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Abstract

The study considers two organisms competing for a nutrient in an open system in the presence of an
inhibitor (or toxicant). The inhibitor is input at a constant rate and is lethal to one competitor while being
taken up by the other without harm. This is in contrast to previous studies, where the inhibitor decreases
the reproductive rate of one of the organisms. The mathematical result of the lethal e�ect, modeled by a
mass action term, is that the system cannot be reduced to a monotone dynamical system of one order lower
as is common with chemostat-like problems. The model is described by four non-linear, ordinary di�er-
ential equations and we seek to describe the asymptotic behavior as a function of the parameters of the
system. Several global exclusion results are presented with mathematical proofs. However, in the case of
coexistence, oscillatory behavior is possible and the study proceeds with numerical examples. The model is
relevant to bioremediation problems in nature and to laboratory bio-reactors. Ó 2000 Elsevier Science Inc.
All rights reserved.
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1. Introduction

The chemostat is one of the standard models of an open system in ecology. It is quite natural
then that it should be used as a model for studying detoxi®cation problems. For this, we have in
mind two (realistically more than two) organisms competing for a nutrient in the presence of an
inhibitor (toxicant). The inhibitor is detrimental to one of the organisms while the other can take
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it up with no deleterious e�ect. Thus, we think of the second organism as detoxifying the envi-
ronment. From the standpoint of competition, the question is whether the detoxifying organism
survives. The detoxi®cation question is the level of the inhibitor left in the environment. Math-
ematically, both are questions of omega limit sets of a system of di�erential equations. The pi-
oneering study in this direction is that of Lenski and Hattingh [1]. A mathematical analysis of this
was presented in [2]. We refer to this class of problems as external inhibitor problems. Although
we have posed the biological question in terms of bioremediation, this problem is also relevant to
biotechnology, where the chemostat is a laboratory model of a bioreactor and where the com-
petitors may be plasmid-bearing (genetically altered) and plasmid-free organisms. The plasmid
directs the manufacture of a product but it can be lost in reproduction creating a better com-
petitor (one which does not carry the metabolic load imposed by the plasmid). To counter this, the
plasmid can also be coded for antibiotic resistance and an antibiotic added to the nutrient input of
the reactor. The basic assumption is that the inhibitor reduces the growth of the a�ected organism
(which, in the chemostat, is assumed to be proportional to the nutrient uptake). Hsu et al. [3] have
studied a model of competition between plasmid-bearing and plasmid-free organisms in the
chemostat with an external inhibitor.

Competition between plasmid-bearing and plasmid-free organisms is a subject of considerable
interest. The theoretical literature includes Hsu et al. [4], Lu and Hadeler [5], Levin [6], Hsu and
Luo [7], Macken et al. [8], Ryder and DiBiaso [9] and Stephanopoulos and Lapidus [10].

An alternative problem is where one competitor produces the inhibitor at some cost to its own
growth. The biological evidence of this can be found in [6,11]. This problem was analyzed in [12]
in the context of competition between plasmid-bearing and plasmid-free organisms. This is then
called the internal inhibitor problem. It is not a detoxi®cation problem.

Although the assumption that the inhibitor interferes with growth is realistic, it can also be the
case that the inhibitor is lethal. Although this change seems slight from the biological perspective
(increased death rather than decreased growth), it turns out to be mathematically signi®cant. It
precludes the use of one of the basic tools, a reduction of order through a conservation principle,
to a monotone system. Moreover, mass action terms, quadratic terms, are more di�cult to handle
than the usual Michaelis±Menten responses of the standard chemostat. The internal inhibitor
problem with a lethal inhibitor was treated by Hsu and Waltman [13].

Finally, there remains the case where the inhibitor is from an external source but is lethal to one
competitor and not to the other which can take it up without harm. This problem is the subject of
the current paper.

The goal, as with all such problems, is to determine the asymptotic behavior as a function of the
parameters. While we are able to do that in a large portion of the parameter space, we cannot do it
in all of it, and in a few cases, we resort to numerical simulations. Of these, the most interesting is
the case of oscillatory behavior.

In Section 2, we present the model and discuss it in heuristic terms. In Section 3, we deal with
preliminary material such as boundedness of solutions, the existence and stability of rest points,
and the behavior of trajectories on certain lower-dimensional subspaces. The basic exclusion
theorems are stated in Section 4. Section 5 deals with numerical simulations of cases with an
interior equilibrium, where global results have not been rigorously established. The most inter-
esting part is the existence of apparently periodic solutions. Section 6 contains a brief discussion of
the results. The more demanding proofs are deferred to Appendix A.
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2. The basic equations

We use the standard chemostat notation [14]. Let S�t� denote the concentration of the nutrient
at time t; let x�t� and y�t� denote the concentrations of the competitors; ®nally, let P�t� denote the
concentration of the inhibitor. We will always let x denote the competitor a�ected by the inhibitor
and y the competitor, which detoxi®es the inhibitor. In the case where the inhibitor acts on the
growth rate with a degree of inhibition f �P�, the model took the form

S0 � �S�0� ÿ S�Dÿ x
b1

m1S
a1 � S

f �P� ÿ y
b2

m2S
a2 � S

;

x0 � x
m1S

a1 � S
f �P �

�
ÿ D

�
;

y0 � y
m2S

a2 � S

�
ÿ D

�
;

P 0 � �P �0� ÿ P �Dÿ dyP
K � P

;

�2:1�

S�0�P 0; x�0� > 0; y�0� > 0; P�0�P 0:

S�0� is the input concentration of the nutrient, and P �0� is the input concentration of the inhibitor,
both of which are assumed to be constant. D is the dilution rate of the chemostat. mi; ai; i � 1; 2
are the maximal growth rates of the competitors (without an inhibitor) and the Michaelis±Menten
(or half saturation) constants, respectively, and bi represent yield constants. These parameters,
inherent properties of the organism, are measurable in the laboratory. d and K play similar roles
for the inhibitor, d being the uptake by y and K being a half-saturation parameter. The function
f �P � represents the degree of inhibition of P on the growth rate (or uptake rate) of x.

