CHAPTER 1
Mathematical Modeling in Biology

1.1 Introduction

Mathematics permeates biclogy. Unfortunately, this is far from obvious to most
students of biology. While many biology courses cover results and insights from
mathematical models, they rarely describe how these results were obtained.
Typically, it is only when biclogists start reading research articles that they
come to appreciate just how common mathematical modeling is in biology. For
many students, this realization comes long after they have chosen the major-
ity of their courses, making it difficult to build the mathematical background
needed to appreciate and feel comfortable with the mathematics that they
encounter. This book is a guide to help any student develop this appreciation
and comfort. To motivate learning more mathematics, we devote this first
chapter to emphasizing just how common mathematical models are in biology
and to highlighting some of the important ways in which mathematics has
shaped our understanding of biology.

Let’s begin with some numbers. According to BIOSIS, 886,101 articles pub-
lished in biological journals contain the keyword “math” (including math,
mathematical, mathematics, etc.) as of April 2006. Some of these articles are in
specialized journals in mathematical biology, such as the Bulletin of Mathematical
Biology, the Journal of Mathematical Biology, Mathematical Biosciences, and
Theoretical Population Biology. Many others, however, are published in the most
prestigious journals in science, including Nature and Science. Such a coarse sur-
vey, however, misses a large fraction of articles describing theoretical models
without using “math” as a keyword.

We performed a more in-depth survey of all of the articles published in one
year within some popular ecology and evolution journals (Table 1.1). Given
that virtually every statistical analysis is based on an underlying mathemati-
cal model, nearly all articles relied on mathematics to some extent. With a
stricter definition that excludes papers whose only use of mathematics is
through statistical analyses, 35% of Evolution and Ecology articles and nearly
60% of American Naturalist articles reported predictions or results obtained
using mathematical models. The extent of mathematical analysis varied
greatly, but mathematical equations appeared in almost all of these articles.
Furthermore, many of the articles used computer simulations to describe
changes that occur over time in the populations under study. Such simula-
tions can be incredibly helpful, allowing the reader to “see” what the equa-
tions predict and allowing authors to obtain results from even the most
complicated models.
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TABLE 1.1 _
Use of mathematical models in full-length journal articles

Number of  General use  Specificuse  Equations

Journal (in 2001) articles of models* of models® presented®
American Naturalist 105 96% 59% 58%
Ecology 274 100% 35% 38%
Evolution 231 100% 35% 33%

aGeneral use: Used a matherniatical model in the broadest sense, including statistical ot
phylogenetic analyses with a mathematical basis (e.g., ANOVA, regression, etc.).

bSpecific use: Used a mathematical model to obtain results (excluding cases that
involve only statistical or phylogenetic analyses); the model may or may not be derived
in the paper.

“Equations presented: Excluding standard statistical equations.

An important motivation for learning mathematical biology is that mathe-
matical equations typically “say” more than the surrounding text. Given the
space constraints of many journals, authors often leave out intermediate steps
or fail to state every assumption that they have made. Being able to read and
interpret mathematical equations is therefore extremely important, both to
verify the conclusions of an author and to evaluate the limitations of unstated
assumptions.

To describe all of the biological insights that have come from mathematical
models would be an impossible task. Therefore, we focus the rest of this chap-
ter on the insights obtained from mathematical models in one tiny, but criti-
cally important, area of biclogy: the ecology and epidemiology of the human
immunodeficiency virus (HIV). As we shall see, mathematical models have
allowed biologists to understand otherwise hidden aspects of HIV, they have
produced testable predictions about how HIV replicates and spreads, and they
have generated forecasts that improve the efficacy of prevention and health
care programs.

