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Abstract

While biological controls have been successfully and frequently implemented by nature and human,
plausible mathematical models are yet to be found to explain the often observed deterministic extinctions of

both pest and control agent in such processes. In this paper we study a three trophic level food chain model

with ratio-dependent Michaelis–Menten type functional responses. We shall show that this model is rich in

boundary dynamics and is capable of generating such extinction dynamics. Two trophic level Michaelis–

Menten type ratio-dependent predator–prey system was globally and systematically analyzed in details

recently. A distinct and realistic feature of ratio-dependence is its capability of producing the extinction of

prey species, and hence the collapse of the system. Another distinctive feature of this model is that its

dynamical outcomes may depend on initial populations levels. Theses features, if preserved in a three
trophic food chain model, make it appealing for modelling certain biological control processes (where prey

is a plant species, middle predator as a pest, and top predator as a biological control agent) where the

simultaneous extinctions of pest and control agent is the hallmark of their successes and are usually de-

pendent on the amount of control agent. Our results indicate that this extinction dynamics and sensitivity to

initial population levels are not only preserved, but also enriched in the three trophic level food chain

model. Specifically, we provide partial answers to questions such as: under what scenarios a potential bi-

ological control may be successful, and when it may fail. We also study the questions such as what con-

ditions ensure the coexistence of all the three species in the forms of a stable steady state and limit cycle,
respectively. A multiple attractor scenario is found.
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1. Introduction

Biological control is, generally, man�s use of a specially chosen living organism to control a
particular pest. This chosen organism might be a predator, parasite, or disease which will attack
the harmful insect. It is a form of manipulating nature to increase a desired effect. A complete
biological control program may range from choosing a pesticide which will be least harmful to
beneficial insects, to raising and releasing one insect to have it attack another, almost like a �living
insecticide�. In short, biological control is a tool to be considered in constructing an integrated
pest management scheme for protected plant production. It may also be a more economical al-
ternative to some insecticides. Some biological control measures can actually prevent economic
damage to agricultural crops. Unlike most insecticides, biological controls are often very specific
for a particular pest. Other helpful insects, animals, or people can go completely unaffected or
disturbed by their use.
In this paper we shall study a three trophic level simple food chain model with ratio-dependence

and Michaelis–Menten (or Holling type II) functional response and its applications to biological
control. Before we introduce the model, we would like to present a brief historical account of the
biological relevance of two different types of predator–prey models: the classical prey-dependent
ones and the controversial [1,2] ratio-dependent ones.
The classical prey-dependent predator–prey system often takes the general form of

x0ðtÞ ¼ xgðxÞ � cypðxÞ;
y0ðtÞ ¼ ðpðxÞ � dÞy;

ð1:1Þ

where x, y stand for prey and predator density, respectively. pðxÞ is the so-called predator func-
tional response and c; d > 0 are the conversion rate and predator�s death rate respectively. If
pðxÞ ¼ ðmx=aþ xÞ, gðxÞ ¼ rð1� ðx=KÞÞ, then (1.1) becomes the following well-known predator–
prey model with Michaelis–Menten functional response [3,4]:

x0ðtÞ ¼ rx 1
�

� x
K

�
� c mxy

aþ x ; xð0Þ > 0;

y0ðtÞ ¼ mx
aþ x

�
� d
�
y; yð0Þ > 0;

ð1:2Þ

where r, K, a, m are positive constants that stand for prey intrinsic growth rate, carrying capacity,
half saturation constant, maximal predator growth rate, respectively. This model exhibits the well-
known �paradox of enrichment� formulated by Hairston et al. [5] and Rosenzweig [6] which states
that according to model (1.2), enriching a predator–prey system (increasing the carrying capacity
K) will cause an increase in the equilibrium density of the predator but not in that of the prey, and
will destabilize the positive equilibrium (the positive steady state changes from stable to unstable
as K increases) and thus increases the possibility of stochastic extinction of predator. Unfortu-
nately, numerous field observations provide contrary to this �paradox of enrichment�. What often
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observed in nature is that fertilization does increases the prey density, does not destabilize a stable
steady state and fails to increase the amplitude of oscillations in systems that already cycle [7].
A variation of the �paradox of enrichment� is the so called �biological control paradox�, which

was recently brought into discussion by Luck [8], stating that according to (1.2), we cannot have
both a low and stable prey equilibrium density. However, in reality, there are numerous examples
of successful biological control where the prey are maintained at densities less than 2% of their
carrying capacities [9]. This clearly indicates that the paradox of biological control is not intrinsic
to predator–prey interactions. Another noteworthy prediction from model (1.1) is that prey and
predator species can not extinct simultaneously (mutual extinction). This, however, clearly con-
tradicts Gause�s classic observation of mutual extinction in the protozoans, Paramecium and its
predator Didinium [2,10].
Recently there is a growing evidences [11–13] that in some situations, especially when predator

have to search for food (and therefore have to share or compete for food), a more suitable general
predator–prey theory should be based on the so called ratio-dependent theory, which can be
roughly stated as that the per capita predator growth rate should be a function of the ratio of prey
to predator abundance. This is supported by numerous field and laboratory experiments and
observations [11,14]. Generally, a ratio-dependent predator–prey model takes the form

x0ðtÞ ¼ xf ðxÞ � cypðx=yÞ; xð0Þ > 0;
y0ðtÞ ¼ ðpðx=yÞ � dÞy; yð0Þ > 0:

ð1:3Þ

If pðxÞ ¼ ðmx=aþ xÞ, f ðxÞ ¼ rð1� ðx=KÞÞ then (1.3) becomes a ratio-dependent predator–prey
model with Michaelis–Menten functional response:

x0ðtÞ ¼ rx 1
�

� x
K

�
� c mxy

xþ ay ; xð0Þ > 0;

y0ðtÞ ¼ mx
xþ ay

�
� d
�
y; yð0Þ > 0:

ð1:4Þ

System (1.4) was studied in details by Hsu, Hwang and Kuang [15], Kuang and Beretta [16], Jost
et al. [17], Berezovskaya et al. [18], Xiao and Ruan [19], Freedman and Mathsen [20], and others.
Geometrically, the differences of prey-dependent model (1.2) and ratio-dependent model (1.4) are
obvious, the former has a vertical predator isocline, while the latter has a slanted one passing
through the origin. There are more differences in their prey isoclines. The analysis of (1.4) by Hsu,
Hwang and Kuang [15] shows that the ratio-dependent models are capable of producing far richer
and biologically more realistic dynamics. Specifically, it will not produce the paradox of biological
control and the paradox of enrichment. It also allows mutual extinction as a possible outcome of a
given predator–prey interaction [16,17]. For some other models relevant to ratio dependence, the
interested are referred to [21,22].
For the mathematical models of multiple species interaction, we studied a model of two pre-

dators competing for a single prey with ratio-dependence in [23]. Another important mathe-
matical model of multiple species interaction is the so-called food chain model. In the paper of
Freedman and Waltman [24], the authors studied the persistence of a classical (i.e. prey-depen-
dent) three species food chain model. Chiu and Hsu [25] discussed the extinction of top predator
in a classical three-level food chain model with Michaelis–Menten functional response. Hastings
and Powell [26], Klebanoff and Hastings [27,28], McCann and Yodzis [29], Kuznetsov and Rinaldi
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[30], Muratori and Rinaldi [31] and others studied structures relevant to chaos in three species
classical food chains. Freedman and So [32] studied the global stability and persistence of a simple
but general food chain model. Kuang [33] studied similar questions for a diffusive version of that
simple food chain model. All these prey-dependent models, while mathematically interesting,
inherit the mechanism that generates the factitious paradox of enrichment and fail to produce
realistic extinction dynamics such as the collapse of the system.
Mathematical models of many biological control processes naturally call for differential systems

with three equations describing the growth of plant, pest and top predator (control agent), re-
spectively. The interaction of these three species often forms a simple food chain. Clearly, the
classical food chain model is ill suited for this task. Indeed, researchers that adopt the classical
prey-dependent models are forced to resort to stochastic effects to explain the frequently observed
deterministic mutual extinctions of host (pest) and control agent (predator or parasite of the host)
[34]. This motivates us to consider the following three trophic level food chain model with ratio-
dependence:

x0ðtÞ ¼ rx 1
�

� x
K

�
� 1

g1

m1xy
a1y þ x

; xð0Þ > 0;

y0ðtÞ ¼ m1xy
a1y þ x

� d1y �
1

g2

m2yz
a2zþ y

; yð0Þ > 0;

z0ðtÞ ¼ m2yz
a2zþ y

� d2z; zð0Þ > 0;