Analysis of this model (essentially that of [1]) was the problem studied in [2]. To introduce a
lethal inhibitor, the function f, which represents the e�ect of the inhibitor on growth (as written, on
consumption, but growth and consumption are assumed proportional in the chemostat) is re-
placed by a mass action term involving the concentration of the inhibitor and the concentration of
the x competitor. The constant of proportionality will be c and all other parameters are as above.
The mass action term is used typically to represent interactions that depend jointly on the con-
centrations. It is standard, for example, in the Lotka±Volterra models of predator prey interac-
tions and was used by Levin [6] to model the lethal e�ect of a toxin on an organism. The model of
the chemostat with a lethal inhibitor, which is the subject of this paper, then takes the form

S0 � �S�0� ÿ S�Dÿ x
b1

m1S
a1 � S

ÿ y
b2

m2S
a2 � S

;

x0 � x
m1S

a1 � S

�
ÿ Dÿ cP

�
;

y0 � y
m2S

a2 � S

�
ÿ D

�
;

P 0 � �P 0 ÿ P�Dÿ dP
K � P

y;

�2:2�

S�0�P 0; x�0� > 0; y�0� > 0; P�0�P 0:
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It is convenient to scale the variables. Let �S � S=S0, �x � x=b1S0, �y � y=�b2S0�, �P � �P=P 0�,
�d � b2S0d=DP 0, �c � �P 0c�=D; �mi � �mi=D�, �ai � �ai=S�0��; i � 1; 2, �K � K=P 0, and �t � Dt.
Making these changes and then dropping the bars yields the non-dimensional model

S 0 � 1ÿ S ÿ m1S
a1 � S

xÿ m2S
a2 � S

y;

x0 � x
m1S

a1 � S

�
ÿ 1ÿ cP

�
;

y 0 � y
m2S

a2 � S

�
ÿ 1

�
;

P 0 � 1ÿ P ÿ dP
K � P

y:

�2:3�

Eq. (2.3) is the model to be analyzed here.
Several parameters will be of interest. De®ne k1; k2; k̂1; kp as solutions of

m1k1

a1 � k1

� 1; �2:4�

m2k2

a2 � k2

� 1; �2:5�

m1k̂1

a1 � k̂1

� 1� c; �2:6�

m1kp

a1 � kp
� 1� cP �; �2:7�

and, P � as the positive root of

�1ÿ z��K � z� � dz�1ÿ k2�: �2:8�
These parameters re¯ect break-even concentrations. k1 and k2 are the usual chemostat parameters
re¯ecting the break-even concentrations of x and y without an inhibitor present. k̂1 and kp re-
present the break-even concentrations of x at what we will show to be the maximum (limiting)
behavior of the inhibitor and the minimum (limiting) behavior of the inhibitor, respectively. Three
of the parameters are ordered,

k1 < kp < k̂1:

Our results may be summarized by the claim that where k2 falls in this ordering will determine the
outcome of the competition.

The break-even concentration of y does not depend on the inhibitor. Hence, the value of k2 has
same meaning that it has in the usual chemostat. The three values that correspond to x represent
its e�ectiveness as a competitor for three levels of inhibition ± the new parameters kp and k̂1

representing e�ectiveness at the minimal and maximal levels of inhibition. Thus, the usual intu-
itive interpretation of the comparison of k-values (the lower value represents a better competitor)
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remains but has been adjusted for the corresponding level of inhibition. For the chemostat with
the inhibitor, coexistence is possible without having equal k-values, a departure from the ordinary
chemostat, where competitive exclusion prevails unless the k-parameters are equal.

Since a conservation law re¯ecting the representation of (2.3) as nutrient equivalent is almost
part of the de®nition of a chemostat, one may wonder what is di�erent here? Actually, the
conservation is present; it is just that all of the variables are not represented. Let the variables be
the same as above, but label x as x1. Then, let x2 denote the concentration of the ``killed'' (non-
reproducing) organism. Model (2.3) takes the form

S0 � 1ÿ S ÿ m1S
a1 � S

xÿ m2S
a2 � S

y;

x01 � x1

m1S
a1 � S

�
ÿ 1ÿ cP

�
;

x02 � cPx1 ÿ x2;

y0 � y
m2S

a2 � S

�
ÿ 1

�
;

P 0 � 1ÿ P ÿ dP
K � P

y;

�2:9�

(2.3) results by dropping the equation for x2 since it does not a�ect the other variables. (x2�t� can
be recovered by a quadrature.) In the tradition of the chemostat literature, one can de®ne z�t� �
1ÿ S�t� ÿ x1�t� ÿ x2�t� ÿ y�t� to obtain

z0�t� � ÿz�t�;
or limt!1 z�t� � 0: Using the theory of asymptotically autonomous systems [15,16] (there is a
trivial hypothesis to be checked), one obtains an equivalent model

x01 � x1

m1�1ÿ x1 ÿ x2 ÿ y�
a1 � 1ÿ x1 ÿ x2 ÿ y

�
ÿ 1ÿ cP

�
;

x02 � cPx1 ÿ x2;

y0 � y
m2�1ÿ x1 ÿ x2 ÿ y�
a2 � 1ÿ x1 ÿ x2 ÿ y

�
ÿ 1

�
;

P 0 � 1ÿ P ÿ dP
K � P

y:

�2:10�

Although (2.10) could be used in some of the proofs, we use only model (2.3). The general
techniques of monotone dynamical systems [17] do not apply to either model.