1.2 HIV

On June 5, 1981, the Morbidity and Mortality Weekly Report of the Centers for
Disease Control reported the deaths of five males in Los Angeles, all of whom
had died from pneumocystis, 2 form of pneumonia that rarely causes death in
individuals with healthy immune systems. Since this first report, acquired
immunodeficiency syndrome (AIDS), as the disease has come to be known, has
reached epidemic proportions, having caused more than 20 million deaths
worldwide (Joint United Nations Programme ©n HIV/AIDS 2004b). AIDS
results from the deterioration of the immune system, which then fails to ward
off various cancers (e.g., Karposi's sarcoma) and infectious agents (e.g., the pro-
tozoa that cause pneurmnocystis, the viruses that cause retinitis, and the bacteria
that cause tuberculosis), The collapse of the immune systern is caused by infec-
tion with the human immunodeficiency virus (Figure 1.1). HIV is transmitted
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Figure 1.1: The human immunodeficiency virus.
Electron micrograph shows HIV co-cultivated
with human lymphocytes (courtesy of CDC;

A, Harrison, P. Feorino, and E. L. Palmer),

from infected to susceptible individuals by the exchange of bodily fluids, pri-
marily through sexual intercourse without condoms, sharing of unsterilized
needles, or transfusion with infected blood supplies (although routine testing
for HIV in donated blood has reduced the risk of infection through blood trans-
fusion from 1 in 2500 to 1 in 250,000 [Revelle 1995]).

Once inside the body, HIV particles infect white blood cells by attaching to
the CD4 protein embedded in the cell membranes of helper T cells,
macrophages, and dendritic cells. The genome of the virus, which is made up
of RNA, then enters these cells and is reverse transcribed into DNA, which is
subseguently incorporated into the genome of the host. (The fact that normal
transcription from DNA to RNA is reversed is why HIV is called a retrovirus.)
The virus may then remain latent within the genome of the host cell or become .
activated, in which case it is transcribed to produce both the proteins necessary
to replicate and daughter RNA particles (Figure 1.2), When actively 1eplicating,
HIV can produce hundreds of daughter viruses per day per host cell (Dimitrov
et al. 1993), often killing the host cell in the process. These virus particles {or
vizions) then go on to infect other CD4-bearing cells, repeating the process.
Eventually, without treatment, the population of CD4+ helper T cells declines
dramatically from about 1000 cells per cubic millimeter of blood to about 200
cells, signaling the onset of AIDS (Figure 1.3).
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virus preferentially attacks activated helper T cells; by destroying such cells,
HIV can eliminate the very cells that recognize and fight other infections.

Early on in the epidemic, the median period between infection with HIV-1
(the strain most common in North America) and the onset of AIDS was about
ten years (Bacchetti and Moss 1989). The median survival time following the
onset of an AIDS-associated condition (e.g., Karposi's sarcoma or pneumocys-
tis) was just under one year (Bacchetti et al. 1988). Survival statistics have
improved dramatically with the development of effective antiretroviral thera-
pies, such as protease inhibitors, which first became available in 1995, and with
the advent of combination drug therapy, which uses multiple drugs to target
different steps in the replication cycle of HIV. In San Francisco, the median
survival after diagnosis with an AIDS-related opportunistic infection rose from
17 months between 1990 and 1994 to 59 months between 1995 and 1998
(San Francisco Department of Public Health 2000). Unfortunately, modern
drug therapies are extremely expensive (typically over US$10,000 per patient
per year) and cannot be afforded by the majority of individuals infected with
HIV worldwide. Until effective therapy or vaccines become freely available,
HIV will continue to take a devastating toll (Figure 1.4; Joint United Nations
Programme on HIV/AIDS 2004a).

1.3 Models of HIV/AIDS

Mathematical modeling has been a very important tool in HIV/AIDS reseaxch.
Every aspect of the natural history, treatment, and prevention of HIV has been
the subject of mathematical models, from the thermodynamic characteristics
of HIV (e.g., Hansson and Aqvist 1995; Kroeger Smith et al. 1995; Markgren
et al. 2001) to its replication rate both within and among individuals (e.g.,
Funk et al. 2001; Jacquez et al. 1994; Koopman et al. 1997; Levin et al. 1996;
Lloyd 2001; Phillips 1996). In the following sections, we desciibe four of these
models in more detail. These models were chosen because of their implications
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A variable of a model is
a quantity that changes
over time.

The dynamics of a
systemn is the pattern
of changes that occur
over time.
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Figure 1.4: Number of individuals living with HIV. The number of adults and children esti-
mated to be living with HIV is shown (Jeint United Nations Programme on HIV/AIDS, 2004a).

for our understanding of HIV, but they also illustrate the sorts of techniques
that are described in the rest of this book.

