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Abstract

In this paper we study a two-consumers-one-resource competing system
with Beddington-DeAngelis functional response. The two consumers com-
peting for a renewable resource have intraspecific competition among their
own populations. Firstly we investigate the extinction and uniform per-
sistence of the predators, local and global stability of the equilibria, and
existence of Hopf bifurcation at the positive equilibrium. Then we compare
the dynamic behavior of the system with and without interference effects.
Analytically we study the competition of two identically species with differ-
ent interference effects. We also study the relaxation oscillation in the case
of interference effects. Finally we present extensive numerical simulations

to understand the interference effects on the competition outcomes.
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1 Introduction

In this paper we study a two-consumers-one-resource system with Beddington-
DeAngelis functional response. The two consumers (predators) competing for a
renewable resource (prey) have interference competition among their own popu-
lations. The mathematical model takes the following system of three nonlinear
ordinary differential equations Beddington [2], DeAngelis et al. [8], Huisman and
De Boer [14]:

dx (1 x ) mix Mok

— =rz(l——=) — — ,

dt K a1 —i—x—i—blylyl as +x+b2y2y2
dy, e1max
— = (——— —di)y1, 1.1
dt (Oq +x + b1y1 1)y1 ( )
d

Y2 €2MoT do)ys

At Cas+ax+byys

with initial values z(0) = zo > 0, y1(0) = y10 > 0, y2(0) = yo0 > 0.
In (1.1) z(t), y1(t), and yo(t) represent the population density of prey and
two predators respectively at time ¢. In the absence of predation, the prey grows
logistically with intrinsic growth rate r and carrying capacity K. The i-th preda-

tor consumes the prey according to the Beddington-DeAngelis functional response
m;TyY; €iM;TY;
ai+r+biy; ai+x+biy;’

ficient ; m; is the maximal consumption rate; a; is the half-satuation constant and

and its growth rate is where e; is the conversion efficiency coef-

b; measures the intraspecific interference among the population of i-th predator;
d; is the death rate.
Note that if by = by = 0 then system (1.1) is reduced to a system with Holling

type II functional responses:

dx z mix MoX

- _ R _
dt ra( K> a1+xy1 a2+xy2’
dy, e1mix
— = —d 1.2
dt ((11 +x l)yl’ ( )
dys €9MoX
— = —ds)ys.
i o B

Hsu, Hubbel and Waltman [12, 13], Butler and Waltman [5], Keener [17], Muratri
and Rinaldi [19], Smith [20], Liu, Xiao and Yi [18], among others, have showed

that system (1.2) exhibits coexistence in the sense of Armstrong and McGehee [1],
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that is, for appropriate parameter values and suitable initial population densities
(2(0),4(0),2(0)), the model does predicts coexistence of the two predators via
a locally attracting periodic orbit. However, system (1.2) cannot be uniformly
persistent. The case when by = 0 and by # 0 was studied in Catrell, Cosner and
Ruan [7].

This paper is organized as follows. In Section 2, we study existence and stability
of equilibria in system (1.1), including the semi-trivial equilibria( i.e., with survival
of only one predator species ) and the positive equilibrium ( with the coexistence
of both competing predators). Sufficient conditions for the uniform persistence
of the system are obtained. In Section 3, we construct a Lyapunov function to
establish the global stability of the positive equilibrium. We also have similar
extinction results as those in [13]. In Section 4, we consider the competition of
two identical predators with different interference effects. In Section 5, we study
relaxation oscillations to system (1.1) with r > 1 and b; = O(e'*#i) where e = 1/r
and p; > 0,7 = 1,2. Numerical simulations are presented to explain the obtained

results.

2 Local Analysis

2.1 Subsystems

Consider the following predator-prey system which is a subsystem of (1.1):

(4 q Ty _mr
at K atratby”
d
dy _ ( emx —d)y, (2.1)
dt a+x+by
z(0) > 0,y(0) > 0.

With the scaling:
t—rt, v—=2/K, y—>by/K (2.2)



the system (2.1) becomes

LSS L
dt r4+y+ A
dy . (2.3)
= =y(—D 4+ —
o =D )
where J
m me a
° br’ r’ me’ K

From the analysis in Cantrell and Cosner [6] and Hwang [15, 16], we have the
following results about the asymptotic behavior of the solutions of (2.3). The first

result is about the extinction of predator.

Proposition 2.1. Ifem < d or K < \ = (M“)_l, then the equilibrium (1,0) of
d
system (2.3) is globally asymptotically stable, or equivalently the equilibrium (K, 0)

of system (2.1) is globally asymptotically stable.

Now we assume that
(H1) K > X >0.

Under the assumption (H1), there exist three equilibria (0,0), (1,0) and (., y.),

where x, and y, are positive and satisfy

1 Y
_1'*_—: ,
T+ Yy + A
, (2.4)
e S
Ty + Y+ A

Obviously, we have
SYx

— = 1-—ux,
Tet+ys+ A

s >
and from (2.4) it follows that

g = L)@+ 4)
) Tots—1 (2.5)

22+ (s—1— Ds)r, — DAs = 0.

From the second equation of (2.5), we have

DAs

*

To+s—1>z,+s—1—Ds=

s Y >0



The variational matrix of system (2.3) is given by

1—2x — sy + STY —sx + STy
_ z+y+A z+y+A)? r+y+A z+y+A)?
J(ZL‘,y) - 6y?y+A) () dx y_ 6(my Y —)D5 : (26)
(z+y+A)? rHy+A  (aty+A)?

From Hwang [15, 16], we have the following result.
Proposition 2.2. Let the assumption (H1) hold.

(i) If tr(J(z.,y.)) <O then the equilibrium (x.,y.) of system (2.3) is globally
asymptotically stable.

(i) If tr(J(:c*, y*)) > 0 then there exists a unique limit cycle for system (2.3).

Furthermore,
(1) If s < max{0, % + 52} or equivalently
1 2,2 _ g2
b > min{-, ——° } (2.7)

e’ de(me — d) + mre?
then tr(J(z.,y.)) < 0.
(2) If s > max{J, % + 55} or equivalently

1 m2e? — d?

e’ de(me — d) + mre?

