1− δ2) ≤ u(t) < λ,
and from the equation of v(t),

v′ = v

(

−d +
mu

a + u

)

≥ v

(

−d +
mλ(1 − δ2)

a + λ(1 − δ2)

)

= −v

(

dδ2(m − d)

m − dδ2

)

≥ −dδ2v.

Hence v(t) ≥ v(0) exp(−dδ2t), which leads to

(3.23) T1 ≥ δ−1

2
d−1 ln

(

vλ,+

vλ,−

)

= d−1
(

1 −
uλ,−

λ

)−1

ln

(

vλ,+

vλ,−

)

.

Step 2: We show there exist constants δ3, δ4, C1 > 0 such that when 0 < λ < δ4,

(3.24) 0 < T2 ≤ (δ3m)−1(−a ln λ − λ + C1).

For T1 ≤ t ≤ T1 + T2, we have λ ≤ u(t) ≤ (1 − a)/2. From the equation of u(t),

(3.25) u′ = p(u)[v0(u) − v] ≥ p(u)[v0(u) − v6(u)],

which follows from Lemma 3.3 that the limit cycle is below the level curve (u, v6(u)) in
this portion. Since v0(u) is concave while v6(u) is convex, then the minimum of v7(u) =
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v0(u) − v6(u) on the interval [λ, (1 − a)/2] must achieve at either u = λ or u = (1 − a)/2.
From the proof of Lemma 3.4, v6(λ) → v1, the smaller root of h(v, a/m) = 1 − a, and
v0(λ) = vλ → a/m as λ → 0+. Thus v7(λ) → a/m − v1 > 0 as λ → 0+. Similarly
as λ → 0+, v0((1 − a)/2) → (1 + a)2/(4m), and v6((1 − a)/2) → the smaller root of
h(v, a/m) = (1 − a)/2 as we take the limit of λ → 0+ in

W

(

1 − a

2
, v6

(

1 − a

2

))

=
a

a + λ
h

(

1 − a

2
, λ

)

+h

(

v6

(

1 − a

2

)

, vλ

)

=
a

a + λ
h(1−a−λ, λ).

Thus there exists δ3, δ4 > 0 such that when 0 < λ < δ4, then

(3.26) v0(u) − v6(u) ≥ min

{

v0(λ) − v6(λ), v0

(

1 − a

2

)

− v6

(

1 − a

2

)}

≥ δ3 > 0.

Now from (3.25) and (3.26), we have

(3.27)
a + u

u

du

dt
≥ δ3m, and a ln

(

1 − a

2λ

)

+
1 − a

2
− λ ≥ δ3mT2,

which implies (3.24) with C1 = a ln((1 − a)/2) + (1 − a)/2.

Step 3: We show that

(3.28) 0 < T3 ≤

(

m(1 − a)

1 + a
− d

)−1

ln

(

v+((1 − a)/2)

v−((1 − a)/2)

)

.

For this portion, u(t) ≥ (1 − a)/2. From the equation of v, we have

v′ = v(−d + p(u)) ≥ v(−d + p((1 − a)/2)) = v

(

m(1 − a)

1 + a
− d

)

.

Hence v(t) ≥ v(T1 + T2) exp

((

m(1 − a)

1 + a
− d

)

t

)

, and in particular

v+

(

1 − a

2

)

≥ v−

(

1 − a

2

)

exp

((

m(1 − a)

1 + a
− d

)

T3

)

,

which implies (3.28).

Step 4: We show there exists constants δ5, δ6, C2 > 0 such that when 0 < λ < δ6,

(3.29) 0 < T4 ≤ (δ5m)−1(−a ln λ − λ + C2).

This is similar to Step 2. Now we have

(3.30) u′ = p(u)[v0(u) − v] ≤ p(u)[v0(u) − v5(u)] ≤ p(u)

[

v0

(

1 − a

2

)

− v5

(

1 − a

2

)]

.

Here the first inequality is from Lemma 3.4, and the second inequality is from that fact that
v0(u) is increasing while v5(u) is decreasing in [λ, (1 − a)/2), and v0(u) < v5(u). Similar to
Step 2, we obtain that when 0 < λ < δ6,

|u′| ≥ δ5p(u).
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The remaining part is same as Step 2.

Step 5: We show that for any 0 < δ7 < 1, when λ > 0 is sufficiently small, there exists
constant C3 > 0 such that

(3.31) T1 ≤
1

δ7

d−1 ln

(

vλ,+

vλ,−

)

+ C3.

