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Abstract

Mathematical models of the effect of inhibitors on microbial competition are surveyed. The term in-

hibitor is used in a broad sense and includes toxins, contaminants, allelopathic agents, etc. This includes

both detoxification where the inhibitor is viewed as a pollutant and control where the inhibitor is viewed as

an aid to controlling a bioreactor. The inhibitor may be supplied externally or may be created as an anti-

competitor toxin. This includes plasmid-bearing, plasmid-free competition. The literature is spread across

journals in different disciplines and with different notation. The survey attempts to present the mathe-
matical models and the results of the corresponding analysis within a common framework and notation.

Detailed mathematical proofs are not given but the methods of proof are indicated, references cited, and

the results presented in tables. Open problems are indicated where there is a gap in the theory.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The chemostat is one of the standard models of an open system and is used extensively in
ecological problems. The basic model of competition is described with three ordinary (non-linear)
differential equations and it is one place in ecology where the mathematics is tractable, the ex-
periments can be performed, and the two are in agreement [1]. It is quite natural then to use it as a
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beginning for a model of inhibitor problems. For this, one has two (realistically more than two)
organisms competing for a nutrient in the presence of an inhibitor. The inhibitor is detrimental to
one of the organisms while the other can take it up with no deleterious effect. Thus, in ecological
terms, we think of the second organism as detoxifying the environment (removing the toxicant or
pollutant). From the standpoint of competition, the question is whether the detoxifying organism
survives. The success of the detoxification is the level of the inhibitor left in the environment.
Mathematically, the question is the structure of the omega limit sets of a system of differential
equations. The original model in this direction is that of Lenski and Hattingh [2]. We refer to this
class of problems as external inhibitor problems.

Although we have posed the biological question in terms of bioremediation, this problem is also
relevant to biotechnology where the chemostat represents a laboratory model of a bioreactor. An
organism is genetically altered to manufacture a product by the insertion of a plasmid, a piece of
genetic material. Thus the competitors are plasmid-bearing (genetically altered) and plasmid-free
organisms. The plasmid directs the manufacture of a product but it can be lost in reproduction
creating a better competitor (one which does not carry the metabolic load imposed by the plas-
mid). To counter this, the plasmid can also be coded for antibiotic resistance and an antibiotic
added to the nutrient input of the reactor. If the plasmid is lost, the organism is sensitive to the
antibiotic. In this view, the inhibitor is helpful for the desired outcome. Plasmid models have been
developed, in particular Ryder and DiBiasio [3], Stephanopoulos and Lapidus [4], and studied
from the mathematical viewpoint in Hsu and Luo [5], Hsu et al. [6], Hsu et al. [7], Hsu and
Waltman [8], Lu and Hadeler [9], and Macken et al. [10]. Simonsen, [11] discusses both theory and
experiments.

An alternative problem is where one competitor produces the inhibitor at some cost to its own
growth. The biological evidence of this can be found in the classic paper of Chao and Levin [12]
and in Levin [13]. This produces a very different model although also one where the determining
the structure of the omega limit sets is the desired mathematical conclusion. This problem has
been studied in a general context of competition and in the context of competition between
plasmid-bearing and plasmid-free organisms and both will be reviewed below. This is then called
the internal inhibitor problem, and it is not a detoxification problem. This also has implications
for biotechnology since supplying the inhibitor (antibiotic, in this case) from an external source is
an added expense and may itself carry environmental costs.

Most of literature assumes that the inhibitor interferes with the reproduction of the organism.
Although this assumption is realistic, it can also be the case that the inhibitor is lethal. Although
this change seems slight from the biological perspective (increased death rather than decreased
growth), it turns out to be mathematically significant. It precludes the use of one of the basic tools,
common in chemostat problems, of a reduction of order through a conservation principle, to a
monotone system. The theory of monotone dynamical systems is given in Smith [14]. Moreover,
mass action terms, standard for modeling an interaction that involves two concentration are
quadratic terms, and are more difficult to handle than the usual Michaelis–Menten responses of
the standard chemostat. Both the internal and external inhibitor problem with a lethal inhibitor
have been studied and will be reviewed below.

The goal, as with all such problems, is to determine the asymptotic behavior as a function of the
parameters. While this can often be done in a large portion of the parameter space, it usually
cannot be done in all of it. In these cases, we present numerical simulations.
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Inhibition source Effect

Internal Inhibits growth

External Lethal
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The papers which consider these problems have been studied with different notation, different
mathematical techniques, and the results have been published in a variety of journals, some
mathematical, some biological, and some engineering. The purpose of this survey is put these
studies together in one place and to present the results in a unified manner with a common no-
tation. We also illustrate the more interesting or unusual results with numerical solutions.

We begin with a description of the basic model. In the succeeding sections we modify this model
to account for the source and the effect of the inhibitor. In Table 1, we list the choices where a
selection may be made from each column.

The case of plasmid-bearing plasmid-free competition is of special interest in reactor theory. On
the one hand the problem should be easier because the organisms are essentially the same but on
the other hand the change of one organism into another complicates the dynamics. The potential
loss of the plasmid means that there can be no stable steady state consisting of only plasmid-
bearing organisms. After cases given by the above table have been completed, we survey plasmid-
free plasmid-bearing competition. Global results for these models are less complete and several
open problems remain.

In this survey we do not give rigorous mathematical proofs of the results but refer the reader to
the literature. In the first case considered, Section 3, we provide more detail to give the reader an
understanding of the steps involved. In later sections we simply collect the results in tables or give
informal explanations. We sometimes give proofs of simple statements or give simple indications
of the nature of proofs. For example, we show the Liapunov function when one is used in the
proof but do not carry out the calculations.
2. The basic chemostat

The chemostat is a piece of laboratory apparatus that captures the essentials of exploitative
competition in an open system. Basically, it consists of three vessels connected by pumps. The first
is called the feed bottle and contains all of the nutrients essential for growth of microorganisms
with one, hereafter called the nutrient, is short supply. The contents of the feed bottle are pumped
at constant rate into the second vessel, the reaction chamber which will be charged with micro-
organisms and which is well mixed. The contents of the reaction vessel are pumped at the same
constant rate into the final vessel, called the overflow vessel. Thus the volume of the reaction
vessel is constant, an important assumption. Other names in use are continuous culture, CSTR
(continuously stirred tank reactor) and bioreactor. In ecology this is a laboratory model of a
simple lake while in biotechnology this is the laboratory model of a commercial reactor, perhaps
manufacturing a product with genetically altered organisms.

A derivation of the chemostat equations can be found in almost any bioengineering text, for
example [15] or [16], or in [17]. We give here a hueristic description and the reader is referred to
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one of the above references for a more detailed description. Let SðtÞ denote the concentration of
the nutrient in the reaction vessel at time t, Sð0Þ, the concentration of the nutrient in the feed bottle,
F , the flow rate (determined by the pump speed), V , the volume of the reaction vessel and define
the parameter D, called the dilution rate, by D ¼ F =V . If there were no microorganisms, the rate
of change of the concentration of the nutrient in the reaction vessel would be given by
dSðtÞ
dt

¼ ðSð0Þ � SðtÞÞD;
the simple statement that change in concentration is proportional to the difference between the
incoming concentration and the resident concentration. If organisms are consuming the nutrient
then this needs to be corrected for the consumption and the consumed nutrient converted to
growth of the organism. A basic assumption is that growth is proportional to consumption.
Nutrient uptake (consumption) is usually taken to be of the Monod (or Michaelis–Menten) form
mxS
aþ S

;

where m is called the maximal growth rate and a is called the Michaelis–Menten constant. Thus, if
xðtÞ denotes the concentration of a microorganism at time t, the equations take the form (sup-
pressing the t dependence in the independent variables)
S 0 ¼ ðSð0Þ � SÞD� x
c

mS
aþ S

;

x0 ¼ x
mS

aþ S

�
� D

�
:

The constant c is a yield constant and represents the conversion of nutrient to organism. Sð0Þ and
D are controlled by the experimenter and can be thought of as environmental variables while m, a,
and c are properties of the organism, to be measured in the laboratory. There is also an underlying
assumption that all other effects are controlled and constant, temperature and pH, in particular.

With two competitors and the same assumptions, the equations become
S0 ¼ ðSð0Þ � SÞD� x
c1

m1S
a1 þ S

� y
c2

m2S
a2 þ S

;

x0 ¼ x
m1S
a1 þ S

�
� D

�
;

y0 ¼ y
m2S
a2 þ S

�
� D

�
:

ð1Þ
These equations are the starting point for our construction of inhibitor models.
Two parameters determine the outcome of the competition. Define k1 and k2 as solutions of the

following equations:
m1k1
a1 þ k1

¼ D;

m2k2
a2 þ k2

¼ D:
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These parameters represent �break-even� concentrations, values of the nutrient where the deri-
vative of x or y, respectively, are zero. The basic result [18–21], which we state for two competitors,
is:

If 0 < k1 < k2 < Sð0Þ, then
lim
t!1

SðtÞ ¼ k1;

lim
t!1

xðtÞ ¼ Sð0Þ � k1;

lim
t!1

yðtÞ ¼ 0:
Competitive exclusion holds; only one competitor survives.
In what follows similar parameters will be defined and limiting behavior expressed as a function

of the ordering of the parameters. Although the equations defining the parameters could be easily
solved explicitly, we choose to leave them in the equation form to make comparisons easier both
among parameters and among different cases.
3. The external inhibitor

Lenski and Hattingh [2], considered a model for competition for a limiting resource in a
chemostat between two populations in the presence of an external inhibitor for one of the pop-
ulations. The mathematical analysis of their model was provided by Hsu and Waltman [22] and
this section follows that presentation. We consider this problem in detail to set the basic scenario,
and then modify it in the later sections to account for other effects. Two types of microorganisms
were considered, one of which is resistant to an agent which is being input into the chemostat. The
model is that of the basic chemostat model described above but with an additional variable, pðtÞ
the concentration of the inhibitor (or toxicant or pollutant) added. The effect of the inhibitor is to
retard growth (and hence, uptake, since one of the basic chemostat assumptions is that these are
proportional). The Monod type function is also used to model the uptake of the inhibitor. The
equations take the form
S0 ¼ ðSð0Þ � SÞD� x
c1

m1S
a1 þ S

e�lp � y
c2

m2S
a2 þ S

;

x0 ¼ x
m1S
a1 þ S

e�lp

�
� D

�
;

y0 ¼ y
m2S
a2 þ S

�
� D

�
;

p0 ¼ ðpð0Þ � pÞD� d
yp

K þ p
:

ð2Þ

Sð0ÞP 0; xð0Þ > 0;

yð0Þ > 0; pð0ÞP 0:
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The variables may be scaled to non-dimensional form. This will be done throughout the paper,
but we present the scaling in detail only here. We scale the dependent variables, the parameters,
and time: ŜS ¼ S

Sð0Þ
, x̂x ¼ x

c1Sð0Þ
, ŷy ¼ y

c2Sð0Þ
, m̂mi ¼ mi

D , âai ¼
ai
Sð0Þ

, p̂p ¼ p
pð0Þ

, K̂K ¼ K
pð0Þ

, d̂d ¼ Sð0Þc2d
Dpð0Þ

, l̂l ¼ lpð0Þ, t̂t ¼ Dt.
Then, making the changes and dropping all of the hats, one has the system in non-dimensional
form
S0 ¼ 1� S � m1xS
a1 þ S

e�lp � m2yS
a2 þ S

;

x0 ¼ x
m1S
a1 þ S

e�lp

�
� 1

�
;

y0 ¼ y
m2S
a2 þ S

�
� 1

�
;

p0 ¼ 1� p � d
yp

K þ p
:

ð3Þ
Although the exponential was used to model the effect of the inhibitor on the growth rate, one can
replace the exponential form of the effect of the inhibitor by an arbitrary function f 0ðpÞ where
ðiÞ f ðpÞP 0; f ð0Þ ¼ 1;

ðiiÞ f ðpÞ < 0; p > 0;
without added difficulty. The exponential form is convenient for specific computations.
Let R ¼ 1� S � x� y. Then the system may be replaced by
R0 ¼ �R;

x0 ¼ x
m1ð1� R� x� yÞ
a1 þ 1� R� x� y

f ðpÞ
�

� 1

�
;

y 0 ¼ y
m2ð1� R� x� yÞ
a2 þ 1� R� x� y

�
� 1

�
;

p0 ¼ 1� p � dyp
K þ p

:

Clearly, limt!1 RðtÞ ¼ 0. Hence, using the theory of asymptotically autonomous systems one
studies the limiting system
x0 ¼ x
m1ð1� x� yÞ
1þ a1 � x� y

f ðpÞ
�

� 1

�
;

y0 ¼ y
m2ð1� x� yÞ
1þ a2 � x� y

�
� 1

�
;

p0 ¼ 1� p � dyp
K þ p

:

ð4Þ

xð0Þ > 0; yð0Þ > 0; pð0ÞP 0;

xð0Þ þ yð0Þ < 1:
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There are simple (in this case) hypotheses to be checked before one can conclude that the dy-
namics of the original system and that of the asymptotic limiting equations are the same. The
original result on asymptotically autonomous systems is Markus [23] and the current state of the
theory is given by Thieme [24]. A special case is sufficient here, see [17], Appendix F. The im-
portant hypothesis is the lack of a cyclic connection for orbits on the boundary, and we comment
on this since it is an important hypothesis for uniform persistence, discussed below, as well. We
describe only the simple case of rest points.

Let A1;A2; . . . ;An be a finite set of rest points for a system of differential equations
x0 ¼ F ðxÞ;
A1 is said to be chained to A2 if there exists an orbit, c, of the above system such that the omega
limit set of c is A2 and the alpha limit set is A1. This is written A1 ! A2. Note than an orbit can be
chained to itself. If A1 ! A2 ! � � � ! An ! A1, the set of rest points is said to form a cycle. If no
subset of the rest point set forms a cycle, the set is said to be acyclic. We shall see below that the
stability of the rest points for (4) (and for other problems considered here) proves that the set is
acyclic. The concept exists in a much more general setting.

An important consideration is that (4) has a special property which limits the possible at-
tractors. A system
x0 ¼ F ðxÞ; ð5Þ
x 2 Rn, is said to be competitive if
oFi
oxj

6 0; i 6¼ j;
(4) has this property in the open, positive octant. A two dimensional competitive system has no
periodic orbits and a three dimensional system with an irreducible Jacobian matrix satisfies a
Poincar�ee–Bendixson type theorem. See Hirsch [25] and Smith [26].

Let the two basic parameters of the chemostat k1 and k2 be as above. As noted in the discussion
of the chemostat, these are break-even concentrations and, in the simple chemostat, k1 < k2 im-
plies that limt!1 yðtÞ ¼ 0. Two other parameters, break-even concentrations for special situations,
are needed to describe the asymptotic behavior of the system. Similar parameters will be needed
for other situations which follow. To unify the notation and to reflect the fact that these are break-
even concentrations, it is better to define them as the roots of appropriate equations. In this case,
define
m1k1
a1 þ k1

¼ 1;

m2k2
a2 þ k2

¼ 1;

m1k
þ

a1 þ kþ
f ð1Þ ¼ 1;
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E0

E1

E2
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m1k
�

a1 þ k�
f ðp�Þ ¼ 1;
where p� is the positive root of
ð1� zÞðK þ zÞ � dð1� k2Þz ¼ 0;
k1, k
þ, k� involve only the parameters for the x-population and are related:
k1 < k� < kþ:
The global outcome will be determined by where k2 falls in this ordering and this is a unifying
theme in the models to follow.

We will assume that m1 > 1, m2 > 1, or the problem is not interesting since mi < 1 implies
(using simple inequalities) that the corresponding population washes out of the chemostat (eco-
logically, becomes extinct, mathematically, that limt!1 xðtÞ ¼ 0 or that limt!1 yðtÞ ¼ 0).

There are three potential rest points on the boundary which we label
E0 ¼ ð0; 0; 1Þ;

E1 ¼ ð1� kþ; 0; 1Þ;

E2 ¼ ð0; 1� k2; p�Þ:

These correspond respectively, to both populations washing out of the chemostat, the y-popu-
lation washing out, and the x-population washing out. In the chemostat without an inhibitor, this
is all that can happen. With an inhibitor, a richer set of limits is possible as we shall see below. The
local stability of each rest point can be determined by computing the eigenvalues of the Jacobian
of (4) around that point. The end result of this computation (see [22] for details) is shown in
Table 2.

These rest points correspond to the absence of one or both competitors and thus represent
extinction states. They are reflections of eigenvalue computations. If one of the inequalities in line
one of the table is reversed, then E0 repels in the corresponding direction. Moreover, when E1 or
E2 exist, they have a two dimensional stable manifold with eigenvectors lying in the planes y ¼ 0
or x ¼ 0 respectively. Thus the stability of these points is determined by one eigenvalue. The
problem is to determine when the rest points are global attractors with respect to the interior of
the positive cone.

Before presenting these extinction results we note a consequence of these remarks and com-
petitiveness of (4). Note first that the sets fðx; y; pÞjx > 0; y ¼ 0; p > 0g and fðx; y; pÞjx ¼ 0; y >
0; p > 0g are positively invariant sets. Since they are planar, the Poincar�ee–Bendixson theorem
applies. If E1 exists then it is the global attractor of the first, and if E2 exists it is the global
2

Exists Locally asymptotically stable if

Always k1 > 1, k2 > 1

0 < kþ < 1 0 < kþ < k2
k2 < 1 0 < k2 < k�



Table 3

Extinction theorems

Global attractor Condition

E0 k1 > 1, k2 > 1

E2 k2 < k1 < k� < kþ

E2 k1 < k2 < k� < kþ

E1 k1 < k� < kþ < k2
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attractor of the second. They are the only rest points in these sets and competitive two dimen-
sional systems do not have limit cycles. Thus the Poincar�ee–Bendixson Theorem completes the
proof of convergence for initial conditions in these sets. Table 3 summarizes the extinction results.
Each line entry represents an extinction theorem and the proofs can be found in [22].

The above table contains all of the conditions except the case where
k1 < k� < k2 < kþ: ð6Þ
This is the most interesting case for then an interior equilibrium exists.
It takes the form Ec ¼ ðxc; yc; pcÞ where
pc ¼ f �1 a1 þ k2
m1k2

� �
;

yc ¼
ð1� pcÞðK þ pcÞ

dpc
;

xc ¼ 1� yc � k2:
pc exists since k
� < k2 < kþ, k2 < 1, and f ð0Þ ¼ 1. This makes pc < p� and hence yc < 1� k2. The

rest point is unique since pc is unique from the monotonicity of f .
The existence of Ec is related to uniform persistence. Let
x0 ¼ F ðxÞ; ð7Þ
where x ¼ ðx1; x2; . . . ; xnÞ. Then (7) is said to be uniformly persistent if there exists a number g > 0
such that
lim inf
t!1

xiðtÞ > g > 0; i ¼ 1; 2; . . . ; n:
From the form of the equations, it is clear that such an g exists for S and p, so the point of
establishing uniform persistence is that both populations survive and are bounded away from
zero. There exists a separate literature on persistence; see [27–34] for examples or see the survey
articles [35,36]. To obtain uniform persistence for (4), under the condition (6), it is most direct to
use the results of Thieme [31]. Since E2 is globally stable in the set x ¼ 0, there are no cyclic orbits
on the boundary of the positive cone in R3. Since we have already observed that the system
is uniformly bounded, uniform persistence has the consequence that there is a global attractor
interior to the positive cone. The structure of this attractor is to be determined.
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Fig. 1. Parameters: a1 ¼ 0:5, a2 ¼ 3:5, m1 ¼ 5:0, m2 ¼ 6:0, d ¼ 50, K ¼ 0:1, (a) l ¼ 13:0, (b) l ¼ 5:0.
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Theorem 1. If k2 < 1 and (6) holds, then (4) is uniformly persistent.

The next step is to compute the stability of the interior rest point. This can be done by applying
the Routh–Hurwitz criterion [37], to the variational matrix but this is a very complicated com-
putation. The end result [22] is that the rest point will be asymptotically stable if and only if
1

 
þ dKyc
ðK þ pcÞ2

þ a1xc
ða1 þ k2Þk2

þ a2yc
ða2 þ k2Þk2

!
1

 
þ dKyc
ðK þ pcÞ2

!
a1xc

ða1 þ k2Þk2

�
þ a2yc
ða2 þ k2Þk2

�

> � f 0ðpcÞ
f ðpcÞ

a2
ða1 þ k2Þk2

dpc
K þ pc

xcyc: ð8Þ
The stability of Ec can be determined by (8) in any given case, but the question of the existence of
unstable limit cycles or of multiple limit cycles is not known for these problems. In the special case
that f ðpÞ ¼ e�lp we show that both stability and instability of the interior rest point is possible.
Let a1 ¼ 0:5, a2 ¼ 3:5, m1 ¼ 5:0, m2 ¼ 6:0, d ¼ 50, K ¼ 0:1. l ¼ 13:0 produces a stable spiral while
l ¼ 5:0 produces a limit cycle. The respective trajectories are shown in Fig. 1.