ð1:5Þ

where x, y, z stand for the population density of prey, predator and top predator, respectively. For
i ¼ 1; 2; gi;mi; ai; di are the yield constants, maximal predator growth rates, half-saturation con-
stants and predator�s death rates respectively. r and K, as before, are the prey intrinsic growth rate
and carrying capacity respectively. Observe that the simple relation of these three species: z prey
on y and only on y, and y prey on x and nutrient recycling is not accounted for. This simple
relation produces the so-called simple food chain. A distinct feature of simple food chain is the so-
called domino effect: if one species dies out, all the species at higher trophic level die out as well.
For simplicity, we non-dimensionalizes the system (1.5) with the following scaling:

t! rt; x! x
K
; y ! a1

K
y; z! a2a1

K
z;

m1 !
m1
r
; d1 !

d1
r
; m2 !

m2
r
; d2 !

d2
r
;

then the system (1.5) takes the form

x0ðtÞ ¼ xð1� xÞ � c1xy
xþ y ¼ F1ðx; yÞ; xð0Þ > 0;

y0ðtÞ ¼ m1xy
xþ y � d1y �

c2yz
y þ z ¼ F2ðx; y; zÞ; yð0Þ > 0;

z0ðtÞ ¼ m2yz
y þ z� d2z ¼ F3ðy; zÞ; zð0Þ > 0;

ð1:6Þ

where

c1 ¼
m1

g1a1r
; c2 ¼

m2
g2a2r

: ð1:7Þ
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We note that in (1.6), the functions Fiðx; y; zÞ, i ¼ 1; 2; 3 are defined for x > 0, y > 0, z > 0. Ob-
viously

lim
ðx;yÞ!ð0;0Þ

F1ðx; yÞ ¼ 0;

lim
ðx;y;zÞ!ð0;0;0Þ

F2ðx; y; zÞ ¼ 0; ð1:8Þ

and

lim
ðy;zÞ!ð0;0Þ

F3ðy; zÞ ¼ 0:

If we extend the domain of Fiðx; y; zÞ to fðx; y; zÞ : xP 0; yP 0; zP 0g by (1.8), then ð0; 0; 0Þ is an
equilibrium of (1.6), and the stable manifold of ð0; 0; 0Þ contains the two-dimensional set
fðx; y; zÞ : x ¼ 0; yP 0; zP 0g.
In this paper we shall answer the following questions: What may cause the extinction of the top

predator? What promotes the coexistence of all the three species? Do they coexist in the form of
steady state or oscillation? How the outcomes depend on initial populations? When a biological
control may succeed, and when it may fail?
The rest of this paper is organized as follows. In Section 2, we find the necessary and sufficient

conditions for the existence of interior equilibrium Ec ¼ ðxc; yc; zcÞ. We show that if Ec does not
exist then the top predator goes to extinction. We also provide scenarios when biological control is
feasible and when it may fail. In Section 3, we study coexistence state and the stability of the
interior equilibrium Ec. In Section 4, we discuss various scenarios where the outcomes depend on
the initial populations. In particular, we found a tri-stability scenario that distinct solutions can be
attracted to the origin, pest free steady state and positive steady state simultaneously for the same
set of parameter. Section 5 presents additional biological implications of our mathematical
findings and proposes some well motivated mathematical questions for future study. Throughout
this manuscript, extensive graphical and computational works are presented to illustrate our
mathematical observations and findings.

2. Extinction scenarios

In this section we study the asymptotic behavior of the solution of the following non-dimen-
sional three species food chain model with ratio-dependence:

x0ðtÞ ¼ xð1� xÞ � c1xy
xþ y ; xð0Þ > 0; ð2:1Þ

y0ðtÞ ¼ m1xy
xþ y � d1y �

c2yz
y þ z ; yð0Þ > 0; ð2:2Þ

z0ðtÞ ¼ m2yz
y þ z� d2z; zð0Þ > 0: ð2:3Þ

We shall examine conditions that render certain species extinct. Scenarios include the extinction of
species x (and hence y and z), the extinction of y (and hence z) but not x, the extinction of top
predator z (but not x and y).
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First we consider the existence and uniqueness of the interior equilibrium Ec ¼ ðxc; yc; zcÞ,
xc; yc; zc > 0. From Eq. (2.3), yc, zc satisfy

m2yc
yc þ zc

� d2 ¼ 0;

or

zc ¼
m2 � d2
d2

yc: ð2:4Þ

From Eq. (2.1), xc, yc satisfy

ð1� xcÞ �
c1yc
xc þ yc

¼ 0;

or

yc ¼
xcð1� xcÞ
c1 � ð1� xcÞ

: ð2:5Þ

From Eq. (2.2), xc, yc, zc satisfy
m1xc
xc þ yc

� d1 ¼
c2zc
zc þ yc

; ð2:6Þ

substituting (2.4) into (2.6) yields

m1xc
xc þ yc

� d1 ¼ c2
m2 � d2
m2

;

or

yc ¼ ðA� 1Þxc; ð2:7Þ
where

A ¼ m1
c2ððm2 � d2Þ=m2Þ þ d1

: ð2:8Þ

Substituting (2.7) into (2.5) yields

xc ¼
1

A
ðc1 þ Að1� c1ÞÞ: ð2:9Þ

We have the following lemma.

Lemma 2.1. The interior equilibrium Ec ¼ ðxc; yc; zcÞ of the system (2.1)–(2.3) exists if and only if the
following (i)–(iii) are satisfied:

(i) m2 > d2,
(ii) A > 1,
(iii) 0 < c1 < A=ðA� 1Þ.

Furthermore xc, yc, zc are given by (2.4), (2.7) and (2.9).
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Next we shall show that if the interior equilibrium Ec does not exist then the top predator goes
to extinction. Before we prove the extinction result, we need the following lemma.

Lemma 2.2. The solution xðtÞ, yðtÞ, zðtÞ of (2.1)–(2.3) are positive and bounded for all tP 0.

Proof. Obviously the solutions xðtÞ, yðtÞ, zðtÞ are positive for tP 0 and given any � > 0, xðtÞ6 1þ �
for t sufficiently large. From (2.1), it follows that

m1
c1
x

�
þ y þ m2

c2
z
�0

¼ m1
c1
xð1� xÞ � d1y � d2

m2
c2
z

6
m1
c1
x�minfd1; d2g y

�
þ m2
c2
z
�

6 n �minfd1; d2g
m1
c1
x

�
þ y þ m2

c2
z
�
;

where n ¼ ðm1=c1Þð1þminfd1; d2gÞð1þ �Þ.
Then

m1
c1
xðtÞ þ yðtÞ þ m2

c2
zðtÞ6 n

minfd1; d2g
þ �

for t sufficiently large. Hence we complete the proof of Lemma 2.2. �

In the following lemma, we prove a straightforward result on the extinction of top predator.
Namely, if the death rate of top predator is no less than its maximum birth rate, then it will face
extinction.

Lemma 2.3. If m26 d2 then limt!1 zðtÞ ¼ 0.

Proof. Observe that when m26 d2, we have m2y=ðy þ zÞ < m2, and hence z0ðtÞ < 0. Therefore
limt!1 zðtÞ exists and non-negative. We claim limt!1 zðtÞ ¼ 0. Otherwise, there is a positive
constant g, such that limt!1 zðtÞ ¼ g. Given g > � > 0, there exists t0 > 0, such that g � � <
zðtÞ < g þ � for tP t0. In addition, there is a positive constant ymax such that yðtÞ < ymax for tP t0.
From Eq. (2.3), it follows that

zðtÞ ¼ zðt0Þ exp
Z t

t0

m2yðsÞ
yðsÞ þ zðsÞ

��
� d2

�
ds
�

6 zðt0Þ exp
Z t

t0

m2yðsÞ
yðsÞ þ g � �

��
� d2

�
ds
�

6 zðt0Þ exp
�ðg � �Þd2
ymax þ ðg � �Þ ðt

�
� t0Þ

�
! 0 as t! 1

which is a contradiction under the assumption m26 d2. �

Lemma 2.4. Let m2 > d2 and 0 < A6 1 where A is given by (2.8). Then limt!1 yðtÞ ¼ 0 and
limt!1 zðtÞ ¼ 0.
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Proof. Since 0 < A6 1, from (2.8) it follows that ðc2=m2Þðm2 � d2Þ þ d1 ¼ m1 þ g for some g P 0.
Compute

y 0

y
� c2
m2

z0

z
¼ m1x
xþ y � d1 � c2 þ

c2
m2
d2 ¼ m1

�
� m1y
xþ y � d1

�
� c2
m2

ðm2 � d2Þ ¼ � m1y
xþ y � g < 0:

