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The usual models of the chemostat assume that the competition is purely exploitative, the
competition is only through the consumption of the nutrient. However, it is known that
microorganisms can produce toxins against its competitors. The basic experiments are due
to Chao and Levin. In this work, we consider a model of competition in the chemostat
of two competitors for a single nutrient where one of the competitors can produce a
toxin against its opponent at some cost to its reproductive abilities. We give a complete
characterization of the outcome of this competition in terms of the relevant parameters
in hyperbolic cases. In three of four cases, the asymptotic results are global.

Key words: competition, chemostat, global stability, Lyapunov function

1. Introduction

The basic chemostat is a standard example of an open system with purely
exploitative competition. It consists, essentially, of three vessels. The first contains
the nutrient which is pumped at a constant rate into the second vessel, the culture
vessel. This vessel is charged with micro-organisms which compete, in a purely
exploitative manner, for the nutrient. The contents of the second vessel is pumped.
at a constant rate, into the third or overflow vessel. The key assumptions are that
the culture vessel is well stirred, that temperature, pH, etc., are kept constant and
that the turnover of the vessel is sufficiently fast that no wall growth occurs and
that there is no buildup of metabolic products. In ecology the chemostat is a model
of a simple lake but in chemical engineering it also serves as a laboratory model
of a bio-reactor used to manufacture products with genetically altered organisms.
In more complicated situations, it is often the starting point for construction of
models in waste water treatment, Schuler and Kargi [14], or of the mammalian
large intestine, Freter [4]. Early analyses can be found in the articles of Levin and
Stewart [13], Hsu, Hubbell and Waltman [8], Fredrickson and Stephanopoulos [3].
The recent monograph of Smith and Waltman [15], provides a detailed description
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of the chemostat and its properties.

The models assume that no toxins are produced by one organism to inhibit
the other thus making for purely exploitative competition. However, in nature it
is known that micro-organisms produce inhibitors against their rivals. In a fun-
damental paper, Chao and Levin [1], provided basic experiments on anti-bacterial
toxins. The focus of our study will be on the case where one competitor produces
a toxin which destroys the other. The model is described in the next section and
the goal of the paper is to describe the global asymptotic behavior of the model
in terms of the system parameters (the operating parameters of the chemostat and
the parameters of the organisms.) The utility of this information will be illustrated
in the discussion section. To put this into perspective, we comment on some other
models of inhibitors in the chemostat.

Lenski and Hattingh [11] produced a model of the chemostat with an external
inhibitor and provided numerical experiments to illustrate the behavior of solu-
tions. The introduction of an inhibitor produces a selective medium. The model of
Lenski and Hattingh is appropriate for detoxification problems in that the external
inhibitor interferes with the growth of one competitor while being taken up without
ill effect by the other. The model proposed by Lenski and Hattingh was analyzed
by Hsu and Waltman [6] where the possible outcomes were classified in terms of
the parameters of the system and the global asymptotic behavior of the system
determined. See also Luo and Hsu [9] for another approach. This is important in
bio-reactors because inhibitors are used to suppress the competitors of the organism
manufacturing a product.

If a competitor produces the inhibitor (the toxin) it also produces a selective
medium in the same sense as the external inhibitor only “naturally”. A question
which we answer is whether a substance that inhibits growth produces different
qualitative behavior than one that destroys the cell.

A model for toxins in the chemostat was given by Levin [12]. He provided nu-
merical evidence of the presence of bi-stable attractors. See, in particular, Figure 1
of the above cited paper. In this case, the winner of the competition is determined
by the initial conditions.

A mathematical analysis of the chemostat with an internally produced selective
medium can be found in Hsu and Waltman [7]. In this approach, the inhibitor
reduces the growth of the competitor rather than being lethal. The models there
focused on the effect of plasmid loss to create the competitor. In the models of
Lenski and Hattingh [11], Hsu and Waltman [6], the inhibitor affected the nutrient
uptake — and consequently the growth — of the sensitive cell.

Following Chao and Levin [1], we model the effect of the inhibitor destroying
its competitor by a mass action term. The mathematical consequences of this are
severe. The “usual” reduction of the system to a monotone (competitive) system
of one order lower through the “conservation of nutrient” principle is lost. The
monotonicity of the resulting differential equations has been a principal tool of the
analysis of chemostat-like systems; see Smith and Waltman [15] for examples.

