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Abstract. In this paper, we analyze the damped Duffing equation by means
of qualitative theory of planar systems. Under certain parametric choices, the
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1 Introduction

Many physical phenomena are modeled by nonlinear systems of ordinary dif-
ferential equations. An important problem in the study of nonlinear systems is
to find exact solutions and explicitly describe traveling wave behaviors. Modern
theories describe traveling waves and coherent structures in many fields, including
general relativity, high energy particle physics, plasmas, atmosphere and oceans,
animal dispersal, random media, chemical reactions, biology, nonlinear electrical
circuits, and nonlinear optics. For example, in nonlinear optics, the mathematics
developed for the propagation of information via optical solitons is quite striking,
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with extremely high accuracy. It has been experimentally verified, with a span
of twelve orders of magnitude: from the wavelength of light to transoceanic dis-
tances. It also guides the practical applications in modern telecommunications.
Many other nonlinear wave theories mentioned above have also achieved similar
success.

Motivated by potential applications in physics, engineering, biology and com-
munication theory, the damped Duffing equation

i+0% — pr+2° =0, (1.1)

has received wide interest. In the above, J is the coefficient of viscous damping
and the term —pux + 2 represents the nonlinear restoring force, acting like a
hard spring, and the dot denotes differentiation with respect to time. Equation
(1.1) is a ubiquitous model arising in many branches of physics and engineering
such as the study of oscillations of a rigid pendulum undergoing with moderately
large amplitude motion [1], vibrations of a buckled beam, and so on [2-4]. It
has provided a useful paradigm for studying nonlinear oscillations and chaotic
dynamical systems, dating back to the development of approximate analytical
methods based on perturbative ideas [1], and continuing with the advent of fast
numerical integration by computer, to be used as an archetypal illustration of
chaos [2, 4-7]. Various methods for studying the damped Duffing equation and
the forced Duffing equation in feedback control [8-11], strange attractor [12-16],
stability [17-19], periodic solutions [20-23] and numerical simulations [24-26], etc.,
have been proposed and a vast number of profound results have been established.
A phase plane analysis of the Duffing equation can be seen in [27] and more
qualitative studies have been described in [28]. Exact solutions were discussed
by Chen [29] using the target function method, but no explicit solutions were
shown. Note that equation (1.1) satisfies the Painlevé condition with a certain
parametric choice [30, 31]. In [32], exact solutions were presented by using the
elliptic function method for various special cases. Senthil and Lakshmanan [33]
dealt with equation (1.1) by using the Lie symmetry method and derived an exact
solution from the properties of the symmetry vector fields. Harmonic solutions
were investigated by McCartin using the method of van der Pol [17]. The behav-
ior of the solutions of the Duffing equation near the separatrix were treated by
Hale and Spezamiglio [34].

There is another problem source. Many nonlinear partial differential sys-



tems can be converted into nonlinear ordinary differential equations (ODEs) af-
ter making traveling wave transformations. Seeking traveling wave solutions for
those nonlinear systems is somehow equivalent to finding exact solutions of corre-
sponding ODEs. A typical example is the 2D dissipative Klein-Gordon equation
which arises in relativistic quantum mechanics [35, 36]

uy — Au+ auy + fu + yu® =0, (1.2)

where «, 3 and v are real physical constants. When a = 0, the Kelin-Gordon
equation plays a fundamental role as a model equation in nonlinear field theories
(37, 38], lattice dynamics [39] and nonlinear optics [40]. Stationary baseband
solutions of the equation come about as a balance between nonlinearity and dis-
persion, and thus represent solitary wave solutions to the system. While analytic
solutions in powers of sech functions can be determined in one dimension [41], ra-
dially symmetric higher-dimensional solutions may not have simple analytic form;
the analysis for these solutions are thus dominated by numerical methods and
variational techniques [42-43, etc.]. Recently, a considerable number of papers
have appeared to various aspects of equation (1.1): the identification problems
was investigated by Ha and Nakagiri et al. using the transposition method [44-
46]; the global existence and the asymptotic behavior of solutions were undertook
by Kosecki et al [47-49]; the uniqueness of a time-periodic solution was proved
by Gao and Guo using the Galerkin method as well as Leray-Schauder fixed
point theorem [50]; approximate solutions and solitons trapping for the nonlinear
Klein-Gordon equation with quadratic and cubic nonlinearities were studied by
Maccari using the asymptotic perturbation method [51].