0 < b < min{ } (2.8)
then there exists 0 < A, < 22 such that tr(J(z.,y.)) < 0 (> 0) if and only
of A> A, (A< A,).

Remark 2.1. In the above (ii), if we set K, = a/A., then the prey and predator
coexist in equilibrium if the carrying capacity K satisfies A < K < K, and the
prey and predator populations exhibit periodic oscillation if K > K,.

Let 7 = Kz, § = %y* From (2.3), (z,y) is a positive equilibrium of system

(2.1). We summarize the results for system (2.1) in Table I.



Table I: Stability of equilibria for system (2.1)

Conditions Stability of equilibrium
em <d or K<\ (K,0) is globally asymptotically stable
K>\
and (z,y) is globally asymptotically stable
b > min{2, Wd_fw}
A< K <K,
and (z,7) is globally asymptotically stable
b < min{Z, de(mefﬁ}
K>K,>A\
and (Z,y) is an unstable focus and there exists a unique limit cycle

m2e?—d?
e’ de(me— d)+mr62}

b < mm{

2.2 Equilibria Analysis and Uniform Persistence

In this section, we shall find all equilibria of system (1.1) and determine their

stabilities. Consider

dx T

myix moX
2 = f(xvyhyZ)y

— =rz(l—-—=)— —
dt ( K) a1+x+b1y1yl a2+$+b2y2y

dy, e1miT

dt ay +x + by

dys €oMoL

%_ a2+x+bgy2

—dy)ys = g(z,y1),

— da)yo = h(x,y2).

Then the Jacobian matrix of system (1.1) takes the form

fo fu fu
J(@,y1,02) = |9z gy O (2.9)
he O hy,



where

z mil maY2
s =1r(l——)— —
f ( K) a1+x—|—b1y1 a2+x+b2y2
m(—i i mil maY2

K (ap+x+biy)?  (az + 2+ baya)?”
miz(a; + x)

T == (a1 4+ = + biy1)?’
fo—— moz(as + x)
- (as + x + boyo)?’
~ermayi(ar + biyr)
T 2
(a1 +z+ biyr)
ez bieymyzy, eymyz(a; + x)
Gy = _dl_ 5 — 2_d17
a; +x + by (a1 +x + biyn) (a1 +x + biyn)
o — eamaya(ag + bays)
’ (as + x + bays)?
b €9MoX byeamarys  egmaox(az + ) J
y2 — - 2.

—dy — —
as + = + bayo ? (ag + 2 +boy2)?  (az +x + byys)?

We now consider the equilibria and periodic solutions on the boundary.

(a) Ep = (0,0,0). The trivial equilibrium FEj always exists and is a saddle with
a two-dimensional stable manifold {(z,y,2) : © = 0,y1 > 0,y2 > 0} and a one-
dimensional unstable manifold {(x,y,z) : y1 = 0,92 = 0}.

(b) Ex = (K,0,0). The semi-trivial equilibrium Ex always exists. The Jacobian
matrix at Fx is given by

—-r * *
J(Eg)= |0 <mg —dq 0
eama K

0 0 ey 7ol do

Then E is asymptotically stable if

€1m1K engK
—d; <0 d —dy <0
aq + K ! an (05} + K 2
We note that ealmTff —d; < 0 if and only if
a;
em; <d; or K<\=_—— ;
( Zdi Z) -1



where ); is the break-even density for the ¢-th predator where there is no in-
traspecific competition within the population of the i-th predator. If K > A\; and
K > X then Fk is a saddle with a one-dimensional stable manifold {(x,y;,y2) :
x> 0,y1 =y = 0}.

Actually, we can verify the global asymptotical stability of Fx under a weaker

condition in the following lemma.
Lemma 2.3. If e;m; < d; then limsup, . y;(t) =0 fori=1,2.

Proof. We only prove the case of i = 1. By the first equation of (1.1), we know
that limsup, . z(t) < K. So we assume z(t) < K for ¢ large enough. It is easy
to see that

ey K < diK < dy(ay + K).

Let u=d; — eallmTlfg > 0. According to the monotonicity of the function %% with

respect to x, we have

' e1myT ermyx erm K
&: 1711 —1<11—d1S11 —d = —p.
y1 ar+x+ by a,+x a; + K
This implies that limsup,_, . y1(t) = 0. We complete the proof. [

From now on we always assume that
(H2) ermy > dy and eams > do.

Hence %1 — d; < 0 if and only if K < ); if (H2) holds.
(¢) Ey = (Z1,41,0). The semi-trivial equilibrium E; is a boundary equilibrium on
the (x,y1)-plane, where Z;, 7; are obtained by restricting to the system of the first

predator y; and the prey z. The Jacobian matrix at E; is given by

= (T mig _ miZi(a1+&1) _ maly
n(—x + ((a1+a‘c1fb)1yl)2) (a14Z1+b191) az+71
J(E,) = eimifi(a1+biin _ _biermiZiin
( 1) (a14+Z1+b171)? (a14+Z14+b171)? 0
€eamaZ
0 0 a2+ d2

We note that the top left 2 x 2 submatrix is exactly the Jacobian matrix .J in (2.6)
for the subsystem (2.1) at the equilibrium (z., y.), where a, b, e, m, d are replaced
by aq, by, e1, my, di (The conditions are presented in Table I). And % —dy <0

if and only if Z; < Ay under the assumption (H2). There are four cases for the
stability of Fj.