Hence

yðtÞ6CðzðtÞÞc2=m2 exp
Z t

t0

�
� m1yðsÞ
xðsÞ þ yðsÞ ds

�
; tP 0 ð2:10Þ

for some constant C > 0. We claim that limt!1 yðtÞ ¼ 0. Assume otherwise, then the positivity
and boundedness of the solution together imply the existence of a positive constantM, such that
jy0ðtÞj < M for all tP 0, This in turn implies the uniform continuity of yðtÞ and henceZ 1

0

yðtÞdt ¼ þ1:

From Lemma 2.2, we see that there is a positive constant L, such that xðtÞ þ yðtÞ < L for tP 0. We
thus haveZ t

0

m1yðsÞ
xðsÞ þ yðsÞ dsP

m1
L

Z t

0

yðsÞds:

This shows that limt!1 expð
R t
0
�ðm1yðsÞ=xðsÞ þ yðsÞÞdsÞ ¼ 0 and hence limt!1 yðtÞ ¼ 0.

If limt!1 zðtÞ ¼ g > 0 then for small � > 0 there exists t0 > 0 such that 0 < yðtÞ < � and
g � � < zðtÞ < g þ � for tP t0. From (2.3) it follows that

zðtÞ ¼ zðt0Þ exp
Z t

tp

m2yðsÞ
yðsÞ þ zðsÞ

� 
� d2

�
ds

!

6 zðt0Þ exp
Z t

t0

m2�
g � �

��
� d2

�
ds
�

! 0

as t! 1. If limt!1 zðtÞ does not exist then z ¼ lim supt!1 zðtÞ > 0. Then there exists ftng " 1
such that z0ðtnÞ ¼ 0 and zðtnÞ ! z > 0 as n! 1. From (2.3) we have

m2yðtnÞ
yðtnÞ þ zðtnÞ

¼ d2: ð2:11Þ

Letting n! 1 in (2.11) yields a desired contradiction. �

Our first theorem of this section gives conditions for the total extinction of all the three species
and conditions of the extinction of both middle and top predators (but not the prey species x).
The first part of the theorem states that if the middle predator is a high capacity and aggressive
consumer (characterized by large values of c1) and there is a shortage of prey to begin with, then
all three species will go extinct. The second part of the theorem suggests that if middle predator is
a low capacity consumer, then prey species will persist. If we are to think x as a plant species, y as
a pest species and z as a species used to control the pest, then these conditions provide scenarios
when such biological control may or may not be successful (success is characterized by
limt!1ðxðtÞ; yðtÞ; zðtÞÞ ¼ ð1; 0; 0Þ).
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Theorem 2.1. Assume that m2 > d2 and 0 < A6 1. If c1 > 1þ d1 þ c2 and xð0Þ=yð0Þ < ðc1 � ð1þ
d1 þ c2ÞÞ=ð1þ d1 þ c2Þ 
 d, then limt!1ðxðtÞ; yðtÞ; zðtÞÞ ¼ ð0; 0; 0Þ. If c1 < 1, then limt!1ðxðtÞ;
yðtÞ; zðtÞÞ ¼ ð1; 0; 0Þ.

Proof. From Lemma 2.4, we have limt!1 yðtÞ ¼ 0 and limt!1 zðtÞ ¼ 0.
Assume first that c1 > 1þ d1 þ c2 and xð0Þ=yð0Þ < d. We claim that xðtÞ=yðtÞ < d for all t > 0.

Otherwise, there is a t1 > 0 such that xðtÞ=yðtÞ < d for t 2 ½0; t1� and xðt1Þ=yðt1Þ ¼ d. Thus for
t 2 ½0; t1�, we have

x0ðtÞ < x� c1x
1þ ðx=yÞ 6 ð1� c1=ð1þ dÞÞx

and

y0 > ð�d1 � c2Þy
which yield

xðtÞ < xð0Þ expðð1� c1=ð1þ dÞÞtÞ ¼ xð0Þ expð�ðd1 þ c2ÞtÞ
and

yðtÞ > yð0Þ expð�ðd1 þ c2ÞtÞ;

respectively. Therefore, for t 2 ½0; t1�, we have
xðtÞ
yðtÞ <

½xð0Þ expðð1� c1=ð1þ dÞÞtÞ�
yð0Þ expð�ðd1 þ c2ÞtÞ½ � ¼ xð0Þ

yð0Þ < d:

This proves our claim. Clearly, the proof of this claim also shows that for all t > 0, we have
xðtÞ < xð0Þ expð�ðd1 þ c2ÞtÞ ! 0 as t! 1. This proves that limt!1ðxðtÞ; yðtÞ; zðtÞÞ ¼ ð0; 0; 0Þ.
Assume now that c1 < 1. Then we have x0ðtÞ > x� x2 � c1x ¼ xð1� c1 � xÞ. Simple comparison

argument shows that lim inf t!1 xðtÞP 1� c1 > 0. Hence, for any c1 > e > 0, there is a t2 > 0,
such that for t > t2, yðtÞ < ½ð1� c1Þ=2�½e=ðc1 � eÞ� and xðtÞ > ð1� c1Þ=2. This implies that for
t2 > 0, c1y=ðxþ yÞ < e. Hence

x0ðtÞ > xð1� e � xÞ:
Again, simple comparison argument shows that lim inf t!1 xðtÞP 1� e. Letting e ! 0, we have
limt!1ðxðtÞ; yðtÞ; zðtÞÞ ¼ ð1; 0; 0Þ. �

Lemma 2.5. If m2 > d2, A > 1 and c1PA=ðA� 1Þ, then limt!1 zðtÞ ¼ 0.

Proof. The assumptions A > 1 and c1PA=ðA� 1Þ imply ð1=c1Þ � 1þ ð1=AÞ ¼ �g6 0. One has

m1
c1

x0

x
� y

0

y
þ c2
m2

z0

z
¼ m1
c1

ð1� xÞ � m1 þ d1 þ c2 �
c2
m2
d2

¼ m1
c1

� m1
c1
x� m1 þ

m1
A

6 � m1
c1
x < 0:
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We have

ðxðtÞÞm1=c1ðzðtÞÞc2=m2 6CðyðtÞÞ exp
�
�
Z t

0

m1
c1
xðsÞds

�

for some C > 0. We claim

xðtÞzðtÞ ! 0 as t! 1: ð2:12Þ
If not, then limt!1 xðtÞ 6¼ 0 (and limt!1 zðtÞ 6¼ 0). A similar argument for the proof of

R1
0
yðtÞdt ¼

þ1 in the previous lemma yields thatZ 1

0

xðtÞdt ¼ þ1

which implies (2.12), proving the claim.
Next, we claim that limt!1 zðtÞ ¼ 0. If not, then either limt!1 zðtÞ exists with positive limit or it

does not exist. Assume first the former case. By (2.12), limt!1 zðtÞ ¼ z > 0 implies limt!1 xðtÞ ¼ 0.
Using the same arguments in Lemma 2.4, we can show that limt!1 yðtÞ ¼ 0 which implies
limt!1 zðtÞ ¼ 0 and this is a contradiction. Assume now the latter case, we have lim supt!1 zðtÞ ¼
z > 0. There exists ftng " 1, z0ðtnÞ ¼ 0 and zðtnÞ ! z as n! 1. We thus have

0 ¼ z0ðtnÞ ¼ zðtnÞ
m2yðtnÞ

yðtnÞ þ zðtnÞ

	
� d2




and

yðtnÞ ! y ¼ d2z
m2 � d2

> 0:

From (2.12), we have xðtnÞ ! 0 as n! 1. Hence P 
 ð0; y; zÞ 2 X, the x-limit set of the trajectory
fðxðtÞ; yðtÞ; zðtÞÞ : tP 0g. By the invariance of x-limit set, it follows that the backward trajectory
of P is contained in X. We claim that the backward trajectory fðxðtÞ; yðtÞ; zðtÞÞ : t6 0g through P
is unbounded. Obviously xðtÞ 
 0. Let s ¼ �t, then

dy
ds

¼ d1y þ
c2yz
y þ z P d1y

and

yðsÞP yð0Þ expðd1sÞ ! 1 as s ! þ1:

This contradicts to the boundedness of the solution. �

Combining Lemmas 2.3–2.5 we have the following intuitive and sharp extinction results of top
predator.