Hopf bifurcation has occurred and, as noted above, the general results of [25,26], provide a
proof that it is indeed a limit cycle. This phenomenon cannot occur in the basic chemostat without
an inhibitor.
4. The lethal external inhibitor

We now change the above model only slightly. We suppose that instead of interfering with
reproduction, the inhibitor is lethal to the organism. From the biological standpoint this is, ap-
parently, a relatively minor change, an increased death rate rather than a slower growth rate. To
describe the interaction between the inhibitor and the organisms we use mass action to reflect the
effect as being proportional to the concentration of each. This introduces a new parameter c and
removes the function f ðpÞ. The variables are the same and the equations corresponding to (2)
become
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S0 ¼ ðS0 � SÞD� m1S
a1 þ S

x� m2S
a2 þ S

y;

x0 ¼ x
m1S
a1 þ S

�
� D� cp

�
;

y0 ¼ y
m2S
a2 þ S

�
� D

�
;

p0 ¼ ðp0 � pÞD� dp
K þ p

y;

ð9Þ

Sð0ÞP 0; xð0Þ > 0; yð0Þ > 0; pð0ÞP 0:
Although the system of equations appears to be very similar to (2), we shall see that it is mathe-
matically very different. The presentation follows that of [38]. As above, we seek to scale the
equations and reduce the number of parameters. With the same scaling that produced (3) and with
ĉc ¼ cp0

D , (9) becomes
S0 ¼ 1� S � m1S
a1 þ S

x� m2S
a2 þ S

y;

x0 ¼ x
m1S
a1 þ S

�
� 1� cp

�
;

y0 ¼ y
m2S
a2 þ S

�
� 1

�
;

p0 ¼ 1� p � dp
K þ p

y:

ð10Þ
The same parameters will be of interest although the mathematical definitions are slightly dif-
ferent. We define four parameters, k1, k2, k

þ, k�, break-even concentrations, as solutions of
m1k1
a1 þ k1

¼ 1;

m2k2
a2 þ k2

¼ 1;

m1k
þ

a1 þ kþ
¼ 1þ c;

m1k
�

a1 þ k�
¼ 1þ cp�;
where p�, is the positive root of
ð1� zÞðK þ zÞ ¼ dzð1� k2Þ:

The k-parameters have the same meaning as before. k1 and k2 are the break even concentrations for
x and y in the simple chemostat without an inhibitor; kþ and k� are the break-even concentrations
for x at the maximum level of the inhibitor (p ¼ 1 in the scaled system) and the minimum level
ðp ¼ p�Þ respectively. One must prove, of course, that this is the minimal attainable level of the
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inhibitor. As before, three of the k-parameters are defined using only the parameters associated
with the x variable and thus they are ordered. We tacitly assume that they are different and one has
k1 < k� < kþ:
The behavior of the solutions will be determined will by where k2 falls in the ordering.
If the equations are added it becomes evident that there is no reduction in order (the addition

trick fails.) The system is not competitive and all of the tools provided by the results of Hirsch [25]
and Smith [26], used in the non-lethal case, are lost. This will keep us from concluding rigorously
that the oscillatory solutions illustrated below are, in fact, periodic. We will be able to show that
the system has essentially the same behavior as (3) but the proofs will be very different. We do not
get as far with rigorous arguments and must resort to numerical indications. We begin, however,
by noting which conclusions are possible by arguments similar to those in the previous section.

Simple differential inequality arguments show that any trajectory is eventually in the region Q
defined by
Q ¼ 0f 6 S6 1; 06 x6 1; 06 y6 1; p� � �6 p6 1þ �g:
This bounds the right hand side of (10), at least for t large. Thus when limits exist, one also knows
that the limit of the time derivative of the corresponding variable is zero.

There are three potential rest points on the boundary which we label
E0 � ð1; 0; 0; 1Þ;

E1 � ðkþ; x̂x; 0; 1Þ;

E2 � ðk2; 0; 1� k2; p�Þ;

where x̂x is given by
x̂x ¼ 1� kþ

1þ c
:

An interior equilibrium Ec � ðk2;�xxc; �yyc; �ppcÞ is also possible where the coordinates are
�ppc �
1

c
m1k2
a1 þ k2

�
� 1

�
;

�yyc �
ð1� �ppcÞðK þ �ppcÞ

d�ppc
;

and
�xxc �
1� k2 � �yyc
1þ c�ppc

:

The local stability of the rest point is determined by the eigenvalues of the variational matrix for
(10) evaluated at the rest point. The local stability is summarized in the Table 4; the entry �Routh–
Hurwitz indicates that the Routh–Hurwitz condition, see [37], a very complicated formula, in-
volving the parameters of the system, determines the stability. It is, however, precise and the
details of the computation may be found in [38].



Table 4

Local stability of rest points

Point Existence Stability condition

E0 Always kþ > 1, k2 > 1

E1 kþ < 1 kþ < k2
E2 k2 < 1 k2 < k�

Ec k� < k2 < 1, and kþ does not exist or k2 < kþ Routh–Hurwitz
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The next step is to determine the conditions for the global stability of the rest points. The
proofs are very different from those in the previous section since the system is no longer com-
petitive and the theory for three dimensional competitive systems is no longer available. The
results, however, match those of the preceding section very well. The global stability of the
boundary rest points represent extinction theorems, one or both of the competitors do not sur-
vive. The arguments are such that the dynamical system on the invariant sets x ¼ 0 and y ¼ 0 play
a key role. Consider the set y � 0. The system (10) becomes
S0 ¼ 1� S � m1S
a1 þ S

x;

x0 ¼ m1S
a1 þ S

�
� 1� cp

�
x;

p0 ¼ 1� p:

ð11Þ
Clearly, limt!1 pðtÞ ¼ 1, so, using the theory of asymptotically autonomous systems, we consider
the limiting system
S0 ¼ 1� S � m1S
a1 þ S

x;

x0 ¼ x
m1S
a1 þ S

�
� 1� c

�
:

ð12Þ
If kþ < 1, it follows from Hsu [39] that
lim
t!1

SðtÞ ¼ kþ and limt!1xðtÞ ¼ x̂x:
Returning to the original system, one has
lim
t!1

ðSðtÞ; xðtÞ; pðtÞÞ ¼ ðkþ; x̂x; 1Þ:
In a similar way, for x ¼ 0, one has
lim
t!1

ðSðtÞ; yðtÞ; pðtÞÞ ¼ ðk2; 1� k2; p�Þ;
if k2 < 1. The stability of these rest points preclude the existence of a cyclic connection between
them, an important hypothesis for applying the theory of uniform persistence. Another conse-
quence is that when one is able to establish that limt!1 xðtÞ ¼ 0 or limt!1 yðtÞ ¼ 0 for all non-
trivial solutions of (10), then trajectories of the full system will be attracted to the corresponding
boundary rest points.



Table 5

Point Condition Proof

E0 kþ > 1, k2 > 1 Comparison

E1 k1 < k� < kþ < 1 < k2 Fluctuations

1 > k2 > kþ þ c
1þc Fluctuations

E2 k2 < 1, k1 > 1 Fluctuations

k2 < 1, k2 < k� < kþ Liapunov
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The very existence of an interior rest point indicates the potential for coexistence, either as a
globally stable rest point or as some other attractor. The results for global stability of all of the
rest points are shown in Table 5. In the indication of a proof the term fluctuations indicates a
technical argument involving limsup or liminf of trajectories. We will illustrate one such argu-
ment. The term Liapunov indicates an argument by a Liapunov function. The function will be
given below but the computations are long and tedious and the interested reader is referred to [38].

When the interior rest points exists, the system is uniformly persistent. The proof follows from
the general theory since we have already noted that there is no cyclic connection of rest points on
the boundary.

When E0 is globally asymptotically stable, both organisms wash out of the system and the
environment is not detoxified. When E2 is globally asymptotically stable, the x competitor is re-
moved from the system and the environment is detoxified to the maximum possible extent with
this organism. This is the most desirable conclusion. When E1 is globally asymptotically stable,
the detoxifying agent is excluded from the system and no detoxification results. This is the worst
possible case. Finally, when Ec exists, both organisms remain in the system. If Ec is globally as-
ymptotically stable, the extent of detoxification is the value pc. If Ec is unstable, there is a more
complicated interior attractor. Our computations indicate that it is a limit cycle. The interior rest
point may be stable or unstable and both case are illustrated below.

The Liapunov function used to establish the global stability of E2 was� �

V ðS; x; y; pÞ ¼

Z S

k2

1� a2 þ g
m2g

dgþ cxþ
Z y

1�k2

g� 1� k2
g

dg;
where c is a positive number to be chosen in the argument. See [38].
Before proceeding to the numerical computations, we give one proof using the fluctuation type

arguments.
If k2 > 1, then limt!1 yðtÞ ¼ 0. Moreover, if kþ < 1, E1 is globally asymptotically stable.

Proof. If limt!1 yðtÞ exists and is not zero, then limt!1 SðtÞ ¼ k2 which is a contradiction since
k2 > 1. Suppose lim inf t!1 yðtÞ < lim supt!1 yðtÞ. Since yðtÞ is not monotone and is smooth, there
is a sequence ftkg, tk ! 1 as k ! 1 such that y 0ðtkÞ ¼ 0, and limt!1 yðtkÞ ¼ lim supt!1 yðtÞ > 0.

(This is sometimes called the fluctuation lemma.) Then limk!1
m2SðtkÞ
a2þSðtkÞ � 1
h i

¼ 0, or limk!1 SðtkÞ ¼
k2 > 1, a contradiction since no omega limit point of (10) can have an S-component greater than
one. Thus the omega limit set lies in the plane y ¼ 0.

If, in addition, kþ < 1, it follows that limt!1ðSðtÞ; xðtÞ; pðtÞÞ ¼ ðkþ; x̂x; 1Þ for all trajectories in the
invariant set y ¼ 0. h
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Fig. 2. The parameters are a2 ¼ 1:0, m1 ¼ 4:0, m2 ¼ 5:0, c ¼ 4:0, K ¼ 1:3, d ¼ 5:0, (a) a1 ¼ 0:06, (b) a1 ¼ 0:03.