The difference between our model and the one of Levin cited above [12], is that
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we allocate a direct cost to the production of the inhibitor by redirecting a portion
of the consumed nutrient to the production of the inhibitor. This is discussed more
fully after the presentation of the model in Section 2. The principal difference centers
around the parameter k in the model, the fraction of nutrient uptake directed to
producing a toxin. The conservation principle does not apply and the resulting
dynamical system is not monotone. We seek to describe the global asymptotic
behavior of the model in terms of the parameters of the system. The results are
given in four theorems, which cover all cases, three of which yield global results.
In the case of bi-stable attractors, we are not able to rule out the possibility that
the attractor includes limit cycles, etc., although our computer simulations have
not demonstrated any. This possibility remains an open question. The techniques
are those of Liapunov functions which, unfortunately but also typically, make the
proofs computation intensive. For this reason, we have deferred the presentation
of the proofs until the fourth section of the paper. We first present the model and
some simplifications, state the results in terms of a key parameter, and then present
the proofs. The interpretation and the potential applications are discussed in the
concluding section.

2. The Model

At time t, let S(¢) denote the concentration of nutrient in the vessel, z(t).
the concentration of the toxin sensitive microorganism, y(t), the toxin producing
organism and P(t), the concentration of toxin present. The model takes the form

S z meS y
S = (80 _gp- M2 T M2 Y
( ) ar+Sv a+S1

mIS
' = —~D—-~P
.T x[a1+5 /Y]

’ . mQS _
Yy =y [(1 k)a2 S D]
mQSy

P =k
as+ S

—DP (2.1)

S5 is the input concentration of nutrient, D is the washout rate, m;, the max-
imal growth rates, a;, the Michaelis-Menten constants and ~;, ¢ = 1,2, the yield
constants. This is usually called the Monod Model or the model with Michaelis
Menten dynamics. The constant k represents the fraction of potential growth de-
voted to producing the toxin. Some resources are needed to account for the added
metabolic burden and this must come at some cost to the organism’s reproductive
abilities. £ = 0 produces a system asymptotic to the standard chemostat and k =1
represents all efforts devoted to producing the toxin and results in no growth and
thus extinction. These two extremes help to delineate the meaning of k. For this
study we assume the k is constant.
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We perform the usual scaling for the chemostat. Specifically, let

— S _ oz _ oy =_ P
S=g5or T-ogo YT ose T gor
- Dt, mi= Y G-
T = 5 mz_—B_’ az,—gmf
_ 'YZ'YS(O) r_ i
TSTD 0 T
(2.1) becomes
§ 5. ST mdy
a+S a+S
i':f[fms_—lfﬁP}
a + S
I maS
"= 1-k — -1
] y[( )52+S ]
B _ k‘ngy_ 5
az+ S
Dropping the bars yields the model of interest:
mlS sz
S =1-5- -
a + S (12+Sy
' mIS
= —1-—~4P
’ $[a1+5 v jl
moS
' :y[(l—k) 15—1]
S
f= 22 P 2.2
as +Sy ( )

The parameters have been scaled by the operating environment of the chemostat,
determined by S(® and D. The variables are non-dimensional and the parameters

are scaled relative to this environment.

The interaction between the toxin and the sensitive micro-organism is taken

to be of mass action form, —yPz. A fraction,
been allocated to the production of the toxin
reduced. These equations differ in this respect

k., of the nutrient consumption has
and the growth rate corresponding
from those of Levin [12].

In the same scaling as above the model proposed by Levin, with Monod dy-

namics, takes the form

S mS
/:1_5_ m) _ 1
S w+S’ a+8Y
z' = m1 5 —-1—-~vP

+S

a

(1-a)
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mIS
ay + S
By — P. (2.3)

y =y |(1-a) -1

Pl

a is interpreted as a selection coefficient. If one sets my = (1 — a)my, this can be
written as

miS moS
S'=1-85- —
(11+Sx (11+Sy
mS
= —1—~P
v [(l1+S 7 ]
, moS 1
y 01+S
P =8By—-P (2.4)

and the difference between (2.2) and (2.4) is apparent. (2.2) takes a portion of the
growth and uses it to generate the toxin. (2.4) has the toxin produced proportional
to the amount of the competitor y that is present and at no cost. A cost can be
inferred if the parameter a is positive. We believe, but cannot prove, that (2.2) and
(2.4) have the same asymptotic behavior, and believe that (2.2) represents a more
adequate model.

