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A MATHEMATICAL THEORY FOR SINGLE-NUTRIENT 

COMPETITION IN CONTINUOUS CULTURES 


OF MICRO-ORGANISMS* 


S. B. HSW, S. HUBBELL$ AND P. WALTMAN? 

Abstract. The continuous culture of micro-organisms using the chemostat is an important 
research technique in microbiology and population biology. It offers advantages in the form of 
economical production of micro-organisms for the industrial microbiologist and is a laboratory 
idealization of nature for population studies. The p~ studies a mathematical model, based on 
Michaelis-Menten kinetics, for one substrate and n competing species. Given the parameters of the 
system, we answer the basic question as to which species survive and which do not, and determine the 
limiting behaviors. The primary conclusion is that the species will survive whose Michaelis-Menten 
constant is smallest in comparison with its intrinsic rate of natural increase. 

1. Introduction. The continuous culture of micro-organisms using the 
chemostat (Novick and Szilard [13]) is an important research technique in 
microbiology and population biology. It has been used extensively for the 
isolation and identification of metabolic mutant strains, and it offers advantages in 
the form of economical production of micro-organisms to the industrial mic- 
robiologist (Herbert, Ellsworth, and Telling [4]). It has been used extensively in 
studies of general properties of population growth and interaction among 
micro-organisms (Williams [20]; Tsuchiya, Jost, and Fredrickson [19]; Canale, 
Lustig, Kehrberger, and Salo [I]). 

The continuous culture technique, which has extensive description in the 
literature (for example, see Kubitschek [7]) basically consists of growing a 
population or several populations of micro-organisms in a culture vessel, into 
which growth medium is continually added at a fixed rate, and from which 
medium, cells and by-products are continually removed. The medium supplies all 
the nutrients or substrates needed for growth of the organisms in excess of 
demand except for one, which is supplied in limiting amounts. The interest is 
focused on the several populations competing for the single limiting substrate. 
The "several" populations may be a deliberate culture of mixed populations, or it 
may arise as contaminants or mutants of the strains of organisms being cultured 
(cf. Powell [14]). 

The chemostat is perhaps the best laboratory idealization of nature for 
population studies (Williams [20]). .All natural systems are open systems for 
energy and material substances. The input and removal of nutrients to and from 
the chemostat represent the continuous turnover of nutrients in nature. The 
outflow of organisms is formally equivalent to nonspecific death, predation, or 
emigration, which always occur in nature. 
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The close parallels in nature are the planktonic communities of unicellular 
algae in lakes and oceans. The multispecies communities receive nutrient inputs 
from streams draining eroding watersheds or continental margins, and in lakes 
from nutrient regeneration during spring and fall overturn (Hutchinson [5, 
Chaps. 7,121). Nonspecific death occurs as cells continually sink out of the well-lit 
upper layers of water to the unlit bottom of the water column. During the summer 
months between lake overturns, it is invariably the case that some one nutrient 
becomes limiting. The nutrient in question may be any one of a variety including 
phosphorus, nitrogen, silica in the case of diatoms, or even a vitamin such as B,,. 
Moreover, it is generally the case that the same nutrient is limiting to most if not all 
of the species of planktonic algae at any given time (for example, see Schelske, 
Rothman, Stoermer, and Santiago [15]). An important fact is that these nutrients 
are not metabolically substitutable, but rather are metabolic complementary. 
Growth is therefore limited by the one nutrient in shortest supply, such that the 
addition of more of other nutrients has no accelerating effect on growth what- 
soever. Consequently the chemostat culture with one limiting nutrient is a 
reasonable model system under these circumstances. 

