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Abstract

Consider the one-dimensional wave equation on a unit interval, where the left-end boundary condition
is linear, pumping energy into the system, while the right-end boundary condition is self-regulating of
the van der Pol type with a cubic nonlinearity. Then for a certain parameter range it is now known
that chaotic vibration occurs. However, if the right-end van der Pol boundary condition contains an
extra linear displacement feedback term, then it induces a memory effect and considerable technical
difficulty arises as to how to define and determine chaotic vibration of the system. In this paper, we take
advantage of the extra margin property of the reflection map and utilize properties of homoclinic orbits
coupled with a perturbation approach to show that for a small parameter range, chaotic vibrations occur
in the sense of unbounded growth of snapshots of the gradient. The work also has significant implications
to the occurrence of chaotic vibration for the wave equation on a 3D annular domain.

1 Introduction

First, we take this opportunity to express our
great admiration toward Professor Leon O. Chua.
Throughout his career so far, Professor Chua has
made major contributions to many areas of electrical
engineering, particularly, that of nonlinear circuits
and systems. He has an unusual, high appreciation
of the role played by mathematics in the research and
development of applied sciences and technology. The
journal founded by him, the International Journal of

Bifurcation and Chaos in Applied Sciences and En-
gineering (IJBC), has fully bloomed into a premier
journal in nonlinear science under his editorship. It
is also the most favorite forum for us to publish our
mathematical papers on chaos. We just wish to say
our appreciation, in a small way, “Thank you, Pro-
fessor Chua”, by dedicating this paper to him on the
occasion of his 65th birthday.

The problem we wish to address is the chaotic
vibration of the wave equation. (Our first research
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article on this subject, [Chen et al., 1996], was pub-
lished by IJBC in 1996.) Consider the following.
The wave equation

∂2w(x, t)
∂x2

− ∂2w(x, t)
∂t2

= 0, 0 < x < 1, t > 0,

(1.1)

on a bounded interval (0,1), where the speed of wave
propagation is assumed to be one without loss of gen-
erality as far as the mathematical analysis herein is
concerned. The boundary condition at the left-end
satisfies

wt(0, t) = −ηwx(0, t), η > 0, η 6= 1, t > 0,
(1.2)

while that at the right-end satisfies

wx(1, t) = αwt(1, t) − βw3
t (1, t) − γw(1, t),

t > 0, 0 < α < 1, β > 0, γ > 0.

}

(1.3)

The initial conditions are given by

w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 < x < 1.
(1.4)

Note that the boundary condition (1.2) signifies the
pumping of energy into the system in a feedback way.
The boundary condition (1.3) is similar to the van
der Pol nonlinearity we studied in our earlier work
[Chen et al., 1998a–1998d]. The major distinction
here is the presence of the term γw in the RHS (right
hand side) of (1.3). In elastic vibrations, this term
γw usually corresponds to some elastic support of a
vibrating string at x = 1; see [Chen & Zhou, 1993],
for example. The rate of change of energy of the
vibrating system is

d

dt
E(t)

≡ d

dt

{
1
2

∫ 1

0
[w2

x(x, t) + w2
t (x, t)]dx +

γ

2
w2(1, t)

}

= (· · · integration by parts and simplification,

using (1.1)–(1.3))

= ηw2
x(0, t) + [αw2

t (1, t) − βw4
t (1, t)]. (1.5)

Since

ηw2
x(0, t) ≥ 0, for all t > 0, (1.6)

αw2
t (1, t) − βw4

t (1, t){
≥ 0, if |wt(1, t)| ≤

√
α/β,

< 0, if |wt(1, t)| >
√

α/β,
(1.7)

we see that (1.6) injects energy into the system while
(1.7) is self-regulating just like the usual van der Pol
nonlinearity treated in [Chen et al., 1998a–1998d].

Remark 1.1. How important is it to include the γw

term in (1.3)? There are two major reasons that
motivate us to consider it in this paper:

(1) In the standard PID (proportional, integral
and differential) methodology of feedback con-
trol, the feedback of position or displacement
is of utmost importance in problems such as
tracking. Here the γw term corresponds pre-
cisely to the position or displacement term.

(2) The γw term may arise due to reduction of di-
mensionality for certain symmetry. Consider
the following: The wave equation in a 3D an-
nular domain Ω:

∆W (xxx, t) − 1
c2

Wtt(xxx, t) = 0, x ∈ Ω, t > 0,

(1.8)

Ω = {xxx | a < |xxx| < b},

where a > 0, b > 0, xxx = (x1, x2, x3), and ∆ =
∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3
. Let n denote the outward unit nor-

mal vector on ∂Ω, the boundary of Ω. The boundary
condition on the inner shell |xxx| = a is assumed to be

∂W (xxx, t)
∂n

= αWt(xxx, t) − βW 3
t (xxx, t) − k1W (xxx, t),

k1 ≥ 0, |x| = a, t > 0, (1.9)

and that on the outer shell |xxx| = b is

∂W (xxx, t)
∂n

=
1
η
Wt(xxx, t) − k2W (xxx, t),

η > 0, k2 ≥ 0, |x| = b, t > 0. (1.10)
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The initial conditions satisfy

W (xxx, 0) = W0(|xxx|), Wt(xxx, 0) = W1(|xxx|), xxx ∈ Ω,

(1.11)

for some functions W0 and W1 defined on R. Let us
again examine the rate of change of energy:

d

dt
E(t) ≡ d

dt


1

2

∫
Ω

[|∇W (xxx, t)|2 +
1
c2

W 2
t (xxx, t)]dxxx

+
k1

2

∫
|xxx|=a

W 2(xxx, t)dσ

+
k2

2

∫
|xxx|=b

W 2(xxx, t)dσ


 (1.12)

=
∫
Ω

[∇W (xxx, t) · ∇Wt(xxx, t)

+
1
c2

Wt(xxx, t)Wtt(xxx, t)]dxxx

+ k1

∫
|xxx|=a

W (xxx, t)Wt(xxx, t)dσ

+ k2

∫
|xxx|=b

W (xxx, t)Wt(xxx, t)dσ

= · · · (integration by parts and

simplification, utilizing (1.8)–(1.10))

=
∫

|xxx|=a

[α − βW 2
t (xxx, t)]W 2

t (xxx, t)dσ

+
1
η

∫
|xxx|=b

W 2
t (xxx, t)dσ. (1.13)

In the above, dxxx = dx1dx2dx2 and dσ are, respec-
tively, the infinitesimal volume element on Ω and the
infinitesimal surface element on ∂Ω. Again, from
(1.13), we see that the boundary condition on the
inner shell |xxx| = a is self-regulating of the van der
Pol type, while that on the outer shell |xxx| = b injects
energy into the system. Because (1.9)–(1.11) are in-
dependent of the angular variables (in the spherical
coordinate system), the initial-boundary value prob-
lem (1.8)–(1.11) has rotational symmetry. So let us

attempt the reduction of dimensionality by writing

W (xxx, t) =
w(r, t)

r
, r = |xxx|. (1.14)

Substitution of (1.14) into (1.8)–(1.11) leads to the
following initial-boundary value problem:

∂2w(r, t)
∂r2

− 1
c2

∂2w(r, t)
∂t2

= 0, a < r < b, t > 0,

−wr(a, t) = αwt(a, t) − β

a2
w3

t (a, t)

−
(

k1 +
1
a

)
w(a, t),

wt(b, t) = ηwr(b, t) + η

(
k2 − 1

b

)
w(b, t);

w(r, 0) = w0(r) ≡ W0(r)/r,
wt(r, 0) = w1(r) = W1(r)/r, a < r < b.