We note that the form of the equations are such that positive initial conditions
at t = 0 result in positive solutions for ¢ > 0. (The positive cone is positively
invariant.) Let ¥ =S +z + y + P. Then

Y =1-S—-z—y—P—~zP
<1-%

or

limsup X'(¢t) < 1.

t— o0

Since each component is non-negative, the system (2.2) is dissipative and thus, has
a compact, global attractor. To simplify (2.2), let z = P — l"TyL This change of
dependent variables yields the system

!

Z = -z
m, Szt maSy
S'=1-85- —
a + S as + S
' m1S vky
' = —1—vz -
I Rt =]

~

y =y [% - 1] (2.5)
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Clearly, z(t) — 0, so (2.5) may be viewed as an asymptotically autonomous system
with limiting system

miSz  meSy
ai+S ax+ S
==z m S —1——k7
a;+ S l—ky
sz -1
a2+5

S'=1-8-

v =v|a-n (26)

Again, the form of the equations guarantees that the positive cone is positively
invariant and that the faces £ = 0 and y = 0 are invariant sets. Dissipativeness
is inherited from (2.5) (or one can prove it directly). As a consequence, the global
attractor of (2.5) lies in the set z = 0 where (2.6) is satisfied. When the analysis of
(2.6) is completed, the work of Thieme [17], relates the corresponding dynamics of
(2.5) and (2.6), and hence of (2.2). We will show that all solutions of (2.6) tend to
rest points and hence, using Thieme [16], so do those of (2.2).

From this point, to save notation, we write f;(S) = aﬂjl%, 1=1,2.

The equilibrium point

EO = (1, 07 0)
always exists. If f1(1) > 1, then there is an equilibrium of (2.6) of the form
Ey = (A\,1-X,0)

where A is the unique value of S such that f;(A;) = 1. Similarly, if fo(1) > 1/(1-k),
there is an equilibrium of the form

Ey = (A2,0,(1 = k)(1 = X2))

where A2 is the unique value of S such that fa(X2) =1/(1 —k) or Ay = ﬁmzﬁ
The stability of these rest points is critical to the analysis, but before beginning
the computations, we look at the flows on the invariant faces noted above, z = 0
and y = 0.

The dynamical system on the two dimensional faces, z = 0 or y = 0, is impor-
tant for later discussions. On the face y = 0, the problem takes the form

, m S
=1- —
S S (11+Sx
, myS
= —1
o a1+S ]

These are the equations of a simple chemostat with rest points (1,0) and (A;,1—A;)
if f1(1) > 1 and fi(\) = 1. If f1(1) < 1, (1,0) is globally asymptotically stable.
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If f1(1) > 1, (A1,1 = Ay) is globally asymptotically stable; in particular. when E;
(above) exists, it will always have at least a two dimensional stable manifold.
Similarly, on the face z = 0, the dynamical system takes the form

S'=1-8-f(S)y
v =yl(1=k)f(S) - 1]

I

I

There is a rest point (1,0) which is globally asymptotically stable if fo(1) <
(1—k)"'"If (1) > (1 — k)~', there is a rest point (M. (1 — k)(1 — Ay)) where
fa(A2) = (1 — k)71 Let g(S) = (1 — k)f2(S) and z = y(1 — k)~'. The system
becomes

S'=1-S5-¢g(9)z
Z' = z[g(S) - 1]

which is again a chemostat with rest point (Ay,1 — As) which is globally asymptot-
ically stable. Returning to (S,y) this is (A, (1 — k)(1 — X2)).

Again, when F, exists, it has at least a two dimensional stable manifold. The
point of this discussion is that the stability of the rest points of (2.6), E;, and E,,
will depend on a single eigenvalue.

, LEMMA 2.1. (i) Ey always exists. It is globally asymptotically stable if

fi(1) <1 and f2(1) < (1 — k)=, It is unstable if either inequality is reversed.

(ii) E; ezists if and only if f1(1) > 1. If it exists, it has at least a two dimen-
sional stable manifold (the plane y = 0) and is locally asymptotically stable if
f2(A1) < (1 — k)~ and unstable if the inequality is reversed.