Table II: Stability of equilibrium FE; for system (1.1)

Conditions Stability of equilibrium FE;
K>\
and T1 < Ay | Ej is globally asymptotically stable
by > min{, dlel(m:r;fldlc)limml} (z1 > A2) | (Ey is a saddle with a one-dimen-
M < K < K, sional unstable manifold W{* and
and a two-dimensional stable manifold
by < min{-, d161(mz116%d1dj-m1re2} on the (z,y;) plane.)
K>K, >\ T1 < Ay | Ej is an unstable focus and there
and exists a unique limit cycle
by < min{, dlel(milfdldimlml} (z1 > X2) | (Ey is a repeller)

Case Al: The equilibrium E; is asymptotically stable in R® if (Zy,%;) is an
asymptotically stable equilibrium for system (2.1) with a, b, e, m, d re-
placed by ai, by, e;, my, dy (The conditions are presented in Table I) and
ematy _ d, < 0.

az2+x1

Case A2: If (Z1,7,) is an asymptotically stable equilibrium for system (2.1) and
Z1 > Ay, then Fj is a saddle with a one-dimensional unstable manifold W}

and a two-dimensional stable manifold on the (z,y;) plane.

Case A3: If (z1,9;) is an unstable focus for system (2.1) and Z; < Ay, then F
is a saddle with a one-dimensional stable manifold W} and a unique limit

cycle I'y on the (x, ;) plane.

Case A4: If (Z1, 1) is an unstable focus for system (2.1) and Z; > Ao, then Ej is

a repeller.

We summarize the results on local stability of the boundary equilibrium F£; for
system (1.1) in Table II.
(d) Ey = (Z2,0,92). Similar to the above case (c), the Jacobian matrix at Ey is



given by

j}Q(—L + mag2 ) _ mids _ _maZa(az+T2)
K ' (a2+T2+b272)? a1+2 (a2+Z2+b272)?
— e1miTs
I(E) 0 o g0
eamaya(az+bay2) 0 __boeamaZofo
(a2+T2+b272)? (a2+T2+b2y2)?

We note that the 2 x 2 submatrix gotten by deleting the second row and second
column of above matrix is exactly the Jacobian matrix .J in (2.6) for the subsystem
(2.1) at the equilibrium (z,,y.) where a, b, e, m, d are replaced by as, bs, €3, mo,

dy. We have four cases:

Case B1: The equilibrium FE, is asymptotically stable in R3 if (Zy, %) is an
asymptotically stable equilibrium for system (2.1) with a, b, e, m, d replaced

by a9, bg, €9, Moy, dQ and o < )\1.

Case B2: If (7, §2) is an asymptotically stable equilibrium for system (2.1) and
Zy > A1, then Fs is a saddle with a one-dimensional unstable manifold W'

and a two-dimensional stable manifold on the (z,y2) plane

Case B3: If (Z,72) is an unstable focus for the system (2.1) and Zy < Ay, then
E, is a saddle with a one-dimensional stable manifold W3 and a unique limit

cycle I'y on the (z,ys2) plane.

Case B4: If (Zy,92) is an unstable focus for system (2.1) and Zo > Aq, then Ejy is

a repeller.

Similarly, we summarize the results on local stability of the boundary equilibrium
E, for system (1.1) in Table III.

(e) Er, = (¢1,%1,0). If the condition in Proposition 2.2 (ii) is satisfied, then the
equilibrium E = (Z1,%;) on the (z,y;) plane is unstable and there is a unique
stable limit cycle I'; on the (z,y;) plane, denoted by (¢1(t),11(t)). Consequently,
Er, = (¢1,11,0) is a boundary periodic solution for system (1.1). Since Er, is
stable restricted to the (x,y;) plane, we only need to discuss its stability in the

yo-axis direction.
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Table III: Stability of equilibrium FE, for system (1.1)

Conditions Stability of equilibrium Fs
K > )\
and Tg < A1 | E5 is globally asymptotically stable
by > min{, 5— (mZ?;Q ) +m2T62} (zy > A1) | (Ey is a saddle with a one-dimen-
A < K < K, sional unstable manifold W3 and
and a two-dimensional stable manifold
by < min{_;, ;— (mZ?;? - +m2re2} on the (z,ys) plane.)
K>K,> M\ To < A1 | B9 is an unstable focus and there
and exists a unique limit cycle
by < min{, dlel(mTZeledimlreQ} (Z3 > A1) | (Ey is a repeller)

The stability of Er, is determined by the Floquet multipliers of the variational
system
b(t) = J(d1,¢1,0)0(t), ®(0) =1 (2.10)
where J(z,y1, y2) is defined in (2.9) and [ is the 3 x 3 identity matrix. Let w; be the
period of the periodic solution (¢1, %4 ). Then the Floquet multiplier corresponding
to the ys-direction is given by
1 Yt omaesdy (t)

— —dy) dt].
exp[m o a2+ ¢1(t) 2)
Thus Er, is stable if
w1
b > [ meeal) , (2.11)
0 a2 ‘|‘ ¢1 (t)
and unstable if
w1 t
by < [ meeen) (2.12)

o a2+ ¢i(t)
(f) Similarly, if the boundary periodic solution Er, = (¢2(t),0,5(t)) with period
wy exists then it is stable if

“2 myeipa(t)

dy >
' o a1+ ¢at)

dt (2.13)
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and unstable if

“2 myeiga(t)

a ot oall) dt . (2.14)

d1<

We now have the following results on the uniform persistence of system (1.1).
(Bulter et. al [4], Butler and Waltman [3], Freedman et. al [9], Smith and Thieme
[21]).

Theorem 2.4. Assume one of the following cases holds:

(i) Let Case A2 and Case B2 holds, i.e., £y and Ey are unstable in the yy-azis

and the yy-azis direction, respectively.

(ii) Let Case A2, Case B4 and (2.14) hold, i.e., Ey and Er, are unstable in

the yo-azis and the y,-axis direction, respectively.

(iii) Let Case B2, Case A4 and (2.12) hold, i.e., Ey and Er, are unstable in

the y1-axis and the yy-axis direction, respectively.

(iv) Let Case A4, (2.12), Case B4 and (2.14) hold, i.e., Er, and Er, are un-

stable in the yo-axis and the yi-axis direction, respectively.
Then system (1.1) is uniformly persistent.

(g) E. = (%¢, Y1c, Y2c). From the 2nd and 3rd equations of (1.1), z., Y1, Y. satisfy

€;m;T
I — d; 2.15
fori =1,2 or
Y1c = Ml(ﬁc — )\1) > 0, Yoo = MQ(ZL’C — )\2> >0 (216)
where we use the notations M; = % and My = % for simplifying.