3. Preliminary results

The form of the equations for x and y allows one to conclude that for positive initial conditions,
a trajectory remains positive for all ®nite time. At S � 0; S0 � 1, and at P � 0; P 0 � 1. Therefore,
the positive cone in R4 is positively invariant for (2.3).
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Adding the ®rst three equations yields

S 0 � x0 � y 06 1ÿ S ÿ xÿ y;

or, using a comparison theorem,

S�t� � x�t� � y�t�6 1� ceÿt:

Thus, all three concentrations are bounded since each element of the sum is positive. Moreover,
the coordinates of any omega limit point must satisfy S � x� y6 1.

Since P�t� satis®es

P 0�t�6 1ÿ P �t�;
then

lim sup
t!1

P�t�6 1:

As a consequence, the right-hand side of (2.3) is bounded, so when one can show that the limit as t
tends to in®nity of a variable exists, then the limit of the time derivative is zero. This is used
repeatedly in the arguments that follow.

One also has

lim inf
t!1

P �t�P P �:

To see this, suppose that lim inf t!1 P �t� < P �. If limt!1 y�t� exists, then limt!1 S�t� � k2, and the
restriction of the coordinates of omega limit points requires that limt!1 y�t�6 1ÿ k2. If
limt!1 y�t� does not exist, then there exists sn such that y0�sn� � 0 and limn!1 y�sn� �
lim supt!1 y�t�. Then, S�sn� � k2, and, as above, limn!1 y�sn�6 1ÿ k2.

Next, we show that lim inf t!1 P �t�P P �. If limt!1 P �t� exists, then from limt!1 P 0�t� � 0, it
follows that limt!1 y�t� exists and limt!1 y�t�6 1ÿ k2. From the de®nition of P �, it follows that
limt!1 P �t�P P �. If limt!1 P �t� does not exist, then there exists a sequence ftng such that
P 0�tn� � 0, and limn!1 P �tn� � lim inf t!1 P �t� � P�. Then, ��1ÿ P���K � P���=dP� � y�tn�6 1ÿ k2,
for t large, so P�P P � by the de®nition of P �.

In particular, for any � > 0; P � ÿ �6 P�t�6 1� � if t is su�ciently large.
The above arguments are su�cient to show that any trajectory is in the region Q de®ned by

Q � f06 S6 1; 06 x6 1; 06 y6 1; P � ÿ �6 P 6 1� �g
for any � > 0 and for t su�ciently large.

We turn now to the equilibrium or rest points of the system. To be meaningful, the coordinates
of a rest point need to be non-negative. In what follows, when we say `exists' we intend `exists and
is meaningful'. The equilibrium �E0 � �1; 0; 0; 1� always exists. In addition, the equilibria
�E1 � �k̂1; x̂; 0; 1� and �E2 � �k2; 0; 1ÿ k2; P �� exist whenever k̂1 < 1 and k2 < 1, respectively, where

x̂ � 1ÿ k̂1

1� c
:

By calculating the variational matrix of system (2.3) and evaluating it at each equilibrium, the
local stability of the equilibria is obtained.
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Lemma 3.1.
· The equilibrium �E0 is locally stable if k̂1 > 1 and k2 > 1. It is unstable if either inequality is

reversed.
· The equilibrium �E1 is locally stable if �E1 exists and k̂1 < k2. It is unstable if the inequality is

reversed.
· The equilibrium �E2 is locally stable if �E2 exists and k2 < kp. It is unstable if the inequality is

reversed.

The proof is a straight-forward computation, which we defer to Appendix A. An interior
equilibrium is also possible.

Theorem 3.1. If k2 < 1; kp exists, and either
(1) kp < k2; k̂1 does not exist, or
(2) kp < k2 < k̂1

holds, then the equilibrium �Ec � �k2;�xc; �yc; �Pc� exists, where

�Pc � 1

c
m1k2

a1 � k2

�
ÿ 1

�
;

�yc �
�1ÿ �Pc��K � �Pc�

d �Pc
;

�xc � 1ÿ k2 ÿ �yc

1� c �Pc
:

�3:1�

These conditions require that �E1 and �E2 exist, �E0 repels, and �E1 and �E2 are unstable. The
necessary computations are given in Appendix A. The stability of Ec, when it exists, is a key factor
in our analysis for it determines if the system oscillates. The approach is through the Route±
Hurwitz criterion.