(iii) E, exists if and only if f2(1) > (1 — k)1, If it exists, it has at least a two
dimensional stable manifold (the plane x = 0) and is locally asymptotically
stable if fi(A2) — 1 —+vk(1— A2) < 1 and unstable if this inequality is reversed.

Proof. Except for (i), all of the claims are local and proved by a linearization.
We provide some of the details. The variational matrix of (2.6) takes the form

L fE-HOY  -h(S) ~fu(8)
2f{(8) R .
(1 KAi(S) 0 (1~ D) -1

At (1,0,0) this is

-1 —fi(1) - f2(1)
0 A@)-1 0
0 0 (1-k)f(1) -1
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The eigenvalues are on the diagonal and Ey = (1,0,0) will be locally asymp-
totically stable if f;(1) < 1 and f2(1) < (1 — k)~'. In this case, the rest points E,
and E5 do not exist.

At E; = (A1,1 — A1,0) the variational matrix takes the form

1= i) -A) -1 —f2(A1)
(1 =) fi(M) 0 0
0 0 (I-k)f2(M) -1

E; is locally asymptotically stable if fo(\;) < (1 —k)~!. A similar argument shows
that E, is locally asymptotically stable if f;(A2) —1—~k(1—A2) < 1 and unstable if
this inequality is reversed. The statements about the stable manifolds have already
been established.

The global statements of (i) are established by comparison theorems using (2.6)
and the flow on each of the faces £ = 0 and y = 0. The same comparison argument
and the Butler-McGehee Theorem, (see Smith and Waltman [15], p.12) shows that
if only one of E; or F, exists, that rest point is globally asymptotically stable.

We sketch one argument in the case that f;(1) < 1 and fo(1) < (1 —k)7!. Let
(S(¢),z(t),y(t)) be a solution of (2.6). By adding the equations one has that

Y I Y ky
— ) =1-1(S < ) - =L
(S+I—|—1 k) < +z+ k) Ty

A
[
|
VRS
n
—+
8
+
—
|
Ead
N—

We may assume that S+ z + 1% < 1 for ¢ sufficiently large. Then
Z'(t) < z(t) [fi(1 - z(t)) — 1].
Let Z(t) be the solution of

z(t) = 2(t) [L(1 - z(t)) - 1]
B(to) = z(to).

From this, it follows that 0 < z(t) < Z(t); however, lim;_,., Z(t) = 0.
Hence lim;_, o z(t) = 0.

3. Statement of Results

From the standpoint of the operation of the bio-reactor, if Ey or E; is a glob-
ally asymptotically stable rest point, the reactor is not functioning as desired. Con-
versely, if E, is at least locally asymptotically stable, y survives and is manufac-
turing the desired product. The theorems given in this section give a complete
characterization (of the hyperbolic cases) in terms of the system parameters of the
operation of the bio-reactor. The proofs are given in Section 4.
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The following theorem is a direct consequence of the discussion in Section 2.
By “globally” we intend with respect to the open positive octant in R3.

THEOREM 3.1. If fi(1) < 1 and fo(1) < (1 — k)7', then Ey is globally
asymptotically stable.

If f1(1) > 1 and f2(1) < (1 — k)™, then E; is globally asymptotically stable.

If f1(1) <1 and f2(1) > (1 — k)=, then E; is globally asymptotically stable.

The only interesting cases are where fi(1) > 1 and f5(1) > (1 — k)~!. Recall
that the parameters A; and Ay were defined as the unique value where f;(\;) =1
and fo(A2) = (1 - k)~

THEOREM 3.2. If Ay < Ay, then Es is globally asymptotically stable.

We introduce an additional parameter . Define
9(@) = fi(z) = 1 - yk(1 - 2) e

Clearly, ¢’'(z) > 0 for z > 0. Furthermore. g(0) = —1-vk < 0and g(1) = f1(1)-1 >
0. Thus, g(x) has a unique zero on (0, 1) which we denote by Py Furthermore, since
g(A1) = —vk(1 — A;) < 0, one has that 0 < A; < X. The relationship of A, to this
ordering determines the outcome of the competition.

THEOREM 3.3. If A} < Ay < X, then there exists a unique interior equilib-
rium, E. = (5*,z*,y*) which has a one dimensional unstable manifold and a two
dimensional stable manifold while E; and FEy are locally asymptotically stable.