Assume that

(H3) 0 <A\ <\ < K.
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From the first equation of (1.1), x. satisfies the equation

d d
ra(l— ) — DM (x — A1) — P Moz — X)) =0
K €1 2
Let p p
F(z) = ra(l - %) M= A — My — \)

€1 2

Then F(K) < 0, F(0) >0, F(\;) > 0, and
Ao, d
F(Xo) =rXo(1 — %) - e—iMl()\g — ).

Hence if

then E. = (¢, Y1c, Y2.) exists and is unique. If

F(A2) <0 (2.18)
then E. does not exist. Rewrite
r d d d d
F(.’L’) = (—?).TQ + .ﬁE(T’ - e_iMl - e—zMg) + (6_1M1)\1 + e—ng)\Q)

Then z. is the unique positive root of F(z) =0,

_ K(B+ /B 1 #r0/K) 210
2r '

where B =1 — %Ml - i—;Mg and C' = %Ml)‘l + ‘Z—;Mg)\g. The condition (2.17) for

the existence of E. is equivalent to

T

d o
K> (1= = Mi(de = M) =K >0 (2.20)

rei1 g
or x. > Ay. We note that in (2.20) we need

d; A
—M;(1 - — 2.21
r> -1 (2:21)

The Jacobian matrix of the system (1.1) at E, takes the form
fo fo fu
J(E:) = |g: gy 0
hy 0 h

z Y2



where

=g ( _r 4 mi1Yic maYac )
! ‘ K = (a1 + 2.+ biyie)?  (ag + xc + bayac)?

oozt )
. (a1 + zc + b1yie)?

f* _ mQxc(CQ + ZEC) <0
v (ag + . + bayae)?

s _ exmiyic(ar + biyic)

>0 2.22
Ja (a1 + xe + biyic)? ( )
bieymiz.yie
O <0
Jur (a1 + zc + b1yie)?
C b C
Bt — eamayac(az + 2922) -0
(a2 + e + bayae)
. baeama Yy
hy, = — —— < 0.

(CLQ + Te + b2y20)2
The characteristic polynomial of J(FE.) is given by

N4+aNX+ar+a3=0

where

ar = —(f; + gy + hy,),

ay = fogy, + Jal, + 9y, 0y, — Fhe — [y,90

a3 = [y, 9l + f 95,0 — Fr9y,hy, -
By Routh-Hurwitz criterion we have the following result on the local stability of
E..
Proposition 2.5. Assume that

a; > 0,a3 >0, and ajas > ag

then E. is locally asymptotically stable.

Remark 2.2. If f* < 0, then oy > 0 and ap > 0. From equations (2.22), (2.15),
and (2.16), f* < 0 if and only if

Lx S M1TcYic MaXcY2c

K7 (a1 42+ biyie)? (a2 + zc + bayac)?
. dy m1Yic dy mMaY2c
Ceimy’ar + ze+ biyae eama’ as + e + boyoe

14



Then

dl miYic d2 maYoc
exmy’ ar + xe + biyie eamy” ag + xc + baYae
d d m c m c
< max{ 1 2 ( 191 2Y2

ermy’ €2m2 a1+ 2.+ b1y as + x4 bayac

dy

= max{ pp b }r(l — —)
If
%xc > max{ eldTlle’ ej;Z r(1— Ec>
or equivalent -
7 TMK <z.< K,
where M = max{ efl;nl, 62mz} then f* < 0.

2.3 Hopf Bifurcation

In this section, we will verify that the Hopf bifurcation indeed occurs. It is obvious

that if bje; > 1 and byes > 1, then «a and a3 are positive for all K > 0 from the

15



expressions of a; and oz

_ * * *
a1 = _<ffv TGy, + hyz)’
TZc miTeYie _ Mg Te Y2e by e1mi TeYie

K (hiyre+ze+a))’  (bayoe +2c+a2)  (01yre + ve +ar)”
by e Mo .. Yac

(b2 Yoo + x. + a2)2
a3 = fylgzh* + f;/kzgm - /2 gy1

_ by €1 €3 M1 My 1.2 (e + a1) Yie (b1 y1e + a1) Yoc

?

_'_
(b1 y1e + T + a1)" (b y2e + o + a2)*
bier eamymao® .2 (xe + a2) Yicyac (b2 yac + az) "
(b1 y1c + e + a1)2 (b2 Yoo + xc + a2)4
2 rTe M2 Tc Y2c _ M1 TeYic
bibaeieamimo “yiclae ( K~ ysetveta)? (o y1c+xc+a1)2)

(b1 y1c + e + G1)2 (b2 Yoe + e + a2)2
. arby €1 €3> Mo T Yic Yae agby €1 €3y Ma® T Yrc Yae
B (b1 y1c + 2 + a1)3 (b2 y2e + T + a2)2 (b1 y1c + e + a1)2 (b2 Yoe + e + a2)3
T515261€2m1m2$c3ylcy2c
K (b y1c + 2z + a1)2 (bg Yoo + @ + a2)2

> 0.

Hence, by Proposition 2.5, the positive equilibrium F, will lose its stability if
ajas —az < 0. We take K as the bifurcation parameter. It is easy to see that x.,
Y1e, and yo. are functions of K by the equations (2.19) and (2.16). The expression

of ayan — ag has the form,

a1y —ag = —(f; + gyl + hZz)(f*g; + fmhm + gylh* B f?;;h; B f;g;)_

—(
(fon92hy, + F090, 1 — f2g5,hy,)

—(f2) 29y — (f2)?hyy — (95, My + [ Gags — gu, (hi))2 =+ fo hoh +
f (nyh;; + f?jlgl" - (gy1> - 293/1”k (h’z;z) ) :

In the last formula, we have two classes
_(f;)2gy1 - (f;)Qh (gyl) hy2 + fylg:vgyl - gyl( ) + fygh;hZQ

and
Fr(fohs+ fogs—(g5)* — 205 bt — (h2,)?)
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All terms of the first class are positive and all term of another one are negative
except for the function f;. So we should clarify the behavior of f! as a function
of K.