(1.15)

In (1.15)3 above, set

k2 =
1
b
, (1.16)

then we can eliminate the term η
(
k2 − 1

b

)
w(b, t).

We further make the change of variable

r = b − (b − a)x, 0 ≤ x ≤ 1.

Then (1.15) becomes


1
(b − a)2

wxx(x, t) − 1
c2

wtt(x, t) = 0,

0 < x < 1, t > 0,

wt(0, t) = − η

b − a
wx(0, t), t > 0,

wx(1, t) = α(b − a)wt(1, t) − β(b − a)
a2

·
w3

t (1, t) −
(

k1 +
1
a

)
(b − a)w(1, t), t > 0;

w(x, 0) = w0 (b − (b − a)x) ,

wt(x, 0) = w1 (b − (b − a)x) , 0 < x < 1.

(1.17)

Further, setting

b − a = c,
η

b − a
= η̃, α(b − a) = α̃,

β(b − a)
a2

= β̃,

(
k1 +

1
a

)
(b − a) = γ̃,

Then (1.17) is converted exactly to the form of (1.1)–
(1.4).
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Note that, even though we are able to eliminate
the w(b, t) term in (1.15)3 by (1.16), we cannot elim-
inate the w(a, t) term in (1.15)2 at the same time be-
cause its coefficient, − (

k1 + 1
a

)
, is always negative.�

The statements we have made in Remark 1.1 (2)
above actually opens the door for the investigation
of chaotic vibration of the wave equation on a mul-
tidimensional domain.

The presence of the γw(1, t) term in the bound-
ary condition (1.3) has added significant technical
difficulty to the study of chaos for the system (1.1)–
(1.4). Most of us will agree that there is not yet
available a universally accepted definition of chaos
for time-dependent partial differential equations. In
the case when γ = 0 in (1.3), using the method
of characteristics for hyperbolic systems one can
extract clearly defined interval maps [Chen et al.,
1998a–1998c, 2001], [Huang & Chen, 2001], which
come from wave reflection relations totally charac-
terizing the system, and use them as the natural
Poincaré section for the system. Since the defini-
tion of chaos for interval maps is more or less stan-
dard (see, e.g., [Devaney, 1989]), it is thus possible
to classify whether the system is chaotic or not when
γ = 0. But when γ 6= 0 in (1.3), fixed interval maps
no longer exist. What we have instead is a nonlin-
ear integrodifferential equation with respect to the t

variable on the boundary at x = 1; see (4.4) below.
The presence of the integral term signifies a memory
effect. Because the integral term tends to cause the
drift of the states out of the invariant region, espe-
cially when the time horizon is long, this becomes
the most technically challenging part of the paper.
It has taken us a long time to analyze this complex-
ity and treat it to a desired degree of satisfaction,
fruitless until now.

The way we regard that chaos occurs in the sys-
tem is from the view of unbounded growth of total
variations of snapshots developed by us in [Chen
et al., 2001], [Huang & Chen, 2001]. If a system
starts out from some initial data (at t = 0) whose
total variations over the spatial span is finite. As-

sume that whatever prescribed forcing term(s) in the
boundary data has bounded total variations over the
entire time horizon t : 0 < t < ∞. If the total varia-
tions of the snapshots of the state tend to infinity as
t → ∞, this intuitively speaks for the fact that the
system becomes more and more oscillatory, without
any limitation and, thus, is chaotic. This point of
view is summarized in §2.

In §3 and 4, we actually prove that the total vari-
ations of the snapshots grow unbounded, for a cer-
tain set of initial data. In §3, we first regard the
γw term in (1.3) as a prescribed function εf(t); see
(3.1)3. Thus this εf(t) becomes a forcing term in an
open-loop, nonlinear boundary condition. We then
use a perturbation argument and properties of homo-
clinic orbits to derive the desired unbounded growth
of total variations.

In §4, we then use the equivalence between an
open loop system and a closed loop one to prove
that total variations of snapshots do go unbounded
as t → ∞, for sufficiently small γ > 0. Graphics for
an example are also illustrated.

2 Chaotic Vibration as Charac-

terized by Unbounded Growth

of Total Variations of Snapshots

Let I denote a closed interval [a, b] and let
f : I → R. We use VI(f) to denote the total varia-
tion of the function f over I.

Let us first consider the system (1.1)–(1.4), but
with γ = 0 in (1.3). Making the transformation

wx = u + v, wt = u − v, (2.1)

we obtain the following first order symmetric hyper-
bolic system

∂

∂t

[
u(x, t)
v(x, t)

]
=

[
1 0
0 −1

]
∂

∂x

[
u(x, t)
v(x, t)

]
,

0 < x < 1, t > 0, (2.2)
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with the left-end boundary condition

v(0, t) = Gη(u(0, t)) ≡ 1 + η

1 − η
u(0, t), t > 0,

(2.3)

and the right-end boundary condition

u(1, t) = Fα,β(v(1, t)), t > 0, (2.4)

where for given x ∈ R, y = Fα,β(x) is the unique real
solution of the cubic equation

β(y − x)3 + (1 − α)(y − x) + 2x = 0. (2.5)

The initial conditions for u and v are


u(x, 0) = u0(x) ≡ 1
2
[w′

0(x) + w1(x)],

v(x, 0) = v0(x) =
1
2
[w′

0(x) − w1(x)],

0 < x < 1.

(2.6)

Let us fix α and β and write Fα,β briefly as F , in case
no ambiguity arises. Similarly, we will also write Gη

briefly as G. Then the solution u and v of (2.2)–
(2.6) can be determined completely by the reflection
relations G and F . The overall system (2.2)–(2.6) is
chaotic if the composite reflection relation G ◦ F is
chaotic (see, e.g., [Devaney, 1989]).

Assume that

0 < V[0,1](u0) < ∞, 0 < V[0,1](v0) < ∞. (2.7)

Then work in [Chen et al., 2001] shows that for a
parameter range of η when Gη ◦ F is chaotic, there
exists a large class of initial conditions u0(·) and v0(·)
satisfying (2.7) such that

lim
t→∞V[0,1](u(·, t)) = ∞, lim

t→∞V[0,1](v(·, t)) = ∞.

(2.8)

The proof of (2.8) in [Chen et al., 2001] uses key
properties of a chaotic interval map such as the ex-
istence of a periodic orbit of period 2k ·m, where m

is an odd integer, or the existence of a homoclinic
orbit.

