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COMPETING PREDATORS* 

S. B. HSUt, S. P. HUBBELLS AND PAUL WALTMANT 

Abstract. This paper concerns the growth of two predator species competing exploitatively for the same 
prey population. The prey are assumed to regenerate in the absence of predation by logistic growth. The 
predators are assumed to feed on the prey with a saturating functional reponse to prey density. Specifically, 
we assume that Michaelis-Menten kinetics or the Holling "disc" model describe how feeding rates and birth 
rates change with increasing prey density. We focus on the question as to when the competitive exclusion 
principal holds, given the growth parameters of the prey and the functional response parameters of the two 
predators. Which predator wins or loses depends critically on the relative magnitude of the prey carrying 
capacity, K, and the A parameters of the two predators. (The parameter A, is the ratio of the ith predator's 
Michaelis-Menten (half-saturation) constant to its intrinsic rate of increase, times its death rate.) Coexis- 
tence for the predators also appears possible for a wide range of parameters. 

1. Introduction. In a previous paper [7], the authors analyzed an (n + 1)-dimen-
sional dynamical system which corresponds to the competition of n species for a 
single, essential nutrient in limited supply. The system modeled a chemostat, a 
laboratory apparatus used for the production and physiological study of micro-
organisms. In the chemostat model, the limiting nutrient is supplied at a constant rate. 
The input flow of medium contains all other factors for growth in excess. The output 
flow equals the input flow, and carries with it cells, waste products, and unused 
nutrients. The system also approximates conditions for plankton growth in lakes, with 
the input of limiting nutrients such as silica and phosphate from streams draining the 
surrounding watershed. 

An important advance of this model over classical Lotka-Volterra formulations 
of competition is that the limiting resource for which competition is being expressed is 
represented explicitly by an equation in the system. In the Lotka-Volterra model, 
only the numbers of competing organisms are represented. The result of leaving out 
an equation for the resource is that the outcome of competition cannot be predicted 
before the organisms are actually grown together. In the present formulation, the 
outcome of competition can be predicted before the organisms compete, from 
measurements of growth parameters of the organisms when grown alone on the 
resource. This advance brings the theory of competition one step closer to being truly 
predictive rather than merely descriptive ex post facto. 

In this paper and a companion paper [8],we continue this approach. Instead of a 
constant input of limiting nutrient, however, we now consider a renewable resource 
with reproductive properties-a more classic prey. Otherwise, the dynamics remain as 
in [7]. In particular, all of the parameters relative to the outcome of competition are 
measurable by experiments involving a single predator grown on the prey population. 
The division between this paper and [8] is that here we present a precise statement of 
the theorems and their proofs, while [8] contains the biological background and a less 
precise but a more biologically meaningful statement of these results and the results of 
[7], along with a discussion of certain experiments whose results these theorems help 
to explain. The companion paper also presents some numerical examples and some 
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speculations. The ideas developed in the proofs here may be of use to mathematicians 
working on other dynamical systems. 

In the case of a renewable resource, the example of McGehee and Armstrong 
[ I l l  and the numerical experiments of Koch [9] and the authors [8], lead one not to 
expect the competitive exclusion principle to hold throughout all of the parameter 
space. The theorems presented in § 3 attempt to determine regions of the parameter 
space where competitive exclusion does hold. The proofs of these theorems are given 
in § 4, and the model itself is described in § 2. The separation.of the work into a 
formal, theoretical component and a biological component [8] comes as a result of 
referees' suggestions. 