By the representation of z., (2.19), it is easy to see that if B = r — %Ml —
g—;Mg > 0 then limg o+ 2.(K) = 0, limg_ 0+ 2.(K)/K > 0, limg o 2.(K) = oo,
and limg o 2.(K)/K = B/r > 0. These implies limg ,o+ fi(K) < 0. But
the restriction of K, (2.20), it is required that f*(K) < 0. It is easy to see that
%Ml —i—g—j]\/[z > %Ml(l — ;\—;) which is the restriction of r to guarantee the existence
of E, in (2.21), so we assume r > %Ml + z—;Mg. A necessary condition for the
occurrence of Hopf bifurcation is limg o fi(K) > 0. Easy computation shows
that

. dy M,y da M, my My mo My
| (K) = — .
k1—>r20 fC( ) T €1 * €9 (1 +b1M1)2 + (1 —|—b2M2)2
Hence we assume
dy do my My may My
H4) O<r— —M, — —M, < + .
( ) €1 ! ()] 2 (1 + b1M1)2 (1 + b2M2)2

Proposition 2.6. Assume the assumption (H4) holds and
(1) b161 Z 1 and bgeg Z 1,

(ii) there is a K* > 0 such that oy (K*)oo(K*) = a3(K*) and

d d

—_— K K —_— K
dK K:K*al( Jao(K) < dK K:K*ag( )

then the positive equilibrium E. is locally stable when K < K* and loses its stability
when K = K*. When K > K*, E. becomes unstable and a family of periodic

solutions bifurcates from E..

3 Global Stability of Coexistence State; Extinc-
tion

Using the Lyapunov function constructed in Hsu [10, 11] we give sufficient condi-
tions for the global stability of the positive equilibrium E.,.

First we note that
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Lemma 3.1. The solutions of (1.1) are positive and bounded for t > 0. Further-

more, for any € > 0, there exists Ty > 0 such that

x(t) < K +e,
1 1 r
x(t) + —uy(t) + —wa(t) < ( +1)(K +e¢)
€1 €2 Amin
for t > Ty where dp;,, = min{dy, ds}.
Proof. From (1.1) it followings that
1 1 T d1 d2
() + — () F—rh(t) = ra(l — =) — 2y, — 2
PO + (b0 = rall - ) - Ty - D,
d; do
ST — —Y1 — —Y2
€1 €9

1 1
< (1 4 dpmin)T — dpin(z + —1y1 + —y2).
€1 €9
Obviously from the first equation of (1.1) and differential inequality, we have
z(t) < K +e forallt > T, for some Tj.
Then
1 I N
(:13+—y1 + —y2)
€1 €9
1 1
1 2

Then we have

1 1 T
- -l <
w00+ ) < (7

+1)(K+¢) fort>Tp.
[l

Theorem 3.2. Let the assumption (H3) hold. Assume E. ezists, i.e., (2.20) and
(2.21) hold. If

1
< c
max{1/ay,1/as} b

(3.1)
then the positive equilibrium E. is globally stable.
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Proof. Choose a Lyapunov function as follows

rTe— Y1 _ v ¢
Vi(w,y1,92) = / : gxcd§+oz s §y10d5+5/ € 5yzcd5 7
Le Yic Y2e

where v and [ are positive constants to be determined. Along the trajectories of

the system (1.1) we have

av x miy may2
—:(x—xc)<r(1——)— . )
dt K a1+ +byr  as+x+ bayo
mie1x TMo€oXx
+a(yr — Y1) (—————— —dy) + —Ygo)(———————— —d
(yl n )<a1+a:—|—b1y1 1) 5(242 Yo )<a2—|—x+b2y2 2)
r miY1 miYic
=(x—x.)3 — —=(z—z.) — — —
( ){ K( ) (a1+x+bly1 a1+xc+b1ylc)
maY2 B MalY2c )}
ag +x +byys  as + .+ bayae
mie1x mi€i1Tc
+ « - c -
(= )(a1 +x by ar+ Te+ biyie
MoCoX Mmg€alc
+ - c -
Bly2 =2 )(a2 T 7+ bays s+ o+ Doy
r my ((al + xc) (yl - ylc) - ylc(x - Ic))
= (x — :cc){ - —=(z -z, —
K (a1 + x4+ b1y1)<(11 —+ T + blylc)
 ma((a2 + 20) (Y2 — y2e) — Yoelr — ) }
(ag + o + baya)(ag + wc + bayac)
+aly — )m1€1 ((Ch + biyre) (v — x) — biwe(yr — ylc))
h Y1e (CLl + x4+ blyl)(al +x.+ blylc)
+ Blys — )m2€2((a2 + bayoe) (7 — ) — bawe (12 — yzc))
Y2 e (ag +z + baya)(ag + e + bayac) '
Choose o = % and 3 = % Therefore,
% r M1Y1e
—:(.T—.Z'C)Q{———l— 1Y1
dt K (CLl +x + blyl)(al +x.+ blylc)
+ maYoc }
(a2 + 2 + bay1)(ag + @¢ + bayac)
ablxc<y1 - ylc)2 Bbec(y2 - y2c)2

- (a1 + 2+ biyr) (a1 + 2. + biyie) C(ag+ T+ boya)(as + e + bayae)

The coefficients of (y; —y1.)? and (yo—1y2.)? are negative. The coefficient of (x—x,)?
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18
" + miYic i MaYac
K = (a1 + 24+ biy)(ar +xc +biyie) (a2 + 2 4 bayr)(as + xc + bayac)
r miYie maYac

< ——=+
K ai(ar +zc+bigie)  ao(as + xe + bayae)

r 1 1 T
< —— - (1 ==
< — o Hmax{ - el = )

r

=T mad L LK — ).