A mathematic model of such systems, featuring the familiar Michaelis- 
Menten kinetics of the uptake of the limiting substrate, goes back to Monod [l11. 
The derivation of the model with one substrate and one population is given in 
various places (for example, see Herbert et al. [4]). The important biological 
features of this kinetic model are: (a) at low nutrient concentration the rate of 
uptake and growth is limited by, and proportional to, nutrient concentration, 
whereas (b) at high concentration the uptake and growth rates saturate and 
become constant, independent of nutrient concentration. The extension of the 
basic model (which we use below) to one substrate and several populations 
appears, for example, in Taylor and Williams [18]. The term nutrient or substrate 
should be interpreted in a wide sense; as pointed out by Taylor and Williams, it 
could be an energy source of either organic material or light, a major carbon, 
nitrogen, or phosphate source, or some trace nutrient (vitamins). With minor 
modification, the uptake of all these nutrients basically follow Michaelis-Menten 
kinetics. The analysis presented here is applicable to all such resource-limited 
systems. 

This paper uses the general deterministic model for one substrate and n 
competing species or strains, and presents a rigorous mathematical analysis of the 
asymptotic behavior of this system. In particular, given the parameters of the 
system-growth rates, Michaelis-Menten cbnstants, input concentration of the 
limiting nutrient, and dilution and death rates-we answer the question of which 
species survive and which do not, and determine the limiting values. Although 
some partial results exist in the literature on this problem, we believe that this 
paper represents the most complete treatment of the system yet available. In 
particular, it generalizes the work of Powell [14], makes his conclusions 
mathematically rigorous, and gives a mathematical explanation to some observa- 
tions of Taylor and Williams [18] in their numerical experiments. 

2. The model. The general continuous flow culture is described briefly in the 
Introduction and in detail in the references cited. We specifically assume that the 
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input concentration, s'", and the dilution rate, D, are constant, the only competi- 
tion between species is for the nutrient (no toxins are produced, for example), and 
that the mixing in the vessel is perfect. Further, it is assumed that growth rates 
adjust instantaneously to changes in the nutrient concentration, i s . ,  there are no 
time lags in the system. With these assumptions, the model is given by (Taylor and 
Williams [I81) 

Sf (t) = (s'" -s(~))D- C -mi xi (t)S(t) -
i = 1  yi ai+S(t)' 

mixi (t>S(t) xl(t) = 
ai+S (t) -Dxi(t), 

where 

t = time 

xi(t) =concentration of ith organism at time t 

S(t) =concentration of substrate at time t 

mi =maximum specific growth rate for the ith organism 

yi =cell growth yield for the ith organism 

ai =Michaelis-Menten constant for the ith organism. 

We analyze the behavior of solutions of this system of ordinary differential 
equations. 

3. Statement of results. In this section we state the principal results of the 
paper. The proofs and certain technical lemmas are deferred to the next section. 
The first lemma is a statement that the system (2.1)" is as "well-behaved" as one 
intuits from the biological problem. 

LEMMA 3.1. The solutions S(t), xi(!), i = 1, . - - ,n, of (2. I), are positive and 
bounded. 

The first theorem provides conditions under which the organism cannot 
survive given the fixed dilution rate and the fixed input rate of nutrient. 

THEOREM3.2. Let bi = mi/D, i = 1, . . . ,n. If 
(i) bi 5 1 ,  

or 
ifbi >1,

(ii) 
bi -1 

then lim,,, xi (t) =0. 
This theorem states that if the maximum growth rate mi of the ith organism is 

less than the dilution rate or if the parameter ai/.(bi -1)>s"), the organism will 
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die out as time becomes large. Note that the resulting behavior is competition- 
independent. 

Our basic hypothesis is 

The equations may be relabeled without loss of generality, so that the parameters 
hi = ai/(bi-1) are nondecreasing in i. (H,) excludes equality of this parameter for 
the first species. 

THEOREM3.3. Let (H,) hold. The solutions of (2.1), satisfy 

lim S(t) =-a 1 

t-00 b1- 1' 

This theorem states that under the hypothesis (H,) only one species survives, 
the one with the lowest value of A, and gives the limiting concentrations. For a 
given species, the parameter A; depends on two measured quantities, the growth 
rate and the Michaelis-Menten constant. It is biologically reasonable to assume 
that for two distinct species, the corresponding parameters will be different. 
Hence (H,) (with all strict inequalities) is a biologically reasonable assumption. 