2. Statement of the model. The present analysis concerns the behavior of a 
predator-prey system consisting of two predator species, XI and x2, and a single prey 
species, S. We specifically assume that the predator species compete purely exploita- 
tively, with no interference between rivals (no toxins are produced, for example). Both 
species have access to the prey and compete only by lowering the population of shared 
prey. For death rates it is assumed that the number dying is proportional to the 
number currently alive. We also assume that there are no significant time lags in the 
system, that growth rates are logistic in the prey species in the absence of predation, 
and that the predators' functional response obeys the Holling "nonlearning" curve 
[5], [6]. The model is given by: 

where x,(t) is the number of the ith predator at time t, S(t) is the number of the prey at 
time t, m, is the maximum growth ("birth") rate of the ith predator, D, is the death 
rate for the ith predator, y, is the yield factor for the ith predator feeding on the prey, 
a, is the half-saturation constant for the ith predator, which is the prey density at 
which the functional response of the predator is half maximal. The parameters y and 
K are the intrinsic rate of increase and the carrying capacity for the prey population, 
respectively. 

We analyze the bahavior of solutions of this system of ordinary differential 
equations in order to answer the biological question: Under what conditions will 
neither, one, or both species of predator survive? If only one predator survives, we 
also seek to determine the limiting behavior of the surviving predator and its prey. As 
noted in the introduction, the biological background and references, the experiments 
which our results help clarify, etc., may be found in Hsu, Hubbell, and Waltman [8]. 

3. Statement of results. In this section we state the principal results of the paper. 
The proofs and certain technical lemmas are deferred to the next section. The first 
lemma is a statement that the system given by (2.1) is as "well-behaved" as one intuits 
from the biological problem. 

LEMMA3.1. Solutions of (2.1) are bounded and remain in the positive octant. 

The next lemma provides conditions under which the predators cannot survive on 




COMPETING PREDATORS 	 619 

the prey, given the carrying capacity of the prey population, even in the absence of 
competition: 

LEMMA 3.2. A necessary condition for either species x, to survive is 0 < A ,  <K. 
This lemma states that if the maximum birth rate, mi, is less than or equal to the 

death rate, Di, or if the parameter A i  is greater than or equal to the carrying capacity of 
the prey, then the ith predator will die out, independent of competition from the rival 
predators. This establishes that there is a minimum population size which can support 
a given predator: K must be larger than A i  for the ith predator to survive, independent 
of competition. 

We state the principal result in the case of inadequate carrying capacity (Ai >K 
for i = 1or 2) or inadequate growth (bi 5 1,i = 1 or 2) in three parts. We are able in 
Theorem 3.3 to determine the asymptotic behavior of the solutions or to assert the 
existence of limiting periodic solutions. The theorem may be summarized as the 
unsuccessful competitor does not affect the eventual behavior of the survivors. 

First we consider the case where either the carrying capacity or the maximum 
growth rate is inadequate for either predator species to survive. As one expects, in this 
case the prey grows to carrying capacity. 

THEOREM3.3(i): If (a) b1 51or A >K, and 
(b) b 2 S 1  orA2>K, 

then lim,,, 	 S(t)=K and lirn,,, xi(t)= 0, i = 1,2 .  
For the remainder of the theorem, we assume 0 <A <K. 
THEOREM3.3 (ii): Let (a) 0 <A <K, and 

(b) A2>Korb251.  
I f K < a l + 2 A 1 ,  then 

lim,,,S(t) = S* = Al, 

THEOREM3.3 (iii): Suppose that (a) 0 <A <K, and 
(b) A 2 > K o r b 2 5  1. 

If K > a l  +2A1, then the omega limit set of the trajectory of (S(t),xl(t),x2(t)) lies in the 
S-xl  plane (i.e., lim,,,x2(t) = 0) and contains a periodic trajectory except for one 
distinguished orbit which approaches the critical point (S*, xT, 0). 

Our principal result, when the carrying capacity of the prey is adequate for each 
predator species to survive, is contained in Theorem 3.4. This theorem adds a large 
region in the parameter space to that determined in Theorem 3.3 where coexistence is 
not possible. 

THEOREM 3.4. Suppose that 0 <A l  < A 2 <  K and bl 2 b2. The conclusion of 
Theorem 3.3 (ii) holds if K <a +2A and the conclusion of Theorem 3.3 (iii) holds if 
K>a l+2A1 .  

A numerical example in [8] shows that coexistence is possible when the hypo- 
theses of Theorem 3.4 are violated. Although the problem remains open analytically, 
we have the following partial result. 