To state a precise result, we need to introduce the variational matrix for (2.3) evaluated at Ec.
Write �Mc as

�Mc �
m11 m12 ÿ1 0

m21 0 0 m24

m31 0 0 0

0 0 m43 m44

26664
37775;

where

m11 � ÿ1ÿ m1a1

�a1 � k2�2
�xc ÿ m2a2

�a2 � k2�2
�yc;

m12 � ÿ m1k2

a1 � k2

;

m21 � m1a1

�a1 � k2�2
�xc;

m24 � ÿc�xc;
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m31 � m2a2

�a2 � k2�2
�yc;

m43 � ÿ d �Pc

K � �Pc
;

m44 � ÿ1ÿ dK

�K � �Pc�2
�yc:

Obviously m11; m12; m24; m43; m44 are negative; m21 and m31 are positive. To determine the
local stability, we apply the Routh±Hurwitz criterion; a direct application of Coppel [18, p. 158],
yields the following criteria:

Lemma 3.2. �Ec is locally asymptotic stable if and only if

A4 > 0; A2 > 0; A1 > 0;

A3�A1A2 ÿ A3� > A2
1A4;

�3:2�

where the characteristic polynomial of �Mc is

f �k� � k4 � A1k
3 � A2k

2 � A3k� A4;

with

A1 � ÿm11 ÿ m44;

A2 � m31 ÿ m12m21 � m11m44;

A3 � m44�m12m21 ÿ m31�;
A4 � ÿm12m24m43m31:

�3:3�

Proof. The ®rst three inequalities in (3.2) are trivial; for the last, a simple computation shows that

A3�A1A2 ÿ A3� � ÿm11A3�A2 � m2
44� > 0:

If this quantity is > A2
1A4, then the rest point is locally asymptotically stable. If it is < A2

1A4, then
the rest point is unstable. Both cases occur and we give examples in Section 5.

There are two invariant subspaces given by x � 0 and y � 0. We consider the dynamical sys-
tems generated by (2.3) restricted to these sets.

Consider the set y � 0. System (2.3) becomes

_S � 1ÿ S ÿ m1S
a1 � S

x;

_x � m1S
a1 � S

�
ÿ 1ÿ cP

�
x;

_P � 1ÿ P :

�3:4�
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Clearly, limt!1 P �t� � 1, so we consider the limiting system

_S � 1ÿ S ÿ m1S
a1 � S

x;

_x � x
m1S

a1 � S

�
ÿ 1ÿ c

�
:

�3:5�

If k̂1 < 1, then it follows from [19] that

lim
t!1

S�t� � k̂1 and lim
t!1

x�t� � x̂:

Using the theory of asymptotic autonomous systems, [14, Appendix F] and [15,16], we obtain

lim
t!1
�S�t�; x�t�; P �t�� � �k̂1; x̂; 1�:

In a similar way, for x � 0, we obtain

lim
t!1
�S�t�; y�t�; P �t�� � �k2; 1ÿ k2; P ��

if k2 < 1.
When one is able to establish that limt!1 x�t� � 0 or limt!1 y�t� � 0 for (2.3), then trajectories

of the full system will be attracted to these rest points by the theory cited above.
It was noted above that for the interior equilibrium to exist, E0; E1 and E2 were unstable. In this

case, the stable manifold of E0 is the two-dimensional set, �S; 0; 0; P �; for E1 and E2 it is the re-
spective three-dimensional sets given by x � 0 or y � 0. In each case, the unstable manifold has
points in the interior of the positive cone and by the Butler±Magehee Lemma (using the
boundedness of the omega limit set), no trajectory in the interior has such rest points as omega
limit points. Moreover, the stable manifolds described above preclude a cyclic orbit on the
boundary. This is a key hypothesis in the general theory of persistence. See the survey articles
[20,21] or the research articles [22±25]. In particular, the results of Thieme [25] allow one to
conclude that system (2.3) is uniformly persistent under these conditions. The nature of the limit
set is explored in Section 5.

4. Extinction

We now turn to results on extinction. The results presented are global in the sense that all
solutions of (2.3) tend to an equilibrium state. The ®rst theorem deals with cases where one
competitor is not viable in the environment. The ®rst part of the theorem excludes y. This means
that the environment is not detoxi®ed, a negative result. The second part excludes x, and det-
oxi®es the environment to the maximal extent possible.

Theorem 4.1.
(i) If k2 > 1, then limt!1 y�t� � 0. Moreover, if k̂1 < 1; �E1 is globally asymptotically stable.
(ii) If k1 > 1 then limt!1 x�t� � 0. Moreover, if k2 < 1, �E2 is globally asymptotically stable.

The proof of Theorem 4.1 is referred to Appendix A.
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The next theorem provides su�cient conditions to exclude x and detoxify the environment in
the case that both competitors are viable in an inhibitor-free environment.

Theorem 4.2. If k2 < 1 and either
(i) kp > 1, or
(ii) k2 < kp < 1 < k̂1, or
(iii) k2 < kp < k̂1 < 1,

then �E2 is globally asymptotically stable.

In condition (i), x is not viable at the minimal level of the inhibitor (kp does not exist), in (ii), x is
viable at the minimal level of the inhibitor, but not at the maximal level (kp exists but k̂1 does not)
and in (iii), x is viable at the maximal level (kp and k̂1 exist).

In (i), y is viable �k2 < 1�; in (ii) and (iii), y is not only viable, but is a better competitor. The
proof which uses a Liapunov argument is deferred to Appendix A.

When kp < k2 and k̂1 does not exist, and for kp < k2 < k̂1, an interior equilibrium exists
(Theorem 3.2), so there can be no extinction result. One anticipates that if k2 > k̂1, that
limt!1 y�t� � 0 (y becomes extinct). The following theorem is slightly less than that. We note that
in the proof. k2 > k̂1 � �c=1� c� is used only to prove that the limit exists. For that reason, we
divide the proof, deferred to Appendix A, into three lemmas.

Theorem 4.3. If 1 > k2 > k̂1 � c=�1� c�, then limt!1 y�t� � 0.