1.3.1 Dynamics of HIV after Initial Infection

After an individual is infected by HIV, the number of virions within the
bloodstream skyrockets and then plummets again (Figure 1.3). This period of
primary HIV infection is known as the acute phase; it lasts approximately 100
days and often leads to the onset of flu-like symptoms (Perrin and Yerly 1997;
Schacker et al. 1996). The rapid rise in virus particles reflects the infection of
CD4+ cells and the replication of HIV within actively infected host cells. But
what causes the decline in virus particles? The most obvious answer is that the
immune system acts to recognize and suppress the viral infection (Koup et al.
1994), Phillips (1996), however, suggested an alternative explanation: the num-
ber of virions might decline because most of the susceptible CD4+ cells have
already been infected and thus there are fewer host cells to infect. Phillips
developed a model to assess whether this alternative explanation could mimic
the observed rise and fall of virions in the blood stream over the right time
frame. In his model, there are four variables (i.e., four quantities that change
over time): R, L, E, and V. R represents the number of activated but uninfected
CD4+ cells, L represents the number of latently infected cells, E represents the
number of actively infected cells, and V represents the number of virions in the
blood stream. The dynamics of each variable (i.e., how the variable changes over
time) depend on the values of the remaining variables. For example, the num-
ber of viruses changes over time in a manner that depends on the number of
cells infected with actively replicating HIV. In the next chapter, we describe the
steps involved in building models such as this one (see Chapter 2, Box 2.4).

Phillips’ model contains several paraimeters, which are quantities that are
constant over time (see Chapter 2, Box 2.4}, In particular, the death rate of
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actively infected cells (5) and the death rate of viruses (¢) are parameters in the
model and are not allowed to change over time, (8§ and ¢ are the lower-case
Greek letters “delta” and “sigma.” Greek letters are often used in models, espe-
cially for terms that remain constant (“parameters”). See Table 2.1 for a com-
plete list of Greek letters.) Thus, Phillips built into his model the crucial
assumption that the body does not get better at eliminating infected cells or
virus particles over time, under the null hypothesis that the immune system
does not mount a defense against HIV during the acute phase. To model the
progression of HIV within the body, Phillips then needed values for each of the
parameters in the model. Unfortunately, few data existed at the time for many
of them. To proceed, Phillips chose plausible values for each parameter and
numerically ran the model (a technique that we will describe in Chapter 4).
The numerical solution for the number of virus particles, V, predicted from
Phillips’ model is plotted in Figure 1.5 (compare to Figure 1.3). Phillips then
showed that similar patterns are observed under a variety of different parame-
ter values. In particular, he observed that the number of virus particles typically
rose and then fell by several orders of magnitude over a period of a few days to
weeks. (An order of magnitude refers to a factor of ten. The number 100 is two
orders of magnitude larger than one.)

Phillips thus came to the counterintuitive conclusion that “the reduction in
virus concentration during acute infection may not reflect the ability of the
HIV-specific immune response to control the virus replication” (p. 497, Phillips
1996). The wording of this conclusion is critical and insightful. Phillips did not
use his model to prove that the immune system plays no role in viral dynam-
ics during primary infection. In fact, his model cannot say one way or the other
whether there is a relevant HIV-specific immune response during this time
period. What Phillips can say is that an immune response is not necessary to
explain the observed data. This result illustrates an important principle in
modeling: the principle of parsimony. The principle of parsimony states that one
should prefer models containing as few variables and parameters as possible to
describe the essential attributes of a system. Paraphrasing Albert Einstein, a
model should be as simple as possible, but no simpler. In Phillips’ case, he

Figure 1.5: Number of virus particles in the blood
stream. Based on the model and parameter values
of Phillips (1996), the number of virions per mm?
blood (V) is shown as a function of the number of
days since primary infection {y-axis is plotted on a
log-scale). Around a month after infection, the
number of virus particles declines by about 100-fold
even without any specific response by the immune
system. See Box 2.4 in Chapter 2 for more details.

A parameter of a

model is a quantity that
remains constant over
time.

According to the
principle of parsimony, a
simple explanation {or
model) should be
preferred over a complex
explanation if both are
equally compatible with
the data.
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could have added more variables describing an immune response during acute
infection, but his results showed that adding such complexity was unnecessary.
A simpler hypothesis can explain the rise and fall of HIV in the bloodstream:
as infection proceeds, a decline in susceptible host cells reduces the rate at
which virus is produced. Without having a good reason to invoke a more
complex model, the principle of parsimony encourages us to stick with simple
hypotheses.