THEOREM 3.5. Suppose that 0 <A l  <A 2  <K, a l  <a 2  and K <a 2+2A2. Then lim 
sup,,,x1(t)> 0. 

In the simulation in [8], the following result was useful particularly when 62 -bl 
was small. 
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THEOREM 3.6. Suppose that 0 <A <A 2  <K, a l  <a2,b1<b2, and K < 
(bla2-b2al)/(bZ-bl). Then lim,,,x;?(t) = 0. 

4. Proofs. 
Proof of Lemma 3.1. Since So >0 and xio >0, i = 1, 2, uniqueness of solutions of 

initial value problems keeps the trajectory in the positive octant. Since S1 ( t )5  
yS(t)(l -S(t)/K), S(t) may be compared with solutions of 

( t )  2 t 1 - - )  2 (t) z(O)= So 
K '  

to yield 

K
S ( t ) 5  for t 2 0,

1+Coe-vr 

where CO = K -So/So. The boundedness of xi(t) follows readily using a bound on S(t). 

Proof of Lemma 3.2. If bi 5 1 then from the representation 

it follows that lim,,, xi(t)= 0, while if A i  >K then a slight rearrangement, 

and the use of a bound on S(t) easily yields the same conclusion. Only hi =K remains. 
LEMMA 4.1 (Coppel [4, p. 1411). If a function f(t) has a finite limit as  t + m  and 

f n  (t) (the n -th derivative) is bounded for t 2 to, then lirn,,, f k  (t) = 0, 0 < k <n. 
In the half space S 2 K, Sf ( t )<  0 except at the critical point (K,0, 0) and hence no 

point of the plane S = K can be in the omega limit set of a trajectory except for this 
critical point and further the function x,(t) can change sign at most once. Thus 
lim,,,xi(t) =x>xists. Suppose x: >0. Since the right-hand side of the equation is 
bounded, lim,,,xl(t) = 0 or, by Lemma 4.1, lim,,,S(t) =K. Thus a trajectory has an 
omega limit point of the form (K, xT, x;) with x* >O, a contradiction. Hence x* = 0. 

Before beginning the proof of Theorem 3.3(i), we note the following definitions 
and a theorem of Markus [ lo]  which will be used here and in the proof of Theorem 
3.5. 

DEFINITION.Let A :  xi =f,(x, t) and A,: xi =fi(x)  (i = 1, 2, . . . ,n) be a first 
order system of ordinary differential equations. The real-valued functions fi(x, t)  and 
fi(x) are continuous in (x, t) for x E G, where G is an open subset of Rn, and for t > to, 
and they satisfy a local Lipschitz condition in x. A is said to be asymptotic to A, 
(A +A,) in G if for each compact set K c  G and for each E > O ,  there is a T = 

T(K, E ) >  to such that jfi(x, t)-fi(x)l< E for all i = 1,2 ,  . . . ,n, all x E K, and all t >  T. 
THEOREM(Markus). Let A +A, in G and let P be an asymptotically stable critical 

point of A,. Then there is a neighborhood N of Pand a time Tsuch that the omega limit 
set for every solution x(t) of A which intersects N a t  a time later than T is equal to P. 

Proof of Theorem 3.3(i). From Lemma 3.2, it follows that lim,,,xi(t)= 0, i = 1,  2. 
We will show that if these limits are zero then lim,,,S(t) =K. The omega limit set, R, 
of a trajectory of (2.1), (S(t), xl(t), x2(t)) lies on the S-axis i.e. R c{(S, 0, 0), S 2 0). It is 
not hard to show that R contains a point (S1, 0, 0), S1 >0, from which then it readily 
follows that (K, 0,O) E R. 
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Applying the Markus theorem to 

S(0 )=So, 

and 

it follows that lim,,,S(t) =K. 
The next lemma provides a necessary condition for both species xl  and x;! to 

become extinct. A proof, by contradiction, is straightforward and is omitted. 
LEMMA4.2. If  lim,,,xi(t) =0 ,  i = 1 ,2 ,  then (mi-D i ) / ( a i m i ) S  l / ( a i  +K ) , i = 

1,2 .  
Before we explore the behavior of the solutions of (2.1), we need some facts 

about the behavior of the solutions of the two dimensional system, 

where y, K ,  m,  y, Do are positive constants. As in Lemma 3.1, it follows that 

(4.3) the solutions S( t ) ,  x ( t )  of (4.2)are positive and bounded. 