At a more elementary level, the property (2.7)
for the system (2.2)–(2.6) hinges on the irregular be-
havior of the iterates of the composite reflection map

G ◦ F . Even though G ◦ F is defined on the entire
real line R, it becomes an interval map if we restrict
the domain of definition of G ◦ F to an invariant in-
terval; see [Chen et al., 1998a–1998c] or Lemma 3.2
below. For an interval map f , the relationship be-
tween the chaotic behavior and the property of un-
bounded growth of total variations of iterates fn of
f can be seen in the following two theorems.

Theorem 2.1 ([Huang & Chen, 2001]). Let I

be a finite closed interval of R and let f : I → I

be continuous. Assume that f has sensitive depen-
dence on initial data on I [Devaney, 1989]. Then
lim

n→∞VJ(fn) = ∞ for every closed subinterval J of
I. The converse is also true if f has finitely many
extremal points. �

Theorem 2.2 ([Huang & Chen, 2001]). Let I

be a finite closed interval of R and let f : I → I be
continuous with finitely many extremal points. As-
sume that lim

n→∞VJ(fn) = ∞ for every closed subin-
terval J of I. Then the map f has periodic points of
prime period 2k for k = 1, 2, 3, . . . . �

More recently, [Juang & Shieh, 2001] have shown
that under the same conditions as in Theorem 2.2,
f actually has a periodic point with prime period
m · 2k for some integers m and k, where m is odd.

Having rationalized the background of how (2.7)
and (2.8) may be related to chaos, we proceed to
establish them for the system (1.1)–(1.4) when γ in
(1.3) lies in a certain range.

3 An Open-Loop Perturbation

Approach to Establish the Un-

bounded Growth of Total Vari-

ations of Snapshots

In this section, we will view the γw(1, t) term in
(1.3) as an explicitly given perturbation term εf(t),
for some bounded continuous function f , for some
small ε ∈ R. Thus, even though the γw(1, t) term in
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(1.3) constitutes part of the feedback boundary con-
dition, the substitute term εf(t) becomes a forcing
term and the new boundary condition at x = 1 is no
longer wholly closed-loop. We consider the model


wxx(x, t) − wtt(x, t) = 0,
0 < x < 1, t > 0;

wx(0, t) = −ηwt(0, t),
η > 0, η 6= 1, t > 0;

wx(1, t) = αwt(1, t) − βw3
t (1, t) + εf(t),

0 < α < 1, β > 0;
w(x, 0) = w0(x), wt(x, 0) = w1(x),

0 < x < 1.

(3.1)

Using (2.1) in (3.1)3, we obtain

β[u(1, t) − v(1, t)]3 + (1 − α)[u(1, t) − v(1, t)]

+ 2v(1, t) − εf(t) = 0. (3.2)

For each given value of v(1, t) and that of f(t), there
exists a unique solution u(1, t) of (3.2). We denote
the correspondence by

u(1, t) = F (v(1, t)).

(For the unperturbed case εf(t) ≡ 0, we retain our
old notation u(1, t) = F (v(1, t)) as in (2.4).) Fur-
ther, for t ∈ [0, 1], write

f(i)(t) ≡ f(i + t),

v(i)(t) ≡ v(i + t).

Throughout the rest of the discussion, we assume
that

f ∈ BC[0,∞) (BC(I), where I = [0,∞), is the

space of all bounded continuous

functions on an interval I),

|f(t)| ≤ M0, for some M0 > 0, for all t ∈ [0,∞).
(3.3)

Henceforth, let us abbreviate u(1, t) and v(1, t)
simply as u(t) and v(t), respectively, in case no am-
biguity arises. For given v(i)(t) and εf(i)(t), t ∈ [0, 1],

i = 0, 1, 2, . . . , we denote by F i(v)(t) the unique so-
lution of

β[F i(v)(t) − v(i)(t)]
3 + (1 − α)[F i(v)(t) − v(i)(t)]

+ 2v(i)(t) − εf(i)(t) = 0. (3.4)

It is easy to see that

F (v(k + t)) = F k(v)(t), for k = 0, 1, 2, . . . , t ∈ [0, 1].

Lemma 3.1. Let f satisfy (3.3). For given
v(i)(t), t ∈ [0, 1], any i = 0, 1, 2, . . . ,

|F i(v)(t) − F (v(i)(t))| ≤
M0ε

1 − α
. (3.5)

Proof. Since

β[F i(v)(t) − v(i)(t)]
3 + (1 − α)[F i(v)(t) − v(i)(t)]

+ 2v(i)(t) − εf(i)(t) = 0,

β[F (v(i)(t)) − v(i)(t)]
3 + (1 − α)[Fi(v(i))(t) − v(i)(t)]

+ 2v(i)(t) = 0,

by subtraction we have

(F i(v)(t) − F (v(i)(t)))
{

β[(F i(v)(t) − v(i)(t))
2

+ (F i(v)(t) − v(i)(t))(F (v(i))(t) − v(i)(t))

+ (F (v(i)(t)) − v(i)(t))
2] + (1 − α)

}
− εf(i)(t) = 0.

The terms inside [· · · ] above are nonnegative. Thus

|F i(v)(t) − F (v(i)(t))| · (1 − α) ≤ |εf(i)(t)|

and, therefore,

|F i(v)(t) − F (v(i)(t))| ≤
M0|ε|
1 − α

.

The solution to (3.1) can now be written as fol-
lows: for t = 2k + τ , k = 0, 1, 2, . . . , 0 ≤ τ < 2 and
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0 ≤ x ≤ 1,

u(x, t) =




(F k−1 ◦ G) ◦ (F k−2 ◦ G) ◦ · · · ◦
(F 0 ◦ G)[u0(x + τ)], τ ≤ 1 − x;
G−1 ◦ (G ◦ F k) ◦ (G ◦ F k−1) ◦ · · · ◦
(G ◦ F 0)[v0(2 − x − τ)],

1 − x < τ ≤ 2 − x;
(F k ◦ G) ◦ (F k−1 ◦ G) ◦ · · · ◦
(F 0 ◦ G)[u0(τ + x − 2)],

2 − x < τ ≤ 2;

(3.6)

v(x, t) =




(G ◦ F k−1) ◦ (G ◦ F k−1) ◦ · · · ◦
(G ◦ F 0)[v0(x − τ)], τ ≤ x;
G ◦ (F k−1 ◦ G) ◦ (F k−2 ◦ G) ◦ · · · ◦
(F 0 ◦ G)[u0(τ − x)],

x < τ ≤ 1 + x;
(G ◦ F k) ◦ (G ◦ F k−1) ◦ · · · ◦
(G ◦ F 0)[v0(2 + x − τ)],

1 + x < τ ≤ 2.

(3.7)

From (3.6) and (3.7), we see that if

lim
k→∞

V[0,1]((F k ◦ G) ◦ · · · ◦ (F 0 ◦ G)(u0)) = ∞,

then we have

lim
t→∞V[0,1](u(·, t)) = ∞, lim

t→∞V[0,1](v(·, t)) = ∞.