This is the case of bistable attractors noted in particular in Figure 1 of Levin
[12]. In this case, the outcome of the competition is determined by the initial con-
ditions.

THEOREM 3.4. If A2 > X, then E; is globally asymptotically stable.

It is important to note that an interior, asymptotically stable equilibrium does
not exists. (The reasons become clear in the proofs). For viable competitors (i.e.,
the case where \; and A, exist), the following table summarizes the situation.

CONDITION ATTRACTOR
Ay < Ap < A E,

Al < A < X | Bistable Attractors
AL <A< A E,

In the bistable case, we are not able to assert that all w-limit sets consist of
the corresponding rest point. Limit cycles (or more complicated invariant sets) have
not been ruled out. They did not occur in any of our simulations. Eliminating this
possibility remains an interesting open question.
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4. Proofs

The remaining proofs are given in this section. Two of these use the LaSalle
corollary to the Liapunov stability theorem. Since our Liapunov functions are not
necessarily continuous on the closure of the region, we note the extension used by
Wolkowicz and Lu [18], and make use of it in our proofs. Specifically, (Wolkowicz
and Lu) V is a Liapunov function for a system 9 = f(z) in a region G C G if

i) V is continuous on G

ii) V is not continuous at a point T € G implies lim .,z V(z) = oo
r€G
iii) VI=VV.f<0onG

Proof of Theorem 3.2.
Theorem 3.2 is proved with a Liapunov function argument. Let

s
Y y %
V(S,z,y):/ U 2d7)+01/ i/ dn + cax
n y Ui

Ao *

where ¢; and ¢y are to be chosen below and where, to simplify notation, we have
used y* = (1 — k)(1 — A2). Then
S— X

Vis == [1-5-f2(S)y - f1(5)a]

taly—y) (1= KAS) - 1] + e [fl(S) - i_y]

1-k

~ |(5572) 0 -5 2o + el -y - D) - )

Ty + coz(fi(X2) — 1)

+2ali(s) - now) - S22 )]

=A+B+C+D.

vk
— ¢y

1-k

We analyze each of the four parts separately making use, when necessary, of the
explicit form of f;(S) and As.

is-20

A= 1B 05 - @ - mas) - 1)

4 [_ (S—SM) yh2(S) +yler (1= k) f2(S) - 1)]]
= A+ A,

Choose ¢; = ma/((1 — k)ma — 1). Note that fo(1) > (1 — k)~! implies that
(1 —k)ma — 1 > as, so c; is positive. Since

_ (l—k)mZS
(1-k)f(S) -1 = oS5 !

_ (l—k)TTlQ-l

N as+ S (5= A2),
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then
S—A
A, = (—@+—25)y e1((1 = k)yma — 1) — ma)
= 0.
It follows that
. 1-S B may*
A= (S m[ - 02+S]
If one writes y* as
gt = (- a2t
m2/\2
then
(1=98)(az +S)Ay — (1 — A2)(a2 + A2)S
A =(S-A
1= 2) [ X2S(az + S)
+ SA
= (S — My)? ‘“—Z—] <0
( 2) [)\25((12 +9)| =

If ¢ > 0, then B < 0. By hypothesis, As < A1 so fi(A2) < fi(A1) = 1 and
C < 0. We choose ¢, so that D = 0. To see that this is possible

D=zle mls _ m1/\2 ) _ (S*Ag)’lnl
N 2 a;+ S a; + Ao a;+ S
_ [ ccaimi(S —A2)  mi(S — A2) -

- L

a; + S)(al +/\2) a; + S
_ m1(S — A2) [ 20 1|z
a +S ar + X ’

Hence, if cs = 9:—1)‘2 >0, D =0 and V' <0. By the LaSalle corollary to the Lia-
punov Theorem, all trajectories tend to the largest invariant set in M = {(S,z,y) |
V' = 0}. This requires S = A, and z = 0.

To make {S|S = Ay} invariant, under the condition x = 0 requires

S'=1-XA-(1-k7ly=0
(recall that fo(A2) = (1—k)~!). One must take y = (1 — A2)(1 — k). Therefore {E,}
is the unique invariant set in M.

Proof of Theorem 3.3.