5. Behavior of trajectories with an interior rest point

As noted earlier, there can be an interior rest point and when this occurs, the system is uni-
formly persistent. The stability of the rest point can be obtained with a somewhat complicated
computation, (3.2). We present here three examples to show the complexity of the behavior of the
system. In the sense of a detoxi®cation problem, the existence of an interior rest point represents a
discouraging outcome, but may be the best obtainable. All of the computations in this section
were performed with Mathematica.

The ®rst example is of damped oscillations. In this case, the rest point is stable. The compu-
tations indicate that it is globally stable but we do not have a rigorous proof of this. The relevant
parameters are: a1 � 0:06; a2 � 1:0; m1 � 4:0; m2 � 5:0; c � 4:0; K � 1:3; d � 5:0. The pa-
rameters are chosen to illustrate the phenomena and are not meant to be relevant to any
meaningful problem. The interior rest point has coordinates �S; x; y; P � � �0:25; 0:149; 0:216;
0:643� and the computation in (3.2) indicates that it is stable.

The time course is shown in Fig. 1. Next, we plot the trajectories in �S; x; y� coordinates in Fig. 2.
Since limt!1 P�t� exists, this can be thought of as the plot of an asymptotically limiting system.

If the rest point becomes unstable, then the orbit must leave a neighborhood of the rest point,
but because of the uniform persistence, must remain in the interior of the positive cone. Since the
system is four-dimensional, the orbits could be very complicated. However, our simulations show
simple limit cycles. The parameters are as above except that a1 � 0:03. The coordinates of the
interior rest point are (in the same order) (0.25, 0.140, 0.296, 0.556). The plot sequence is as above,
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the time course in Fig. 3, followed by the location in �S; x; y� space, Fig. 4. The orbit is shown in R3

even though this is not an invariant set since P �t� is oscillatory.
The interior rest point has lost its stability and a Hopf bifurcation has occurred. The parameter

that we have chosen to vary for illustrative purposes is convenient but not the most meaningful
one. In the laboratory model, the experimenter can vary D; S0 or P 0. In Section 6, we vary two of
these to present an operating diagram which could be used to determine the operating parameters
of the system. The global stability question remains open.

Fig. 1. Time course.

Fig. 2. Location of the spiral in three dimensions.
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In the examples presented, the level of the inhibitor is relatively high. One might suspect that if
there is an interior rest point, that is x is able to exist, that this will always be the case. We present
the time course of a simple example with parameters as above except that a1 � 0:3; k � 0:3 and
d � 3:0. The inhibitor is reduced to about 20% of the input concentration even though x survives
(Fig. 5).

Fig. 3. Time course.

Fig. 4. Location of the limit cycle in three dimensions.
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6. Discussion

We have considered competition in a chemostat, a model open system, in the presence of an
inhibitor that a�ects one of the competitors but is removed by the other. The interesting case, of
course, is where the stronger, natural competitor is the one a�ected by the inhibitor. This problem
is important in ecology for the study of models of detoxi®cation and in biotechnology, where
inhibitors are used to control the e�ects of plasmid loss in genetically altered organisms (the
plasmid-free organism is presumably the better competitor). The object of the study is to classify
the outcomes of the competition in terms of the parameters of the system.

The basic model was scaled to make the concentrations non-dimensional and to change the
nutrient and inhibitor input concentrations and the dilution rate to one, thereby reducing the
number of parameters. This means that the results presented here are given in terms of a ®xed
environment. However, the system can be `unscaled' to yield conditions in terms of the original
parameters. The rest points were located and their (local) stability obtained by linearization.
These can be summarized in Table 1.

The major mathematical results were extinction theorems, which provide conditions for the
elimination of one of the competitors. The conclusions in this case were global and were obtained
by dynamical system arguments (Table 2).

When the interior rest point existed, the system was shown to be uniformly persistent, which
means that the competitors coexist. No information could be proved about the nature of the
attractor. In this case, we used numerical simulations to study the model.

Fig. 5. Time course.

Table 1

Local stability of rest points

Point Existence Stability

E0 Always k̂1 > 1; k2 > 1

E1 k̂1 < 1 k̂1 < k2

E2 k2 < 1 k2 < kp

Ec kp < k2 < 1 and k̂1 does not exist or k2 < k̂1 Given by Routh±Hurwitz
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The most interesting case occurred when the interior rest point was unstable. The numerical
studies showed clear evidence of an attracting limit cycle, created when the rest point changed
from a stable to an unstable spiral point (a Hopf bifurcation). Rigorous mathematical analysis of
this case remains open for further study. In the case of the bioreactor, knowledge of the com-
petitive outcomes in terms of the original parameters is important because it can indicate where
the reactor can be operated in order to achieve the desired outcome. For detoxi®cation problems,
it has predictive value for determining the e�ectiveness of a prescribed course of action. The se-
lection of the organisms is, in mathematical terms, the selection the parameters mi and ai. For a
bioreactor, the operator also controls the input concentrations and the dilution rate. To exhibit
the potential usefulness of our results, we present an `operating diagram'. Fix all parameters
except the input concentration of the inhibitor and the dilution rate (controlled by the pump
speed). The theorems then separate the plane into regions of competitive exclusion and coexis-
tence. The engineer can then choose to operate the reactor in a region that produces the desired
outcome. Such a diagram is presented in Fig. 6. The results of course apply to the unscaled
equations, (2.2). The parameters need to be reinterpreted but they still are break-even concen-
trations. In the unscaled model, these are solutions of the following equations:

Table 2

Global stability of boundary rest points (extinction)