Phillips’ model accomplished a number of important things. First, it
changed our view of what was possible. Without such a model, it would seem
unlikely that a dramatic viral peak and decline could be caused by the dynam-
ics of a CD4+ cell population without an immune response. Second, it pro-
duced testable predictions. One prediction noted by Phillips is that the viral
peak and decline should be observed even in individuals that do not mount an
immune response {i.e., do not produce anti-HIV antibodies) over this time
period. Indeed, this prediction has been confirmed in several patients (Koup
et al. 1994; Phillips 1996). Employing a more quantitative test, Stafford et al.
(2000} fitted a version of Phillips’ model to data on the viral load in ten
patients from several time points during primary HIV infection; they found a
good fit to the data within the first 100 days following infection. Third,
Phillips’ model generated a useful null hypothesis: viral dynamics do not
reflect an immune response. This null hypothesis might be wrong, but at least
it can be tested.

Phillips acknowledged that this null hypothesis can be rejected as a descrip-
tion of the longer-term dynamics of HIV. His model predicts that the viral load
should reach an equilibrium (as described in Chapter 8), but observations indi-
cate that the viral load slowly increases over the long term as the immune sys-
tem weakens (the chronic phase in Figure 1.3). Furthermore, Schmitz et al.
(1999) directly tested Phillips’ hypothesis by examining the role of the immurne
system in rhesus monkeys infected with the simian immunodeficiency virus
(SIV), the equivalent of HIV in monkeys. By injecting a particular antibody,
Schmitz et al. were able to eliminate most CD8+ lymphocytes, which are the
killer T cells thought to prevent the replication of HIV and SIV. Compared to
control monkeys, the experimentally treated monkeys showed a much more
shallow decline in virus load following the peak. This proves that, at least in
monkeys, an immune response does play some role in the viral dynamics
observed during primary infection. Nevertheless, the peak viral load was
observed at similar levels in antibody-treated and untreated monkeys. Thus, an
immune response was not responsible for stalling viral growth during the acute
phase, which is best explained, instead, by a decline in the number of unin-
fected CD4+ cells {the targets of HIV and SIV),

1.3.2 Replication Rate of HIV

After the initial acute phase of infection, HIV circulates within the body at
low levels until the onset of AIDS (Figure 1.3). These low levels suggest that
virus particles might be produced at a low rate per day. This suggestion was,
however, shown to be false using mathematical models in conjunction with
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experimental data (Ho et al. 1995; Nowak et al, 1995; Wei et al. 1995). According
to the mathematical models, low numbers of virus particles can result from a
low rate of viral production, P, or from a high rate of clearing virus from the
body, ¢ (Ho et al. 1995). Determining which of these possibilities is correct is
not possible using only the observed number of virus particles in untreated
patients. These landmark papers pointed out, however, that you can tease apart
these possibilities using mathematical models that predict viral dynamics fol-
lowing the application of antiretroviral drugs {(Ho et al. 1995; Nowak et al.
1995; Wei et al. 1995). For example, Ho et al, (1993) treated HIV-infected
patients with ABT-538, an antiviral drug that effectively prevents HIV replica-
tion (at least in the short term). Thus, the experimental treatment reduced viral
production P to zero, causing the viral load to plummet within the blood-
stream. The rate at which the viruses decreased in frequency was consistent
with a simple mathematical equation that we will encounter in Chapter 6
(equation (6.10b)). Fitting the mathematical model to the data allowed the
authors to obtain an important and surprising result: virus particles were rap-
idly cleared from the body, with the half-life of HIV in plasma being only a cou-
ple of days. The authors thus inferred that the production rate of viruses must
normally be enormous, on the order of a billion new viruses produced per day,
in order to maintain HIV in the face of high clearance rates. Later work, using
more precise experimental data and more detailed modeling, demonstrated
that the turnover of HIV is even more rapid, with the half-life of HIV being less
than a day and with over 10 billion viruses produced per day. This is a remark-
able insight, as it was once thought that relatively little was happening during
the chronic phase of HIV infection (Perelson et al. 1996).