Notably, equations (1.1) and (1.2) are not integrable in the general case.
Therefore, to analyze their solutions, a qualitative study together with inno-
vative mathematical techniques is important. Recently, qualitative results for
physical, chemical and biological systems have been studied extensively [52-54,
etc.], and some powerful mathematical methods, such as the Lie symmetry [55-57,
etc.], have been developed and widely applied to many nonlinear systems. The
goal of this paper is to establish the global structure for the Duffing equation in
the Poincaré phase plane under given parametric conditions. From this global
structure, some qualitative behaviors of exact solutions of equation (1.1) can be
derived directly. Traveling wave solutions of the Klein-Gordon equation (1.2) are
accordingly obtained by using exact solutions of equation (1.1).



The organization of this paper is as follows. In Section 2, using the qualitative
theory of dynamical systems, we present qualitative analysis of a two-dimensional
plane autonomous system which is equivalent to the damped Duffing equation
(1.1). In Section 3, we first re-derive an exact solution to Duffing equation (1.1)
by applying the Lie symmetry, then we show that the same result can actually
be obtained more economically by using the coordinate transformation method
[58]. Applications of this approach to the study of traveling wave solutions of
equation (1.2) are illustrated. Section 4 is a brief conclusion.

2 Global Structure

Equation (1.1) is equivalent to the two-dimensional autonomous system

= A, y) =y
{ y= Bz, y) = =0y + pr —a°. (2.1)

It is well known that = = 0 is a nonhyperbolic fixed equilibrium point of system
(2.1) at 1 = 0 and the bifurcation diagram of equation (1.1) is a supercritical
pitchfork bifurcation with a bifurcation point (zo, o) = (0, 0) (see Figure 2.1).
Figure 2.1 also illustrates the attracting domains of the three equilibrium solu-
tions.

Figure 2.1: Supercritical pitchfork bifurcation.
Note that (2.1) is a two-dimensional plane autonomous system, and A(z, y),

B(z, y) satisfy the conditions of the existence and uniqueness theorem. Through-
out this section, we only consider the case where p is positive in the Poincaré
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phase plane. (When p is negative, system (2.1) only has a unique regular equi-
librium points (0, 0) and the arguments will be closely similar and relatively less
complicated.) There are three regular equilibrium points for system (2.1), namely

P(—/a, 0), 00, 0) and R(y/f, 0).

The corresponding matrix of the linearization of system (2.1) is

{ , TP ] . (2.2)

Eigenvalues of (2.2) at O are —§ £ 52;4”

of (2.2) at P and R are —$ + —V622—8”. This implies that both P and R are
(i) stable spiral points when 6% < 8 and & > 0;
(i1) unstable spiral points when §* < 8 and § < 0;
(iii) stable nodes when §? > 8y and § > 0;
(iv) unstable nodes when 6% > 8u and ¢ < 0.

, so O is a saddle point. Eigenvalues

A sketch of the phase diagram in the (x, y)-plane and of the possible profiles
of the solutions are shown in Figure 2.2. In the left phase diagram, each orbit
corresponds to a typical profile of the bounded solution of equation (1.1). The
solution of equation (1.1) associated with the homoclinic orbit A, represents a
bell-profile solitary wave. The solution associated with the orbit B exhibits an
oscillatory shock wave, and the solution corresponding to the orbit C exhibits a
monotone shock wave.