Theorem 2.2. If the interior equilibrium Ec does not exist, then the top predator of model (2.1)–(2.3)
will die out. Specifically, if one of the following three conditions holds, (i) m26 d2; (ii)
m2 > d2; 0 < A6 1; (iii) m2 > d2;A > 1 and c1PA=ðA� 1Þ, then limt!1 zðtÞ ¼ 0.
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Let c2 ¼ 0:5, m2 ¼ 2, d1 ¼ 1, d2 ¼ 1 and let c1, m1 be parameters. Fig. 1 illustrates the parameter
ranges for various extinction scenarios.
Our next theorem gives conditions for the origin as a global attractor for system (2.1)–(2.3).

Naturally, Ec does not exist in such scenario.

Theorem 2.3. If c1 > 1, and m1P ðc1=c1 � 1Þðd1 þ c2Þ, then the origin is globally attractive. That is,
limt!1ðxðtÞ; yðtÞ; zðtÞÞ ¼ ð0; 0; 0Þ.

Proof. Due to the domino effect of the simple food chain, we see that it is sufficient to show that
limt!1 xðtÞ ¼ 0. Let UðtÞ ¼ xðtÞ=ðyðtÞÞa, where a will be determined later. We have

U 0ðtÞ ¼ x
ya
1

	
þ aðd1 þ c2Þ � x� am1xþ c1y

xþ y � ac2y
y þ z



: ð2:13Þ

Let

b1 ¼ 1þ aðd1 þ c2 � m1Þ; and b2 ¼ 1þ aðd1 þ c2Þ � c1:

Fig. 1. Here, c2 ¼ 0:5, m2 ¼ 2, d1 ¼ 1, d2 ¼ 1 and let c1, m1 be parameters. In D1 ¼ fðc1;m1Þjc1 > 1;m1 P
c1ðd1 þ c2Þ=ðc1 � 1Þg, the origin attracts all positive solutions. In D2 ¼ fðc1;m1Þjc1 2 ð0; 1Þ;m16 d1 þ c2ðm2 � d2Þ=m2g,
ð1; 0; 0Þ attracts all positive solutions. In D3 ¼ fðc1;m1Þjd1 þ c2ðm2 � d2Þ=m2 < m1 < ðc1=ðc1 � 1ÞÞðd1 þ c2ðm2 � d2Þ=
m2Þg, Ec exists.
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Then (2.13) can be rewritten as

U 0ðtÞ ¼ U
b1xþ b2y
xþ y

	
� x� ac2y

y þ z



: ð2:14Þ

c1 > 1, and m1P ðc1=c1 � 1Þðd1 þ c2Þ imply the existence of a such that

1

m1 � d1 � c2
6
c1
m1

6 a6
c1 � 1
d1 þ c2

:

For such a, b1 and b2 are negative. Hence, we have U
0ðtÞ < �xðtÞUðtÞ which yields

UðtÞ6Uð0Þ exp
�
�
Z t

0

xðsÞds
�
:

Similar argument as the proof of limt!1 yðtÞ ¼ 0 in Lemma 2.4 shows that limt!1 xðtÞ ¼ 0,
proving the theorem. �

3. Stability of Ec

In this section, we assume that Ec exists and study its local stability. This will yield some an-
alytic (explicit) and computational (implicit) conditions for both stable and oscillatory coexistence
of all three species.
The variational matrix of (2.1)–(2.3) at Ec is given by

M ¼
m11 m12 0

m21 m22 m23
0 m32 m33

2
4

3
5

ðx;y;zÞ¼ðxc;yc;zcÞ

;

where

m11 ¼ xc

"
� 1þ c1yc

ðxc þ ycÞ2

#
; ð3:1Þ

m22 ¼ yc

"
� m1xc
ðxc þ ycÞ2

þ c2zc
ðzc þ ycÞ2

#
; ð3:2Þ

m33 ¼ � m2yczc
ðyc þ zcÞ2

; ð3:3Þ

m12 ¼ � c1x2c
ðxc þ ycÞ2

; m21 ¼
m1y2c

ðxc þ ycÞ2
; m23 ¼ � c2y2c

ðyc þ zcÞ2
; m32 ¼

m2z2c
ðyc þ zcÞ2

:

The characteristic polynomial of M is

f ðkÞ ¼ detðM � kIÞ ¼ ðm11 � kÞðm22 � kÞðm33 � kÞ � m12m21ðm33 � kÞ � m23m32ðm11 � kÞ:
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Then the roots k of f ðkÞ ¼ 0 satisfy
k3 þ A1k2 þ A2k þ A3 ¼ 0;

where
A1 ¼ �m11 � m22 � m33;
A2 ¼ m22m33 þ m11m22 þ m11m33 � m12m21 � m23m32;
A3 ¼ m12m21m33 þ m11m23m32 � m11m22m33:

Straightforward computation shows that

A3 ¼ � detM ¼ m1m2x2cy
2
c zc= ðyc½ þ zcÞðxc þ ycÞ�2 > 0:

From Roth–Hurwitz criterion, Ec is local asymptotically stable if and only if A1 > 0, A3 > 0 and
A1A2 > A3.
In the following proposition, a sufficient condition is given for the local stability of Ec.

Proposition 3.1. If m11 < 0 and m22 < 0 then Ec is locally asymptotically stable.

Proof. From the signs of those defined mij, i; j ¼ 1; 2; 3, it is easy to verify A1 > 0, A2 > 0 and
A3 > 0. Expand A1A2 and calculate A1A2 � A3, then

A1A2 � A3 ¼ �ðm11Þ2m22 � ðm11Þ2m33 þ m11m12m21 � ðm22Þ2m33 � m11ðm22Þ2 � 2m11m22m33
þ m22m12m21 þ m23m32m22 � m22ðm33Þ2 � m11ðm33Þ2 þ m23m32m33 > 0:

Hence Ec is local asymptotically stable. �

We can express the conditions m11 < 0, m22 < 0 in terms of c1, c2. From (3.1), (2.4), (2.7), and
(2.9), we have

m11 ¼ xc

�
� 1þ c1ðA� 1Þxc

A2x2c

�
< 0 ð3:4Þ

if and only if c1ðA� 1Þ < A2xc ¼ Að1þ ð1� c1ÞðA� 1ÞÞ. Clearly, 0 < c16 1 implies m11 < 0. If
c1 > 1, then m11 < 0 if and only if 1 < A < ðc1=ðc1 � 1ÞÞ1=2.
From (3.2), (2.4), (2.7), (2.8), and (2.9), we have

m22 < 0() c2zc
ðzc þ ycÞ2

<
m1xc

ðxc þ ycÞ2

() c2
ðm2=d2Þ � 1
ðm2=d2Þ2

<
m1ðA� 1Þ

A2

¼ m1
1

A

�
� 1

A2

�
¼ c2

m2 � d2
m2

�
þ d1

�
� 1

m1
c2
m2 � d2
m2

�
þ d1

�2
() 0 < gðc2Þ;

where

gðc2Þ ¼ � 1

m1
c2
m2 � d2
m2

�
þ d1

�2
þ c2

m2 � d2
m2

� �
þ d1 � c2

ðm2=d2Þ � 1
ðm2=d2Þ2

:

Since gð0Þ > 0 and g m1�d1
ðm2�d2Þ=m2

� �
< 0, there exist c�2 > 0 such that gðc�2Þ ¼ 0.
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Then

0 < c2 < c�2 () m22 < 0:

To discuss the instability of Ec we consider the possibility of choosing c1, c2 satisfying A1 < 0. By
(3.1)–(3.3), we have (Fig. 2)

A1 ¼ I1 þ I2;
where

I1 ¼ xc þ ðm1 � c1Þ
ðA� 1Þ
A2

and

I2 ¼ ðm2 � c2Þ
ðm2=d2Þ � 1
ðm2=d2Þ2

:

Observe that A ¼ 1 if and only if c2 ¼ m2ðm1 � d1Þ=ðm2 � d2Þ. Hence we assume
m2 < m2ðm1 � d1Þ=ðm2 � d2Þ; i:e: m2 � d2 < m1 � d1 ð3:5Þ