Lemma 3.2. Let η > 0 satisfy either

(i) 0 < η
H

≡
(

1 − 1 + α

3
√

3

)(
1 +

1 + α

3
√

3

)−1

< η < η
0

< 1, (3.8)

(ii) 1 < η̄0 < η < η̄H ≡
(

1 − 1 + α

3
√

3

)−1

·(
1 +

1 + α

3
√

3

)
, (3.9)

where η
0
: 0 < η

0
< 1 and η̄0 : 1 < η̄0 < ∞ are the

unique solution of, respectively, the following equa-
tions

1 + η
0

1 − η
0

1 + α

3

√
1 + α

3β
=

1 + η
0

2η
0

√
1 + αη

0

βη
0

,

η̄0 + 1
η̄0 − 1

1 + α

3

√
1 + α

3β
=

1 + η̄0

2

√
α + η̄0

β
.

Then

M1 ≡ local maximum of Gη ◦ F

=
∣∣∣∣1 + η

1 − η

∣∣∣∣ 1 + α

3

√
1 + α

3β
<

1 + η

2

√
α + η

β

≡ B1, (3.10)

and [−B1, B1] is an invariant interval of Gη ◦F such
that

Gη ◦ F (M1) > 0 for (3.8), (3.11)

Gη ◦ F (M1) < 0 for (3.9). (3.12)

Proof. See [Chen et al., 1998b, Lemmas 2.4, 2.5, and
Theorems 4.1, 4.2].

We wish to emphasize here that for the param-
eter ranges of η given in (3.8) and (3.9), the map
Gη ◦ F has homoclinic orbits in [−B1, B1] for each
such η. This homoclinic property is crucial for the
perturbation arguments in the subsequent sections.

Lemma 3.3. Let η > 0 satisfy either (3.8) or (3.9).
Then
(i) for η satisfying (3.8),

M2 ≡ local maximum of F ◦ Gη

=
1 + α

3

√
1 + α

3β
<

1 − η

2η

√
1 + αη

βη

≡ B2; (3.13)

(ii) for η satisfying (3.9),

M2 ≡ local maximum of F ◦ Gη

=
1 + α

3

√
1 + α

3β
<

η − 1
2

√
α + η

β

≡ B2, (3.14)

and [−B2, B2] is an invariant interval of F ◦Gη such
that

F ◦ Gη(M2) > 0 for (3.8), (3.15)

F ◦ Gη(M2) < 0 for (3.9). (3.16)

Proof. Same as that for Lemma 3.2.
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u

v
1 2-1-2
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2

-M 1
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1

1

α=0.5, β=1.0, η=1.59

(b)

u

v
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-1
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1

2

12

-M1 M1δ δ

M1

+

α=0.5, β=1.0, η=1.59

1 1-

-M1

(c)

Figure 3.1: We plot the graph of Gη ◦ Fα,β , with
α = 1/2, β = 1 and η = 1.59. See Remark 3.1. In
(a), the square is S1. In (b), the square is S2. In
(c), the rectangle is R. The map Gη ◦Fα,β is invari-
ant on S1,S2 and R. Thus, we see the extra margin
property from R.

From Lemmas 3.2 and 3.3, we can further choose

η satisfying (3.8) or (3.9) such that

Gη ◦ F (M1) < M1,

F ◦ Gη(M2) < M2, for (3.8), (3.17)

Gη ◦ F (M1) > −M1,

F ◦ Gη(M2) > −M2, for (3.9). (3.18)

Thus, there exist δ1 > 0 and δ2 > 0 such that

(Gη ◦ F )[−M1 − δ1,M1 + δ1] ⊆ [−M1,M1], (3.19)

(F ◦ Gη)[−M2 − δ2,M2 + δ2] ⊆ [−M2,M2]. (3.20)

Remark 3.1. Lemmas 3.2 and 3.3 allow us to add a
perturbation term in the recursive iterations. Let us
explain their significance through Fig. 3.1, where by
choosing α = 0.5, β = 1 and η = 1.59 and by set-
ting δ1 to satisfy Gη ◦ F (M1 + δ1) = M1 we see the
following:

(i) S1 ≡ [−B1, B1]× [−B1, B1] is the large invari-
ant square for the map Gη ◦ Fα,β ; see Fig. 3.1
(a);

(ii) S2 ≡ [−M1,M1] × [−M1,M1] is the small
invariant square for the map Gη ◦ Fα,β; see
Fig. 3.1 (b);

(iii) R ≡ [−(M1 + δ1),M1 + δ1] × [−M1,M1] is an
invariant rectangle for the map Gη ◦ Fα,β ; see
Fig. 3.1 (c).

The invariant rectangle in (iii) has width 2(M1 +δ1),
which is larger than the height 2M1 by a margin
2δ1 > 0. This extra margin δ1 is crucial, providing
what we need in order to allow small perturbations.
We call this the extra margin property. �

Lemma 3.4. Assume that η satisfies Lemma 3.3
and (3.18), and that δ2 satisfies (3.20). Choose ε

such that |ε| < (1−α)δ2
M0

. Then

|(F k ◦ G) ◦ (F k−1 ◦ G) ◦ · · · ◦ (F 0 ◦ G)(u0)(t)|
≤ M2 + δ2, t ∈ [0, 1]

provided that |u0(t)| ≤ M2 + δ2 for t ∈ [0, 1], for
k = 0, 1, 2, . . . .
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Proof. By Lemma 3.1, we have

|F 0 ◦ G(u0)(τ) − F ◦ G(u0(τ))| ≤ M0|ε|
1 − α

.

Therefore

|F 0 ◦ G(u0)(τ)| ≤ |F ◦ G(u0(τ))|
+

M0

1 − α

1 − α

M0
δ2

≤ M2 + δ2 (3.21)

because for |u0(τ)| ≤ M2 + δ2, |F ◦ G(u0(τ))| ≤ M2.

Inductively, if

|(F k ◦ G) ◦ (F k−1 ◦ G) ◦ · · · ◦ (F 0 ◦ G)(u0)(τ)|
≤ M2 + δ2,

then

|(F k+1 ◦ G) ◦ (F k ◦ G) ◦ · · · ◦ (F 0 ◦ G)(u0)(τ)

− (F ◦ G) ◦ (F k ◦ G) ◦ · · · ◦ (F 0 ◦ G)(u0)(τ)|
≤ M0

1 − α

1 − α

M0
δ2 = δ2.

Because |(F k◦G)◦(F k−1◦G)◦· · ·◦(F 0◦G)(u0)(τ)| ≤
M2 + δ2, using the same argument as in (3.21) we
have

|(F k+1 ◦ G) ◦ (F k ◦ G) ◦ · · · ◦ (F 0 ◦ G)(u0)(τ)|
≤ M2 + δ2.

Similarly, we can prove the following.