Now, we make the Poincaré transformation as

1 u dt
,17:;7 y:;, dT:§7 (Z%O), (23)
then (2.1) becomes
du 2 2 _ .22
&= pzt — 1 —duz® — 2%u”,
e 21
ar —uz".

This indicates that there is no equilibrium point on the u-axis for system (2.4).
Indeed, one can see that the w-axis is an orbit of system (2.4). On the other
hand, through the Poincaré transformation

1 dt

(%
Z? y Z’ 227 (Z 0)7 ( 5)



Figure 2.2: The left figure: phase diagram in the (x, y)-plane. The right figure: sketch
of typical wave profiles of the solutions of equation (1.1).

(2.1) becomes

dr

= — Pz, v) =025 — w2 + vz,
{ 20

D= Q(z, v) =224 dvz? — pv?2? + o',

Note that the origin is the unique equilibrium point of (2.6) on the v-axis. This
implies that system (2.1) has two infinite equilibrium points £ and F' on the
y-axis.

Equation (2.6) is a higher-order two-dimensional autonomous system, since
the matrix of corresponding linearization at (0, 0) is

el G e en=10 0

We call the origin, the high-order equilibrium point. To analyze the local struc-
ture at the origin, we utilize the polar coordinates to investigate (2.6). In po-
lar coordinate r = vv? + 22, § = arctan(Z) with inverse transformation z =
rcosf, v =rsinf, system (2.6) becomes

{ 7 =r*[R(0) + o(1)]
0 = r[D(6) + o(1)],

where R(0) = sinf - cos?§ and D(f) = cos®6. Solving D(§) = 0 for § when
0 <0 < 2w, we have

(2.7)

s 3
9}625 and 7 (k‘:l, 2)
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We need the following lemma.

Lemma 2.1: Suppose that 7" is a trajectory of (2.7) which approaches the
equilibrium point (0, 0) along the ray 6 = 6y as t — +o0 or —oo, i.e., the slope
of the tangent line of the trajectory T" approaches tan#, as r — 0. Then

D(y) = 0. (2.8)

Proof. Assume that A(r, 6) is an arbitrary point on T, and L is a ray passing
through the origin and A(r, ). We know that § — 6, as r — 0. Denote a the
angle between the line L and the tangent line of the trajectory T" at A(r, ) (see
Figure 2.3). Then we have

tana = lim r& = rd—e
A0 Ardr’
Using (2.7), we get
D(0) + o(1)
t = =" 2.
W= RO) T o(1) (2.9)

Since § — 6 implies &« — 0 asr — 0, from (2.9), we obtain (2.8) immediately. [

N

Figure 2.3: Trajectory T

By virtue of the above Lemma, we know that if system (2.7) has orbits which
approach the origin at a definite direction 6 as t — +o00 or —oo, then # must be
equal to one of the 0;.s (k=1, 2).



Let ¢ and 7y be sufficiently small and construct sectors u, = AOALB, =
{(r, )|r <o, |0 — 6| <€} (k =1, 2), (see unshaded sectors in Figure 2.4).
Except in these two u)s, D(6) has the same sign for all points in each shaded
sector. One can see that in each shaded sector, 8 which can be considered as a
function of the time alone, is monotone with respect to t. That is, each orbit
inside a shaded sector must travel from one side (OAy or OBy) to the other side
(OBy, or OAy). No orbit can approach the origin O inside shaded sectors as
t — 400 or —oo, this is because we assume that D(f) # 0 in a shaded sector

denoted by AOAZABm (=1, m=2orl=2 m=1). Denote ;, the angle
between the segment line OA; and OB,,. Then

min | D(6)] = ¢ > 0.

0<6<6;

Let r, be sufficiently small such that in the shaded sector AOAJ?m (see Figure
2.4) we have

|D(0) + o(1.1)| > g >0,
and 0
L_l—;z((lli) =M < +o0. (2.10)

02

Figure 2.4: Sectors O Ay By (k=1, 2).