S.-B. Hsu, P. Waltman / Mathematical Biosciences 187 (2004) 53–91 67
The interior rest point Ec can be locally stable or locally unstable and this can be determined
using the Routh–Hurwitz criterion. Choose the parameters to be: a2 ¼ 1:0, m1 ¼ 4:0, m2 ¼ 5:0,
c ¼ 4:0, K ¼ 1:3, d ¼ 5:0. The parameters are chosen to illustrate the phenomena and are not
biologically motivated. If a1 ¼ 0:06 the interior rest point has coordinates ðS; x; y; pÞ ¼
ð0:25; 0:149; 0:216; 0:643Þ and the Routh–Hurwitz criterion indicates that it is stable. A typical
trajectory is shown in Fig. 2(a) in ðS; x; yÞ coordinates. Since limt!1 pðtÞ exists, this can be thought
of as the plot of an asymptotically limiting system. The computations indicate that the rest point is
globally asymptotically stable but this has not been rigorously established.

If the rest point becomes unstable, then the orbit leaves a neighborhood of the rest point, but
because of the uniform persistence, it must remain in the interior of the positive cone. Since the
system is four dimensional strange attractors are theoretically possible. However, the simulations
show a simple, globally asymptotically stable limit cycle. The parameters are as above except that
a1 ¼ 0:03. The coordinates of the interior rest point become (0.25, 0.140, 0.296, 0.556). We show
the plot in ðS; x; yÞ-space in Fig. 2(b). The orbit is shown in R3, but the reader is reminded that pðtÞ,
the coordinate not shown, is oscillatory.

The final results are essentially the same as in the preceding section where the inhibitor was not
lethal and the major interesting outcomes were a stable limit cycle or a stable spiral point.
However, the mathematical tools needed were very different. While the limit cycle shown in Fig. 1
was rigorously established, only uniform persistence was established for Fig. 2. That the attractor
is a limit cycle and, if it is, that it is unique, has not been established and these remain open
mathematical questions.
5. Internal inhibition

Sections 3 and 4 discussed competition in the chemostat with an inhibitor that was introduced
into the system from the feed bottle to create a selective medium. An alternative would be to use a
medium where the selective pressure is generated within the system itself, for example, where one
of the competitors produces a toxin against the other.
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In a fundamental paper, Chao and Levin [12] demonstrated the presence of anti-bacterial
toxins. A model for such toxins in the chemostat was given by Levin [13]. Such toxins affect the
medium in the same way as the external model discussed above except now the concentration of
the inhibitor is determined by the abundance of the competitor producing it. The resources used
to produce the inhibitor must be taken from the resources that would otherwise be used for
growth. As with the external inhibitor, we divide the problem in to the case where the inhibitor
interferes with growth of, and the case where it is lethal to, the organism.

In this section we consider the first case and assume that the inhibitor reduces the growth of the
organism. The case of the lethal inhibitor will be considered in Section 6. Since the proportionality
of growth to consumption is one of the basic assumptions of the chemostat, this, in effect, says
that the inhibitor interferes with the cells ability to take up the nutrient.

We continue the convention that x represents the organism affected by the inhibitor and thus y
represents the organism producing the inhibitor. The parameter k represents the fraction of the
consumption devoted to producing the inhibitor. The other parameters – basic chemostat para-
meters – have the same meaning as before.

The equations take the form
S0 ¼ ðSð0Þ � SÞD� xe�lp 1

c1

m1S
a1 þ S

� y
1

c2

m2S
a2 þ S

;

x0 ¼ x
m1S

a1 þ S
e�lp

�
� D

�
;

y0 ¼ y ð1
�

� kÞ m2S
a2 þ S

� D
�
;

p0 ¼ ky
m2S

a2 þ S
� Dp:

ð13Þ
As before, the variables are first scaled to non-dimensional ones in the same manner as above and
the equations take the form
S0 ¼ 1� S � x
m1S

a1 þ S
e�lp � y

m2S
a2 þ S

;

x0 ¼ x
m1S

a1 þ S
e�lp

�
� 1

�
;

y0 ¼ y ð1
�

� kÞ m2S
a2 þ S

� 1

�
;

p0 ¼ ky
m2S

a2 þ S
� p:

ð14Þ
If the new variable R ¼ 1� S � x� y � p is introduced, then R0 ¼ �R. Rewriting the system in
terms of R, x, y, p and applying the theory of asymptotically autonomous systems, produces the
limiting system
x0 ¼ x
m1ð1� x� y � pÞ
a1 þ 1� x� y � p

e�lp

�
� 1

�
;
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y0 ¼ y ð1
�

� kÞ m2ð1� x� y � pÞ
a2 þ 1� x� y � p

� 1

�
;

p0 ¼ ky
m2ð1� x� y � pÞ
a2 þ 1� x� y � p

� p:
ð15Þ
The no cycle condition, required to use the asymptotically autonomous theory, will become clear
after we analyze the stability of the rest points. One further reduction is possible. Introduce the
new variable C ¼ p � cy, c ¼ k

1�k, in (15). Then, since C0 ¼ �C, the limiting equation for (15)
becomes
x0 ¼ x
m1ð1� x� ð1þ cÞyÞ
a1 þ 1� x� ð1þ cÞy e

�cly

�
� 1

�
;

y0 ¼ y ð1
�

� kÞ m2ð1� ð1þ cÞy � xÞ
a2 þ 1� x� ð1þ cÞy � 1

�
:

ð16Þ
The variables are constrained to be in
X ¼ ðx; yÞjxf P 0; yP 0; ð1þ cÞy þ x6 1; c ¼ k=1� kg:

The asymptotic behavior of the system (16) will be determined. The region X is positively in-
variant under the solution map for (16). The theory of asymptotically autonomous systems allows
one to draw the same conclusions for the original system.

As before, certain break-even concentrations will be important. Define k1, k2, and kþ2 as so-
lutions of
m1k1
a1 þ k1

¼ 1;

m2k2
a2 þ k2

¼ 1;

m2k
þ
2

a2 þ kþ2
¼ 1

1� k
:

There is no minimum value for the level of the inhibitor since if the y-populations washes out of
the chemostat, no inhibitor is produced. Clearly, k2 < kþ2 .

There are three potential rest points on the boundary which we label
E0 ¼ ð0; 0Þ;

E1 ¼ ð1� k1; 0Þ;

E2 ¼ ð0; ð1� kþ2 Þð1� kÞÞ:

These correspond respectively, to both populations washing out of the chemostat, the x-popu-
lation washing out, and the y-population washing out. The local stability of each rest point can be
found by computing the eigenvalues of the variational matrix evaluated at each of the rest point
listed above. The computations are standard and we summarize the results in Table 6. Note that
kþ2 < k1 is sufficient for the stability of E2.



Table 6

Point Existence Locally asymptotically stable if

E0 Always k1 > 1, kþ2 > 1

E1 0 < k1 < 1 0 < k1 < kþ2

E2 kþ2 < 1
m1k

þ
2

a1 þ kþ2
e�klð1�kþ

2
Þ < 1
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The location and the stability of an interior rest point is a more delicate matter. The equations
for the rest point take the form
m1ð1� x� ð1þ cÞyÞ
a1 þ 1� x� ð1þ cÞy e

�cly � 1 ¼ 0;

ð1� kÞ m2ð1� ð1þ cÞy � xÞ
a2 þ 1� x� ð1þ cÞy � 1 ¼ 0:
The variables are constrained to be in X. From the second equation one has that any interior rest
point must lie on the line
ð1þ cÞy þ x ¼ 1� kþ2 ; ðx; yÞ��XX;

and hence that
m1k
þ
2

a1 þ kþ2
e�cly ¼ 1: ð17Þ
Thus to have an interior rest point it must be the case that k1 < kþ2 . One can solve this equation for
the y coordinate of the rest point to obtain that
yc ¼ � 1

cl
ln

a1 þ kþ2
m1k

þ
2

� �
:

This will be a positive number if kþ2 > k1 and it will be less than one for l sufficiently large, say
l > l0. Then xc ¼ 1� kþ2 � ð1þ cÞyc. This will be positive if l is sufficiently large, and we can take
l0 to be this critical value of l where both conditions are satisfied.

Since the system is two dimensional and smooth, the Poincar�ee–Bendixson Theorem applies.
For example, if Ec does not exist, the only omega limits sets are E1 and E2. As noted above,
0 < k1 < kþ2 , required for the existence of Ec makes E1 locally asymptotically stable. If Ec exists,
then (17) makes E2 locally asymptotically stable. Moreover (16) is a competitive system and there
are no limit cycles. Thus, Ec, when it exists, that is, for l sufficiently large, is unstable and both E1

and E2 are locally stable. The basins of attraction of E1 and E2 are open sets, and, since the interior
rest point is unstable, these rest points attract all trajectories except for the stable manifold of Ec.
This means that the outcome of the competition depends on the initial conditions.

The global results, which follow directly from the Poincar�ee–Bendixson Theorem and the ab-
sence of limit cycles, are summarized in Table 7.

The case of bistable attractors is the most interesting and the trajectories for a variety of initial
conditions for such a case are plotted in Fig. 3. As noted above the interpretation of bistable
attractors on the boundaries is that competitive exclusion holds but the winner is determined by
the initial conditions.



Table 7

kþ2 > 1 k1 > 1 E0 is a global attractor

k1 < 1 E1 is a global attractor

kþ2 < 1 kþ2 < k1 E2 is a global attractor

k1 < kþ2 l < l0 E1 is a global attractor

l > l0 Bistable attractors
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y Bistable Attractors

Fig. 3. Bistable attractors.
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6. Lethal internal inhibitors

We turn now to the case that the inhibitor is produced by one of the competitors and is lethal to
the other. As in the external case, the change from inhibited growth to increased death is not great
from a biological standpoint but does introduced serious mathematical complications. Our pre-
sentation of this problem follows the pattern of the previous sections.

Chao and Levin [12], demonstrated the presence of anti-bacterial toxins. In their experiments,
the winner of the competition was determined by the initial conditions. See, in particular, Fig. 1 of
the above cited paper of Levin. In the model the inhibitor �kills� the organism; this effect is
modeled by a mass action term. As with the external inhibitor, presence of the mass action term
takes away many of the tools normally used in the analysis on chemostat models; in particular, the
monotonicity of the resulting differential equations is lost.