K ap as

If (3.1) is satisfied, then dV/dt <0 and dV/dt = 0 if and only if z = x., 11 = Y1,
and yo = y2.. The largest invariant set of {dV/dt = 0} is {(x¢, Y1c, y2c)}. There-
fore, Lemma 3.1 and LaSalle’s Invariant Principle imply that E. = (¢, Y1¢, Y2c) 18

globally stable. Thus we complete the proof. O]

Remark 3.1. Under the assumption (H2) and (2.20), (2.21), E, exists and x. > As.
Let K = A\y(1 — ——mei=di( ), — \))~1. If r is sufficient large then

relg b1

- 1 1
< Ay < ..
max{1/ay,1/as} T max{1/ay, 1/as} .

Thus the condition (3.1) is feasible when r is sufficiently large.

The following extinction result for system (1.1) is similar to Lemma 4.7 and
Theorem 3.6 of Hsu, Hubbell and Waltman [13] for system (1.2).

Theorem 3.3. Let the assumption (H3) hold.

(i) If a; > ag or

(i) iof a1 < ag but 6; > d where 6; = mye;/d;, i = 1,2
(111) z'fa1 < Gg, 51 < (52 but K < @22%1152

then limy_,o y2(t) = 0 for any by > 0 and by > 0 sufficiently small.

Proof. Let & > 0. Then

yé(t) yi(t) . e1mix €9Maox
N - —di] = [ — ]
y2(t)  wu(?) a; +z + by as + x + boys
e1m T €21 T €21 €21
= — )= —do] + - 3.2
< s M- e a2+x+b2y2] 32
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Let

e1mix €9MoX

Pe(z) 25[a11 +1x —di] — [a2 v da]
. (.’,17 — )\1) xr — )\2
—f(elml dl) o+ (€2m2 dz)a2+x-

Under the assumption (H3) and (i) or (ii), from Lemma 4.7 [13], we can choose
& > 0 such that

Pe(z) < —=( <0 foral 0 <z <K +e¢, for some ¢ > 0.

Consider the third term in (3.2)

€21 €21
0< —
as +x  as+x + bayp
€2Maxbalys
(ay + x)(ag + x + bays)
€2M2T Yo
2a2+xa2+x—|—bgy2
62?712([( + 8) 1

2CLQ+(K+€) CL_Q

<b (y2)max < bZA

2 2
_ Bma(K+e)
where A = az(a2+K+E)(d

independent of by. Hence for by > 0 sufficiently small satisfying boA — ¢ < 0, we

"— +1). We note that from the bound in Lemma 3.1 A is

min

have /(4 /(4
y2(t)  yi(?)
Then y5(t) — 0 as t — oo.
If (H3) and (iii) hold then
O O Y *
doya(t) diyi(t) a1 +x+biyr  as+x+ boys
< 51(13 B 52(13 i ( 52(13 521’ )

T at+xr astw o+ ap+ 3+ boyp’

Let P(r) = 212 — %22 Then from (iii) and the proof of Theorem 3.6 in [13],

T aitz az+x

P(z) < —(<0, foral0<z<K +¢ for some ¢ > 0.
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Similarly,

(52@' (52@' ~

< bA

0< —
ay +x  as+ T+ byys

where A = j;fj;f;f; ( T+ 1). Then the similar arguments as above yields

lim y5(t) = 0.
t—00

This completes the proof. O

4 Competition of Two Identical Species with Dif-

ferent Interference Effects

In this section we consider two identical predators competing for a shared prey

with difference in predator interference effects b; # bs. The equations are the

following:
.’EI _ 7’.1'(1 T ) mryi mxys
K a+x+biyr  at+z+buyy
, emx
=(——m— —d)y1 , 4.1
W= e =y (1)
, emax
—(—— )y,
Y2 (G+Jf+bgy2 )y2

with initial conditions z(0) > 0, y1(0) > 0, y2(0) > 0. Let

K>M\=X\= a/(% —1). (4.2)
Assume by > b;. Then
, emax
=(—— —d
h <a + x4+ b1y1 )yl
emx
>(—— —d
(a + x4+ b2y1 )yl

Thus, if y1(0) > y2(0) then yy(t) > ya(t) for all ¢ > 0. If y1(0) < y2(0) then either
there exists ¢y > 0 such that yi(tg) = y2(to) or y1(t) < yo(t) for all ¢ > 0. If
(75 (t(]) = yg(to) then

y1(t) > yo(t) forallt > t. (4.3)
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If y1(t) < yo(t) for all t > 0 then

1’ emx emax Yo'

= —_—d > —
Y1 a+x+bly1 a+x+b2y2 Y2
We have

(4.4)

Thus, we have either y;(¢y) > ya(to) for some to > 0 or y2(0)y1(t) > y1(0)y2(t) for
all t > 0. If y1(t) — 0 as t — oo then y»(t) — 0 as t — oco. Hence we obtain a

contradiction to the assumption (4.2). Hence

lim sup vy (t) > 0. (4.5)

t—o00

On the other hand, assume ys(t) — 0 as t — oco. Let Case A1l hold. Then

z(t) — Ty and y1(t) — 71 as t — 00 and 27— = d. Thus
T _g>0. (4.6)
a—+ T

Let Case A3 hold. Then (x(t),y1(t)) = (¢1(t),¢1(t)) as t — oo and

w1 emar (t) B
/0 (a + ¢1(t) + brih () N d> =0

Hence

“1emao (t)
/0 (m—d) dt >0 . (4.7)

However, (4.6) and (4.7) imply that £ and Er, are unstable in the yo-axis direction
respectively. Thus the assumption yq(t) — 0 as ¢ — oo leads to a contradiction.

Hence we have the following results.