From the second equation of (2.7), we obtain 0 # 0 whenever 0 is inside

AOA;ABm. Namely, 6 is monotone increasing with respect to ¢ when D(#) > 0
and monotone decreasing when D(6) < 0.

Suppose that r(f) is an arbitrary orbit emanating from (6, r(6y)), where
0 <6y <6 and 0 < r(6y) < ro. Let Oy satisfy 0 < |0 — 6| < 6; and such that

the whole part of the orbit associated with [0y, 65] is inside AOAJ?m. Then

ldr  R(0)+o(1)

Integrating (2.11) from 6y to 6 (6 < 6 < 6;), then yields

"@dr [° R(O) +o(1)
/rw()) S —D(6)+0(1)d9. (2.12)

From (2.10) and (2.12), we have

‘m r) ‘ < M0 — 0y < M(6; — ) < +o0. (2.13)
r(6o)

Formula (2.13) implies that when 7(6y) > 0, 7(6) must be positive inside AOA; B,,,.
In the case where () gets smaller and smaller, 7(f) must become smaller and
smaller simultaneously. However, no matter how smaller r(fy) be changed to,
r(0) can not be equal to zero. Otherwise, the expression on the left hand side of
(2.13) will be unbounded. This indicates that no orbit can approach the origin
as the time increases or decreases.

Based on Lemma 2.1 and the above analysis, we can now obtain the following
Theorem 2.1 and use it to determine the global structure of system (2.1).

Theorem 2.1: Suppose that 0, (k =1, 2) are zero points of D(#) and

D(i)(ek)
R(i)(gk)

0<i<p—1, D,=DP(G)+#0,

=0,
=0, 0<i<q—1, R,=DY(G)+#0, (2.14)

where ¢ is even and p > ¢, Then



(a) If p—qis odd, D, and R, have the same sign in the sector AO Ay By, then
all orbits of (2.7) inside AO A, By, approach the origin in the direction of § = 6y
as t — 400 or —oo. n

(b) If p — ¢ is odd, D, and R, have different signs in the region AOA; By,
then there exists at least one orbit of (2.7) inside AO A, By, which approaches the
origin in the direction of 6 = 6 as t — +o00 or —oo, respectively.

(c) If p—q is even, there are two possibilities. Either there is no orbit of (2.7)
inside AOA, By which approaches the origin as t — +00 or —oo, or there are

infinitely many orbits of (2.7) inside AOAy By which approach the origin in the
direction of 8 = 65, as t — +o00 or —o0.

Proof. (a) Using the conditions (2.14) and the Taylor’s series, when 6 gets close
to 6k, D(0) and tan a can be expressed as follows

D
tan o = ﬁp (0= 0P+ 0(]0 — 0kP7?) + o(1), as r — 0,
q

D(P)(Gk)

D(o) = —

(0 — 0,)7 + o(|6 — 0,.]P). (2.15)

When p — ¢ is odd and g—: > (, one can see that tana < 0 on OA; and tana > 0
on OB;,.

Let ¢ be sufficiently small such that R(f) and R, have the same sign inside
AOALBy,. Also, let ry be sufficiently small such that R(0) + o(1) and R(#) have
the same sign, and

|R(6) + o(1.1)] > @ > 0. (2.16)

First, we assume that R, < 0 and D®(¢;) < 0. From (2.16), inside AOA;:Bk,
we have

R(A) +o(1) < % < 0.

Since 7 = 7?[R(6) + o(1)], this implies that inside the sector AOA;:Bk, from each
point except the origin O, we have 7 < 0. Thus, on the boundary of the sector

AOA;:Bk, all orbits at each point point inward (see Figure 2.5, left graph, where
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the direction of the arrow represents the direction of each orbit when ¢ increases).
In other words, the sector AO A B, is a positive invariant domain for all orbits,

and for each point on the orbit inside AOA,By, r is decreasing as the time ¢
increases.