Lemma 3.5. Assume that η satisfies Lemma 3.2
and (3.17), and that δ1 satisfies (3.19). Choose ε

such that |ε| <
∣∣∣1−η
1+η

∣∣∣ (1−α)δ1
M0

. Then

|(G ◦ F k) ◦ (G ◦ F k−1) ◦ · · · ◦ (G ◦ F 0)(v0)(t)|
≤ M1 + δ1, t ∈ [0, 1],

provided that |v0(t)| ≤ M1 + δ1 for t ∈ [0, 1], for
k = 0, 1, 2, . . . . �

Lemma 3.6. Assume the conditions of Lemma 3.3
and (3.16). Let vc =

∣∣∣1−η
1+η

∣∣∣ 2−α
3

√
1+α
3β be a critical

point such that |F ◦ G(vc)| = M2. Then there exists
a δ′2 > 0 sufficiently small such that

0 < (F ◦ G)′(v) < 1, for v ∈ [vc − δ′2, vc] (3.22)

and

(F ◦ G)(M2 − 2x) + 2x < 0, for 0 ≤ x ≤ δ′2.
(3.23)

Proof. This follows easily from (3.16) by a continuity
argument.

Similarly, we can prove the following.

Lemma 3.7. Assume the conditions of Lemma 3.3
and (3.15). Let vc =

∣∣∣ 1−η
1+α

∣∣∣ 2−α
3

√
1+α
3β be a critical

point such that |F ◦ G(vc)| = M2. Then there exists
a δ′′2 > 0 sufficiently small such that

−1 < (F ◦ G)′(v) < 0, for v ∈ [vc − δ′′2 , vc]
(3.24)

and

(F ◦ G)(M2 − 2x) + 2x > 0, for 0 ≤ x ≤ δ′′2 .

(3.25)

�

Lemmas 3.6 and 3.7 deal with the map F ◦ G.
For the map G ◦F , the following can be proved in a
similar way.

Lemma 3.8. Assume the conditions of Lemma 3.2
and (3.11) or (3.12). Let vc = 2−α

3

√
1+α
3β be a criti-

cal point such that |G ◦ F (vc)| = M1. Then

(i) for (3.11), there exists a δ′1 > 0 sufficiently
small such that

−1 < (G ◦ F )′(v) < 0, for v ∈ [vc − δ′1, vc]

and

(G ◦ F )(M1 − 2x) + 2x > 0, for 0 ≤ x ≤ δ′1;
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(ii) for (3.12), there exists a δ′′1 > 0 sufficiently
small such that

0 < (G ◦ F )′(v) < 1, for v ∈ [vc − δ′′1 , vc]

and

(G ◦ F )(M1 − 2x) + 2x < 0, for 0 ≤ x ≤ δ′′1 . �

Theorem 3.1. Let η satisfy the assumptions in
Lemma 3.4, and let

|ε| <
1 − α

M0
δ̃2, δ̃2 ≡ min(δ2, δ

′
2) (3.26)

where δ2 and δ′2 satisfy (3.20), (3.22) and (3.23).
Assume that

|u0(t)| ≤ M2, 0 ≤ t ≤ 1;

Range u0 ⊇ [−δ̃2,M2 − δ̃2]. (3.27)

Then

lim
k→∞

V[0,1]

(
(F k ◦ G) ◦ (F k−1 ◦ G)

◦ · · · ◦ (F 0 ◦ G)(u0)
)

= ∞. (3.28)

Proof. To simplify notation, write

gk(τ) = (F k ◦ G) ◦ (F k−1 ◦ G) ◦ · · · ◦
(F 0 ◦ G)(u0)(τ), τ ∈ [0, 1], k = 0, 1, 2, . . . .

We wish to show

lim
k→∞

V[0,1](gk) = ∞.

Let x1 ∈ (0, vc) satisfy x1 = (F ◦ G)−1(M2). Let
t0, t1, t2 ∈ [0, 1] be such that

u0(t0) = −δ̃2, u0(t1) = x1, u0(t2) = M2 − δ̃2.

We can choose t1 such that

either t0 < t1 < t2, or t2 < t1 < t0.

Define

J1 = the closed interval with endpoints t0 and t1,

J2 = the closed interval with endpoints t1 and t2.

Then

|g0(t1) − (F ◦ G)(u0(t1))| ≤ M0ε

1 − α
< δ̃2,

|g0(t1) − (F ◦ G)(x1)| = |g0(t1) − M2| < δ̃2,

) g0(t1) > M2 − δ̃2. (3.29)

Also

|g0(t2) − (F ◦ G)(u0(t2))|
= |g0(t2) − (F ◦ G)(M2 − δ̃2)| ≤ δ̃2,

) g0(t2) ≤ (F ◦ G)(M2 − δ̃2) + δ̃2. (3.30)

By (3.23) and the fact that F ◦ G is decreasing on
[vc,M2], we have

F ◦ G(M2 − δ̃2) < F ◦ G(M2 − 2δ̃2) ≤ −2δ̃2.

(3.31)

Combining (3.30) and (3.31), we have

g0(t2) ≤ F ◦ G(M2 − 2δ̃2) + δ̃2 ≤ −2δ̃2 + δ̃2 = −δ̃2.

(3.32)

Also

|g0(t0) − (F ◦ G)(u0(t0))|
= |g0(t0) − F ◦ G(−δ̃2)| < δ̃2,

) g0(t0) < F ◦ G(−δ̃2) + δ̃2 < −δ̃2 + δ̃2 = 0,

because (F ◦ G)′(0) > 1. (3.33)

From (3.29)–(3.32), we obtain

g0(J2) ⊇ [−δ̃2,M2 − δ̃2],

g0(J1) ⊇ [0,M2 − δ̃2]. (3.34)

Using the same ideas as in the above, we can show
that J2 has two subintervals J2,1 and J2,2, such that

g1(J2,1) = F 1 ◦ G(g0(J2,1)) ⊇ [0,M2 − δ̃2],

g1(J2,2) = F 1 ◦ G(g0(J2,2)) ⊇ [−δ̃2,M2 − δ̃2].

On the other hand for J1, we now show that J1 has
a subinterval J1,2 such that

g1(J1,2) ⊇ [−δ̃2,M2 − δ̃2]. (3.35)
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Since 0 < x1 < M2 − ε ≤ M2 − δ̃2, consider
[x1,M2 − 2δ̃2] ⊇ g1(J1). J1 thus has a subinterval
J1,2 such that [x1,M2 − 2δ̃2] = g1(J1,2). We have

|F 1 ◦ G(x1) − F ◦ G(x1)|

= |F 1 ◦ G(x1) − M2| <
M0ε

1 − α
,

) F 1 ◦ G(x1) ≥ M2 − M0ε

1 − α
≥ M2 − δ̃2. (3.36)

From (3.23),

F ◦ G(M2 − 2δ̃2) < −2δ̃2,

|F 1 ◦ G(M2 − 2δ̃2) − F ◦ G(M2 − 2δ̃2)|
≤ M0ε

1 − α
≤ δ̃2,

F 1 ◦ G(M2 − 2δ̃2) ≤ F ◦ G(M2 − 2δ̃2) + δ̃2

≤ −2δ̃2 + δ̃2 = δ̃2. (3.37)

Therefore, (3.35) follows from (3.36) and (3.37).
Continuing this argument inductively, we can

construct a sequence of subintervals

Ji0,i1,i2...in , ik ∈ {1, 2}, for k = 0, 1, . . . , n,

(3.38)

of Ji0 such that

gk(Ji0,i1i2...ik) ⊇ [0,M2 − δ2] if ik = 1,

gk(Ji0,i1i2...ik) ⊇ [−δ2,M2 − δ2] if ik = 2.