We reconsider the portion of Σ in (0, T1) again. From Lemma 3.4 part 2, when λ > 0
is small enough, the orbit does reach u = λ(1 − δ7). We write T1 = T11 + T12 + T13 so that
u(T11) = λ(1 − δ7), and u(T12) = λ(1 − δ7). That is, T11 and T11 + T12 are the times that
Σ reaches u = λ(1 − δ7). We also define v11 = v(T11) and v12 = v(T11 + T12).

For t ∈ (T11, T11 + T12), when λ > 0 is sufficiently small, similar to Step 1,

v′ = v

(

−d +
mu

a + u

)

≤ v

(

−d +
mλ(1 − δ7)

a + λ(1 − δ7)

)

= −v

(

dδ7(m − d)

m − dδ7

)

≤ −
dδ7

1 + ε
v,

for any small ε > 0 if d is small enough. Since we can choose δ7 arbitrarily, without loss of
generality we can take ε = 0. Hence we obtain v12 ≤ v11 exp (−dδ7T12), and

(3.32) T12 ≤
1

dδ7

ln

(

v11

v12

)

≤
1

dδ7

ln

(

vλ,+

vλ,−

)

Next we estimate T11. Similar to Step 4, for λ > 0 small, |u′| ≥ δ8p(u) for some δ8 > 0,
if 0 < λ < δ9. Here the estimate of v0(u) − v5(u) can be obtained using the same proof of
Lemma 3.4 part 1. Indeed we can replace (3.15) by

(3.33)
a

a + λ
h((1 − δ)λ, λ) + h(v5((1 − δ)λ), vλ) =

a

a + λ
h(1 − a − λ, λ),

for 0 < δ ≤ δ7. Then the same arguments yields |u′| ≥ δ8p(u). Integration gives

a ln

(

λ

(1 − δ7)λ

)

+ δ7λ ≥ δ8mT11.

Hence T11 is bounded by a constant independent of λ. Similarly we can prove T13 is bounded.

Step 6: We show that there exist constants v3, v4 > 0 such that vλ,+ < v3 and v4 < vλ,−

for all small λ > 0.

From Lemma 3.1 and (3.4), we obtain the estimate of upper bound of vλ,+ by letting
v3 = (m + a + 1)/m. For the estimate of v4, we notice that any solution orbit satisfies

(3.34)
du

dv
=

p(u)

p(u) − d
·
v0(u) − v

v
.

Recall that O1 = (λ, vλ,+) and O2 = (λ, vλ,−) are the highest and lowest points on the orbit
of the limit cycle Σ. Let the leftmost point on Σ be O5 = (uλ,−, v∗). Then from (3.34), we
obtain that

(3.35)

∫ v∗

vλ,−

v0(u2(v)) − v

v
dv =

∫ uλ,−

λ

p(u) − d

p(u)
du =

∫ v∗

vλ,+

v0(u1(v)) − v

v
dv,
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where (u1(v), v), v∗ ≤ v ≤ vλ,+, represents the orbit O1O5, and (u2(v), v), vλ,− ≤ v ≤ v∗,
represents the orbit O5O2. For the last integral in (3.35),

∫ v∗

vλ,+

v0(u) − v

v
dv =

∫ vλ,+

v∗

v − v0(u)

v
dv

≤

∫ vλ,+

v∗

v − v∗
v

dv = vλ,+ − v∗ − v∗ ln vλ,+ + v∗ ln v∗.

(3.36)

Since v2 − δ0 < vλ,+ < v3 for small λ, then the right hand side of (3.36) is bounded. On
the other hand, for the first integral in (3.35),

(3.37)

∫ v∗

vλ,−

v0(u) − v

v
dv ≥

∫ v∗

vλ,−

v∗ − v

v
dv = vλ,− − v∗ − v∗ ln vλ,− + v∗ ln v∗.

Thus − ln vλ,− is bounded from above from (3.35), (3.36) and (3.37), and consequently vλ,−

is bounded from below by some v4 > 0 for all small λ > 0.

Step 7: The completion of the proof.