If al/(bl -1)= s"), then lim,,, xi(t) =0, i =2, . - - ,n by Theorem 3.2. In 
this case, however, the lowest species also dies out. 

THEOREM 1) s").Then3.4. Let (H,) hold except that al/(bl - = 

lim S(t) = s"), 
t+co 

lim x;(t) =0, .~ i = l ; . . , n .  
t+m 

The following theorem considers the case of equal h 's. 

THEOREM3.5. Let 


where bl >1.IfS* <sS(0),then 

lim S(t) =s'", 
r+m 
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and 

lim xi (t) =x> 0, 
t+m 

where 

IfS* =s"), then 

lim S(t) =S*' 
t+m 

and 

lim xi (t) =0, i=1 ,2 ; . . , n .  
t+m 

4. Proofs. 

Proof of Lemma 3.1. Since xi (0) =xi, >0, then by the representation 


we have xi(t) >0 provided S(t) >-ai for 0 S 5 6 t. Suppose that S(t) is not 
positive for all t L0.Since S(0) =So>0 then there exists a point To with S(To) =0 
andS( t )>OforO~t<To.ForOStSTo,  

Integrating from 0 to To and taking the exponential of both sides, it follows that 

This is a contradiction and hence S(t), xi(t) are positive for all t 2 0. 
Multiplying the equation for xi in (2.1), by l/yi and adding yield 

which is a linear equation with constant coefficient in the variable S(t)+ 
Cy=l (xi(t)/yi).Solving this equation yields 
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where A, = (So+xi"=, -s'".As t +co, ~ , e - ~ '  xio/yi) +0. The sum on the left side 
is bounded, and since each term is positive, each term is bounded. In particular, 
for E> 0, there exists to, such that if t 2 to, S(t) 5s(')+E. 

Proof of Theorem 3.2. A rearrangement of (4.1) yields 

If bi 5 1, then 

5 Cxio exp 

where to is chosen so that for t L  to, S(t)5 SO+ 1 and C =  
exp to (- aiD/(ai+S(6))) d5. Since the exponent is negative and xi(t)>0, 
lim,,",i(t) =0. Rearranging (4.1) yields 

If bi >1, then the first factor of the integrand is positive. Let O < E  < 
(ai/(bi-1))-s'", and choose to >0 such that S(t) 5s"'+E for t 2 to. Then for an 
appropriate constant C, it follows that 

xi (t) 5 cxio exp )(t-to)}.bi -1 

The first factor in the exponent is positive, the second is negative, so lim,,, xi(t)= 
0. Hereafter we always assume bl >1. 

We collect now some elementary facts which follow directly from (H,) and 
the form of equation, and which will be used in proofs that follow. 

(F-2) x:(t) exists and (using Lemma 3.1) is bounded. 

We note now the following lemma ([9, p. 3451). 
LEMMA4.1. L e t o ( t ) ~ ~ ' [ t ~ ,  m), 0(t)2O, K > 0 .  
(i) Ifw '(t) L 0, o(t)  is bounded and w "(t) <K for all t 2 to, then w '(t) +0 as 

t+co. 
(ii) If o'(t) 50 and w "(t)2 -K >-co for all t 2 to, then o'(t)+0 as t +co. 
This lemma and (F-2) combine to yield 
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(F-3) If xi ( t )  is monotone and lim,,, xi ( t )  =x> 0 ,  

then lirn,,, S( t )=-ai 
bi -1' 