We first determine the existence and stability of the interior rest point. From
the equation for y one has directly that S. = A2. From the equation for z it follows
that

1-k
Ye = W[fl(/\Z)—l]~
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Since Ay > A\ = ffl(l), ye > 0. The equation for S then yields

mi1Az

A2 2 1= = )y
PR 2 — fo(A2)y

1 h - (A0 - D).
vk

The last quantity is positive in this case since g(A2) < 0if and only if Ay < A (v and
k are positive), as noted in the previous section. Thus, E. exists and is uniquely
determined under the hypothesis of the theorem.

To determine the stability of E., we investigate the eigenvalues of the Jacobian

matrix,
miy M2 My3
M= |ma ma mos
m31 MM32 N33
where
my; = —1- f{(/\z)ifc - fé()‘.?)yc
mi2 = —fi(A2)
miz = —f2(A2)
may = _fll(/\Q)l'c
Mmooy = 0
M3 = *ll_kgxc
ma1 = (1 —k)f2(A2)ye
mgy = 0
ms3 = 0

Note first that det(M) = miamagms; > 0, so E, is unstable, either a repeller
or unstable with a two dimensional stable manifold. Since the trace is negative (=
my ), the first alternative can not hold. Thus, E. is unstable with a two dimensional
stable manifold. The local stability of F; and E» was established in Lemma 2.1.

Proof of Theorem 3.4.

The proof is via a Liapunov argument. Before beginning, we remind the reader
that the basic hypothesis Ay > X holds if and only if g(Ag) > 0 or fi(Ay) —1 >
vk(1 — X3). We already know in this case that E; is (locally) asymptotically stable
and E, is unstable. Since we have shown that limsup,_, . (S(t) + z(¢t) + i’#%) <1
for t sufficiently large and all of the quantities are non-negative, it follows that
lim sup,_, o, S(t) < 1. Except for the washout case, this also means that 0 < S(t) < 1
for t sufficiently large. Define

V@@w:A (ﬁ@ d§+/f @+w
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where ¢ > 0 is to be chosen and we have written z* for 1 — \; to conserve notation.
It follows that

o TS -1

1-85— fi(S)r — f2(S)y]

1-S5
+a-a7) [~ 1= 2] + el - W) - 1
:zhﬁ@)D(l—wﬁi?)]—?fyw
by |2 T HEED L o1 - B((S) - £00)

where we have used the fact that fa(\z) = 2. We write
Vi=A+B+C.

Clearly, B <0since k <1and z > 0and y > 0. If f,(S) > 1, then S > Ay, so

I*f1(5)> ot
1-8 1-X a2

or the second factor in A is negative. If f,(S) < 1, then S < A; so the first factor of
A is positive and the second is negative. The principal difficulty in the argument is
to show that C' < 0. Think of C as C = yA(S) and we will work with A(S). Then,

AS) = (1(8) - falha)e1 - ) - |FLEUBEN =D k]

. J(S)(1 = )RSt
= [12(5) = f2(Re) ]< *k> la_ = )1(’2( )) f2(A2) : ]

where a = ﬁl—;k—y Choosing a positive a is equivalent to choosing a positive c.

The object is to choose a so that if S < Ay, the last square bracket is positive and

if S > )g, it is negative. That this is possible is the crux of the argument.
Consider the function

fas)1 - T

f2(8) = f2(X2)
_ L) - K)(Ai(S) — 1) — k(1 - S) (@1
(1 = 8)(f2(S) — f2(X2))
v(S)
(1= 8)(f2(S) — f2(A2))

h(S) =
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Fig. 4.1. Graph of h(S)

The numerator is positive for S close to A since f (A\2)(1—k) = L and g(A2) >
0; hence,

lim A(S) = —o0
S—Ay

lim h(S) = +oo.
S=af

Moreover,
lim h(S)=o0 and h(0)>0.
S—1-

This establishes that the asymptotics are as shown in Figure 4.1. If one could choose
a so that

hS)<a< inf h(S 4.2
[Sup ( )_a_hgls<l (S) (4.2)

the Liapunov argument would be complete since {E1} is the only invariant set in
M where M = {(S,z,y) | V'(S,z.y) = 0}.

LEMMA 4.1. There exists a positive number a such that (4.2) holds for S >
A1
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Proof.  We first examine the numerator v(S) in (4.1). It has already been
noted that this quantity is positive at S = A,. It is negative at 0 < S < A1, and for
S>M\

V'(8) = fo(S)A = k)(f1(S) = 1) + f2(S)(1 = k) f1(S) + vk
> 0.