The only difference between the model discussed here and the one of Levin cited above, is that
we attribute a cost to the production of the inhibitor. We again seek to describe the global as-
ymptotic behavior of the model in terms of the parameters of the system. In the case of bistable
attractors, we are not able to rule out the possibility of other than steady state attractors although
our computer simulations have not demonstrated any. This possibility remains an open question.
The techniques are those of Liapunov functions. The full details and the proofs can be found in
[40].
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The model takes the form
S0 ¼ ðSð0Þ � SÞD� m1S
a1 þ S

x
c1

� m2S
a2 þ S

y
c2
;

x0 ¼ x
m1S

a1 þ S

�
� D� cp

�
;

y0 ¼ y ð1
�

� kÞ m2S
a2 þ S

� D
�
;

p0 ¼ k
m2Sy
a2 þ S

� Dp:

ð18Þ
The variables and parameters are as before; 06 k < 1 represents the fraction of potential growth
allocated to producing the toxin. We scale to non-dimensional variables to obtain
S0 ¼ 1� S � m1S
a1 þ S

x� m2S
a2 þ S

y;

x0 ¼ x
m1S

a1 þ S

�
� 1� cp

�
;

y0 ¼ y ð1
�

� kÞ m2S
a2 þ S

� 1

�
;

p0 ¼ k
m2S
a2 þ S

y � p:

ð19Þ
The interaction between the toxin and the sensitive microorganisms is taken to be of mass action
form, �cpx. A portion of the nutrient consumption has been allocated to the production of the
toxin and the growth rate correspondingly debited. The form of the equations are such that
positive initial conditions at t ¼ 0 result in positive solutions for t > 0. (The positive cone is
positively invariant.) Let R ¼ S þ xþ y þ p. The boundedness of solutions is obtained by a simple
inequality. Since
R0 ¼ 1� S � x� y � p � cxp6 1� R;
then lim supt!1 RðtÞ6 1. Since each component is non-negative, the system is dissipative and thus,
has a compact, global attractor.

The order of the system may be reduced by one dimension (in contrast to two above). To
reduce the order of the model let z ¼ p � ky

1�k, and note that z0 ¼ �z. Clearly, zðtÞ ! 0, so the
theory of asymptotically autonomous systems yields the limiting system
S0 ¼ 1� S � m1Sx
a1 þ S

� m2Sy
a2 þ S

;

x0 ¼ x
m1S

a1 þ S

�
� 1� kc

1� k
y
�
;

y0 ¼ y ð1
�

� kÞ m2S
a2 þ S

� 1

�
:

ð20Þ
The work of Thieme [24], (or see [17], Appendix F) relates the corresponding dynamics. (As al-
ways, there are some simple hypotheses to verify before claiming that the two dynamical systems
have the same asymptotic behavior.)
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Only three parameters are required to characterize the classes of asymptotic behavior. Define
k1, k

þ
2 , k̂k, as solutions of
Table

E0

E1

E2

Ec

Table

Con

kþ2 <
k1 <
k1 <
m1k1
a1 þ k1

¼ 1;

m2k
þ
2

a2 þ kþ2
¼ 1

1� k
;

m1k̂k

a1 þ k̂k
¼ 1þ ckð1� k̂kÞ;
We tacitly assume that they are different. Clearly, k1 < k̂k. The eventual behavior is determined by
where k2 falls in the ordering.

There are three potential rest points on the boundary which we label
E0 ¼ ð1; 0; 0Þ;

E1 ¼ ðk1; 1� k1; 0Þ;

E2 ¼ ðkþ2 ; 0; ð1� kÞð1� kþ2 ÞÞ:

There also can be a (unique, if it exists) interior rest point, Ec ¼ ðSc; xc; ycÞ. Clearly, for such a

point to exist, Sc ¼ kþ2 . It follows then that yc ¼ 1�k
kc

m1k
þ
2

a1þkþ
2

� 1
h i

provided this quantity is positive

which will be the case if kþ2 > k1. Finally, the sign of xc is the sign of 1� kþ2 � 1
ck

m1k
þ
2

a1þkþ
2

� �
. This will

be positive if kþ2 < k̂k. See [40] for the details. Stability of the rest points is given in Table 8.

The first three entries in Table 8 correspond to the absence of one or both competitors. The
proof of the claims in the table rest with a linear stability analysis around the respective rest
points. As a consequence, if an inequality for stability is reversed, the rest point is unstable. (Ec is
unstable if it exists but has a non-empty stable manifold.) Note that Ec exists if E1 and E2 are both
stable.

The conditions for local stability are in fact global. This is summarized in Table 9.
8

Exists Asymptotic stability

Always k1 > 1; kþ2 > 1

0 < k1 < 1 0 < k̂k < kþ2
kþ2 < 1 0 < kþ2 < k̂k
k1 < kþ2 < k̂k < 1 Unstable

9

dition Attractor

k1 < k̂k E2

kþ2 < k̂k Bistable attractors

k̂k < kþ2 E1
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The proof of global stability for E0 is quite simple as is the instability of Ec when it exists. The
global stability of E1 and E2 require Liapunov function type arguments. For E2 one uses
V ðS; x; yÞ ¼
Z S

kþ
2

g� kþ2
g

dgþ c1

Z y

yc

g� yc
g

dgþ c2x:
where c1 and c2 are determined in the course of the proof.
For the global stability of E1, the function used was of the form
V ðS; x; yÞ ¼
Z S

k1

xc
m1n
a1þn � 1
� �
1� n

dnþ
Z x

xc

n� xc
n

dnþ cy;
where again c > 0 is determined in the argument. The computations are long and make use of the
approach of Wolkowicz and Lu [41].

Mathematically, one can intuitively think of the significant parameter kþ2 as being a function of
k. When k ¼ 0, y is the weaker competitor and washes out of the system; when k ¼ 1, all energy is
devoted to toxin production, so there is no growth and y washes out of the system. For values of
k, where the interior, unstable rest point exists, the stable manifold of that rest point separates the
space into two basins of attraction. Where the initial conditions lie, determines which attractor the
trajectory approaches. This intuition is, of course, more than was rigorously proved in [40].

A plot of a variety of trajectories for a case of bistable attractors is shown in Fig. 4; this is
similar to Fig. 3 except that it is in three dimensions.
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Fig. 4. Bistable attractors in three dimensions.
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In the model the effort devoted to the production of the inhibitor was a constant. A more
natural assumption might be that the effort devoted to inhibitor production be a function of the
state of the system, that is, modify the k in the model to become kðx; yÞ. The inhibitor production
can be adjusted to reflect the state of the competition, that is, it can be allocated dynamically. For
example, if there is no competition, there is no need to devote the constant fraction to inhibitor
production. More explicitly, replace the system (18) by
S0 ¼ ðSð0Þ � SÞD� m1S
a1 þ S

x
c1

� m2S
a2 þ S

y
c2
;

x0 ¼ x
m1S
a1 þ S

�
� D� cp

�
;

y0 ¼ y ð1
�

� kðx; yÞÞ m2S
a2 þ S

� D
�
;

p0 ¼ kðx; yÞ m2Sy
a2 þ S

� Dp:

ð21Þ
It is convenient to assume that the yield constants are equal, ĉc ¼ c1 ¼ c2. Without this assump-
tion, one has an additional parameter, the ratio of the yield constants. With this assumption, we
perform the same scaling as before to obtain
S0 ¼ 1� S � m1S
a1 þ S

x� m2S
a2 þ S

y;

x0 ¼ x
m1S
a1 þ S

�
� 1� cp

�
;

y0 ¼ y ð1
�

� kðx; yÞÞ m2S
a2 þ S

� 1

�
;

p0 ¼ kðx; yÞ m2S
a2 þ S

y � p:

ð22Þ
This system was investigated in [42]. Since the level of inhibitor production depends on the or-
ganism being able to sense the state of the system, one must first answer as to a possible mech-
anism. This is possibly provided, although not yet established experimentally in this case, by the
mechanism of quorum sensing. See Bassler [43] for a review. [42] considers two special cases that
represent the extremes for reasonable functions
kðx; yÞ ¼ ay
bþ xþ y

; ð23Þ

kðx; yÞ ¼ ax
bþ xþ y

; ð24Þ
(23) is monotone increasing in y while (24) is monotone increasing in x. These are two opposite
strategies. For the first, a large y causes the organism to devote more of its resources to producing
the toxin for it can afford to do so. This guards against invasion. In (24) if x is large, y increases the
toxin production. Since it is already losing the competition this represents a desperation strategy.
One advantage of this strategy is that if there is no competition, no resource is wasted on toxin
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production. Both can produce interior attractors. A mixture of the two would be possible and one
can conceive of many other strategies that could be investigated.

In principle the same dynamical systems techniques used for (18) could be applied but the
complications become apparent immediately. For example, while the boundary rest points can be
analyzed directly, the interior rest points require the solution of a fifth order polynomial. Thus the
analysis in [42] proceeds by numerical computation using a general Mathematica notebook. The
numerical examples show that a wide variety of dynamical systems can be achieved. The most
interesting examples are bistable attractors where one attractor is interior, in contrast to the
constant case where the only attractors are on the boundary. We reproduce two tables and graphs
from [42] as illustrations.

Let
Table

Res

E0

E1

E2

EA

EB
kðx; yÞ ¼ ay
bþ xþ y

;

and let m1 ¼ 1:17, m2 ¼ 1:17, a1 ¼ 0:017, a2 ¼ 0:025, a ¼ 0:6, b ¼ 0:01, and c ¼ 20. The rest
points and their stability are shown in Table 10 where the boundary rest points have numerical
subscripts and the interior ones have capital letter subscripts.

The dynamical systems has (apparently, as no proofs have been constructed) an interior, stable
limit cycle, and a stable boundary rest point. A plot of trajectories, projected onto the x–y–S-
space, is shown in Fig. 5.

We turn now to the choice
kðx; yÞ ¼ ax
bþ xþ y

; ð25Þ
with parameters m1 ¼ 1:1, m2 ¼ 1:1, a1 ¼ 0:0567, a2 ¼ 0:06, a ¼ 0:2, b ¼ 1:0, and c ¼ 6. There are
two interior rest points; the coordinates and the eigenvalues of all rest points given in Table 11.

Trajectories of the differential equations were computed with these parameters and the results,
projected onto two dimensions, are shown in Fig. 6.

With constant inhibitor production, E1 stable, and E2 unstable, the y-population lost the
competition. In this case, the inhibitor was sufficiently effective that, for an open region in the
parameter space, coexistence occurred.