Point Conditon Method of proof

E0 k̂1 > 1; k2 > 1 Comparison theorems

E1 k1 < kp < k̂1 < 1 < k2 Fluctuation analysis

1 > k2 > k̂1 � �c=�1� c�� Fluctuation analysis

E2 k2 < 1; k1 > 1 Fluctuation analysis

k2 < 1, k2 < kp < k̂1 Liapunov function

Fig. 6. Time course.
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m1k1

a1 � k1

� D; �6:1�

m2k2

a2 � k2

� D; �6:2�

m1k̂1

a1 � k̂1

� D� c; �6:3�

m1kp

a1 � kp
� D� cP �; �6:4�

where now P � as the positive root of

�P 0 ÿ z��K � z�D � dz�1ÿ k2�: �6:5�
To expand the diagram, we have chosen b1 � b2 � b � 102. The major import of this is that
applying the comparison theorem in Section 3 yields that

S�t� � x�t�
b
� y�t�

b
6 1� ceÿt

and the coordinates of the rest points have changed. Locating the coordinates of P 0 and D in Fig. 6
yields the resulting asymptotic behavior.

Appendix A. Proofs and computations

Proof of Lemma 3.1. The variational matrices at �E0; �E1 and �E2 are

�M0 �

ÿ1 ÿ m1

a1 � 1
ÿ m2

a1 � 1
0

0
m1

a1 � 1
ÿ 1ÿ c 0 0

0 0
m2

a2 � 1
ÿ 1 0

0 0
ÿd

K � 1
ÿ1

26666666664

37777777775
;

�M1 �

ÿ1ÿ m1a1

�a1 � k̂1�2
x̂ ÿ1ÿ c

ÿm2k̂1

a2 � k̂1

0

m1a1

�a1 � k̂1�2
x̂ 0 0 ÿcx̂

0 0
m2k̂1

a2 � k̂1

ÿ 1 0

0 0
ÿd

K � 1
ÿ1

26666666666664

37777777777775
;
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and

�M2 �

ÿ1ÿ m2a2�1ÿ k2�
�a2 � k2�2

ÿ m1k2

a1 � k2

ÿ1 0

0
m1k2

a1 � k2

ÿ 1ÿ cP � 0 0

m2a2

�a2 � k2�2
�1ÿ k2� 0 0 0

0 0 ÿ dP �

K � P �
ÿ 1 ÿ dK

�K � P ��2 �1ÿ k2�

2666666666664

3777777777775
:

The corresponding eigenvalues are

ÿ1; ÿ1;
m1

a1 � 1
ÿ 1ÿ c and

m2

a2 � 1
ÿ 1

for �M0;

ÿ1;
m2k̂1

a2 � k̂1

ÿ 1

and

ÿ 1

2
ÿ m1a1

2�a1 � k̂1�2
x̂� 1

2
1

 24 � m1a1

a1 � k̂1�2
x̂

!2

ÿ 4m1a1�1� c�
�a1 � k̂1�2

x̂

351=2

for �M1;

ÿ1; ÿ1ÿ dK�1ÿ k2�
�K � P ��2 ;

m1k2

a1 � k2

ÿ 1ÿ cP �; and ÿ m2a2�1ÿ k2�
�a2 � k2�2

for �M2, respectively. Hence, the Lemma follows.

Proof of Theorem 3.1. First, consider the case (1). Since

m1k2

a1 � k2

<
m1

a1 � 1
< 1� c;

�Pc < 1, and therefore one has that yc > 0. From

k2 > kp;
m1k2

a1 � k2

> 1� cP �;

�Pc > P � follows. This implies that

�yc �
1ÿ �Pc

d �Pc=�K � �Pc� <
1ÿ P �

dP �=�K � P �� � 1ÿ k2:
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Then �xc > 0. And it is easy to verify that

k2 � �xc � �yc � k2 � 1ÿ k2 ÿ �yc

1� c �Pc
� �yc

� 1� c �Pc�k2 � �yc�
1� c �Pc

6 1� c �Pc � 1
1� c �Pc

� 1:

Now, consider case (2). Since

k2 < k̂1;

m1k2

a1 � k2

<
m1k̂1

a1 � k̂1

� 1� c;

we have �Pc < 1. The others can be obtained in similar way.

Proof of Theorem 4.1. (i) If limt!1 y�t� exists and is not zero, then limt!1 S�t� � k2, which is a
contradiction since k2 > 1. Suppose lim inf t!1 y�t� < lim supt!1 y�t�. Since y�t� is not monotone
and is smooth, there is a sequence ftkg; tk !1 as k !1 such that y0�tk� � 0, and
limt!1 y�tk� � lim supt!1 y�t� > 0. (This is sometimes called the ¯uctuation lemma.) Then,
limk!1�m2S�tk�=�a2 � S�tk�� ÿ 1� � 0, or limk!1 S�tk� � k2 > 1, a contradiction since no omega
limit point of (2.3) can have an S-component greater than one. Thus, the omega limit set lies in the
plane y � 0.