LEMMA4.2. Suppose (H,) holds. For some to, if 


a1S( t )<- fort 2 to
bl -1  

a1S( t )>- for t  2 to,
b l -1  

then 

lirn S(t)=S* =-a1 

t-m bl-1' 

lirn xi(t)=x f  = 1 ( ~ ' 0 ) -s*), 
f+cc  

lim xl ( t )=0,  i = 2 , . . . , n .  
t+m 

Proof. Suppose first that S( t )<al / (b l-1)for t 2 to.Then by (F-1), xj(t) <0,  
t 2 to, i  = 1, . . ,and lirn,,, xi(t)=x 7 exists. By (F-3), x  7>0 for any i # 1 would 
contradict the assum tion S( t )<al / (b l- I ) ,  t 2 to.If xT =0 as well, lirn,,, S( t )= 
s'O) by (4.3),but S c o p>al / (b l-1) by (H,), which for sufficiently large t would 
contradict the fact S( t )<al / (b l-1).Hence x f >0 and x f =0,  i  =2, . . . ,n. From 
(F-3),it follows that lirn,,, S ( t )=S* =al / (b l-1). 

If there is a point tosuch that S( t )>al / (b l-1)for t 2 to,then x:(t)>0. Since 
xl( t)  is bounded, lirn,,, xl ( t )=x f  >0 exists. From (F-3), it follows that 
lirn,,, S( t )=al/(bl-1). Since ai/(bi-1) >al/(bl - I ) ,  i =2, . . . ,n, x : ( t )<0, 
i # 1 for T s T, some T, so lirn,,, xi(t)=x f  exists. From (F-3),it follows that 
x f = o , i # l .  

As a consequence of this lemma, if lirn,,, xl( t)does not exist, S( t )must be 
above and below Al =al / (b l-1) for arbitrarily large values of t. 

LEMMA4.3. Let 

o<- al I+<<a. ak 
b1-1-b;-1 bk-1' 

If 
(i) ak5ai or 

(ii) ak>ai and bk 5bi, 
then lirn,,, xk ( t )  =0. 

Proof. If there exists to such that S( t )2ak/(bk-1) or S( t )5ai/(bi-1) for 
t 2 to, then, from (F-3), lirn,,, xk( t )=0. Hence we may assume there exists a 
point tosuch that ai(bi-1)<S(to)<ak/(bk-1).Let 5>0. Then 
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where 

PC(2)=Z2[5(bk -1)-(bi - I)] +~[e{ai(bk -1)-ak} 
(4.5) 

-{ak(bi - l)-ai}I-akai(!f-

(4.6) PZ(S(to))<O, if(>O. 

The lemma will be proved by obtaining a representation of xk(t)/xi(t). To 
analyze this representation, information is needed about the quadratic P&). The 
technical arguments in the proof involve selection of a proper value of 5To do this 
we first analyze this quadratic in some detail. Several proofs in the sequel make 
use of this type of argument. 

The discriminant D(5) of PZ(z) is given by 

where 

(4.8) E=[~i(bk-1)+ak].[ak(bi-1)+ai]+2(ak-ai).[ai(bk-1)-ak(bi-1)]. 

If ak <ai and ai/(bi -1)<ak/(bk- I), then (ak -ai) .[ai(bk-1)-ak (bk - I)] >0. 

Using this fact in the computation of the discriminant D *  of D ( 0 ,  we have that 


It follows that D(5) =0 has two real roots cl, t2.Furthermore, el, l2are positive 
since D(0) >0 and D(Q) >0 for all Q <0. 

If 5" >0 is chosen between 5,, t2, then ~ ( 5 % )  <O. Hence P5*(z) =0 has no 
real roots and by (4.6), PZ*(z) <0 for all z. Put 5=5" in (4.4). It follows that 

1
5 max P5*(z) 
-(ai +Smax)(ak +Smax) OSzSS,,, 

where S,,, =supos,,, S(t). Integrating from 0 to t and taking exponentials on 
both sides of (4.10) yields 

It follows that lim,,,xk(t) =0, since xi(t) is positive and bounded and [ is 
negative. 

If ak  = ai and ai/(bi -1)<ak/bk-1, then bk <bi, and 

Again we have lim,,, xk( t )=0 and the proof for (i) is complete. 
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For case (ii) we have ak> ai, bk 5bi, and ai/(bi-1)< ak/(bk-1). First 
suppose that bk< bi and choose (* = (bi- l ) / (bk-1)> 1.Using (* in (4.5)yields 

Pe*(Z)= [(*{ai(bk-1) -ak}-{ak(bi -1)-ai}]Z -akai((*- 1). 