Fig. 2. The parameter region for the the asymptotical stability of Ec given by Proposition 3.1, when m1 ¼ 1:5, m2 ¼ 2,
d1 ¼ 1, d2 ¼ 1. The region, denoted by R, is bounded by the two axes and the two curves defined by c2 ¼ c�2 and
A ¼ ðc1=ðc1 � 1ÞÞ1=2.
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and consider the case

m2 < c2 <
m2ðm1 � d1Þ
m2 � d2

;

then it follows that I2 < 0.
Notice that

I1 ¼
1

A
ð1þ ð1� c1ÞðA� 1ÞÞ þ ðm1 � c1Þ

A� 1
A2

:

If A � 1 then c2 � m2ðm1 � d1Þ=ðm2 � d2Þ, I1 � 1 and

I2 � ðm2 � m2ðm1 � d1Þ=ðm2 � d2ÞÞ
ððm2=d2Þ � 1Þ

ðm2=d2Þ2

¼ ðd2=m2Þ½ðm2 � d2Þ � ðm1 � d1Þ� < 0:
If we choose mi, di, i ¼ 1; 2 such that

1þ ½ðm2 � d2Þ � ðm1 � d1Þ�d2=m2 < 0;

Fig. 3. The parameter region for the the asymptotical stability of Ec, when m1 ¼ 10, m2 ¼ 2, d1 ¼ 1, d2 ¼ 1. The dot line
filled region, denoted by R2, is bounded by the two axes and the two curves defined by A ¼ c1=ðc1 � 1Þ and A1A2 ¼ A3.
A1 ¼ 0 divides the figure into two parts, on the top and right side of it, A1 < 0. So, even though A1A2 > A3 on the top of
the existence region of Ec, Ec remains unstable.
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or
m2=d2 < ðm1 � d1Þ � ðm2 � d2Þ; ð3:6Þ

then A1 < 0 for c2 near m2ðm1 � d1Þ=ðm2 � d2Þ. Thus we have the following proposition.

Proposition 3.2. Let (3.5) and (3.6) hold. Then Ec is unstable for m2 < c2 < m2ðm1 � d1Þ=ðm2 � d2Þ
and c2 is near m2ðm1 � d1Þ=ðm2 � d2Þ.

There are two possible ways for Ec to change from stable to unstable: (1) at least one of its
eigenvalues change from negative to positive, and hence at the transition stage, at least one of the
eigenvalue assumes the value zero; (2) the real part of a pair of complex-conjugates eigenvalues
changes sign. Since when Ec exist, we always have � detM ¼ �k1k2k3 > 0, we see only the second
way is actually taken. In Fig. 3, we choose m1 ¼ 10, m2 ¼ 2, d1 ¼ d2 ¼ 1 and we plot the regions
R1, R2, R3 in the c1–c2 parameter plane where the equilibrium Ec does not exist in R1; in region R2,
Ec is local asymptotically stable with one negative eigenvalue, two complex-conjugates with
negative real parts; in region R3, Ec is a saddle point with one negative eigenvalue and two
complex-conjugates with positive real parts. Clearly, Hopf bifurcation occurs if the parameters c1,
c2 cross the boundary of R2 and R3, oR2 \ oR3.

Fig. 4. (a) Depicts a positive periodic solution of system (2.1)–(2.3), where m1 ¼ 10, m2 ¼ 2, d1 ¼ 1, d2 ¼ 1, c1 ¼ 1,
c2 ¼ 11, xð0Þ ¼ 0:7046, yð0Þ ¼ 0:2941 and zð0Þ ¼ 0:2853. (b) Depicts the time course of this periodic solution. When we
reduce c2 from 11 to 10, Ec becomes asymptotically stable. (c) Depicts the time course of a solution tending to Ec.
(d) Shows that without top predator, species x and y coexist in the form of a stable steady state.
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In Fig. 4(a), we show a positive periodic solution of system (2.1)–(2.3), where m1 ¼ 10, m2 ¼ 2,
d1 ¼ 1, d2 ¼ 1, c1 ¼ 1, c2 ¼ 11, xð0Þ ¼ 0:7046, yð0Þ ¼ 0:2941 and zð0Þ ¼ 0:2853. For this set of
parameters, Fig. 3 indicates that system (2.1)–(2.3) has a unstable positive steady state Ec. Ex-
tensive simulation study of this example shows that the solutions are very sensitive to the initial
populations and the system appears to have a chaotic attractor resembles a closed band. Most of
its solutions approaches this band along a tea cup shape surface (see Fig. 8(b) in Section 5).
A plausible biological implication of our findings in this section (see Fig. 3) is that given a

predator (y) prey (x) interaction, the successful introduction of a top predator (z) is very sensitive
to the its effectiveness in catching the predator y, which is measured by the parameter c2. If
predator y is a voracious one (characterized as having high values of c1) for prey x, then both high
(may over prey on y) and low effective top predators z are doomed. If predator y is not so vo-
racious for prey x, then high effective top predators z are doomed while low and medium effective
ones may endure. Moreover, low effective top predators likely coexist with species y and thus x in
the form of stable equilibria, while medium effective top predators may generate population
fluctuations in all the three species.
The implications of this section on biological control is somewhat subtle, we leave this to the

discussion section.

4. Sensitivity to initial conditions

It is well known that prey-dependent simple food chain models can generate chaotic dynamics
[26–30], which indicates that for some parameters, solutions can be very sensitive to initial
populations. We shall see that the ratio-dependent simple food chain model (2.1)–(2.3) is also
capable of generating these sensitive dynamics.
Theorem 2.2 implies that no complex dynamics is possible for system (2.1)–(2.3) if it has no

positive steady state Ec. Hence, in this section, we do not assume that the interior equilibrium
Ec ¼ ðxc; yc; zcÞ does not exists. In the xyz space, in addition to the possible Ec, there maybe
equilibria ð0; 0; 0Þ, ð1; 0; 0Þ, ðx�; y�; 0Þ. From the Eq. (2.3), the equilibrium ðx�; y�; 0Þ or the periodic
orbit C in xy plane (if C exists where C ¼ fðx�ðtÞ; y�ðtÞ; 0Þ : 06 t6 Tg, T is the period) is unstable in
z-direction (when zð0Þ is small and ðxð0Þ; yð0Þ; zð0ÞÞ is near to the steady state ðx�; y�; 0Þ or
C ¼ fðx�ðtÞ; y�ðtÞ; 0Þ : 06 t6 Tg, we have lnðzðT Þ=zð0ÞÞ � expððm2 � d2ÞT Þ > 1). Hence we only
need to discuss the possibilities of trajectories tending to ð0; 0; 0Þ or ð1; 0; 0Þ. First we consider the
conditions for the existence of trajectories tending to ð0; 0; 0Þ. To this end, we introduce u ¼ x=y
and v ¼ y=z and the change of variables ðx; y; zÞ ! ðu; y; vÞ. Then (2.1)–(2.3) is converted in to
following system:

u0 ¼ u
1þ u ðAuþ BÞ � u

2y þ c2u
1þ v ; uð0Þ > 0; ð4:1Þ

y0 ¼ m1u
1þ u

�
� d1

�
y � c2y

1þ v ; yð0Þ > 0; ð4:2Þ

v0 ¼ m1u
1þ u

�	
� d1

�
� c2
vþ 1�

m2v
1þ v

�
� d2

�

v; vð0Þ > 0; ð4:3Þ
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where

A ¼ 1� ðm1 � d1Þ; B ¼ 1� c1 þ d1: ð4:4Þ
The system (4.1), (4.2) and (4.3) has the following equilibria of the form

E00 ¼ ð0; 0; 0Þ;
E01 ¼ ð0; 0; v̂vÞ; v̂v > 0;

E10 ¼ ðh�
1; 0; 0Þ; h�

1 > 0;

E11 ¼ ðh�
2; 0; ~vvÞ; h�

2 > 0; ~vv > 0:

From the domino effect of simple food chain, it is easy to see that

1. ðuðtÞ; yðtÞ; vðtÞÞ ! E00 as t! 1 if and only if ðxðtÞ; yðtÞ; zðtÞÞ ! ð0; 0; 0Þ and xðtÞ ! 0 faster
than yðtÞ ! 0, yðtÞ ! 0 faster than zðtÞ ! 0.

2. ðuðtÞ; yðtÞ; vðtÞÞ ! E01 if and only if ðxðtÞ; yðtÞ; zðtÞÞ ! ð0; 0; 0Þ and xðtÞ ! 0 faster than
yðtÞ ! 0, zðtÞ ! 0 at finite rate as yðtÞ ! 0.