If, in addition, k̂1 < 1, it follows that limt!1�S�t�; x�t�; P�t�� � �k̂1; x̂; 1� for all trajectories in the
invariant set y � 0.(ii) Part (ii) is similar. Choose ftkg so that x0�tk� � 0 and limk!1 x�tk� �
lim supt!1 x�t� > 0. With arguments as above, we have that

1� c lim
k!1

P �tk� � lim
k!1

m1S�tk�
a1 � S�tk� 6

m1

1� a1

< 1;

a contradiction. Hence, limt!1 x�t� � 0. Moreover, if k2 < 1, then

lim
t!1
�S�t�; y�t�; P �t�� � �k2; 1ÿ k2; P ��:

Proof of Theorem 4.2. Consider the Liapunov function,

V �S; x; y; P� �
Z S

k2

1

�
ÿ a2 � g

m2g

�
dg� cx�

Z y

1ÿk2

gÿ 1ÿ k2

g
dg; �A:1�

where c is a positive number to be chosen below. It is obvious that

V �S; x; y; P� 2 C1�R4
�;R�;

V �k2; 0; 1ÿ k2; P � � 0 for all P

and that

V �S; x; y; P� > 0 for �S; x; y; P � 2 Qÿ f �E2g:
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We seek a positive number c such that _V 6 0. Compute _V as

_V � 1

�
ÿ a2 � S

m2S

�
_S � c _x� y ÿ 1� k2

y
_y

� �m2S=�a2 � S�� ÿ 1

�m2S=�a2 � S�� 1

�
ÿ S ÿ m1S

a1 � S
xÿ m2S

a2 � S
y
�

� c
m1S

a1 � S

�
ÿ 1ÿ cP

�
x� �y ÿ 1� k2� m2S

a2 � S

�
ÿ 1

�
� �a2 � S��1ÿ S�

m2S
m2S

a2 � S

�
ÿ 1

�
ÿ m1�a2 � S�

m2�a1 � S�
m2S

a2 � S

�
ÿ 1

�
x

� c
m1S

a1 � S

�
ÿ 1ÿ cP

�
xÿ �1ÿ k2� m2S

a2 � S

�
ÿ 1

�
� �a2 � S��1ÿ S�

m2S
m2S

a2 � S

��
ÿ 1

�
ÿ �1ÿ k2� m2S

a2 � S

�
ÿ 1

��
� c

m1S
a1 � S

��
ÿ 1ÿ cP

�
ÿ m1�a2 � S�

m2�a1 � S�
m2S

a2 � S

�
ÿ 1

��
x;

which we write as

_V � A�S� � B�S; P �x; �A:2�
where

A�S� � m2S
a2 � S

�
ÿ 1

� �a2 � S��1ÿ S�
m2S

�
ÿ �1ÿ k2�

�
;

and

B�S; P � � c
m1S

a1 � S

��
ÿ 1ÿ cP

�
ÿ m1�a2 � S�

m2�a1 � S�
m2S

a2 � S

�
ÿ 1

��
:

We calculate the square bracket in A�S�, using the de®nition of k2, as

� �a2 � S��1ÿ S�
m2S

ÿ �1ÿ k2�

� 1

m2S
�a2� � S��1ÿ S� ÿ �1ÿ k2�m2S�

� �S � m2 ÿ 1��k2 ÿ S�
m2S

:

Since, for S > k2; m2S=�a2 � S� ÿ 1 > 0, so that

�S � m2 ÿ 1��k2 ÿ S�
m2S

< 0;

and for S < k2; m2S=�a2 � S� ÿ 1 < 0, so that

�S � m2 ÿ 1��k2 ÿ S�
m2S

> 0:
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Hence,

A�S�6 0; 06 S6 1: �A:3�
To estimate B�S; P �, we note that for any � > 0 and t su�ciently large,

B�S; P�6 B̂�S�; �A:4�
where

B̂�S� � c
m1S

a1 � S

�
ÿ 1ÿ cP � � c�

�
ÿ m1�a2 � S�

m2�a1 � S�
m2S

a2 � S

�
ÿ 1

�
: �A:5�

In case (i), choose � such that

� <
1

c
1

�
� cP � ÿ m1

a1 � 1

�
:

Then,

m1S
a1 � S

ÿ 1ÿ cP � � c� < 0;

and it is su�cient to consider the case S�t�6 k2 for B�S� < 0 for all c. Otherwise, the second factor
is negative.

Let

U�S� � m1�a2 � S�
m2�a1 � S�

m2S
a2 � S

�
ÿ 1

�
;

and we seek to ®nd min06 S6 k2
U�S�. Since

_U�S� � m1

m2

� a1 ÿ a2

�a1 � S�2
m2S

a2 � S

�
ÿ 1

�
� m1�a2 � S�

m2�a1 � S� �
m2a2

�a2 � S�2

� m1

m2�a1 � S�2�a2 � S� ��a1 ÿ a2��m2S ÿ a2 ÿ S� � m2a2�a1 � S��

� m1

m2�a1 � S�2�a2 � S� ��m2

� ÿ 1�a1 � a2�S � a2
2 � a1a2�m2 ÿ 1��

> 0;

we have

min
06 S6 k2

U�S� � U�0� � ÿm1a2

m2a1

:

Therefore, the choice

c � m1a2

m2a1�1� cP � ÿ �m1=�a1 � 1�� ÿ c�� ;
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yields

c
m1S

a1 � S

�
ÿ 1ÿ cP � � c�

�
6 ÿ m1a2

m2a1

6U�S� for 06 S6 k2:

Hence, B̂�S�6 0 under condition (i). For (ii) and (iii), k2 < kp. Let

T �S� � �m1�a2 � S�=m2�a1 � S����m2S=�a2 � S�� ÿ 1�
�m1S=�a1 � S�� ÿ 1ÿ cP � � c�

� �m1=m2��m2S ÿ a2 ÿ S�
m1S ÿ �1� cP � ÿ c���a1 � S� :

Set m1k̂p=�a1 � k̂p� � 1� cP � ÿ c�, and choose � small enough such that k2 < k̂p < kp. It is clear
that