Note that in (3.38), an index ij = 1 can only fol-
low ij−1 = 2; the subscript i0, i1 . . . ik consists of all
combinations of ij ∈ {0, 1} except those when two
adjacent indices ij−1ij are 11. Therefore, by sum-
ming over all such admissible io, i1 . . . ik, we have

V[0,1](gk) ≥
∑

VJi0,i1...ik
(gk)

≥ 2k−1(M2 − δ2) → ∞, as k → ∞,

and (3.28) has been proved.

Theorem 3.1 covers just the case under the con-
ditions of Lemma 3.4. If, instead, the conditions are
those stated in Lemma 3.5, then a proof can be sim-
ilarly established that

lim
k→∞

V[0,1]

(
(G ◦ F k) ◦ (G ◦ F k−1) ◦ · · · ◦

(G ◦ F 0)(v0)
)

= ∞, (3.39)

if

|v0(t)| ≤ M1, 0 ≤ t ≤ 1;

Range v0 ⊇ [−δ̃1,M1 − δ̃1] (3.40)

for

|ε| <

∣∣∣∣1 + η

1 − η

∣∣∣∣ 1 − α

M0
δ̃1, δ̃1 ≡ min(δ1, δ

′
1). (3.41)

We omit the details.

4 Chaotic Vibration in the Sense

of Unbounded Growth of Snap-

shots for the van der Pol Bound-

ary Condition Containing Dis-

placement

We now proceed to study the system (1.1)–(1.4).
The focus is the boundary condition (1.3). Write

X(t) = u(t) − v(t). (4.1)

Then

w(1, t) =
∫ t

0
wt(1, τ)dτ + a0 (a0 ≡ w(1, 0))

=
∫ t

0
X(τ)dτ + a0. (4.2)

For each reflection of waves at x = 1, we need only
consider 0 ≤ t ≤ 1. Note that because

an ≡ w(1, n) = a0 +
∫ n

0
X(τ)dτ

= an−1 +
∫ n

n−1
X(τ)dτ, (4.3)

if we know an, u(1, t), v(1, t) for t ∈ [n−1, n), then we
can determine an+1, u(1, t), v(1, t) for t ∈ [n, n + 1).

Let us now consider the nonlinear wave reflection
operator at x = 1. For the first wave reflection at
x = 1, i.e., for t ∈ [0, 1], using (2.1) and (4.2), we
rewrite (1.3) as

βX3(t) + (1 − α)X(t) + γ

[∫ t

0
X(τ)dτ + a0

]

+ 2v(t) = 0, 0 ≤ t ≤ 1. (4.4)
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Lemma 4.1. Let β > 0, 0 < α < 1, γ > 0. Then for
any v ∈ BC[0, 1] and a0 ∈ R, the equation (4.4) has
a unique solution X ∈ BC[0, 1].

Proof. (i) Uniqueness: Let a ∈ R and v ∈ BC[0, 1]
be given. Assume that

βX3
i (t) + (1 − α)Xi(t) + γ

[∫ t

0
Xi(τ)dτ + a

]

+ 2v(t) = 0 for i = 1, 2.

Then subtraction gives

βY (t)
{
[X2

1 (t) + X1(t)X2(t) + X2
2 (t)] + (1 − α)

}
+ γ

∫ t

0
Y (τ)dτ = 0. (4.5)

where Y ≡ X1 − X2. If X1 6≡ X2 on [0,1], then

P (t) ≡ β{[X2
1 (t) + X1(t)X2(t) + X2

2 (t)]

+ (1 − α)} > 0 on [0, 1].

From (4.5), we have

βP (t)Y (t) + γ

∫ t

0
Y (τ)dτ = 0, Y (0) = 0.

By a Gronwall argument, we can show that

Y ≡ 0 on [0, 1], a contradiction.

Therefore, the uniqueness follows.
(ii) Existence and smoothness: Let us construct the
solution of (4.4) iteratively as follows. Choose X0(t)
to be the (unique) solution of (4.4) when γ = 0.
Then X0 ∈ BC[0, 1]. Iterate by solving Xj+1 from

βX3
j+1(t) + (1 − α)Xj+1(t)

+
{

γ

∫ t

0
Xj(τ)dτ + 2v(t)

}
= 0. (4.6)

Then Xj+1 is unique and Xj+1 ∈ BC[0, 1]. By sub-
tracting (4.6)j=n with (4.6)j=n−1, we obtain

[Xn+1(t) − Xn(t)]
{

β[X2
n+1(t) + Xn+1(t)Xn(t)

+X2
n(t)] + (1 − α)

}
+γ

∫ t

0
[Xn(τ) − Xn−1(τ)]dτ = 0,

Xn+1(t) − Xn(t) =

− γ

β[X2
n+1(t) + Xn+1(t)Xn(t) + X2

n(t)] + (1 − α)

·
∫ t

0
[Xn(τ) − Xn−1(τ)]dτ,

|Xn+1(t) − Xn(t)| ≤ γ

1 − α

∫ t

0
|Xn(τ) − Xn−1(τ)|dτ

≤
(

γ

1 − α

)2 ∫ t

0

∫ τ1

0
|Xn−1(τ2) − Xn−1(τ2)|dτ2dτ1

≤ · · ·

≤
(

γ

1 − α

)n ∫ t

0

∫ τ1

0

∫ τ2

0
· · ·

∫ τn−1

0

|X1(τn) − X0(τn)|dτndτn−1 . . . dτ2dτ1

≤ C1 ·
(

γ

1 − α

)n ∫ t

0

∫ τ1

0

∫ τ2

0
· · ·

∫ τn−1

0

dτndτn−1 . . . dτ2dτ1

(C1 ≡ max
t∈[0,1]

|X1(t) − X0(t)|)

= C1 ·
(

γ

1 − α

)n tn

n!
→ 0 as n → ∞,

uniformly on [0, 1].

Therefore

lim
n→∞Xn = X ∈ BC[0, 1],

for a limit function X satisfying (4.4).

Note that the uniqueness result in Lemma 4.1
guarantees the uniqueness of the solution w for the
system (1.1)–(1.4).

The following lemma contains the most needed
important information about the boundedness of the
γw(1, t) term in (1.3).