Then 

(*{ai (bk -1)-ak}-  {ak (bi -1)-a;) 

Equation (4.4)in this case gives 

x;(t) x'(t)---< Pe*(O) < 0.
'* Dxk ( t )  Dxi ( t )  =(ai+ Smax)(ak+ Smax) 

As in the proof of (i), it follows that lim,,, xk(t)= 0. 
For the case bk = bi in (4.8), (4.9), then 

D* = -4aiak(ai-ak)'(bk- l ) b i< 0. 

Hence D ( ( )>0 for all (. Rewrite (4.5)for this case as 

(4.11) Pe(Z) ([(bk 1 ) ~  1 ) ~= - -ak][Z + ail-[(bk - -ai][Z + ak]. 

Let z0>max [S,,,, ak/(bk- I ) ]  and choose 

Since ak >ai, (*> 1, and hence from (4.5), Pe*(z) has one positive and one 
negative root. However, Pc*(~o).=0 and P(ak/(bk-1))= 
-(ak -ai)(akbk/(bk-1))< 0,  so Pe*(S(t))<0 on 0 <S( t )5Smax.The argument is 
completed as before using (4.4). 

LEMMA4.4. There exists to and y > 0 such that S ( t )  8y for t 8 to. 
Proof. By (4.3),we choose tosuch that 

" x,( t)
S ( t )+ C L~s"' + 1 for t 8 to, 

i=1 yi 

and thereby obtain the estimate 

By (2.1),, we have 

s l ( t )+ ( D+ ( lbisna. . B S'O'D,max 5)( i q ( t ) ) )  ~ ( t )  
ryr i=l 
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~ ' ( t )  (max yi) (s'"+ I ) )  S( t )2 s'O'D.+( D  +(max 5)
l S i S n  a.IYI. 1 S i S n  

Let A =D + ma^^,^,, mi/aiyi)(maxl,i,n yi)(S(O'+ 1). The last inequality may be 
written as 

S1(t)+AS( t )  B s'O'D. 

Using the comparison equation 

xl(t)+Ax( t )= s'O'D, 

x (to) =S(to), 

it follows that 

or, dropping the first term which is nonnegative, 

LEMMA4.5. Let s'O' >ak/(bk-1)>O. Then there exists E >o such that 

where 

Dl (&)=[s'O'(bk-1)-&bk+ak12-4(bk- l)aks'O'>O. 

(ii) The solution z ( t ) ,  t 2 to of the differential equation 

z ' ( t )=(s"'-z ( t ) )D --mkz(t) ( ~ ' 0 '-z ( t )-&), 

ak +z (t. 

is positive. If z (to) < f f k 2 ( & )<ak then z ( t )  is strictly increasing and z ( t )  5ak2(&) 
for tB to .  

Proof. Since 

D1(0)= [~"'(bk-1)-akI2>0,  

ak l ( O )  =s(", 
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and 

for E >0 and small, (i) follows. 
The equation 

z ' ( t )  =(s"'-z ( t ) )D - m k z ( t )  ( S ( O ) - ~ ( ~ ) - & )
ak +z ( t )  

may be factored as 

Then z l ( t )is positive to the right of toif 0<z(to)< f f k 2 ( & ) .  ~ ( t )cannot cross the line 
z = f f k 2 ( & )  with a positive slope and (ii) follows. 

Before stating the next lemma we observe 

then 

akbi-aibk mk mi 
(ii) If 0 <S < 

bk-bi 
, then -

ak+S 
<-

ai+S' 

(F-4)follows from simple algebraic computations. 
LEMMA4.6. Let (H,) hold. Then lirn,,, xi(t)=0, i =2, . . . ,n. 
Proof.The proof will follow the ideas of Lemma 4.3 with the main technical 

problem being the selection of an appropriate 6".Suppose lim sup,,, x,(t)>0 for 
some j 2 2. From Lemma 4.2 there exists a sequence {t,), lirn,,, t, =co,such that 
S(t,) =al/(bl- I ) ,  S1(t,)<0. From (4.3)we have 

where I =( j J 1 5j 5n, lirn,,, x,(t) # 0).Let k =max I, and note that k # 1. In view 
of Theorem 3.2, we know ak/(bk-1)5 s'O'. 