T �k2� � 0; lim
S!k̂�P

T �S� � �1;

and that T �S� > 0 for S > k̂p and S < k2 and T �S� < 0 for k2 < S < k̂p. Now, we show that there
exists a positive number c such that

max
06 S<k̂p

T �S�6 c6 min
k̂p<S6 1

T �S�:

If c does exist, then there exists b > 0 such that the equation T �S� � b has at least two distinct
roots, a1 and a2, satisfying 0 < k2 < a1 < k̂p < a2 < 1. Consider the functions

W �S� � m1

m2

�m2S ÿ a2 ÿ S� ÿ b�m1S ÿ �1� cP � ÿ c���a1 � S��:

Then, W �S� � 0 also has at least two distinct roots namely a1 and a2 in �0; 1�. But after some
simpli®cation,

W �S� � 1

��
ÿ bÿ 1

m2

�
m1 � b�1� cP � ÿ c��

�
S �

�
ÿ m1a2

m2

� b�1� cP � ÿ c��a1

�
is a polynomial of S with degree 1, and it cannot have two distinct roots. Hence, there exists a

positive number c such that b̂�S�6 0.

We now seek the maximum invariant region in the set f�S; x; y; P �j _V � 0g. Since
A�S�6 0; B̂�S�6 0 and _V is given by (A.2), it must be the case that A�S� � 0. Then, either S � k2

or S is a root of

�a2 � S��1ÿ S�
m2S

�
ÿ �1ÿ k2�

�
� 0

or, equivalently, a root of

�S ÿ k2� S
�
� a2

k2

�
� 0:

Therefore, S � k2. Moreover, B�k2; P� < 0 (since k2 < kp�, so x � 0. S and x constant,
S � k2; x � 0, forces y � 1ÿ k2. The only invariant set in this region is the rest point
�k2; 0; 1ÿ k2; P ��. The LaSalle invariance principle completes the proof.

196 S.B. Hsu et al. / Mathematical Biosciences 167 (2000) 177±199



Proof of Theorem 4.3. The proof of Theorem 4.3 is contained in the following three lemmas.

Lemma A.1. If k2 > k̂1 and limt!1 y�t� exists, then limt!1 y�t� � 0.

Proof. If limt!1 y�t� � y� > 0, then limt!1 S�t� � k2. The limiting equations for (2.3) (see the
previous reference to asymptotically autonomous systems), contain the equation

x0 � x
m1k2

a1 � k2

�
ÿ 1ÿ cP �t�

�
P x

m1k2

a1 � k2

�
ÿ 1ÿ c

�
:

Since k̂1 < k2, x�t� grows without limit, a contradiction, since we have shown that 06 x�t�6 1.

Lemma A.2. If k2 > k̂1 and limt!1 x�t� � n > 0, then limt!1 y�t� � 0.

If y�t� does not tend to a limit, then the lim sup and the lim inf are di�erent, i.e.,

06 lim inf
t!1

y�t� < lim sup
t!1

y�t� � g:

Choose a sequence, ftmg, such that y0�tm� � 0 and limm!1 y�tm� � g. Since x�t� tends to a positive
limit by hypothesis, the limit of x0�t� as t tends to in®nity is zero; in particular limt!1 x0�tm� � 0.
Thus

0 � lim
t!1

m1k2

a1 � k2

�
ÿ 1ÿ cx�tn�p�tn�

�
� lim

t!1
m1k2

a1 � k2

�
ÿ 1ÿ c� c�1ÿ x�tn�p�tn��

�
:

Since �m1k2=a1 � k2� ÿ 1ÿ c > 0 and x�tn�p�tn� < 1, this is a contradiction. Thus, y�t� tends to a
limit as t tends to in®nity, and, by the preceding lemma, this limit is zero.

Lemma A.3. If 1 > k2 > k̂1 � c=�1� c�, then limt!1 y�t� exists.

Proof. In Section 3, we have already noted that

S�t� � x�t� � y�t�6 1� c2eÿt:

In a very similar way, a lower bound can be obtained. Adding the equations yields

S0�t� � y0�t� � x0�t� � 1ÿ S�t� ÿ y�t� ÿ x�t� ÿ cx�t�P�t�
> 1ÿ S�t� ÿ y�t� ÿ x�t� ÿ cx�t�
> 1ÿ �1� c��S�t� � y�t� � x�t��:

The standard comparison theorem yields that

S�t� � y�t� � x�t� > 1

1� c
� c2eÿ�1�c�t: �A:6�
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From the preceding lemmas, we may assume that x�t� and y�t� do not tend to limits as t tends to
in®nity. If these limits do not exist then, as above, then the lim sup and lim inf are di�erent, i.e.,

06 lim inf
t!1

y�t� < lim sup
t!1

y�t� � g

and

lim inf
t!1

x�t� � n < lim sup
t!1

x�t�:

Choose a sequence, ftmg, such that y0�tm� � 0 and limm!1 y�tm� � g. Since y�tm� > 0, S�tm� � k2

and k26 1ÿ gÿ n or n� g6 1ÿ k2. Now choose a sequence, fsmg, such that x0�sm� � 0 and
limm!1 x�sm� � n. Since

m1S�sm�
a1 � S�sm� ÿ 1ÿ cx�sm�P �sm� � 0;

m1S�sm�
a1 � S�sm� ÿ 1ÿ c � ÿc�1ÿ P �sm��6 0:

A consequence of this is that S�sm�6 k̂1 or, using (A.6),

1

1� c
ÿ k̂16 n� g6 1ÿ k2;

which implies that

c
1� c

� k̂1 P k2;

contrary to the hypothesis of the lemma.
This proof applies the techniques of Wolkowicz and Xia [26].
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