These papers had an enormous impact on our understanding of HIV. One of
the most important conclusions to follow from this work was that we must
expect genetic diversity to be rapidly generated in HIV as a result of the high rate
of viral production. If resistance to an antiviral drug requires a particular muta-
tiomn, it is virtually guaranteed that this mutation will arise rapidly. Only combi-
nation drug therapies, requiring multiple mutations for resistance, have a
long-term chance of success given the enormous evolutionary potential of HIV,

1.3.3 The Effects of Antiretroviral Therapy on the Spread of HIV

The specter of AIDS has softened following the development of effective
antiretroviral therapies (ART), involving various drug combinations that have
allowed people to live longer with HIV. Public health officials are concerned,
however, that this respite will be short lived for two reasons: (a) people may be
more inclined to engage in risky behavior knowing that ART exists and (b) HIV
might evolve resistance to these drugs, causing the drugs to become ineffective.
With these possibilities in mind, Blower et al. (2000) constructed a mathemat-
ical model to predict how drug therapy might affect the number of new cases
of HIV and the number of deaths due to AIDS. Their model was tailored to data
from the San Francisco gay community, where approximately 30% of men
were infected with HIV (HIV+)} and approximately 50% of these were taking
combination ART.
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the body, which decreases the probability that HIV will be transmitted through
an exchange of bodily fluids. Over a ten-year period, the cumulative number of
new cases of HIV is expected to be lower with ART than without as long as risky
behavior increases by less than 80%.

Blower et al. also modeled the evolution of drug resistance by including two
more variables to describe individuals who are infected with resistant strains of
HIV and are either unireated (Ry) or treated (Ry). They allowed drug resistance
to evolve at a certain rate in HIV+ individuals under ART and to affect most of
the parameters in their model. The evolution of drug resistance led to a more
pessimistic outlook, in terms of both the number of AIDS cases and the num-
ber of new infections, but the effect was relatively slight over the ten-year
period that was considered. Over this time period, the rate at which HIV+ indi-
viduals enter into the treatment program and changes in risky behavior were
much more important determinants of the forecasted number of HIV+ cases
and deaths due to AIDS.

By exploring the future of HIV and AIDS within the San Francisco gay com-
munity, the model of Blower et al. (2000) identified a major health care prob-
lem: if gay men are willing to take greater risks following the introduction of
ART, many more new cases of HIV and many more deaths from AIDS will result
than if safe sex practices remain in place. Unfortunately, recent trends in San
Francisco have indicated that the level of risky behavior has increased dramat-
ically in recent years (San Francisco Department of Public Health 2000). The
percentage of gay men reporting sex with multiple partners and unprotected

Tl
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intercourse rose from 23% in 1994 to 47% in 2000 according to the STOP AIDS
project. During the same period of time, the percentage of gay men reporting
using condoms all of the time fell from 70% to 50%. With such large increases
in risky behavior, there has been an overall increase in HIV incidence, as pre-
dicted by the model of Blower et al. Among blood samples drawn at anony-
mous testing sites, the incidence of HIV increased from 1.3% in 1997 to 4.2%
in 1999 (San Francisco Department of Public Health 2000). Similar increases in
incidence have been observed in Ontario, Canada (Calzavara et al. 2002).

1.3.4 Estimating the Number of New Infections

Preventing the spread of HIV requires the coordination of social, educa-
tional, and medical services. In many countries these services are in very lim-
ited supply and must be targeted to the populations most at risk of infection.
The level of risk of an individual cannot, however, be directly measured and
must be inferred. In contrast, it is relatively straightforward to determine who
Is already infected with HIV, as long as blood samples from representative indi-
viduals can be tested. But these infected individuals may have harbored HIV for
many years and may not represent the demographic group most at risk of
becoming newly infected. Long-term longitudinal studies, where thousands of
uninfected individuals are regularly tested over many years, are the best way to
determine risk factors. These studies are costly, however, and take many years
before the data become available for use in prevention programs.