LEMMA4.3. Let b* = mlDo. 
(i) If b* S 1 or K <a/(b*- 1) then the critical point (K ,  0 )  of (4.2) is asymp- 

totically stable. 
(ii) If b* > 1 and a/(b* -1)< K < a  +2a/(b*- 1) then the critical point (g, i?), 

ŝ  = a/(b*- I ) , i? = ( y y / m ) ( l-$ / ~ ) ( a+g) ,  of (4.2) is asymptotically stable. If  b* > 1 
and K >a +2a/(b* - I ) ,  then (3, x^) is unstable. 

Proof. Standard arguments using the variational equation provide a direct proof. 
LEMMA4.4. If O<a/(b*- 1 )<K S a  +2a/(b*-  1 )  then (4.7) has no limit cycles 

in the first quadrant of the S-x plane. 
Proof. The absence of limit cycles will follow from a theorem of Dulac; see 

Andronov, Leontovich, Gordon and Maier [3,p. 2051. Let 

and 
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where a ,  S E R will be selected below. The Dulac theorem states that there will be no 
limit cycle if the expression d( f lh ) /aS+a( f2h) /axdoes not change sign. This expression 
can be computed as 

where p = (6 + l ) /  y, and 

We seek to choose a and p. By Lemma 3.1 and (4.3), (4.4), the lemma will be 
proved by selecting values of a , P such that a L -1and the expression Pasp ( S )  5 0 for 
S>O. To do this we first look at the quadratic P " , ~ ( S ) .The discriminant D,(p)  of 
P,,@( S j is given by 

and in turn the discriminant D ( a )of the quadratic form D m ( @ )is given by 

If there is an a* such that D ( a * ) >  0 ,  then D,*(p)= 0 has two real roots P I ,  P2. If 
p* is any real number such that p1 <P* <@ 2  then D,*(p)< 0 and ( S )= 0 has no 
real roots. Since the coefficient of s2 is negative Pa*,8*(S)<0for all S. Choosing 
6* = yp* - 1 completes the argument. 

If K <2a/(b*- I ) ,  choose a* = 0 .  For K =2a/ (b*- I ) ,  any a*>O will do. For 
0 <2a/(b*- 1)<  K <a  +2a/(b*- I), choose a*  such that 

and it follows that D(a*)>  0 .  
If K =a +2a/(b*- 1 ) ,  choose a*  = -1. It follows that D,*(P) = 

( m- -P*)' where p* is the double root of D,*(P) = 0 .  If one chooses P = P* 
then it follows that Pa*,8* ( S )  = - 2 / K ( S  - for some S* or Pa*B*s * ) ~  ( S ) S  0 .  

The following lemma gives a complete classification of the behavior of the 
solutions of (4.2). 

LEMMA4.5. Let S ( t ) ,  x ( t )  be the solutions of (4.2). 
(i) I f  b * ~  1 or O< K ~ a / ( b * -  I), then 

lim,,,S(t) =K and lim,,,x(t)= 0 .  

(ii) If O<a / (b* -1 )<K 5 a  +2a/ (b*-  I ) ,  then 

and lim,,,x(t) = ( y y / m ) ( l-$ / ~ ) ( a+9)= x .̂ 
(iii) If K >a +2a/(b*- I ) ,  then there exists at least one periodic orbit in the first 

quadrant of the S - x  plane. If there is just one periodic orbit, it is stable. If the periodic 
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orbit is not unique, then the outer one is semistable from the outside and the inner one is 
semistable from the inside. 