The obvious significance from an ecological standpoint is that by producing a toxin against its
competitor, even with some degradation of its growth rate (fitness) a population can survive when
it would otherwise be excluded. For reactor technology, which will be discussed below when
plasmids are considered, this is relevant to the possibility of using internally produced inhibitors
rather than externally provided ones.
10

t point Coordinates Eigenvalues Stability

(1, 0, 0, 0) )1, )1, 0.14, 0.15 Unstable

(0.1, 0.9, 0, 0) )1.3, )1.0, )1.0, )0.0064 Stable

(0.99, 0, 0.0026, 0.00036) )1.0, )1.0, 0.14, )0.11 Unstable

(0.26, 0.60, 0.072, 0.0049) )1.1, )0.92, )0.29, 0.087 Unstable

(0.68, 0.22, 0.055, 0.0070) )1.1, )1, 0.00020± 0.10i Unstable
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Fig. 5. A limit cycle for the model with dynamically allocated inhibitor production.

Table 11

Rest point Coordinates Eigenvalues Stability

E0 (1, 0, 0, 0) )1, )1, 0.030, 0.037 Unstable

E1 (0.57, 0.43, 0, 0) )1.0, )1.0, )0.070, )0.066 Stable

E2 (0.6, 0, 0.4, 0) )1.0, )1.0, 0.061, )0.0051 Unstable

EA (0.63, 0.034, 0.33, 0.0016) )1.00, )0.99, )0.056, )0.0025 Stable

EB (0.69, 0.077, 0.23, 0.0027) )1.01, )0.98, )0.054, 0.038 Unstable
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7. A model of plasmid-bearing, plasmid-free competition in the chemostat

The ability to manufacture products through genetically altered organisms is one of the modern
developments in biotechnology. This genetic alteration commonly takes place through the in-
sertion of a plasmid which codes for the production of the desired protein. Normally, the plasmid
reproduces when the cell divides, but, with some probability, the plasmid is not passed to the
daughter cell which introduces the plasmid-free organism into the process. Since the plasmid-free
organism does not carry the added metabolic burden imposed by the plasmid, it is potentially a
better competitor. The study of mathematical models for the competition between plasmid-free
and plasmid-bearing populations has recently been a problem of considerable interest. We have
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Fig. 6. Coexistence with E2 unstable and E1 stable.
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already cited [3–13]. We begin with a detailed description of the basic model of competition be-
tween plasmid-bearing and plasmid-free organisms.

One begins with the basic chemostat equations, (1) and modifies them for the case that one
organism, y, is plasmid-bearing but the plasmid can be lost in reproduction, resulting in a plas-
mid-free-organism x. It is also reasonable to assume that the yield constants for the two organism
are the same since they are the same organism just with, and without, the plasmid. To keep
continuity through the survey, we shall again assume that the uptake functions are of Monod
form, fiðSÞ ¼ miS

aiþS, but the known results for these equations are valid for much more general
functions. The parameters have the same meaning as in the basic chemostat model except for the
constant q which is the fraction of plasmids lost. The modified equations become
S0 ¼ ðSð0Þ � SÞD� x
c

m1S
a1 þ S

� y
c

m2S
a2 þ S

;

x0 ¼ x
m1S
a1 þ S

�
� D

�
þ qy

m2S
a2 þ S

;

y0 ¼ y
m2S
a2 þ S

ð1
�

� qÞ � D
�
:

ð26Þ
These equations appear (more generally) in [4], and have been investigated mathematically in [7]
where the system was first reduced to a plane autonomous system and then the Dulac criterion was
used to show that there were no periodic orbits. Conditions were given for the existence and global
stability of the rest points. We do not reproduce the results of [7] as they are contained (for the
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Monod case) as special cases of the material presented below by choosing certain parameters
(involving inhibitor production or introduction and the effect on the sensitive organism) to be zero.
These equations will be modified to account for the inhibitor and its effect in the following sections.
8. Plasmid-bearing, plasmid-free competition with an external inhibitor

As noted above, the plasmid-free organism is expected to be a better competitor since it does
not carry the added metabolic load. To avoid �capture� of the process by the plasmid-free or-
ganism, selective media are used for the culture. The most obvious of these techniques is to induce
antibiotic resistance into the cell on the same plasmid that codes for the production and to in-
troduce an antibiotic (inhibitor) into the medium. Thus if the plasmid is lost, the organism is
susceptible to the antibiotic. The case with the external inhibitor will be discussed in first in this
section. It is a combination of the model of the chemostat with an external inhibitor discussed in
Section 3 and the plasmid model discussed in Section 7. This model was proposed and analyzed in
[6] and this section follows that development. The variables and parameters are as before, and the
model, after scaling, takes the form
S0 ¼ 1� S � e�lp m1S
a1 þ S

x� m2S
a2 þ S

y;

x0 ¼ x e�lp m1S
a1 þ S

�
� 1

�
þ q

m2S
a2 þ S

y;

y0 ¼ y ð1
�

� qÞ m2S
a2 þ S

� 1

�
;

p0 ¼ 1� p � dp
K þ p

y:

ð27Þ
We will assume that mi > 1, i ¼ 1; 2; otherwise easy inequality arguments show that the corre-
sponding population tends to zero as t tends to infinity. We follow the same reduction as before.
Let RðtÞ ¼ 1� xðtÞ � yðtÞ � SðtÞ. Then, since R0 ¼ �R, or limt!1 RðtÞ ¼ 0, the limiting system
may be written
x0 ¼ x e�lp m1ð1� x� yÞ
a1 þ 1� x� y

�
� 1

�
þ qy

m2ð1� x� yÞ
a2 þ 1� x� y

;

y0 ¼ y ð1
�

� qÞ m2ð1� x� yÞ
a2 þ 1� x� y

� 1

�
;

p0 ¼ 1� p � dp
K þ p

y:

ð28Þ

xð0ÞP 0; yð0ÞP 0; pð0ÞP 0; 06 xð0Þ þ yð0Þ6 1:
Note that when q ¼ 0, (27) is exactly (4) with f ðpÞ ¼ e�lp.
We define the four parameters that will determine the behavior of the system as solutions of the

following equations:
m1k1
a1 þ k1

¼ 1;
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m2k2
a2 þ k2

¼ 1;

m1k
þ
1

a1 þ kþ1
¼ el;

m2k
þ
2

a2 þ kþ2
¼ 1

1� q
;

k1 and k2 are the basic chemostat parameters but they will not play a crucial role here. The
outcomes will be determined by the remaining two parameters. For kþ1 to be positive it is necessary
that m1 > el; for kþ2 to be positive it is necessary that m2ð1� qÞ > 1. To avoid needless repetition,
we will assign the values þ1 when the inequalities are violated. The intuition is that the function
on the left hand side of the equality has a limit as the variable tends to infinity that is lower than
the value on the right hand side of the defining equation.

There are two rest points on the boundary which we label
E0 ¼ ð0; 0; 1Þ; ðthe washout stateÞ;

E1 ¼ ðx�; 0; 1Þ; ðthe plasmid-free stateÞ;

where x� is a positive root of
e�l m1ð1� zÞ
a1 þ 1� z

¼ 1
or
x� ¼ m1e
�l � ð1þ a1Þ
m1e�l � 1

:

These are obviously undesirable limits (omega limit sets) for the system as it is the plasmid-bearing
organism that manufactures the product. E0 always exists and k1 < 1 guarantees the existence of
E1; the reversal of the inequality precludes the existence of E1. Note that in contrast to the models
of Section 3, there is no rest point with x ¼ 0, y > 0 since a positive plasmid-bearing state con-
tributes input to the plasmid-free state.

An interior rest point is a solution of the algebraic system
x e�lp m1ð1� x� yÞ
a1 þ 1� x� y

�
� 1

�
þ qy

m2ð1� x� yÞ
a2 þ 1� x� y

¼ 0;

ð1� qÞ m2ð1� x� yÞ
a2 þ 1� x� y

� 1 ¼ 0;

1� p � dp
K þ p

y ¼ 0;
Straightforward algebra shows that, if kþ2 < 1 < kþ1 or if kþ1 < 1 and 1 > kþ1 > kþ2 > 0, there will be
a unique interior rest point. We label the positive equilibrium
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E0

E1

Ec

Table

Con

kþ2 >
kþ2 <
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Ec ¼ ðxc; yc; pcÞ:

The stability of E0 and E1 follows from standard linearization arguments. For Ec the calculation,
though standard, is much more complicated and we turn again to the Routh–Hurwitz criterion.

The characteristic polynomial of the Jacobian
J ¼
m11 m12 m13

m21 m22 0

0 m32 m33

2
4

3
5

at Ec takes the form
k3 þ B1k
2
1 þ B2kþ B3 ¼ 0;
where
B1 ¼ �m11 � m22 � m33 > 0;

B2 ¼ m11m22 � m12m21 þ m11m33 þ m22m33 > 0;

B3 ¼ �m33ðm11m22 � m12m21Þ � m13m21m32 > 0:
One may apply the Routh–Hurwitz criterion to conclude that all of roots have negative real part if
and only if B1B2 > B3. This is obviously a very complicated algebraic expression, but for fixed
values of the parameters, is easy to check with any of the algebraic manipulation programs,
Mathematica, for example. We summarize the local results in Table 12.

Easy arguments using differential inequalities and comparison arguments show that E0 is a
global attractor if kþ1 > 1 and kþ2 > 1. A more difficult argument is required to show that if
0 < kþ1 < kþ2 < 1, then E1 is a global attractor (of the interior of the positive cone). The argument
divides the positive cone into three disjoint pieces and then argues that all trajectories eventually
(i.e., for large values of time) enter and remain in one of them. For trajectories in this region, the
only possible omega limit set is E1. The results are summarized in Table 13.

Note that the existence of Ec requires either the non-existence of E1 or its instability. Easy
arguments show that the existence of Ec makes the system uniformly persistent as for example in
Theorem 1. This is an important remark for when Ec is unstable there must be an interior global
attractor and it must be more complicated than a rest point. Ai [44] has provided conditions that
12

Exists Locally asymptotically stable if

Always kþ1 > 1; kþ2 > 1

0 < kþ1 < 1 0 < kþ1 < kþ2
0 < kþ2 < kþ1 < 1 or kþ1 > 1, kþ2 < 1 Routh–Hurwitz

13

ditions kþ1 > 1 kþ1 < 1

1 E0 is a global attractor E1 is a global attractor

1 Ec exists 1 > kþ1 > kþ2 > 0 – Ec exists

1 > kþ2 > kþ1 > 0 – E1 is a global attractor
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establish the existence of a limit cycle. He has used a clever technique to follow trajectories
through �boxes� and has shown that they must return to the original box, allowing one to obtain a
closed trajectory through the use of the Brouwer fixed point theorem.