From Lemma 3.4 and Step 6, when λ > 0 is small, v4 < vλ,− < v1 + δ0 and v2 − δ0 <
vλ,+ < v3 where v1 and v2 are the two roots of h(v, a/m) = 1− a such that v1 < a/m < v2,

and also limλ→0+ λ−1uλ,− = 0. Also from the definition of λ, d−1 =
a + λ

λm
>

a

m
λ−1, and

d−1 <
a

m
(1 + δ10)λ

−1 for any small δ10 > 0 and we assume λ small. Thus from Step 1 and

Step 5, for any 0 < δ11 < 1, as long as λ > 0 is sufficiently small,

(3.38)
(1 + δ10)a

δ7m
λ−1 ln

(

v3

v4

)

+ C3 ≥ T1 ≥ (1 − δ11)
a

m
λ−1 ln

(

v2 − δ0

v1 + δ0

)

.

Hence we obtain the estimate for T1 in the theorem, since all constants except λ are in-
dependent of λ. The estimate for T3 can also be obtained from Step 3 and Step 6 since
v+((1 − a)/2) < vλ,+ < v3 and v−((1 − a)/2) > vλ,− > v4. The estimates of Ti for i = 2, 4
are clear from Steps 2 and 4, and T =

∑

Ti = O(λ−1). This completes the proof.

Remark.

1. Our construction of an invariant region in Lemma 3.3 does not require the smallness
of λ—it holds as long as 0 < λ < (1− a)/2. This gives a direct proof of the existence
of periodic orbit.

2. When defining O3 and O4, the choice of u = (1 − a)/2 can be replaced by any fixed
u = β ∈ (0, (1 − a)/2], and the results of Theorem 3.5 still hold with this change.

4 Asymptotic behavior of the limit cycle for a small

In this section, we assume that d and m are fixed so that m > d > 0, and a > 0 is small
(thus a < 1). We will use a lot of estimates established in Section 3, and we will also use
the same notations in Section 3 as well.
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Lemma 4.1. Assume that m > d > 0 are fixed. There exists δ0, δ1, δ2, δ3, δ4, v5, v6 > 0 such
that for 0 < λ < δ0,

1. δ1 < −a ln vλ,− < δ2 and v5 < vλ,+ < v6,

2. δ4 < −a ln uλ,− < δ3.

Proof. We use the notations in the proof of Lemma 3.4. Recall that vλ,− < v1,λ and
v2,λ < vλ,+, and v = vi,λ satisfy (3.15), which can be rewritten into

(4.1) v − vλ − vλ ln

(

v

vλ

)

=
m − d

m
(1 − a − 2λ − λ ln(1 − a − λ) + λ ln λ).

Then when λ → 0 (and a → 0), one can see that v2,λ → (m − d)/m, v1,λ → 0 and
limλ→0(−vλ ln v1,λ) = (m − d)/m. On the other hand, from (3.4), vλ,+ < (m + a + 1)/m.
Thus v5 < vλ,+ < v6 for some constants v5, v6 > 0 independent of λ. From the estimate of
v1,λ, we have obtained that −a ln(vλ,−) ≥ δ1 > 0. For the upper bound of ln vλ,−, we use
the equation (3.34). From (3.35), (3.36) and (3.37), we obtain that

(4.2) vλ,+ − v∗ ln vλ,+ ≥ vλ,− − v∗ ln vλ,−.

Since vλ > v∗ > a/m, v∗, vλ,− → 0 as a → 0 and vλ,+ is bounded, then −a ln(vλ,−) ≤ δ2 for
some δ2 > 0. On the other hand, for the second integral in (3.35), we have

(4.3)

∫ uλ,−

λ

p(u) − d

p(u)
du =

m − d

m
(uλ,− − λ) −

da

m
ln

(uλ,−

λ

)

.

From (3.36), (3.37) and (4.3), we obtain that

vλ,− − v∗ − v∗ ln vλ,− + v∗ ln v∗ ≤
m − d

m
(uλ,− − λ) −

da

m
ln

(uλ,−

λ

)

≤vλ,+ − v∗ − v∗ ln vλ,+ + v∗ ln v∗.
(4.4)

Then the estimates for −a ln uλ,− follow from those of vλ,− and vλ,+.

Theorem 4.2. Let Σ = {(u(t), v(t) : t ∈ R} be the orbit of the unique periodic solution of
(1.4) when 0 < λ < (1 − a)/2. Assume that m > d > 0 are fixed, the extremal points of Σ
are defined as in (3.7), and Oi, Ti (i = 1, 2, 3, 4) and the period T are defined as in Section
3. When λ > 0 (or equivalently a > 0 is small) is sufficiently small, then there exists a
constant C8, C9 > 0 independent of λ, such that C8λ

−1 ≥ T ≥ C9λ
−1. Moreover, for λ > 0

sufficiently small, there exists some C6 > 0, such that

(4.5) C2λ
−1 ≥ T1 ≥ C7λ

−1, T2 = O(| ln λ|), C5λ
−1 ≥ T3 ≥ C6λ

−1, and T4 = O(1),

as λ → 0+.