Theorem 4.1. For system (4.1), if (4.2) holds then limsup, . v:1(t) > 0 and
lim sup,_, ., y2(t) > 0.
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5 Relaxation Oscillations

Consider system (1.1) with a large prey intrinsic growth rate, i.e., » > 1. Let
e =1/r. Then 0 < ¢ < 1, With the scaling:

r—=x/K, a = a /K, ay—ay/K, y1=uy/(Kr), y2=1y/(Kr),

system (1.1) becomes

/ mixyy maTY2
er' =x(l —x) — : - 3
ar+r+ Py ag+ x4 (B)ys
’ e1m T
Y = —dy)y 5.1
! (a1+w+(b§)y1 N (5.1)
€oMaX
y2' = ( e — d2)ys

as +x + (%)yz

Assume by = by(g), by = by(e) such that
bi(e) = O(e't*) as e — 0 (5.2)

for some p; > 0, ¢ = 1,2. Under the assumption (5.2) we apply the geometric
singular perturbation method as in Liu, Xiao, and Yi [18] to prove the existence
of periodic solutions.

Setting ¢ = 0 in (5.1) results in the so-called limiting slow system

mil maY2
F =2(1 -1 — _
Z (xvylva) I’( x a, + &2+l’)’
’ e1m T
= —d 5.3
n (al s 1)?/1, ( )
’ €2MoT
= —_ d
Y2 (a2 g 2)?/2;

which is generally defined on the slow manifold Sy = {(z,y1,42) : ®F(z,y1,y2) =
0,2z > 0,57 > 0,92 > 0}. Orbits or parts of orbits of the system (5.3) on Sy
are called the slow orbits of system (5.1) and the variables y;, y» are called slow
variables. For system (5.3), the slow manifold Sy consists of two portions S; and
Ss, where S1 = {(x,y,2) € So: x =0}, So = {(x,y1,v2) : F(x,y1,y2) = 0}.
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In term of the fast time scale 7 = t/¢, system (5.1) becomes

dyi ey (e a)

5 — 1 — u1),

dr ay + x + (b?l)yl

dys €aMoT

— =c —ds), 5.4
dr 2(a2 +x+ (bf)yz 2) (5:4)
@ _ :L'(l e M _ maYo )

dr atet (B atr+ (R’

The system (5.5) is referred to as the fast system. Its limit, the limiting fast
system, is obtained by setting ¢ = 0:

% =0, % =0, Cdl_f =2 F(z,y1,92)- (5.5)
The orbits of system (5.5) are parallel to the z-axis and their directions are char-
acterized by the sign of xF(x,y;,y2). We refer to these orbits as fast orbits of
system (5.1) and the variable x is the fast variable.

A continuous and piecewise smooth curve is said to be a limiting orbit of system
(5.1) if it is the union of a finitely many fast and slow orbits with compatible
orientations. A limiting orbit is called a limiting periodic orbit if it is a simple
closed curve and contains no equilibrium of system (5.1). A periodic orbit of
system (5.1) is called a relazation oscillation if its limiting as € — 0 is a limiting
periodic orbit consisting of both fast and slow orbits.

In the following theorem, we first prove that under the assumption (5.2) there
is no positive equilibrium for system (5.1). Then following the methods in Liu,
Xijao, and Yi [18] we construct a limiting periodic orbit consisting of both fast
and slow orbits. By the theorem of geometric singular perturbation method, there

exists a stable relaxation oscillation.

Theorem 5.1. Let (H3) and (5.2) hold. Assume that the relazation cycle I'] on
the (x,y1)-plane is unstable in the yo-azis direction and the relazation cycle T on
the (x,ys)-plane is unstable in the yi-axis direction. Then there is at least one

stable relaxation oscillation in the positive octant of R3.

Proof. 1t ES = (25,95, y5.) exists then from (2.16) and (5.2), yj, — oo as € — 0.
Thus the equilibrium Ef is not on the surface Sy and the limiting periodic orbit
does not contain ES. From Theorem 3.4 in [18], there exists a stable relaxation

oscillation in the positive octant of R3. We complete the proof. O
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Table IV: Parameter Values in the General Case.

r=2.0 CL1:3 b1:O6 d1204 61:06 m1:15
K=x%|a;=6|b=20|dy,=045]e;=0.7|my=15

6 Numerical Simulations

Choose the values of parameters as in Table II and calculate the values A\; =
% =24 and \y = ﬁ = 4.5. Now, using K (the carrying capacity of
the resource) as a bifurcation parameter, increase K from 4.5 to 80 and calculate
f3(K) as a function of K in (2.22). We can see that f; is monotonically increasing
from negative to positive (see the first graph of Fig. I). The values of functions
aq, az, and ajas — ag are also calculated (see the 2nd - 4th graphs of Fig. I).

The dynamics of solutions with respect to the capacity K are illustrated in Figure

TI(a)-(e).

(i) 0 < K =2 < \;. The semi-trivial equilibrium E¥ is globally asymptotically
stable, (see Fig. II:(a))

(ii)) A\ < K =3 < A\y. The semi-trivial equilibrium Fj is globally asymptotically
stable, (see Fig. II:(b))

(iii)) A2 < K = 10. The solution converges to the positive equilibrium E, as
t — oo. We can see that the positive equilibrium is asymptotically stable,
(see Fig. II:(c))

(iv) K = T75. The positive equilibrium E, loses its stability and a periodic solution
bifurcates from it. (see Fig. II:(d))

Next, we do some numerical simulations of system (1.1) with interference ef-
fects, i.e., by # 0 and by # 0. In order to compare the differences of solutions of
system (1.1) with or without interference effects, we choose the same parameters
as those in Fig. 3 of [12] in Table III. We plot limit cycles of the population of
predator 1 against that of predator 2 in Fig III. Fig III (a) is for b; = 0, by = 0,
(b) is for by = 0, by = 1, and (c) is for by = 1, by = 0. All above three limit cycles
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ala2-a3

oo N

Figure I: The graphs of f(K), a;(K), as(K) and a3 (K)as(K) — az(K) in terms
of K as K increases from 4.5 to 80.

are plotted in a graph showed in (d). With the same parameters, we compute the
numerical solutions of (1.1) with various parameters b; and by. Fig III (e) and
(f) show the numerical results where by, by are varied from 0 to 10 with step-size
0.1 in (e) and by, by are varied from 0 to 1 with step-size 0.01 in (e). The white
region represents that the solutions are periodic and the black region means that

the solutions approach a positive equilibrium.