Hence, v(S) has a unique zero X < A Thus, for S > A,, h(S) > 0 as shown in

Figure 4.1 (compare with Figure 1 of Wolkowicz and Lu) and (4.2) can be weakened
to showing

sup h(S) < inf h(S). 4.3

O:;z} W(S) < inf  h(S5) (4.3)

We seek to apply the technique of Wolkowicz and Lu [18], Corollary 2.4, by
considering the function

S =X

w(S) = h(S) ===

(S — A3) in the numerator removes the pole in 2(S) and (S — ) in the denominator
removes the zero.
We show that w(S) is monotone increasing. From this, (4.3) will follow since

S—_X-< inf S
~S - Ao A<S<1 S — Ay

because /\’\—2 < 11_’/\)‘2 and the monotonicity of the function 59_’;\0. Thus Lemma 4.1
(and consequently the theorem) is established by showing that w(S) is monotone
increasing.

First write

S =X
w(s) = h($) %
_ LA -KHS) 1) - k(1 =85)  S—X
(1-8)(S =X f2(5) = fa(A2)

and consider each factor separately.
The second factor simplifies easily:

S — A . (S—/\Q)((IQ-FS)(G,Q-{-)\) _ (a2+/\2)(a2+5)
myS _ mady m2a2(S — /\2) maoQs
az+S az+ A

The numerator of the first factor has a zero at A and hence may be factored as
(S = N)Q(S). We seek to determine Q(S).

(S =NQS) = £(S)(L = k)(f1(S) = 1) = 7k(1 = 5)
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sz m15
= (l—k)a2+s(al+s—1> — k(1= S)
::mziS)Fl_kwhifiglms_h)—7M1—SWM+S)
_ vk 1-k ~ B
" (a2 +8)(a1 +9) [ 5 ma(m = DS(S = M)

—(1-S)(az +S)(a1 + S’)]

_ vk
(a2 + S)(a1 +S)

[S® + 8% + 1S — ajas] .

Thus

_ vk 2 a;as
0 = G F 9@ +9) [S tASH = ]

where, by comparing coefficients one has that

1-k ~
AZng(m141)+a1+a2—l+)\.

If we return to the original factorization of w(S), we have

2 a1az
o(S) - s+ A S+ AS + 3
| maa (1=S)(a1 +S)

The first factor is a positive constant.
Using the identity

aas a10a3

S+ AS + 5 (A+1-a))S+ 5 +a,
A _
ESITE) + ST
_ASHB 1
- (11+S ‘1-S ’

where A, = A+1—a; and B, = 1&;"—2 + ay, it is sufficient to show that

A S + By
a; + S

is increasing. From the definition of A, it follows that 4; > 0.
We compute

d (A]S+B1) _ (l]Al _Bl

d—S— al+S - (al+S)2'



Competition in the Chemostat 487

This quantity is positive if and only if 4; > % which, in turn, is equivalent to

A—a > ‘% Using the definition of A, this inequality is

1-k ~
—mg(m1—1)+a2—1+/\>2~2-
vk A

which can be rewritten as
1-k ~
mam -1 > (2 1) -,
vk A

or, using the definition of X as

This simplifies to

X moX X
mg(ml - 1) > an‘ A mZ/\~ Ui = —1
A ax+ A \a+ A

or, cancelling terms, to

my A
my > =.
a; + A
This inequality holds since 1 5 < 1. This establishes the monotonicity of w(s) and
ay

completes the proof.

5. Discussion

The basic monotonicity properties of the chemostat model are lost if one or-
ganism produces a toxin against its competitors. To produce a toxin, the organism
must devote a portion of its nutrient uptake to this end. This trade-off between the
option of producing a toxin against a competitor or growing more is reflected in
the parameter k. The experiments of Chao and Levin [1], showed that organisms
do produce toxins against a competitor and the computations of Levin [12], showed
the effect of varying the initial conditions in such a competitive situation.