Lemma 4.2 (Key technical lemma). Let w be
the solution of (1.1)–(1.4). Let w0 and w1 in (1.4)
be sufficiently smooth and are compatible with the
boundary conditions (1.2)–(1.3). Assume that u0

and v0 in (2.6) satisfy

|v0(x)| ≤ M1, |u0(x)| ≤ M2, x ∈ [0, 1],

(cf. M1 and M2, respectively, in (4.7)

Lemmas 3.2 and 3.3). (4.8)
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Then there exists an M ′ > 0 (prescribed in (4.22)
below) such that if

|a0| ≤ M ′,

then

|an| ≤ M ′ for n = 1, 2, . . . ,

and

|v(t)| ≤ M1, |u(t)| ≤ M2 and

|w(1, t)| ≤ M ′ + M1 + M2, ∀t ∈ [0,∞)

provided that γ > 0 is sufficiently small (satisfying
(4.24) below).

Proof. Let us consider the outcome of each reflection
at x = 1. For t ∈ [n, n + 1], from (4.3) and (4.6),

βX3
(n)(t) + (1 − α)X(n)(t) + 2v(n)(t)

+ γ

[∫ t

0
X(n)(τ)dτ + an

]
= 0, 0 ≤ t ≤ 1,

(4.9)

where

an = w(1, n), u(n)(t) = u(n + t),

v(n)(t) = v(n + t),X(n)(t) = u(n)(t) − v(n)(t).
(4.10)

As in [Chen et al., 1998a, 1998b], for any v ∈ R, let
g(v) be the unique real solution of the cubic equation

βg3(v) + (1 − α)g(v) + 2v = 0.

The X(n)(t) in (4.9) satisfies, for 0 ≤ t ≤ 1,

X(n)(t) = g

(
v(n)(t) +

γ

2

[∫ t

0
X(n)(τ)dτ + an

])

= g

(
v(n)(t) +

γ

2

[∫ t

0
X(n)(τ)dτ + an

])

− g(0) (* g(0) = 0)

= g′(h(t))

·
{

v(n)(t) +
γ

2

[∫ t

0
X(n)(τ)dτ + an

]}
,

(4.11)

where h(t), by the Mean Value Theorem, is a contin-
uous function taking values between 0 and v(n)(t) +
γ
2

[∫ t
0 X(n)(τ)dτ + an

]
. For any x ∈ R, from [Chen,

et al., 1998a, (3.5), p. 4279]

g′(x) = − 2
3βg2(x) + (1 − α)

< 0,

|g′(x)| ≤ 2
1 − α

, lim
x→±∞ |g′(x)| = 0.

From (4.11),

X(n)(t) + p(t) · γ
[∫ t

0
X(n)(τ)dτ + an

]

= −2p(t)v(n)(t), (4.12)

where

p(t) ≡ −(1/2)g′(h(t)) > 0, p(t) ≤ 1
1 − α

.

From (4.12), by Gronwall’s method,

d

dt

{
eγ

R t
0 p(τ)dτ

[∫ t

0
X(n)(τ)dτ + an

]}
=

−2p(t)eγ
R t
0 p(τ)dτv(n)(t),

eγ
R t
0 p(τ)dτ

[∫ t

0
X(n)dτ + an

]
− an

= −2
∫ t

0
p(s)v(n)(s)e

γ
R s
0 p(τ)dτds,∫ t

0
X(n)(τ)dτ + an =

ane−γ
R t
0 p(τ)dτ − 2

∫ t

0
p(s)v(n)(s)e

−γ
R t
0 p(τ)dτds,∣∣∣∣

∫ t

0
X(n)(τ)dτ + an

∣∣∣∣ ≤ |an|e−γ
R t
0 p(τ)dτ +

2
1 − α

∫ t

0
|v(n)(s)|e−γ

R t
s

p(τ)dτds. (4.13)

Assume that

|v(j)(t)| ≤ M1, |u(j)(t)| ≤ M2, |aj | ≤ M ′ (4.14)

are satisfied, for j = 0, 1, . . . , n, where M ′ will be
determined below in (4.22). Then∣∣∣∣v(n)(t) +

γ

2

[∫ t

0
X(n)(τ)dτ + an

]∣∣∣∣
≤

∣∣∣∣v(n)(t) +
γ

2

[∫ t

0
|X(n)(τ)|dτ + |an|

]∣∣∣∣
≤M1 +

γ

2
[M1 + M2 + M ′] ≡ M3. (4.15)
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Therefore, by letting

M ′′ ≡ max
x∈[0,M3]

g2(x), (4.16)

we have M ′′ = g2(M3) because g is monotone de-
creasing, g(−x) = −g(x) and g(x) < 0 for x < 0.
We have

1
3βM ′′ + (1 − α)

≤ p(t) = −1
2
g′(h(t)) =

1
3βg2(h(t)) + (1 − α)

≤ 1
1 − α

. (4.17)

From (4.17),

− 1
1 − α

(t − s) ≤ −
∫ t

s
p(τ)dτ

≤ − 1
3βM ′′ + (1 − α)

(t − s). (4.18)

Hence, from (4.18),

|an|e−γ
R t
0

p(τ)dτ ≤ |an|e−γ
R t
0

1
3βM′′+(1−α)

dτ

= |an|e−
γ

3βM′′+(1−α)
t
, (4.19)

and from (4.13), (4.14) and (4.18),

2
1 − α

∫ t

0
|v(n)(s)|e−γ

R t
s p(τ)dτds

≤ 2M1

1 − α

∫ t

0
e
− γ(t−s)

3βM′′+(1−α) ds

=
2M1

1 − α

{
3βM ′′ + (1 − α)

γ

[
1 − e

− γt
3βM′′+(1−α)

]}
.

(4.20)

From (4.13), (4.19) and (4.20),

|w(1, n + 1)| = |an+1| =
∣∣∣∣
∫ 1

0
X(n)(τ)dτ + an

∣∣∣∣
≤ |an|e−

γ
3βM′′+(1−α) +

2M1

1 − α

·
{

3βM ′′ + (1 − α)
γ

[
1 − e

− γ
3βM′′+(1−α)

]}
.

(4.21)

But
3βM ′′ + (1 − α)

γ

[
1 − e

− γ
3βM′′+(1−α)

]
= 1 − 1

2
γ

3βM ′′ + (1 − α)

+
1
3!

[
γ

3βM ′′ + (1 − α)

]2

± · · ·

≤ 1 − c0γ

2[3βM ′′ + (1 − α)]
,

for some c0 : 0 < c0 < 1,

if 0 < γ < c1, for some small c1.

Therefore, if we choose M ′ > 0 such that

M ′e−
γ

3βM′′+(1−α) +
2M1

1 − α

[
1 − c0γ

2(3βM ′′ + (1 − α))

]

≤ M ′,

i.e.,

M ′ ≥
[
1 − e

− γ
3βM′′+(1−α)

]−1

· 2M1

1 − α

[
1 − c0γ

2(3βM ′′ + (1 − α))

]
, (4.22)

then from (4.21)

|an+1| ≤ M ′.