For two arbitrary numbers r; and 7, if 0 < ry < 11 < 79, the time for the
orbit traveling from ry to rq is

ty—t, = /7«2 dr
2 L PRO) +o(D)]
< ™ dr
o ro 7”2%
2 41 1
= il )

This means that all orbits inside the sector AOA; B, will enter a neighborhood
of the origin O, no matter how small this neighborhood is as ¢ increases. Thus,
they will approach the origin as ¢t — 4o00. Recall our previous assumption that
¢ is sufficiently small. Applying the Lemma, we can conclude that all orbits of

(2.7) inside the sector AOAg By, go to the origin O in the direction 6 = 6 as
t — 4o00.

For the case R, > 0 and D, > 0, making a transformation ¢ — —t and using

the same discussion, we obtain that all orbits of (2.7) inside the sector AO A By,
go to the origin O in the direction § = 0 as t — —o0.

(b) Consider the case R, < 0 and D, > 0 first. Using almost the same argu-
ments as in case (a), we can obtain that all orbits at each point on the sides O A

and OBy, point outward, but at each point on the arc A, By, the orbits point in-
ward. Suppose that M is a point on O Ay and the orbit L; passes through M. As

t decreases, L; must intersect A, B} at some point, denoted by P,,. If M goes to

the origin O, then Py, will approach some point denoted by Py, where P, € A, B;.
On the other hand, suppose that IV is a point on OB;, and the orbit L, passes

through N. As t decreases, L, must intersect A B at some point, denoted by
Py. If N goes to the origin O, then Py will approach some point denoted by P,

11



where P, € A, By. There are only two possibilities here. If P; coincides with Ps,
then we can conclude that there is a unique orbit which approaches the origin O
as t goes to +o0. If P; is different from P,, each orbit which passes through the

points between P, P, will approach the origin O as t — +400.

For the case R, > 0 and D,, < 0, one can proceed in the same manner, and ob-

tain that there exists at least one orbit of (2.7) inside AO Ay, By, which approaches
the origin in the direction of # = 0, as t — —o0.

(c) Consider R, < 0 first. If D, < 0, using (2.15) and the same arguments as
shown in part (a), each orbit of (2.7) on OAy points outward and each orbit of

(2.7) on OBy, or the arc A,:Bk points inward (see Figure 2.5, right graph).

By
! /ﬁ
0 0oL .

Ay

Figure 2.5: Local structures in the (z, y) plane of cases (a) and (c).

Suppose that Mj is a point on O Ay, and [; is an orbit of (2.7) passing through

Mj. Then [; must intersect the arc A, By, or the segment line OBy, at some point
P as t decreases. When M, moves closer and closer to the origin O, P; must get

closer and closer to some point Py on the arc A, By, or the segment line OBy,. If

Py is the origin O, then there is no orbit inside the sector AO A By to approach
the origin as t — +o0o or —oo. If Py does not coincide with the origin O, then

any orbit of (2.7) departing from the point which lies on OBy U By Py (when

Py € A;:Bk) or OPy (when Py € OBy,) will approach the origin O as t — 400
or —oo. The arguments for the case of D®)(f),) > 0 are almost the same as the
above. So we omit the details.

For the case R, > 0, the discussions are closely similar to those of the case
R, < 0 by making the transformation ¢ — —t. The corresponding graphs can be

12



obtained by reversing the directions of arrows.

F

Figure 2.6: Global structure in the (z, y) plane when § > 0 and 4% > 8p.