3. ðuðtÞ; yðtÞ; vðtÞÞ ! E10 if and only if ðxðtÞ; yðtÞ; zðtÞÞ ! ð0; 0; 0Þ and yðtÞ ! 0 faster than zðtÞ,
xðtÞ ! 0 at finite rate as yðtÞ ! 0.

4. ðuðtÞ; yðtÞ; vðtÞÞ ! E11 if and only if yðtÞ ! 0 and xðtÞ ! 0, zðtÞ ! 0 at finite rate as yðtÞ ! 0.

The equilibrium E00 ¼ ð0; 0; 0Þ of (4.1)–(4.3) always exists. The variational matrix at E00 is

JðE00Þ ¼
Bþ c2 0 0

0 �d2 � c2 0

0 0 �d1 � c2 þ d2

2
4

3
5:

From (4.4), E00 is asymptotically stable if and only if

1þ d1 þ c2 < c1 and d2 � d1 < c2: ð4:5Þ
For the existence of the equilibrium E01 ¼ ð0; 0; v̂vÞ, from Eq. (4.3), v̂v > 0 satisfies

d2 � d1 ¼
m2v̂vþ c2
v̂vþ 1 : ð4:6Þ

Hence

E01 exists if and only if d2 � d1 > 0 and d2 � d1 is between m2 and c2: ð4:7Þ
The variational matrix at E01 is

JðE01Þ ¼

Bþ c2
1þ v̂v 0 0

0 �d1 �
c2
1þ v̂v 0

m1v̂v 0 v̂v
c2

ðv̂vþ 1Þ2
� m2
ð1þ v̂vÞ2

" #
2
666664

3
777775:

E01 is asymptotically stable if and only if

1þ d1 þ
c2
1þ v̂v < c1 and c2 < m2:
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This together with (4.7) imply that E01 exists and is asymptotically stable if and only if

1þ d1 þ
c2ðm2 þ d1 � d2Þ

m2 � c2
< c1 and c2 < d2 � d1 < m2: ð4:8Þ

For the existence of the equilibrium E10 ¼ ðh�
1; 0; 0Þ, from Eq. (4.1), h

�
1 satisfies

h�
1 ¼

�ðBþ c2Þ
Aþ c2

: ð4:9Þ

Hence

E10 exists if and only if ðBþ c2ÞðAþ c2Þ < 0: ð4:10Þ
The variational matrix at E10 is

JðE10Þ ¼

ðA� BÞu
ð1þ uÞ2

�u2 �c2u

0
m1u
1þ u� d1 � c2 0

0 0
m1u
1þ u� d1 � c2 þ d2

2
666664

3
777775
u¼h�

1

:

E10 is asymptotically stable if and only if

A < B;
m1h

�
1

1þ h�
1

þ d2 < d1 þ c2:

This together with (4.4) and (4.10) imply that E10 exists and is asymptotically stable if and only
if

m1 > 1þ d1 þ c2 > c1; m1ð1þ d2 � c1Þ < c1ðd2 � c2 � d1Þ: ð4:11Þ
For example, d1 ¼ 0:6, d2 ¼ 0:24, m1 ¼ 3, m2 ¼ 1, c1 ¼ 2, c2 ¼ 0:6 satisfy the above condition.
For the existence of the equilibrium E11 ¼ ðh�

2; 0; ~vvÞ, (4.1) and (4.3) imply that h�
2 and ~vv satisfy

Bþ Ah�
2

1þ h�
2

þ c2
1þ ~vv

¼ 0;

and

m1h
�
2

1þ h�
2

� d1 �
c2
1þ ~vv

� m2~vv
~vvþ 1

 
� d2

!
¼ 0:

The stability analysis of E11 is rather complicated and we forgo it here.
Our next result provides another set of conditions for the origin to be a local attractor. Notice

that the result is an improvement of the first part of Theorem 2.1 when m1 < c1ðd1 þ c2Þ=ðc1 � 1Þ.
In addition, the conditions do not exclude the existence of Ec.

Proposition 4.1. Assume that c1 > 1þ d1 þ c2 and m1 < c1ðd1 þ c2Þ=ðc1 � 1Þ. If, in addition,

xð0Þ
yð0Þ 6

c1 � ð1þ d1 þ c2Þ
1þ d1 þ c2 � m1


 u0;

then limt!1ðxðtÞ; yðtÞ; zðtÞÞ ¼ ð0; 0; 0Þ.
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Proof. Due to the domino effect of the simple food chain, we need only to show that limt!1 xðtÞ ¼
0. Let uðtÞ ¼ xðtÞ=yðtÞ. We have

u0ðtÞ ¼ u ð1
	

þ d1 þ c2 � m1Þ
u� u0
1þ u � x� c2y

y þ z



:

Clearly, for t > 0, uðtÞ6 u0 if uð0Þ6 u0. Hence

uðtÞ6 uð0Þ exp
�
�
Z t

0

xðsÞds
�
:

The rest follows from the argument of Theorem 2.3 that yields limt!1 xðtÞ ¼ 0. �

Next we consider the conditions for the existence of trajectories of (2.1)–(2.3) tending to
E1 ¼ ð1; 0; 0Þ as t! 1.

Proposition 4.2. Assume that m2 > d2 and m1 < minf1þ d1; d1 þ c2 � d2g. Then there are solutions
of (2.1)–(2.3) tending to E1 ¼ ð1; 0; 0Þ as t! 1.

Proof. Observe that (4.1)–(4.3) can be rewritten as

u0 ¼ u2
Auþ B
uð1þ uÞ

	
þ c2
uð1þ vÞ � y



¼ u2½Kðu; vÞ � y� 
 G1ðu; y; vÞ; uð0Þ > 0;

y0 ¼ y
�m1
1þ u

	
þ l1vþ l2
1þ v




 G2ðu; y; vÞ; yð0Þ > 0;

v0 ¼ v
�m1
1þ u

	
þ q1vþ q2
1þ v




 G3ðu; y; vÞ; vð0Þ > 0;

where A ¼ 1� m1 þ d1, B ¼ 1� c1 þ d1, l1 ¼ m1 � d1, l2 ¼ m1 � d1 � c2, q1 ¼ m1 � d1 þ d2 � m2,
q2 ¼ m1 � d1 þ d2 � c2.
Clearly, A > 0 > q2 > l2. Hence there is a v0 > 0 such that G2ðu; y; vÞ < 0 and G3ðu; y; vÞ < 0 for

all ðu; y; vÞ 2 ½0;1Þ� ½0;1Þ � ½0; v0�. Let u0 ¼ maxf�B=A; 0gP 0 and

X 
 fðu; y; vÞ 2 R3þju 2 ½u0;1Þ; v 2 ½0; v0�; y 2 ½0;Kðu0; v0Þ�g:
Then X is positively invariant. Since there is no equilibrium in X, the monotonicity of the com-
ponents of the solution in X implies that limt!1ðuðtÞ; yðtÞ; vðtÞÞ ¼ ðþ1; 0; 0Þ. Therefore, if
xð0ÞP u0yð0Þ, yð0Þ6 v0zð0Þ and yð0Þ < Kðu0; v0Þ, then limt!1 xðtÞ=yðtÞ ¼ þ1. This shows that for
any e > 0, there is a Te > 0 such that for tP Te, we have

c1yðtÞ
xðtÞ þ yðtÞ ¼

c1
1þ xðtÞ=yðtÞ < e:

From (2.1), we have x0ðtÞ > xðtÞð1� e � xðtÞÞ for all tP Te. Standard argument shows that
limt!1 xðtÞ ¼ 1, proving the proposition. �

To obtain additional results on the conditions for the existence of trajectories of (2.1)–(2.3)
tending to E1 ¼ ð1; 0; 0Þ as t! 1, we let v ¼ y=z and consider the transformation ðx; y; zÞ !
ðx; y; vÞ. Then (2.1)–(2.3) is converted into the following system:
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x0 ¼ xð1� xÞ � c1xy
xþ y ; xð0Þ > 0;

y0 ¼ m1x
xþ y

�
� d1 �

c2
vþ 1

�
y; yð0Þ > 0;

v0 ¼ v
m1x
xþ y

�	
� d1 �

c2
vþ 1

�
� m2v

vþ 1

�
� d2

�

; vð0Þ > 0:

ð4:12Þ

The system (4.12) has the following equilibria of the form

E100 ¼ ð1; 0; 0Þ;
E101 ¼ ð1; 0; v̂vÞ; v̂v > 0:

E100 always exists. From the third equation of (4.12), v̂v satisfies

m1 � d1 þ d2 ¼
m2v̂vþ c2
v̂vþ 1 : ð4:13Þ

Hence E101 exists if and only if m1 � d1 þ d2 is between m2 and c2.
The variational matrix of (4.12) at E100 is

JðE100Þ ¼
�1 �c1 0

0 m1 � d1 � c2 0

0 0 m1 � d1 � c2 þ d2

2
4

3
5:

Hence E100 is asymptotically stable if and only if

m1 þ d2 < d1 þ c2: ð4:14Þ
The variational matrix of (4.12) at E101 is

JðE101Þ ¼
�1 �c1 0

0 m1 � d1 � c2=ðv̂vþ 1Þ 0

0 �m1v̂v v̂vðc2 � m2Þ=ðv̂vþ 1Þ2

2
64

3
75:

Hence E101 is asymptotically stable if and only if

m1 < d1 þ
c2
v̂vþ 1 and c2 < m2: ð4:15Þ

From (4.13) and (4.15) can be rewritten as

ðm2 � d2Þc2 > ðm1 � d1Þm2 and c2 < m2: ð4:16Þ

We summarize some of the key findings of this section into the following theorem.