Proof. The proof follows and modifies the one for Theorem 3.5, and we still use the notations
in the proof of Theorem 3.5 unless specified otherwise. Step 1 still holds here. Indeed we
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define T14 to be the time spent from O1 = (λ, vλ,+) to O5 = (uλ,−, v∗), and T15 to be the
time spent from O5 to O2 = (λ, vλ,−). Then the same proof in Step 1 gives

(4.6) T14 ≥ d−1
(

1 −
uλ,−

λ

)−1

ln

(

vλ,+

v∗

)

, T15 ≥ d−1
(

1 −
uλ,−

λ

)−1

ln

(

v∗
vλ,−

)

.

Then from Lemma 4.1, as λ → 0+,

(4.7) T14 ≥ C1| ln λ|, and T15 ≥ C2λ
−1.

For Step 2, from the equation of u(t), we obtain

(4.8) u′ = p(u)[v0(u) − v] ≤ u(1 − u).

then an integration of (4.8) gives

(4.9) ln
1 − a

1 + a
− ln

λ

1 − λ
≤ T2,

hence T2 ≥ − ln λ. On the other hand, from the same argument in Step 2 and Lemma 4.1,
we can show that δ5 < −a ln v6((1 − a)/2) < δ6 for some δ5, δ6 > 0. For any small δ7 > 0,
we choose λ (or a) small enough so that

(4.10)
m exp(−δ6/a)

a + λ
=

(m − d) exp(−δ6/a)

a
< δ7,

then

u′ = p(u)[v0(u) − v] ≥ p(u)

[

(a + u)(1 − u)

m
− v−

(

1 − a

2

)]

≥ p(u)

[

(a + u)(1 − u)

m
− v6

(

1 − a

2

)]

≥ p(u)

[

(a + u)(1 − u)

m
− exp(−δ6/a)

]

≥ p(u)
(a + u)(1 − δ7 − u)

m
= u(1 − δ7 − u).

(4.11)

Then the integration of (4.11) yields

(4.12)
1

1 − δ7

[

ln
1 − a

1 + a − 2δ7

− ln
λ

1 − λ − δ7

]

≥ T2,

Therefore if a and δ7 are small, then T2 ≤ −(1 − δ7)
−1 ln λ. We have proved

(4.13) C3| ln λ| ≤ T2 ≤ C4| ln λ|.

For Step 4, the proof is similar to that in Theorem 3.5 since both v0((1 − a)/2) and
v5((1 − a)/2) are bounded and tend to limits when a → 0+, and lima→0[v0((1 − a)/2) −
v5((1 − a)/2)] < 0. Hence we still obtain that T4 = O(1).
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For Step 3, the estimate (3.28) still holds, which gives T3 ≤ C5| ln v−((1 − a)/2)| ≤
C5| ln vλ,−| ≤ C5λ

−1. On the other hand, from the equation of v, when u > λ, we have

(4.14) v′ = v(−d + p(u)) ≤ v(−d + p(1)) = v

(

m

1 + a
− d

)

.

We integrate the equation (4.14) from t = T1 (when (u(T1), v(T1)) = O2 to t = T =
∑

4

i=1
Ti

(when (u(T ), v(T )) = O1, that is, the right half of the orbit, then

(4.15) T2 + T3 + T4 ≥

(

m

1 + a
− d

)−1

ln

(

vλ,+

vλ,−

)

≥ C6λ
−1.

However T2 = O(| ln λ|) and T4 = O(1), then

(4.16) C6λ
−1 < T3 ≤ C5λ

−1.

Finally the arguments in Step 5 are also valid, then T1 ≤ C7λ
−1.

Remark.

1. Theorem 4.2 can be interpreted as that the orbit is very slow when it is near the two
saddle equilibrium points (0, 0) and (1, 0). From our proof, the orbit is exponentially
close to (0, 0) and (1, 0), and from numerical simulation, the orbit is also fairly close
to the unstable manifolds at (0, 0) and (1, 0).

2. From the proof of Theorem 4.2, we can also see that the time when v(t) < O(a) is in
order of O(λ−1), and the time when v(t) > O(a) is in order of O(| ln λ|).
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