For now, we limit our attention to the unshaded sectors AOA, By (k =1, 2),
and divide our arguments into two parts as follows:

(i) In the case 6, = 7, we have

D(6:) =0, R(6;)=0

and
D'(0)) = —3sinf;cos’ ‘01=W/2 =0,
D"(6;) = 6cosfsin®f; — 3cos® b, |91:ﬂ/2 =0,
D"(6)) = —6sin®6; + 12sin 6, cos® §; + 9 cos f; sin 0, |91:7r/2 = —6,
R(6,) = cos®6; —2sin*6; cosb, ‘01:7r/2 =0,
R'(#1) = —3cos®0;sinf) + 2sin®f; — 4 cos® 0 sin b, |91:7r/2 =2.
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When @ is close to 61, using the Taylor expansion, we have

) = T30y o0 )
= —(0—6:)° +0(10 — 6, ),
o) = 00,2 4ol - 61
= (0—601)°+0(|0 — 01]).
Thus, we get
tana=r @ D) ooy oo a))+o1), r—0,  (217)

dr — 3R"(0,)

where « is described as in Figure 2.3.

(ii) In the case #, = 3%, similarly we have

D(63) =0, R(fa) =0,
D'(6;) =0, D"(6;) =0,

D/”(QQ) - 6, Rl(eg) - 0,
R"(6) = —2.
and
do
tana:rd—:—(6—62)+0(|9—92|)+0(1), r—0, (2.18)
r

where « is described as in Figure 2.3.

Since the leading coefficients in (2.17) and (2.18) are negative, combining
Lemma 2.1 and Theorem 2.1, we are ready to plot the global structure of system
(2.1) as Figure 2.6 for parametric choices 6> > 8y and 6 > 0. Here it is worth
noting that the points £ and F represent the equilibria at infinity. The Poincaré
transformation dr = % used in (2.3) and (2.5) tells us that the local structure of
FE is the same as that of F' when the natural number m is even. When m is odd,
the local structure of E is exactly opposite to that of F. That is, the direction
of each orbit near F is reversed as the one near F.
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The global structure of system (2.1) provides us useful information about

the exact solution of the damped Duffing equation (1.1). First, since W +

%@’y) = —9¢, by the Bendixson Theorem, Figure 2.6 has neither closed orbit
nor heteroclinic orbit. This means that equation (1.1) has neither bell-profile
solitary wave solutions nor nontrivial periodic solutions. Second, we observe that
except the equilibrium points P, O, R and the orbits L(O, P) (or L(P, O)) and
L(O, R) (or L(R, O)) , all other orbits in the global structure either emanate
from the infinite equilibria £ and F' or terminate at £ and F. This means that
the y-coordinate of the point which lies on all those orbits must be unbounded.
Consequently the corresponding x-coordinate of the point must be unbounded,
too. Otherwise, there exists adpositive number p such that |z| < p as y — oo.
y

By the Mean-value Theorem, 2 is unbounded. Nevertheless, we know that the

slope of the tangent lines to those orbits at the point (z, y) is given by

dy _ 5, K-
dx Y

which indicates that % is bounded. This is a contradiction. Third, we observe
that under the parametric conditions 6 > 8u and § > 0, the damped Duffing
equation (1.1) only has two nontrivial bounded exact solutions which correspond
to the orbits L(O, P) and L(O, R), respectively. These two solutions represent
monotone shock waves. As t goes to positive or negative infinity, each of them

tends to a constant.

3 Exact Solutions and Applications

In this section, we will restrict our attention to exact solutions of the Duff-
ing equation (1.1) and their applications to traveling wave solutions of the 2D
dissipative Klein-Gordon equation (1.2). We are going to show that an analytic
result obtained by the Lie symmetry method can be derived more effectively by
means of the coordinate transformation method.