(Here let us make a little clarification. M ′′ is defined
in (4.16) depending on M3, while M3 is defined in
(4.15) depending on M1,M2 and M ′

1. From (4.22),
M ′ in turn depends on M1 and M ′′. Thus it appears
that we were having a vicious cycle of M ′′ depending
on M ′′ itself. However, note that in (4.15), γ is very
small, making M3 depend mainly on M1. Therefore
(4.22) can be satisfied without problem, for small
γ > 0.) The above estimate also gives

|w(1, n + t)| ≤ M ′ + (M1 + M2)t, t ∈ [0, 1].
(4.23)

Since for t ∈ [0, 1],

v(1, 2 + n + t) =

GηFα,β

(
v(1, n + t) +

γ

2
w(1, n + t)

)
,

u(1, 2 + n + t) =

Fα,β

(
Gη(u(1, n + t)) +

γ

2
w(1, 1 + n + t)

)
,
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if γ is sufficiently small such that∣∣∣γ
2
w(1, n + t)

∣∣∣ ≤ γ

2
(M ′ + M1 + M2)

≤ δ̃3 ≡ min(δ1, δ2),

then by Lemmas 3.2, 3.3, (3.19), (3.20), we can use
the extra margin property in Remark 3.1 (iii) to con-
clude that

|v(1, t)| ≤ M1 |u(1, t)| ≤ M2,

for all t ∈ [0,∞).

Finally, we have laid all the ground work for de-
riving the chaotic property of vibration of the system
(1.1)–(1.4).

Theorem 4.1. Consider (1.1)–(1.4). Assume that
M1,M2 and M ′ satisfy the conditions in Lemma 4.2.
Let w0 and w1 in (1.4) be sufficiently smooth and be
compatible with the boundary conditions (1.2)–(1.3)
such that u0 = 1

2(w′
0 + w1) and v0 = 1

2 (w′
0 − w1)

satisfy

|v0(x)| ≤ M1, |u0(x)| ≤ M2, x ∈ [0, 1].

Assume that γ > 0 is sufficiently small such that

γ <
1 − α

M ′ + M1 + M2
δ̃, δ̃ ≡ min(δ̃1, δ̃2),

cf. (3.26) and (3.41), respectively,

for δ̃1 and δ̃2, (4.24)

Range v0 ⊇ [−δ̃,M1 − δ̃],

Range u0 ⊇ [−δ̃,M2 − δ̃].

Then for u = 1
2 (wx + wt), v = 1

2(wx − wt), we have


lim
t→∞V[0,1](u(·, t)) = ∞,

lim
t→∞V[0,1](v(·, t)) = ∞.

(4.25)

Proof. By Lemma 4.1, the solution w to the sys-
tem (1.1)–(1.4) is unique. Under the assumptions of
Lemma 4.2, we have |w(1, t)| ≤ M ′ + M1 + M2 for
all t ≥ 0. Therefore, we can denote

f(t) ≡ w(1, t), t ∈ [0,∞), ε ≡ γ,

and regard the closed loop system (1.1)–(1.4) as the
open loop system (3.1). Just let M0 ≡ M ′+M1+M2.
Let

ε = γ <
1 − α

M0
δ̃, δ̃ = min(δ̃1, δ̃2).

Then Theorem 3.1 (3.28), and (3.39) are applicable,
and we conclude (4.25).

The consequence in (4.25) also implies that


lim
t→∞V[0,1](wx(·, t)) = ∞,

lim
t→∞V[0,1](wt(·, t)) = ∞.

(4.26)

Therefore, the gradient w of (1.1)–(1.4) is chaotic in
the sense of unbounded growth of total variations
of the snapshots. The proof of (4.26) follows from
(4.25) by a little extra work utilizing (2.1) so we omit
it here.

One may also question whether

lim
t→∞V[0,1](w(·, t)) = ∞ (4.27)

holds under the assumptions of Theorem 4.1. The
answer is negative.

Corollary 4.1. Assume that Theorem 4.1 holds.
Then

V[0,1](w(·, t)) ≤ M1 + M2,

for all t > 0.

Proof. We know that

w(x, t) = w(0, t) +
∫ x

0
wx(ξ, t)dξ

= w(0, t) +
∫ x

0
[u(ξ, t) + v(ξ, t)]dξ,

for 0 ≤ x ≤ 1.

Therefore

V[0,1](w(·, t))

= sup
P

n∑
i=0

|w(xi+1, t) − w(xi, t)|,
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where P is an arbitrary partition of [0, 1] : P = {xi |
i = 0, 1, . . . , n, 0 = x0 < x1 < · · · < xn = 1}, such
that max

0≤i≤n
|xi+1 − xi| → 0 as n → ∞. Hence

V[0,1](w(·, t))

= sup
P

∣∣∣∣∣
n−1∑
i=0

∫ xi+1

ii

(u(ξ, t) + v(ξ, t))dξ

∣∣∣∣∣
≤ sup

P

n−1∑
i=0

∫ xi+1

xi

|u(ξ, t) + v(ξ, t)|dξ

≤ (M1 + M2) sup
P

n−1∑
i=0

(xi+1 − xi)

= M1 + M2.

Example 4.1. Let us choose

w0(x) = 0.5 − 0.95x +
1
2
x2,

w1(x) = −0.95x − x,


 0 ≤ x ≤ 1

α = 0.5, β = 1.95, γ = 0.01,

in (1.2)–(1.4). Then

u0(x) = 0.05, v0(x) = x − 1,

in (2.6). We plot the graphics of u(x, t), v(x, t) and
w(x, t) for t = 30 in Fig. 4.1 (a), (b) and (c). The
reader may find that the snapshots of u and v dis-
play rather chaotic oscillatory behavior, while that
of w doesn’t. �

There are some still unresolved questions:

(a) We believe that for the parameter range of η

prescribed in Lemmas 3.2 and 3.3, the chaotic
property (4.25) holds for a large class of initial
data w0, u0 and v0 without the requirement that
γ > 0 be small. But, how do we analyze the
case when γ > 0 is not small?

(b) Even if the map Gη ◦ Fα,β does not have ho-
moclinic orbits when η does not belong to the
parameter range as prescribed in Lemmas 3.2
and 3.3 (with α and β being fixed), as long as

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
u(x,30)

(a) u(x, t), 0 ≤ x ≤ 1, t = 30.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

2
v(x,30)

(b) v(x, t), 0 ≤ x ≤ 1, t = 30.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01
w(x,30)

(c) w(x, t), 0 ≤ x ≤ 1, t = 30

Figure 4.1: Snapshots of (a) u(·, t), (b) v(·, t) and
(c) w(·, t) for t = 30 in Example 4.1. The reader may
observe quite chaotic oscillatory behavior of u and
v, but the contrary for w, which is a consequence of
Corollary 4.1.
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the map Gη ◦ Fα,β : I → I is chaotic on an
invariant interval, then property (4.25) should
still hold for a large class of initial data u0 and
v0. This still needs to be proved.

(c) The proof of Corollary 4.1 essentially says that
there will be no chaos in the w(·, t) variable as
t → ∞. In order to have (4.27), the nonlinear
boundary condition (1.3) must be replaced by

wx(1, t) = [α − 3βw2(1, t)]wt(1, t)

− γw(1, t), t > 0, (4.28)

with everything else remaining unchanged.
The analysis of the boundary condition (4.28)
is yet to be carried out.
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