Table V: Parameter Values for the Case with Interference.

r=20-In2|a =200 |d =In2/2 | e =0.1|m; =10-1n2
K=1100 |ay=500| do=In2 |ea=14| my=2-1n2
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7 Discussion

In this paper we have studied the competition system (1.1) of two predators com-
peting for a renewable resource (the prey) with functional responses of Beddington-
DeAngelis Type. In the governing equations (1.1) the parameters b; (i = 1,2), mea-
suring the effect of interference, is the intra-specific competition coefficient among
the population of the 7th predator. The purpose of this paper is to determine the
outcome of competition for system (1.1), namely, under what conditions the com-
petitive exclusion holds and under what conditions coexistence of two competing
species occurs.

In [15, 16], Hwang gave a complete classification for the behavior of the solu-
tions of the predator-prey system with Beddington-DeAngelis functional response
(2.1). The trajectory of the solution of (2.1) either converges to a positive equi-
librium or approaches a unique limit cycle (see Table I). We note that (2.1) is a
subsystem of (1.1). A complete understanding of the predator-prey system (2.1)
will help us to study the behavior of the solutions of the competition system (1.1).

Without the interference effects, that is, b; = 0,7 = 1,2, system (1.1) reduces
to system (1.2), the classical model of two competing predators for a renewable
resource with Holling-type II functional responses [12, 13]. In this paper we want
to explore the differences between systems (1.1) and (1.2). For system (1.2), Hsu,
Hubbell and Waltman [13] gave some analytic results about the competitive ex-
clusion of the two competitors. In [12] they did extensive numerical simulations to
indicate the possibility of coexistence of two competing predators and interpreted
the results by the r-strategy and K-strategy. Note that Butler and Waltman [5]
proved a coexistence result by using the bifurcation technique from a limit cycle
in the (z,y;) plane. However, their result is only local (not global) and the sys-
tem is not uniformly persistent. Liu, Xiao, and Yi [18] and Muratori and Rinaldi
[19] considered the case where the intrinsic growth rate of the prey is large and
used geometric singular perturbation method to establish the coexistence of two
predators in the form of stable relaxation oscillations. When the intrinsic growth
rate of the prey is not large, the problem of coexistence remains open.

In this paper, based on the knowledge on the predator-prey subsystem (2.1), we

first proved some uniform persistent results in Theorem 2.4. We may interpret the
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persistent results as the invasion of another species to the subsystem (2.1) which
is in the form of equilibrium or limit cycle. In order to compare systems (1.1)
and (1.2), our basic assumption is (H3) which states the species 1 has a smaller
break-even population density. The major difference between systems (1.1) and
(1.2) is that system (1.2) has no interior equilibrium while system (1.1) may or
may not have an interior equilibrium. A necessary and sufficient condition is given
in (2.20) for the existence and uniqueness of the interior equilibrium E. for system
(1.1). The condition (2.20) holds when the carrying capacity K is sufficient large
and the intrinsic growth rate r is sufficient large (see (2.21)). When the interior
equilibrium E, exists, in Proposition 2.6 we proved that under some condition
(H4) Hopf bifurcation occurs at some carrying capacity K* and a family of periodic
solutions bifurcates from FE.. This indicates the possibility of coexistence. In
Theorem 3.2, under condition (3.1) , we presented a result for the global stability
of E.. The condition (3.1) holds when the intrinsic growth rate r is sufficient
large. In Theorem 3.3, we presented an extinction result for system (1.1), which
is a generalization of the extinction result in [13] for system (1.2). The result
states that under assumption (H3), if species 2 has larger half saturation constant
then for any interference measure by > 0 and for sufficient small b; > 0, species
2 becomes extinct as time goes to infinity. In Section 4 we proposed a question:
if two predators are identical except having different interference effects, what do
we anticipate for the competition outcomes? In Theorem 4.1 we proved that two
species must coexist. Assume species 2 has larger interference effect among its
population, i.e. by > by. Intuitively species 1 is a better competitor. However
species 2 is identical to species 1 in every aspect, thus species 2 is able to invade
the subsystem of predator 1 and prey. Hence it is impossible for species to become
extinct and we have coexistence.

The above discussion explores the difference between system (1.1) and (1.2).
When system (1.1) has no interior equilibrium, we conjecture that system (1.1)
should be similar to system (1.2). In Section 5, we proved that if the interference
effects b; and by are smaller in comparison with the inverse of intrinsic growth rate
r which is very large (see condition (5.2)), then species 1 and 2 coexist in the form

of stable relaxation oscillations. In Section 6 we presented some numerical results.
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Our first numerical results (Fig. II) showed that Hopf bifurcation occurs at some
carrying capacity K*. If K < K* the interior equilibrium is global asymptotically
stable. When K > K*, the two species coexists in the form of periodic oscillations.
In the second numerical study we assumed that the two species coexist when there
is no interference effects, i.e. by = by = 0. Then we considered the effect of
the interference. The study shows that solutions converge either to an interior
equilibrium or to a periodic orbit. Therefore, interference effects seem not to

change the outcome of competition.
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Figure II: The parameters are given in Table II. In Fig II (a), K = 2, Fx =
(K,0,0) is globally asymptotically stable. In Fig IT (b), K =3, E; = (Z1,91,0) is
globally asymptotically stable. In Fig IT (¢), K = 10, E. = (¢, Y1¢, Y2c) is globally
asymptotically stable. In Fig IT (d), K = 75, the periodic solution exist. Hopf

bifurcation occurs between K = 70 and K = 75.
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Figure III: The parameters are given in Table III. The graphs in Fig I1T (a), (b),
(c) are the limit cycle solutions of system (1.1) projected in (y;, y2)-plane with
by = by = 0 in Fig III(a), by = 0, by = 1 in Fig III (b), by = 1, by = 0 in Fig III
(c). We put Fig III (a), (b), (c) in the $me graph in Fig III (d). In Fig III (e),
in the b;-Bs parameter region, 0 < by, by < 1, the white region represents that the
numerical solutions are periodic and the black region represents that the numerical

solutions are equilibrium solutions.