If we use the Lie symmetry to study system (2.1), first we need to look for
invariance of (2.1) under a one-parameter infinitesimal point transformations of
the form

X =xi+en(t, x;) i=1, 2,

15



The corresponding infinitesimal generator is

0 0
Following [33], in order to find the first prolongation of the vector V', we take
¢ =01in (3.1) and define the associated first extended operator

0 e 0

(9.7:2- " 0362 ’

where 1, = Dyn;, © = 1, 2 and D, is the total differential operator. V is called
the generator of a one-parameter symmetry group for (2.1) if, whenever (2.1) is

satisfied and the following holds:

P’I"(I)V =1

a .0
PriVV (L)@ = <7718—I + m@_x><Az) =0, (3.2)

where the Als (i = 1, 2) denote two equations in (2.1). In order to identify a
nontrivial infinite dimensional Lie algebra of symmetry vector fields which can be
directly associated with the integral of motion for a suitable parametric choice,
Senthil and Lakshmanan [33] assumed that the the Lie symmetries 7; (i = 1, 2)
in (3.2) have the cubic form

M = a1 + agy + asy® + asy’,
2 = bl + bgy + b3y2 + b4y3, (33)
where the als and b}s (i = 1, 2, 3, 4) are functions of ¢ and x. Substituting (3.3)

into (3.2) and equating the coefficients of various powers of y, one can get the
resultant determining equations

A4z = bye = 0,

Ay + a3p — 30ay — by =0,

bt + bsy — 2004 + (32 — p)ay = 0,

asy + gy — 20as — 3(z* — p)ay — by = 0,

bgy + boy — 3(2® — pw)by — 0bs + (32 — p)as = 0,
gy + a1, — dag — 2(2® — px)as — by = 0,

boy + b1y — 2(2® — pa)bs + (322 — p)ag = 0,

ay — as(z® — px) — by =0,

by — bo(2® — px) + ¢1by + a1 (32* — p) = 0.

16



When
20° = —9p, (3.4)

with the aid of Maple software, the above determining equations can be solved
and four vector fields are obtained as follows

Si=X = 0 (52
1 0 1 1 0
_ ,(1/3)dt - 3 2.\ Y
Sy =c¢e [(y + 3533)8 (3(5y+a? + 9(5 x)ax],
2 1 1
53 = 6(4/3)6t(y + §5xy + §I4 + 562ZE2)81,
2 1 1
54 = 6(4/3)&(?/2 -+ §5$y + §$4 + §5Z$2)SQ,

where X is the dynamical vector field. Since the vector fields S3 and S, are not
functionally independent, one can use them to generate the integral of motion M
associated with the dynamical system (2.1) as follows

4 2 1 1
M = exp(—ét) (y2 + Zozy + =zt + —(523:2). (3.5)
3 3 2 9
Combining (3.5) and (2.1), one can thus find the exact solution to Duffing’s

equation (1.1)
z(t) = (V26/3)coe ™ Pen(cou; k), v =—v2e — ¢ (3.6)

where ¢y and c¢; are arbitrary integration constants and k? = % It is notable
that for exactly the same parametric choice (3.4), the exact solution (3.6) can be
obtained by using the elliptic function method [32] and the Painlevé analysis [31]
independently.

Here, we wish to point out that the above exact solution (3.6) and traveling
wave solutions to some nonlinear evolution equations, such as the 2D dissipative
Klein-Gordon equation (1.2) and the non-integrable Newell-Whitehead equation
[59]

Uy — Uy = QU — U
can be obtained more effectively by utilizing the coordinate transformation method.
Now, we merely use the 2D dissipative Klein-Gordon equation (1.2) as an exam-
ple. Assume that the Klein-Gordon equation (1.2) has a traveling wave solution
of the form

u(z, y, t) =u(§), &=kr+ly— M, (3.7)
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where k, [ and A are real constants. Substituting (3.7) into (1.2) gives

al B g 3

usg_)\Q—kQ—ZQUE—i_)\2_k2_l2u+/\2_k2_l2u =0. (3.8)

Note that the coefficient of u? can be changed to 1 by rescaling (3.8) with u = nu,
thus, it reduces to the damped Duffing equation (1.1) and the previous discus-
sions on the damped Duffing equation apply. But this is not necessary in view of
our arguments below.