Theorem 4.1. If at least one of the following four condition hold
(1) 1þ d1 þ c2 < c1 and d2 � d1 < c2;
(2) 1þ d1 þ ðc2ðm2 þ d1 � d2Þ=m2 � c2Þ < c1 and c2 < d2 � d1 < m2;
(3) m1 > 1þ d1 þ c2 > c1, m1ð1þ d2 � c1Þ < c1ðd2 � c2 � d1Þ;
(4) c1 > 1þ d1 þ c2 and m1 < c1ðd1 þ c2Þ=ðc1 � 1Þ.
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Then there are positive solutions tend to the origin. If at least one of the following three conditions
hold

(i) m1 þ d2 < d1 þ c2;
(ii) ðm2 � d2Þc2 > ðm1 � d1Þm2 and c2 < m2;
(iii) m2 > d2 and m1 < minf1þ d1; d1 þ c2 � d2g.

Then there are positive solutions tend to the predator-free steady state ð1; 0; 0Þ.

It should be stressed here that the scenarios of having positive solutions tend to the origin or the
pest free steady state ð1; 0; 0Þ can coexist with each other and the existence of positive attractors
such as stable Ec, a limit cycle, or other more complex attractors. The next two figures illustrate
two of such scenarios.
In Fig. 5, we let m1 ¼ 1:5, m2 ¼ 2, d1 ¼ d2 ¼ 1, c2 ¼ 0:5 and c1 ¼ 4. Then (4.5) hold and hence

E00 is asymptotically stable. Ec ¼ ðxc; yc; zcÞ ¼ ð0:3333; 0:0667; 0:0667Þ is unstable. The solution
with initial population ðxð0Þ; yð0Þ; zð0ÞÞ ¼ p ¼ ð0:3433; 0:0467; 0:0767Þ appears to approaching a

Fig. 5. In (a), two solutions of system (2.1)–(2.3): one tends to a heteroclinic cycle (starting at p ¼ ð0:3433; 0:0467;
0:0767Þ), another (starting at q ¼ ð0:3433; 0:127; 0:367Þ) tends to the origin. Here, m1 ¼ 1:5, m2 ¼ 2, d1 ¼ d2 ¼ 1,
c2 ¼ 0:5 and c1 ¼ 4 and Ec ¼ ðxc; yc; zcÞ ¼ ð0:3333; 0:0667; 0:0667Þ. Then (4.5) hold and hence E00 is asymptotically
stable. When the top predator is absent, predator y drives prey x to extinction and itself dies out. Here pxy ¼
ð0:3433; 0:0467; 0Þ and qxy ¼ ð0:3433; 0:1270; 0Þ.
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heteroclinic cycle (in practice, this will be equivalent to the extinction of all the three species).
However if we choose the initial condition ðxð0Þ; yð0Þ; zð0ÞÞ ¼ q ¼ ð0:3433; 0:1270; 0:3670Þ, then
all species go to extinction (Fig. 5(a)). Therefore solutions are sensitive to initial conditions and
the system has multiple attractors. It should be pointed out, with this set of parameters, when the
top predator is absent, predator y drives prey x to extinction and itself dies out (see Fig. 5(b)).
Thus, for this example, biological control is doomed in a practical sense. This is a scenario where
the pest y is very voracious, with or without this particular control agent z, it is going to drive the
prey x to extinction.
If we choose m1 ¼ 1:4, m2 ¼ 10=9, c1 ¼ 2, c2 ¼ 1:7, d1 ¼ d2 ¼ 1 then Ec exists and (4.14) holds.

Hence E100 is asymptotically stable. Our simulation (see Fig. 6(a)) shows Ec ¼ ð0:6714; 0:1320;
0:0147Þ is asymptotically stable. As predicted by Theorem 4.1, there are solutions (see Fig. 6(d))
converge to ð1; 0; 0Þ. In this case, when the top predator is absent, predator y and prey x coexist in
the form of a stable equilibrium (Fig. 6(b) and (c)). If this models a biological control process,
then the success is dependent on the initial spread of control agent z. If the control agent
is provided in small quantity, partial success can be achieved (in the sense that the pest y is

Fig. 6. In (a), the solution of system (2.1)–(2.3) starting at p ¼ ð0:7714; 0:232; 0:0147Þ (near Ec) tends to Ec (see also (d)),
while the one starting at q ¼ ð0:3433; 0:1270; 0:3670Þ tends to the steady state ð1; 0; 0Þ (see also (c)). Here, m1 ¼ 1:4,
m2 ¼ 10=9, d1 ¼ d2 ¼ 1, c2 ¼ 1:7 and c1 ¼ 2. Ec ¼ ðxc; yc; zcÞ ¼ ð0:6714; 0:1320; 0:0147Þ is shown to be locally asymp-
totically stable (d). We see that (4.14) holds, hence E100 is asymptotically stable. (b) Shows that in this case, when the top
predator is absent, predator y and prey x coexist in the form of a stable equilibrium. Here pxy ¼ ð0:7714; 0:2320; 0Þ and
qxy ¼ ð0:3433; 0:1270; 0Þ.
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suppressed but not eliminated, while x is enhanced). Large quantity of z ensures the eradication of
pest y. This is a scenario where the pest y is not so voracious, and the suitable control agent z can
suppress it, or drive it to extinction.
Notice that both Figs. 5 and 6 illustrate scenarios of bistability. One naturally wonders whether

tri-stability scenarios are possible for model (2.1)–(2.3). A careful examination of the conditions that
ensure the attractivity of the origin, (1, 0, 0) and Ec suggests that they maybe compatible for some set
of parameters. This possibility is rigorously proven in the next theorem and is illustrated in Fig. 7.

Theorem 4.2. Assume that m2 > d2, c1 > 1þ d1 þ c2 and

ðd1 þ c2ðm2 � d2Þ=m2Þ2

d1 þ c2ððm2 � d2Þ=m2Þ2
< m1 < min 1

�
þ d1; c2 � d2 þ d1; d1

�
þ c2

m2 � d2
m2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
c1

c1 � 1

r �
;

then system (2.1)–(2.3) has at least three attractors: ð0; 0; 0Þ, ð1; 0; 0Þ and Ec.

Proof. Since ðc1=c1 � 1Þ > 1, we have ðc1=c1 � 1Þ > ðc1=c1 � 1Þ1=2. Hence the assumptions of
Propositions 4.1 and 4.2 are satisfied. Therefore, both ð0; 0; 0Þ and ð1; 0; 0Þ are attractors. It re-
mains to show that Ec exists and is locally asymptotically stable. Since

Fig. 7. When d1 ¼ 7, d2 ¼ 1, m2 ¼ 4=3, m1 ¼ 7:895, c1 ¼ 133=13, c2 ¼ 2, we have Ec ¼ ð0:4881; 0:0257; 0:0086Þ and the
conditions of Theorem 4.2 are satisfied. Hence (see (a)) there are solutions (starting at pc ¼ ð0:3; 0:05; 0:02Þ, see also (c))
tend to Ec, some (starting at p0 ¼ ð0:005; 0:05; 0:1Þ, see also (d)) tend to the origin and yet some others (starting at
p1 ¼ ð1; 0:02; 0:2Þ, see also (b)) tend to ð1; 0; 0Þ.
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m1 > d1