Proof. The proof of (i) follows from the arguments used in providing Lemma 3.2 
and Theorem 3.l(i) and by using Lemma 4.1 the proof of (ii) follows from Lemma 4.4 
while (iii) follows from the Poincare-Bendixson theorem. We note that the uniqueness 
of the limit cycle has not been established; [ I ]  and [2] show that this can be a delicate 
question. 

We return now to system (2.1). An analysis of the variational equation provides 
the proof of the next lemma. 

LEMMA^.^. Let O < A l < K < a l + 2 A 1 .  I f b 2 6 1  orifAl<A2 then thecriticalpoint 

(S*,xT,O) is asymptotically stable, whereS*=Al ,xT=y 1-- ( a l + S  ) (m1/yl).( 3 * I  
For convenience we note the following two statements: b, 6 1 or 0 < K <A i  is 

equivalent to 

mi -Dl 1
K > A ,  >0 is equivalent to ------>-

a i m ~  a i + K '  

.Proof of Theorem 3.3(ii). From (4.8), (4.9), Lemma 3.2 and Lemma 4.2, it follows 
that lim,,,x2(t) = 0 and lim sup,,,xl(t)> 0. If lim,,,xi(t) exists and is equal to c >0, 
then since by Lemma 3.1, xY(t) is bounded, Lemma 4.1 implies that lim,,,S(t) = AI. 
Again using Lemma 3.1, S"(t) is bounded and hence lim,,,S1(t) = Oand 

If lim,,,xl(t) does not exist, choose a sequence {t,) such that lim,,,t, = a,xi(t,) 
is a relative maximum, xl(t,) > E for some E >0, for all n and lim,,,xl(t,) = XI,  for 
some xl, Z E> O .  By (2.1), we have S(t,)= a l / (b l  - 1 ) = A l  = S*. Then (S*, xi,, O)E 0 
where R is the omega limit set of the solution (S(t), xl(t), x2(t)) of (2.1) and lies on 
S-X1 plane. Using Lemma 4.5(ii) with m = ml, y = yl, a = a l ,  Do = Dl,  b* = bl, it 
follows that the solution of (2.1) with S(0) = S*, xl(0) = xl,, x2(0) = 0 satisfies 
lim,,,S(t) = S*, limf,,xl(t) = xf ,  x2(t)= 0. This and invariance property of the 
omega limit set imply that (S*, xT, O)E 0. However, (S*, x:, 0) is asymptotically 
stable by Lemma 4.6. Hence the trajectory (S(t), xl(t), x2(t)) approaches the critical 
point (S*, xT, 0). In particular, limf,,xl(t)= xT. This is the desired contradiction. 

Proof of Theorem 3.3(iii). As above, from (4.8), (4.9), Lemma 3.2 and Lemma 
4.2, it follows that lim,,,x2(t) = 0 and lim,,, sup xl(t)> 0. The arguments used in 
Theorem 3.3(ii) yield that (S*, xi,, O)E R for some xi, >O. Let 0' denote the omega 
limit set of the two dimension system (x2=0) through (S*, xi,). The critical point 
(9;i )is unstable by Lemma 4.3 and the trajectory is bounded, so the PoincarC- 
Bendixson theorem implies that 0' is a periodic solution. But (R', O)c R by the 
invariance property of omega limit sets. The existence of the distinguished orbit 
follows from Hartman's linearization theorem. 

The following lemma is similar to Lemma 4.3 of Hsu, Hubbell, and Waltman [7] 
and the proof is omitted. 

LEMMA 4.7. Let 0 < a l / (b l  - 1)< a2/(b2-  1). If b2 5 bl then limf,m~z(t)= 0. 
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Proof of Theorem 3.4. (4.8), (4.9), Lemmas 4.2 and 4.7 imply that lim,,m~2(t)= 0 
and lim sup,,,xl(t)>O. The same type of arguments used in the proof of Theorems 
3.3(ii) and 3.3(iii) completes the proof of Theorem 3.4. 