Alternatively, mathematical models can be used to estimate the number of
new infections from data on the number of currently infected individuals. To
determine the age group most at risk of infection, Williams et al. (2001) mod-
eled changes in the HIV status of women aged 14 to 49 in the rural district of
Hlabisa in South Africa. We analyze this model in the on-line suppilementary
material to Chapter 10 (see Sup. Mat. 10.2). HIV has been spreading in South
Africa at an exponential rate since the early 1980s, with the number of HIV-
infected people doubling approximately every two years. In Hlabisa, a broad
survey of HIV status was possible because almost all pregnant women (95%) in
this region attend hospitals or clinics for prenatal care. During 1998, 3163 of
these women gave blood samples that were tested for HIV. The prevalence of
HIV among these women (i.e., the fraction of women that were HIV4) is
shown in Figure 1.7a,

Williams et al. (2001) developed a model to estimate the risk of contracting
HIV (see the on-line Supplemnentary Material to Chapter 10, Sup. Mat. 10.2).
The more specific aim of the study was to estimate the probability per vear that
an uninfected woman in Hlabisa becomes newly infected with HIV, for women
of various ages (this probability is known as the incidence of HIV). To estimate
this unknown risk, their model related the probability of contracting HIV and the
death rate from AIDS to the changes that should occur from year to year in the
fraction of infected women. This study uses a model in a fundamentally dif-
ferent way from the previous examples. In all three previous examples, models
were used to project into the future, describing how a population (of cells or of
individuals) was expected to change over time given various parameters. In this
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case, however, Williams et al. knew the state of the population in 1998, but
they wanted to infer something about the parameters that might have led to
that pattern. Thus, models can be used both to generate predictions about the
future and to make inferences about the past.

Figure 1.7a shows data from 1998 on the number of wormen of age & infected
with HIV (prevalence Pa,1998) and compares this to the inferred risk of infection
from HIV as a function of age (tisk 7, 1900} Dased on the model. The peak age of
i Tisk (21-22 years) is very nearly equal to the peak prevalence (23 years). This
! indicates that most HIV+ women attending hospitals and clinics in Hlibasi
' became infected within the last couple of years. Williams et al. (2001) noted
that the shortness of the period since infection most likely reflects the fact that
| HIV is spreading rapidly through the region, so that many infections are newer
than would be expected if HIV were well established within the population
(endemic). Another important result is that the current prevalence data do not
give a very good picture of who is most at risk. This is illustrated in Figure 1.7b,
which gives the risk of contracting HIV for women at each age relative to that
! expected from the prevalence data. This figure itlustrates that teenagers are up to
' 75% more likely to contract HIV than would be expected from the low preva-
lence of HIV among younger women. In the absence of a long-term longitudinal
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study, the estimates provided by Williams et al. (2001) help to assess the risk of
HIV infection as a function of age and can be used to better target programs
designed to halt the spread of HIV in South Africa.

1.4 Concluding Message

Through reading this book, we hope that you will come to appreciate just how
useful mathematical modeling can be in biology. Models can help to guide a
scientist’s intuition about how various processes interact; they can point out
logical flaws in an argument; they can identify testable hypotheses, generate
key predictions, and suggest appropriate experiments; and they can reshape
fields by providing new ways of thinking about a problem.

But mathematical models also have their limitations. The results of an
analysis are only as interesting as the biological questions motivating a model.
And even if a scientist has identified an interesting question, it may turn out
that a model addressing the question is hopelessly complicated and can be
solved only by making a series of assumptions, some of which are dubious.
Finally, models, by themselves, can only tell us what is possible. Models can tell
us, for example, how HIV levels within the body or HIV incidence within a
population might change over time. But without data, collected in the field or
the lab, mathematical models can never tell us what has happened or what is
happening. Thus, it would be foolish to promote mathematical biology above
other areas in biclogy. Equally, it would be foolish to avoid mathematics alto-
gether. Science will progress faster and further by a marriage of mathematical
and empirical biology. This marriage will be even more successful if more bigl-
ogists can use math, when needed, to advance their own research goals. It is
toward this end that we devote this book.

Further Reading

For general information about the immune system and the evolution and ecology of

infectious diseases, see

* Frank, 5. A. 2002. Immunology and Evolution of Infectious Diseases. Princeton University
Press, Princeton, N.J,

Further information concerning the life cycle, health impact, and societal implications

of HIV is available through the links on the book website (http://press.princeton.edu/

titles/8458.html) and at www.zoology.ubc.ca/biomath. Also, see

* Moore, R. D. and Bartlett, J. G. (1998) Improving HIV therapy. Scientific American 279:
§4-93,
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