In this study, we have shown how the asymptotic behavior of the model changes
with the system parameters. We have shown the competitive exclusion holds al-
though, for an open set of parameters, the outcome depends on the initial con-
ditions. In our study, all of the parameter space is taken into account except for
non-hyperbolic cases. Moreover, in three of the four cases, the asymptotic results
are global, a rarity for a four-dimensional nonlinear system. The theorems are sum-
marized in Table 1. The locally stable rest points are in bold type and the globally
asymptotically stable rest points are in a box. The notation is that for the scaled
system (2.6).
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From the mathematical viewpoint. the “killing” of the organisms prohibits the
reduction of the system to one where the techniques of monotone dynamical systems
(which have been so successful in other chemostat problems) can be applied. The
results were obtained through Liapunov techniques, which, unfortunately, do not
give intuitive proofs.

In reactor technology, selective media are used to eliminate the genetically
undesirable (i.e., non-producing) competitor. This can be done by introducing an
inhibitor into the feed bottle. If the organism can be “engineered” to produce the
toxin “naturally”, the introduction of the inhibitor into the feed bottle could be
eliminated. In such a case, our results show where the reactor must be operated.

To make this point clear we return to the unscaled model. The results presented
in Table 2 where the notation is the same as Table 1 except that the variables, pa-
rameters and functions refer to the unscaled counterparts of Table 1. To emphasize
this point we have used the notation F;(S) to represent the Monod function in its

Table 1. Outcomes in terms of scaled variables and parameters

Criterion Equilibria
I i(l) <1, (1—k)f2(1) <1

I fi(1)>1, (1-k)f(1) <1 Eo, [ E1 |
M A1) <1 (1-K)fa(l) > 1 Eo, [E2 |
IV (1) >1, 1-Kf1)>1 i) fith) <1 Eo, B1, [ Ez]

i) 1< fi(A2) <1+~vk(1—X2) | Eo, E1. Es. E.

i) 1+ yk(1 — A2) < fi(A2) Eo,|E1| E;

Table 2. Outcomes in terms of original variables and parameters

Criterion Equilibria
I Fi(S©)<D, (1-k)F,(S©)<D
II F1(S©)>D. (1—k)F>(S©)<D Eo,
Il Fi(S©)<D. (1-k)F(S©)>D Eo.
IV F{(SO)Y>SD, (1-k)F(S©@)>D i) Fi(A:)<D Eo. E,
ii) D<F1(A2)<D + kvy2v(S©—Ay)|Eo, Eq, Ez, E.
iii) D+ kyy(S©—4:)<Fi(42)  |Eo.|E1]. E
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unscaled form and A; to denote the corresponding “break even” concentrations:
specifically, in the table, Ay = S© ), = (1_;’)%. k is dimensionless and repre-
sents the same value in both tables. (To return to (2.1). each rest point has a fourth
coordinate which is zero if y = 0 and is either &y* or (1 - XA)k.)

To see how this might be useful in reactor technology we give a simple example.
Suppose all of the parameters are fixed except the dilution rate D. This quantity is
under the control of the reactor operator. Suppose. for example, that the region III
(the most desirable from the standpoint of operation) of the table is not obtainable
for any value of D: this occurs, for example, if F}(S©) > (1-k)F3(S(). One would
like to choose D so that the desirable micro-organism persists. Clearly, the operating
region IV is obtainable by letting D be sufficiently small since both quantities in
the first column, to the left of the inequality sign, are positive. Note first that

. Fi(4) myas
lim = .
D—04 D (11(]. - k)m2

If this quantity is less than one IV(i) holds and otherwise it does not. If it does
not, then the best that one could hope for would be IV(ii). To see that this is
possible, note that limp_,o, A2 = 0, so that limp_,o, F>(A2) = 0 while limp_,,
[D + kyay(S© — A3)] = v72S©® > 0. Hence it is possible to choose D so small
that IV (ii) holds (E; is stable). If the initial conditions are appropriate, the desired
organism will dominate the reactor.

We can also given an intuitive interpretation of the Theorems. In Theorem
3.2, the desirable organism is a better competitor without producing an inhibitor
so the selective medium may not be important. In the parameter range where
Theorem 3.4 applies, the desirable organism loses to its competition in spite of the
ability to inhibit its opponent. If too much consumption is devoted to producing
the inhibitor, A, increases to the point that z wins in spite of the inhibition. For
reactor technology, it is the circumstances of Theorem 3.3 that may be relevant. The
inferior competitor can succeed by producing an inhibitor, but only if the initial
conditions are suitable. Presumably, the quantity of the undesirable organism is
small enough at the beginning for the system to be in the domain of the attraction
of F».
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