If Ec is a global attractor for (4) (that is, (27) with q ¼ 0), then [6] has shown that Ec is a global
attractor for (27) if q is sufficiently small. For large q the problem remains open, awaiting, per-
haps, the construction of an appropriate Liapunov function.

We now seek to change the effect of the external inhibitor to be lethal to the organism. The
model then is a combination of the model of the chemostat with a lethal external inhibitor dis-
cussed in Section 4 and the plasmid model discussed in Section 7. This model was proposed and
analyzed in [8] and the presentation here follows that development. The model, after scaling, and
with equal yield constants, takes the form
S0 ¼ 1� S � m1S
a1 þ S

x� m2S
a2 þ S

y;

x0 ¼ x
m1S
a1 þ S

�
� 1� cp

�
þ q

m2S
a2 þ S

y;

y0 ¼ y ð1
�

� qÞ m2S
a2 þ S

� 1

�
;

p0 ¼ 1� p � dp
K þ p

y:

ð29Þ
where Sð0ÞP 0, xð0Þ > 0, yð0Þ > 0, pð0ÞP 0. Of course, if q ¼ 0 then (29) is contained in Section 4.
Two parameters, kþ1 , k

þ
2 are defined as solutions of the following equations:
m1k
þ
1

a1 þ kþ1
¼ 1þ c;

m2k
þ
2

a2 þ kþ2
¼ 1

1� q
:

kþ1 is the kþ of Section 4 but the second parameter is different. Simple differential inequality ar-
guments show that, for any � > 0, any trajectory of (29) will eventually enter the region
Q ¼ ðS; x; y; pÞ : 0f 6 S6 1; 06 x6 1; 06 y6 1; 06 p6 1; 0 < S þ xþ y < 1þ �g:
The boundary has two potential rest points given by
E0 � ð1; 0; 0; 1Þ;

E1 � ðkþ1 ; x�; 0; 1Þ;

where x� is defined by
x� ¼ 1� kþ1
1þ c

:

Note that if q > 0 there can be no rest point whose coordinates have x ¼ 0. For q ¼ 0 we have
already noted that the theory of Section 4 applies.
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The determination of the coordinates of a potential interior rest point is not as simple as it was
in Section 4. Denote a potential interior rest point as Ec ¼ ðSc; xc; yc; pcÞ. Clearly one has Sc ¼ kþ2 .
The remaining three coordinates satisfy the system
1� kþ2 ¼ m1k
þ
2

a1 þ kþ2
xc þ

m2k
þ
2

a2 þ kþ2
yc;

1� pc ¼
dpc

K þ pc
yc;

xc
m1k

þ
2

a1 þ kþ2

�
� 1� cpc

�
þ q

m2k
þ
2

a2 þ kþ2
yc ¼ 0:

ð30Þ
The algebra is quite complicated but the end result is that if 0 < kþ2 < kþ1 < 1, there is an interior
rest point and if the parameter ordering is reversed, there is not.

The (local) stability of E1 can be computed directly from the variation equation and it is easily
seen that it is asymptotically stable if 0 < kþ1 < kþ2 < 1 and unstable if the parameter ordering is
reversed. Such a computation is not possible for Ec since we do not have the explicit coordinates
of the rest point.

However, when q ¼ 0 this is exactly the case considered in Section 4. The local stability does
not change for q > 0 and small, so the stability determined by the conditions expressed there
(there are two cases), carry over to (29) when q is sufficiently small. The results of Section 4
depended on three parameters so the parameter k�1 defined there still plays a roll here. Ec can arise
from two cases which, roughly speaking, can be thought of as the E2 of Section 4 moving interior
as q becomes positive or as arising from a perturbation of Ec.

The question of the global asymptotic stability of the interior rest point as well as questions of
the existence of limit cycles remain open for future mathematical investigation.
9. Plasmid-bearing, plasmid-free competition with an internal inhibitor

We now turn to the case discussed in Sections 5 and 6 where the inhibitor is produced by one of
the organisms. This would be accomplished by coding the plasmid for the production of the
inhibitor, its immunity to it, and the manufacture of a product. We consider the non-lethal case
first. The model then is a combination of the model of the chemostat with an internal inhibitor
discussed in Section 5 and the plasmid model discussed in Section 7. This model was proposed and
analyzed in [8] and the presentation follows that development. The model takes the form, after
scaling and with equal yield constants,
S0 ¼ 1� S � x
m1S
a1 þ S

e�lp � y
m2S

a2 þ S
;

x0 ¼ x
m1S
a1 þ S

e�lp

�
� 1

�
þ q

m2S
a2 þ S

;

y0 ¼ y ð1
�

� q� kÞ m2S
a2 þ S

� 1

�
;

p0 ¼ ky
m2S
a2 þ S

� p;

ð31Þ
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where Sð0Þ ¼ S0 P 0, xð0Þ ¼ x0 P 0, yð0Þ ¼ y0 P 0, and pð0Þ ¼ p0 P 0. The reader is reminded that
the parameters have changed their meaning. By what is now a familiar argument, the order of the
system can be reduced by one. The change of variables R ¼ 1� S � x� y � p yields R0 ¼ �R or
limt!1 RðtÞ ¼ 0, so the limiting equations become
x0 ¼ x
m1ð1� x� y � pÞ
a1 þ 1� x� y � p

e�lp

�
� 1

�
þ qy

m2ð1� x� y � pÞ
a2 þ 1� x� y � p

;

y 0 ¼ y ð1
�

� q� kÞ m2ð1� x� y � pÞ
a2 þ 1� x� y � p

� 1

�
;

p0 ¼ ky
m2ð1� x� y � pÞ
a2 þ 1� x� y � p

� p;
making use of the theory of asymptotically autonomous systems.
The change of variable C ¼ p � cy where c ¼ k

1�q�k essentially reflects expressing the amount of
inhibitor in terms of the amount of the inhibitor-producing organism. Since C0 ¼ �C and
limt!1 CðtÞ ¼ 0, the limiting system of equations becomes
x0 ¼ x
m1ð1� x� ðcþ 1ÞyÞ
a1 þ 1� x� ðcþ 1Þy e

�lcy

�
� 1

�
þ qy

m2ð1� x� ðcþ 1ÞyÞ
a2 þ 1� x� ðcþ 1Þy ;

y0 ¼ y ð1
�

� q� kÞ m2ð1� x� ðcþ 1ÞyÞ
a2 þ 1� x� ðcþ 1Þy � 1

�
;

ð32Þ
where xð0ÞP 0, yð0ÞP 0, xð0Þ þ ðcþ 1Þyð0Þ6 0. The variables are constrained to be in
X ¼ ðx; yÞjxf P 0; yP 0; ð1þ cÞy þ x6 1; c ¼ k=1� q� kg:

This region is positively invariant under the solution map for (32).

The same break-even concentrations as in Section 6 will be important. k1, k2, and kþ2 are defined
as solutions of
m1k1
a1 þ k1

¼ 1;

m2k2
a2 þ k2

¼ 1;

m2k
þ
2

a2 þ kþ2
¼ 1

1� k � q
:

There are only two boundary rest points which we label as
E0 ¼ ð0; 0Þ;

E1 ¼ ðk1; 0Þ;

E0 is a washout state and E1 is a plasmid-free state; both are undesirable from the standpoint of a
bioreactor. An interior rest point must satisfy the system
1� x� ðcþ 1Þy ¼ kþ2 ;
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x e�lcy m1k
þ
2

a1 þ kþ2

�
� 1

�
þ q
1� k � q

y ¼ 0:
Thus one seeks a root of
F ðyÞ ¼ ½1� kþ2 � ðcþ 1Þy� e�lcy m1k
þ
2

a1 þ kþ2

�
� 1

�
þ q
1� k � q

y ¼ 0: ð33Þ
The analysis of the zeros of (33) is somewhat complicated and we refer the reader to [8] for
the details and only state the results. If 0 < k2 < k1 < 1 and 0 < kþ2 < 1, then there exists a
unique interior rest point E� ¼ ðx�; y�Þ. If 0 < k1 < k2 < 1, and 0 < kþ2 < 1, there exists a un-
ique number l� such that (i) if l < l�, there are no interior rest points and (ii) if l > l�, there
are exactly two interior rest points, E� ¼ ðx�; y�Þ and ÊE ¼ ðx̂x; ŷyÞ. The case 0 < k2 < k1 < 1 in-
dicates that y is the better competitor, and while it cannot eliminate its competitor, it forces
the existence of a coexistence state. In the case 0 < k1 < k2 < 1, x is the better competitor and
will eliminate y unless the effect of the toxin is sufficiently great, reflected in the conditions by
l > l�.

The eigenvalues of the variational matrix determine the local stability of the rest points. Table
14 summarizes the nature of the rest points [8].

The Dulac criterion can be used to show that there are no periodic orbits. When there are no
periodic orbits, the Poincar�ee–Bendixson Theorem applies and all omega limit sets are rest points.
This can be used to make local results global when there is a unique locally stable rest point. Table
15 summarizes the results of [8].

The last case represents bistable attractors, which we have seen earlier, and the outcome de-
pends on the initial conditions, each rest point attracting an open set.