�
þ c2

m2 � d2
m2

�2
d1

 ,
þ c2

m2 � d2
m2

� �2!
> d1 þ c2

m2 � d2
m2

;

we have A ¼ m1=ðd1 þ c2 m2�d2m2
Þ > 1. Since

m1 < d1

�
þ c2

m2 � d2
m2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=ðc1 � 1Þ

p
< d1

�
þ c2

m2 � d2
m2

�
c1

c1 � 1
;

we see that Aðc1 � 1Þ < c1 which implies that 0 < c1 < A=ðA� 1Þ. From Lemma 2.1, we conclude
that the equilibrium Ec exists. Moreover, from the proof of Proposition 3.1 and the facts

m11 < 0() d1 þ c2
m2 � d2
m2

< m1 < d1

�
þ c2

m2 � d2
m2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=ðc1 � 1Þ

p
;

m22 < 0() d1

�
þ c2

m2 � d2
m2

�2
d1

 ,
þ c2

m2 � d2
m2

� �2!
< m1;

we see that Ec is locally asymptotically stable and the theorem follows. �

5. Discussion

Although numerous non-linear population models have been proposed and studied in the lit-
erature, most of them are build on the classical Lotka–Volterra platform which is incapable of
describing both the vast biodiversity that we are part of and the massive extinction that we are
now confronting. This is likely due to the fact that conventional ecological studies are often
conducted in a small and controllable scale and thus enables the researchers to make the implicit
assumption that populations are quasi-stable or near a stable steady state. Hence, most of the
existing theoretical works on such mathematical models are centered around stability issues of
possible positive steady states (coexisting equilibria). In other words, extinction dynamics is often
overlooked or avoided. As a result, most models of population interactions are incapable of
producing extinctions at lower levels that typically trigger the massive extinctions that we are
witnessing today. In the context of biological control, rich extinction dynamics of any plausible
model is especially desirable.
A valid ratio-dependent model formulation usually requires that the habitat of the interacting

species is relatively small and free of refugees [13]. The continual fragmentation and shrinkage of
habitats is often viewed as the main causes of massive extinctions of populations. Also, biological
control is often successfully implemented in a relatively small area. This makes ratio-dependent
based population models relevant and appealing due to their rich extinction dynamics. Our work
on the ratio-dependent simple food chain (2.1)–(2.3) suggests that ratio-dependence is a plausible
mechanism that contributes to both the massive extinctions of populations and the successful
implementations of biological controls.
Extensive simulation of model (2.1)–(2.3) confirms the notion that the introduction of a natural

enemy z for pest y helps the population level of prey x. This is illustrated by Fig. 4. Without top
predator, prey is severely depressed (Fig. 4(d)). With a medium aggressive (medium c2 values) top
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predator, species may coexist in a stable form with enhanced prey and depressed pest population
levels (see Fig. 4(c)). A more voracious top predator may slightly increase further the average prey
level and decrease average pest level at the expense of destabilizing such stable coexistence (see
Fig. 4(b)).
Our simulation work also shed light to the following interesting question: assume that a vo-

racious pest y (defined as any pest (predator) species that capable of driving its host (prey) to
extinction) invades a host x, can one introduce a suitable top predator to ensure a meaningful
(with some success) biological control? Fig. 5 suggests the answer can be positive. In such situ-
ations, it maybe necessary to introduce the control agent swiftly and forcefully (see the solution
starts at p) in order to slow down and or even stop the extinction of x. A delayed action can mean
total failure (see the solution starts at q).
Our extinction results suggest that biological control is possible under various scenarios.

However, in practice, we often want to reduce the pest y to an acceptable level in a finite time. In
order to accomplish that, we need to give a estimate as how much z shall be introduced to control
y. Clearly, theoretical findings are powerless for this particular practical concern. Nevertheless,
such an estimation work can be meaningfully conducted by some carefully designed simulations
of model (2.1)–(2.3).
A most startling finding of this paper is the discovery of a tri-stability scenario described in

Theorem 4.2. To the best of our knowledge, such sensitivity, although may very well exist in other
low-dimensional (two- or three-dimensional autonomous ODE models) models, has never been
identified explicitly in the literature. Extensive simulation on the model (2.1)–(2.3) with the set of
parameters that generates Fig. 7 shows that if we fix the initial population levels for x and y, small
values of zð0Þ often ensure the solutions tend to the coexistence steady state Ec. Increasing zð0Þ
significantly may lead to the pest free (or predator free) boundary steady state ð1; 0; 0Þ, signaling
the ultimate success of biological control. In other word, it pays to introduce more control agents
z. If the crop x is severely infested (high values of yð0Þ=xð0Þ), then the crop is doomed regardless of
the amount of control agent one may introduce. This confirms the need of early planning of a
biological control.
What remains particularly intriguing is whether model (2.1)–(2.3) is capable of generating

chaotic dynamics similar to that produced by Lotka–Volterra based simple food chain model [27].
Our extensive simulation on the model with m1 ¼ 10, m2 ¼ 2, d1 ¼ 1, d2 ¼ 1, c1 ¼ 1, c2 ¼ 11 in-
dicating an affirmative answer is highly likely (see Fig. 8(b)). More works on this (such as a
thorough bifurcation study and the calculation of the Lyapunov exponent of this chaotic looking
solution) are needed.
Another mathematically interesting question remains open for model (2.1)–(2.3) is under what

conditions, all three species coexist regardless of initial conditions. This is the so-called persistence
question. Global stability of the positive equilibrium will ensure this but is even more difficulty to
work on. Persistence results for two trophic level ratio-dependent predator–prey models with or
without time delay are available [16,35,36]. On the other hand, persistence issue is less relevant for
biological control applications, since the most desired outcome is a pest free steady state.
Model (2.1)–(2.3) is most suitable when biological control agent is a natural predator of the

pest. Other models may also be plausible for this situation. For example, one may use the classical
prey-dependent functional response xy=ða1 þ xÞ for pest and its numerical response, while using
ratio-dependent functional response yz=ðy þ a2zÞ for top predator and its numerical response. This
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is particular suitable when pest is uniformly distributed and slow moving. This mixed selection of
functional response yields a model of the following form:

x0ðtÞ ¼ rx 1
�

� x
K

�
� 1

g1

m1xy
a1 þ x

; xð0Þ > 0;

y0ðtÞ ¼ m1xy
a1 þ x

� d1y �
1

g2

m2yz
a2zþ y

; yð0Þ > 0;

z0ðtÞ ¼ m2yz
a2zþ y

� d2z; zð0Þ > 0;

ð5:1Þ

where the meanings of the parameters are self-evident. This model may also be capable of ad-
mitting a pest free attractor. If parasite is chosen as the control agent, then quite different model
maybe called for. A plausible model may build a simple infection mechanism on top of a typical
predator–prey model with either prey-dependent or ratio-dependent (or the more general pre-
dator-dependent ones) functional responses. The model can take various forms depending on the
specific choices of infection mechanisms and the predator functional responses. Appropriately

Fig. 8. In this figure, as in Fig. 4, m1 ¼ 10, m2 ¼ 2, d1 ¼ 1, d2 ¼ 1, c1 ¼ 1, c2 ¼ 11. (a) Depicts the xy-plane projections
of two solutions (starting at p and q) of system (2.1)–(2.3), one (starting at p) of which is the periodic solution depicted

in Fig. 4(a). For this set of parameters, Ec exists and is unstable. (b) Highlights one of the solution which appears to be
chaotic in a three-dimensional view. (c) Depicts time course of this chaotic looking solution.
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formulated, such models shall also be able to generate rich extinction dynamics. An example of
such models with prey-dependent functional response may take the form

x0ðtÞ ¼ rx 1
�

� x
K

�
� c1xðy þ zÞ

aþ x ; xð0Þ > 0;

y0ðtÞ ¼ m1xðy þ fzÞ
aþ x � dy � c2yz

y þ z ; yð0Þ > 0;

z0ðtÞ ¼ m2yz
y þ z� ðd þ aÞz; zð0Þ > 0:

ð5:2Þ

The infection mechanism is the same one adopted by Ebert et al. [34] (but was erroneously im-
plemented in their model, causing the failure of generating deterministic extinction scenarios that
needed to explain such phenomena in the fields (see [37]). This mechanism can be used to model a
microparasite transmission for a horizontally transmitted parasite that reduces fecundity and
survival of its host. In this case, the plausible meanings of the parameters are again clear. It will be
interesting to know if the naturally occurring ratio-dependence (resulted from the infection
mechanism) in the uninfected (y) and the infected pest (z) equations will generate rich extinction
dynamics that naturally account for the various deterministic extinction scenarios observed in the
fields.
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