Following [58], we make the natural logarithmic transformation

)\2 . /{32 . l2
5 = T InT.
Then equation (3.8) becomes
a?\? d*u B 0 3

2 J—
02— pp a2 T v—poptt e popt =0 (3.9)

Next, take the nonlinear transformation as
g=7" u=7730".P(g),
then equation (3.9) becomes

EP AN k2 2) 1a
a2 - e 1 P*(q), (3.10)

2 12 2
where k2 =1 — %.

Letting k = %, we get
2020\ = 9B(N\* — k* — %),
and equation (3.10) reduces to

() =~ DA B i), (3.11)

Since equation (3.11) has a particular solution

Q a\ 1
3 V(R 122w+ ¢’

p(w) ==+
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where ¢ is arbitrary constant, the Klein-Gordon has traveling wave solutions

NG o exp | gy (ke + 1y = M+ &)
w(@, y, 1) = E o — e — A |
\/7(k F2 -\ )exp [m(k:x—irly—)\t—kfo)] + ¢
(3.12)

where both & and ¢y are arbitrary constants. From (3.12), one can see that
when ¢y is positive, u; describes a kink-profile traveling wave which is actually
monotone with respect to £. It is analytic for all (x, y, t), but blows up at infinite
points of (z, y, t) when ¢ is negative.

Equation (3.11) can be converted to the canonical form of an elliptical integral
of the first kind after multiplying (3.11) by p’ and performing one integration:

Oy (k2 4 12 — N2)
) = 1t w)

where ¢, is arbitrary constant. Choosing co = 1 or —1, respectively, and changing
to the original variables, we obtain that the Klein-Gordon equation has traveling
wave solutions

202 \? a\
us(z, y, t) = i\/9y(k2 TR )\z)exp (3()\2 — ZQ)(kx +ly — )\t—l—&)))

-nc{ + ﬁ[exp ( A (kx +1ly — Mt + fo)) + 03} ;

1
3(0\2 — k2 — [2) ﬁ}
(3.13)

2002 \2 a\
ug(z, y, t) = i\/97()\2 — ZQ)eXp (30\2 — p)(k’x—l—ly — )\t—l—fo))

-sd{ + \/E[exp <3()\2 _0422 7 (kx +ly — Mt + 50)) + 03];

1
7
(3.14)

where &, and c3 are arbitrary constants.
By comparison with the previous methods described in [31-33, 59], the coor-

dinate transformation method we use here for the damped Duffing equation (3.8)
to obtain its exact solutions appears to be more straightforward and involves less
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calculations. It is notable that the Jacobian elliptic functions nc and sd in (3.13)
and (3.14) oscillate more and more strongly as 3(/\+];\2_12)(ka:+ly—>\t+fo) — +o00.
Moreover, the elliptic function in (3.6) has singularities that are more and more
closely spaced. At this moment, we are still wondering under what circumstances
traveling wave solutions (3.13) and (3.14) have any physical or chemical applica-
tions.

4 Conclusion

One of the most fundamental equations in the study of the nonlinear oscilla-
tions is the Duffing equation. It has been discussed in many papers arising in var-
ious scientific fields. The damped Duffing equation is non-integrable. Although
its local behavior has been well studied and understood, the global structure of
the damped Duffing equation does not seem to have been carefully studied, to
the best of our knowledge. Therefore, qualitative analysis as well as innovative
mathematical techniques are in order.

In this paper, under certain parametric conditions, we apply qualitative the-
ory of planar systems to show the global structure of a two-dimensional plane
autonomous system, which is equivalent to the damped Duffing equation (1.1).
The exact solution to the damped Duffing equation is presented and traveling
wave solutions of the 2D dissipative Klein-Gordon equation (1.2) are derived by
applying the coordinate transformation method.

Acknowledgment: The work has been presented at the Applied Mathemat-
ics Seminar, University of Texas-Pan American, Edinburg, TX, on January 27,
2005.
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