We now change the assumption that growth is inhibited to the assumption that the inhibitor
produced by y is lethal to x. The system will no longer be reducible to a two dimension system
where tools such as the Poincar�ee–Bendixson Theorem are so helpful. The basic model is
14

t point Existence Local asymptotic stability

Always k1 > 1, kþ2 > 1

0 < k1 < 1 k1 < kþ2
0 < k2 < k1 < 1, 0 < kþ2 < 1 Existence implies stability

nd E� 0 < k1 < k2 < 1, 0 < kþ2 < 1, l > l� One of ÊE or E� is stable, E1 is stable

15

ditions Attractor

1, k1 > 1 E0

1, 0 < k1 < 1 E1

1, 0 < k1 < k2 < 1 E�

1, 0 < k2 < k1 < 1, l < l� E1

1, 0 < k2 < k1 < 1, l > l� E1 and one of E� or ÊE
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S0 ¼ ðSð0Þ � SÞD� m1S
a1 þ S

x
c1

� m2S
a2 þ S

y
c2
;

x0 ¼ x
m1S

a1 þ S

�
� D� cp

�
þ q

m2S
a2 þ S

y;

y0 ¼ y ð1
�

� q� kÞ m2S
a2 þ S

� D
�
;

p0 ¼ k
m2Sy
a2 þ S

� Dp:

ð34Þ
This model was investigated in [45] and the presentation here follows that work. Simple in-
equalities yield the boundedness of solutions. With the usual scaling, the assumption that c1 ¼ c2,
and one reduction of order using zðtÞ ¼ pðtÞ � k

1�k�q yðtÞ, the non-dimensional, limiting system
takes the form
S0 ¼ 1� S � m1S
a1 þ S

x� m2S
a2 þ S

y;

x0 ¼ x
m1S

a1 þ S

�
� 1� c

k
1� k � q

y
�
þ q

m2S
a2 þ S

y;

y0 ¼ y ð1
�

� q� kÞ m2S
a2 þ S

� 1

�
:

ð35Þ
Three parameters will be important for the system (35), k1, k
þ
2 and k̂k. To emphasize its dependence

on q we write kþ2 ðqÞ. These parameters are defined as solutions of the following equations.
m1k1
a1 þ k1

¼ 1;

m2k
þ
2 ðqÞ

a2k
þ
2 ðqÞ

¼ 1

1� k � q
;

m1k̂k

a1 þ k̂k
� 1� ckð1� k̂kÞ ¼ 0:
Clearly, k1 < k̂k. There are two potential rest points on the boundary:
E0 ¼ ð1; 0; 0Þ; ð36Þ

E1 ¼ ðk1; 1� k1; 0Þ: ð37Þ
The rest points in the interior are more complicated to determine. Let Ec ¼ ðSc; xc; ycÞ denote a
potential interior rest point. From the equations for y in (35) one has at once that Sc ¼ kþ2 ðqÞ.
There remains then two equations to be satisfied:
1� kþ2 ðqÞ �
m1k

þ
2 ðqÞ

a1 þ kþ2 ðqÞ
xc �

m2k
þ
2 ðqÞ

a2 þ kþ2 ðqÞ
yc ¼ 0;
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xc
m1k

þ
2 ðqÞ

a1 þ kþ2 ðqÞ

�
� 1� c

k
1� k � q

yc

�
þ q

m2k
þ
2 ðqÞ

a2 þ kþ2 ðqÞ
yc ¼ 0:
From the first equation one can see that to have xc > 0, it must be the case that
0 < yc < ð1� k � qÞð1� kþ2 ðqÞÞ where use has been made of the definition of kþ2 ðqÞ. Combining
the two equations, one has that yc is a root of HðzÞ ¼ 0 where
HðzÞ ¼ a1 þ kþ2 ðqÞ
m1k

þ
2 ðqÞ

1

�
� kþ2 ðqÞ �

1

1� k � q
z
�

m1k
þ
2 ðqÞ

a1 þ kþ2 ðqÞ

�
� 1� ck

1� k � q
z
�
þ qz
1� k � q

:

Since
Hð0Þ < 0 if kþ2 ðqÞ < k1; and kþ2 ðqÞ < 1;

Hðð1� k � qÞð1� kþ2 ðqÞÞÞ > 0;
HðzÞ has a zero between 0 and ð1� k � qÞð1� kþ2 ðqÞÞ. Moreover, HðzÞ is a parabola with a po-
sitive z2 coefficient, so this root is unique. We label this point as E2cðqÞ ¼ ðkþ2 ðqÞ; x2cðqÞ; y2cðqÞÞ and
note that limq!0 E2cðqÞ ¼ ðkþ2 ; 0; y2cð0ÞÞ which in the case of the internal inhibitor without plasmid
components was labeled E2.

However, if 0 < k1 < kþ2 ðqÞ < 1, then Hð0Þ > 0 and Hð1� k � qÞð1� kþ2 ðqÞÞ > 0, so there are
either no roots or two roots depending on where the minimum of HðzÞ falls. Denote the location
of the minimum by y�. If Hðy�Þ < 0, there are two roots, yc and y2c of HðyÞ ¼ 0 satisfying
0 < yc < y� < y2c < ð1� kþ2 ðqÞÞð1� k � qÞ. Then there are two equilibria which we denote by
Ec ¼ ðkþ2 ðqÞ; xc; ycÞ and E2c ¼ ðkþ2 ðqÞ; x2c; y2cÞ. If one of the two conditions
0 < x� < ð1� kþ2 ðqÞÞÞð1� k � qÞ; ð38Þ

Hðx�Þ < 0 ð39Þ

fails, then there are no interior equilibria. When q ¼ 0, the condition that Hðx�Þ < 0 is satisfied
and the condition kþ2 ðqÞ < x� < ð1� kþ2 ð0ÞÞð1� kÞ reduces to kþ2 ð0Þ < k̂k. (See Section 6. This can
form the basis of a perturbation argument.) The local stability is summarized in Table 16.

The question of the global asymptotic behavior is totally open. An approach would seem to be
the construction of an appropriate Liapunov function and this construction is a challenge for
some future investigator. However, when q ¼ 0, the system is well understood as demonstrated in
Section 6. The parameter q is small and so perturbation techniques are useful. In particular the
work on the perturbation of a globally stable steady state found in [46] can be applied. This
16

Condition Rest points Local attractors

1 kþ2 ð0Þ > 1 E0 E0

1 kþ2 ð0Þ > 1 E0, E1 E1

0 < kþ2 ð0Þ < k1 E0, E1, Ec2 Ec2

0 < k1 < kþ2 ð0Þ conditions 38 and 39 E0, E1, Ec2, Ec E1, E2c

0 < k1 < kþ2 ð0Þ one of conditions 38 and 39 fails E0, E1 E1



88 S.-B. Hsu, P. Waltman / Mathematical Biosciences 187 (2004) 53–91
application is somewhat delicate and the reader is referred to [45] for the details. The results there
take the form

Theorem 2. For q suciently small:

i(i) If kþ2 ðqÞ < k1, then Ec2 is globally asymptotically stable,
(ii) If k1 < kþ2 ðqÞ and one of (38) or (39) does not hold, then E1 is globally asymptotically stable.

Even for q small, there is more to be established.
10. Discussion

We have reviewed a collection of established models of the effect of a chemical agent on
competing organisms in continuous culture. We have used the word �inhibitor� to cover a variety
of such agents, pollutants, antibiotics, allelopathic agents, etc. We distinguish two types of
sources, either input directly into the system (the external inhibitor problem) or generated by one
of the competitors as anti-competitor toxins (the internal inhibitor problem). The former is, in
ecology, a detoxification problem; one organisms clears the inhibitor while the other undergoes an
adverse reaction, but it also has a role in bioreactors to control the emergence of the wild type in
genetically altered organisms. The effect of the inhibitor has been divided into two types, an agent
which inhibits the growth of the organism and an agent which is lethal to the organism. The
internal inhibitor often is the result of a plasmid and we have added plasmid dynamics to these
models.

The models have been cast in standard chemostat terms, with the Monod (or Michaelis–
Menten) form of the uptake, the chemostat being both the model of an open system in ecology
and of a bioreactor in biotechnology. Various pieces of the problem have been studied in more
generality but to distinguish the fine points of the generalization would bring us into a discussion
of more mathematics than we think appropriate in a survey.

The survey illustrates that problems which are biological similar, and eventually are shown to
have similar qualitative properties, require very different mathematical techniques. Small changes
in the mathematical model require very different approaches. For example, in the models of the
external inhibitor, retarding growth or being lethal provides similar phase portraits, but the
mathematical techniques required are very different. Adding plasmid dynamics to the model,
while complicating the mathematics, does not illustrate radically new behavior. On the other hand
the difference in behavior between internal and external inhibitors is significant.

Although we have been concerned with mathematical models the experimental literature on
these problems is vast. As a example of an agent which inhibits growth we note that Fig. 1(c) of
Hansen and Hubbell [1] plots the effect of Nalidixic acid on the intrinsic rate of increase of two
strains of Escherichia coli. Table 1 of this paper also presents realistic parameters for a chemostat
experiment. Most of the research in biotechnology using chemostats and inhibitors is concerned
with plasmid bearing organisms. The principal focus is on plasmid stabilty – the fraction of
plasmid-bearing organisms that remain. A data set for the loss of the plasmid in a chemostat
experiment, creating a plasmid-free organism, can be found in the text of Shuler and Kargi [16],
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Table 13.4, where the table gives the fraction of plasmid-free cells indexed by time and the number
of generations. For a more recent example, see Brigidi et al. [47], Fig. 1. Note that the graph plots
the proportion of plasmid-free cells for three different plasmids.

Fig. 1 of L€ooser [48], also shows the fraction of plasmid-bearing cells surviving in a chemostat
experiment. Then ampicillin was used to create the selective medium and seven chemostat ex-
periments were performed using different ampicillin and nutrient concentrations. The results are
presented in Figs. 2–4 of that paper. All of the results are of steady state type, and we are not
aware of any experiments that produced the oscillatory behavior that the model shows is possible.
A following paper by L€ooser and Ray [49] match these results with a mathematical model (slightly
different than the one presented here). In the mathematical model the inhibitor is assumed to
decrease the growth rate although not with the exponential factor used in [2]. Another set of
experiments with two plasmids and ampicillin resistance can be found in Yazani and Mukherjee
[50].

For the internal inhibitor, most of the information concerns bacteriocins, of which the colicins
are an important part. The ecology and evolution of bacteriocins was reviewed by Riley and
Gordon [51]. The classic experiments were those of Chao and Levin [12] who found the bistable
attactors (they did not use this terminology) illustrated in Fig. 4. Riley and Wertz [52] note that
colicin is �primarily produced under times of stress�, which motivates models requiring what we
have called dynamic allocation at the end of Section 6, that is, a model that reflects the state of the
competition. The function kðx; yÞ used there would have to involve a threshold.

The basic model of Section 7 was applied by Patnaik [53] to experimental data on S. cerevisiae
(from Cheng et al. [54] and on E. coli (from Morsrati et al. [55]). See also Patnaik [56].

These problems can be viewed as part of a larger class of interactions which can be classified as
�spiteful�. Iwasa et al. [57] define this to mean behaviors that reduce the fitness of other individuals,
using energy, time or other resources. The internal inhibitor models here would fit this classifi-
cation. They note that this behavior is found in group-living mammals and among terrestrial
plants. They provide an alternate model with dynamics on a lattice (approximating colonies in
agar) which in the completely mixed case yields Lotka–Volterra type equations. Another alternate
model is that of Czaran et al. [58], which is based on cellular automaton.
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