Proof of Theorem 3.5. If limf,,xl(t) =0, then by (4.9) and Lemma 4.2 it follows 
that lim sup,,,x2(t) >0. If lim,,,x2(t) = c >0 then Lemma 4.1 implies that 
lim,,,S(t) = A 2  and hence xl(t) is unbounded, a contradiction. If lim,,,x2(t) does not 
exist, then applying the same argument in Theorem 3.3(ii) yields (A2, 0, x ~ ~ ) E  Cl where 
Cl is the omega limit set of the solution (S(t), xl(t), x2(t)) of (2.1). Applying Lemma 
4.5(ii) with a = a2, m = m2, y = y2,Do=D2, b* =b2 it follows that the solution of (2.1) 
with S(0) =A2, x1(0)= 0, x2(0) =xzw satisfies lim,,,S(t)= A2, xl(t)=O, limf,,x2(t) = 

xz = yi1--2)( a2+  A2) I(m2/y2)> 0. This and the invariance property of the omega 

limit set fl Hence there exists {t,} such that lim,,,t, = a ,imply (A2, 0, X ~ ) E  * lim,,,S(t) =A2, and lim,+m~2(tn)= x2. 
Now consider the following systems: 

Obviously A +A, in Q = {(S, x2)1S >0, x2 >0). Since (A2, x:) is an asymptotic- 
ally stable critical point of (A,) and since lim,,,S(t,)= A2, limn,,x2(tn)=~? for 
some {t,}, then by Markus's theorem it follows that lim,,,S(t)= A 2  and lim,,,x2(t)= 
x? >0. Again this is a contradiction. 

Proof of Theorem 3.6. Choose E >0 such that K + E < (bla2-b2al)/(b2 -bl) and 
choose to such that S ( t ) 5  K + E for t 2 to. Then one has 

for t 2 to. 
Since lim sup,,,S(t) = S >  0 (a consequence of Lemma 4.1) and since Sf(t) is 

uniformly bounded, there are constants 6 >0 and E*  >0 and a sequence of disjoint 
intervals I, = (t, -6, t, +S ) ,  t, +oo, such that S(t)> E *  for t E I,. In particular, 
lim,,,l; S ( 7 ) d ~= + a .  Integrating the above inequality gives 
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Hence it follows that lim,,m~2(t) = 0.  

5. Discussion. This paper is an analysis of the behavior of a model of two 
predators competing exploitatively for a shared prey species. The prey grow logistic- 
ally in the absence of predation, and the predators consume prey according to a 
saturating functional response. The analysis has dealt principally with three 
parameters: K, the carrying capacity of the prey, and parameters of the ith predator: 
a,, the half saturation constant, and hi. The latter parameter is particularly important 
to the outcome of competition, and is the ratio of the ith predator's half saturation 
constant to its intrinsic rate of increase, times its death rate: 

A .  = -1 D,, where ri = (m, -Di).6) 

hi may be regarded as the critical amount of resource needed by the predator to just 
survive in the absence of competition. 

If n species are competing for a single, limiting resource that is supplied at a 
constant rate, the species with the smallest A wins the competition and all other species 
go extinct [ 7 ] .The surviving species and the "prey" approach constant values; there is 
no limiting periodic behavior. 

When the resource is allowed to regenerate logistically and the consumers also 
have saturating functional responses, the possible outcomes are increased to include 
periodic solutions and dynamic coexistence between predators [8], [9]. 

In this paper we examined cases in which the predator A's are sufficient for 
neither or only one predator to survive on the prey population. The most important 
new result, however, comes from the case in which both predators can survive handily 
when grown alone on the prey. This condition is met when the A parameters for both 
predators are less than K, the carrying capacity of the prey, and the maximal intrinsic 
rate of increase for both predators is positive. We prove that predator 1 outcompetes 
predator 2 (which dies out) when A l  < A 2  and ml /D1  2m2/D2. When these conditions 
are violated, coexistence of the predators is possible as illustrated by the numerical 
results in [$I. 

Acknowledgment. The authors wish to acknowledge with thanks the comments 
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