First we assume ak/(bk-1)<s"'. Let o<e <minjeI E , ~ ,  where E, corres-
ponds to a,/(bj-1)in Lemma 4.5. In (4.12)the bracketed quantity tends to zero as 
t approaches infinity so there exists T, >0 such that 
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Hence 

x.(t) miS(t) 
S'(t)= (5'"' -S(t))D- C -'---

i=l yi ai+S(t)  

2 (slO'-s ( ~ ) ) D- mjS(t>-1 {?in
1.1 ai +S( t )  ,.I 

1-x,(t> 
yj 

5(S'O)-S(t))D-{min -
i.1 a, + S( t )  

for t 2 T,. Recall that S(t,) = al / (b l-1) for every n. Comparing solutions of the 
above inequality with solutions of 

it follows that S( t )5 z( t ) ,  t  2 t,. Let 

In view of Lemma 4.3 we may assume for each i E 11,j E 4,that ai >a,, bi < bi. As 
observed in (F-4), 

and from (F-4)(ii),if 

then 

z ' ( t )= (s")-z ( t))D -
1.11 a,+z(t) 

Choose E so small that 

aibi-a,bi
max ai2(&)< min 
i d 1  

where ai2(s)corresponds to ai/(bi-1) in Lemma 4.5. Then the solution z ( t ) of 
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(4.14)satisfies 

aibj-ajbi
z ( t )5min 

Hence S( t )<(akbl-al bk)/(bk -bl)=P. By Lemma 4.4 we have S( t )2 y, t  2 t,, n 
sufficiently large. 

We seek now to choose [* such that PC+) <0 for y S z  SP. Using the 
factored form, (4.11), of P,(z), we note that (d/d[)[P,(z)]= 
[(bk-1)z-ak][z+all. Thus if 0<z <ak/(bk- I ) ,  (d/d[)P,(z)<0 ,  and if z > 
ak/(bk- I ) ,  (d/d[)P,(z)>0. Thus if 0<[<1, 

Pl (z )=0 at z =0 and z = (akbl-albk)(bk-bl) ,as may be seen from (4.5).Thus 
for any0 <6 <1, PC@) <0.Further, for 6 sufficiently close to one, P,(y) <0 ,since 
Pl(y)<0. Thus there exists a [* <1 such that P,*(z) <0 for y 5z 5P 

It now follows that 

< max Pf*(Z) =[<O. 
Y S Z S D  (al+S,,,,,)(ak +S,,,) 

Integrating both sides from t, to t, taking exponentials, and letting t tend to 
infinity, yields 

lim xk ( t )  =0,
I'm 

which is the desired contradiction. 
We show that ak/(bk-1)= s'O) cannot occur. Since s(to)=al / (b l- I ) ,  and 

~ ( t )cannot cross s =ak/(bk 1)=s"'. n u s  ~ ( t )  - 11, t 2 to, and- <ak/(bk 
lim,,, xk(t)exists. If this limit is positive, by (F-3), lim,,, S( t )=ak/(bk-1)= 

s'". But then, by (F-3)and Lemma 4.2, lirn,,, S( t )=al / (b l-1)<ak/(bk- I ) ,  
which is a contradiction. 

LEMMA4.7.Let (H,) hold. Then the criticalpoint (s*, x f ,  0, . . . ,0 )  of (2. I ) ,  
is asymptotically stable, where S* =al/(bl- I ) ,  x T=y l ( ~ ( 0 ) -s*). 
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Proof. The eigenvalues of the coefficient matrix of the variational equation at 
the critical point are negative. To see this, note that the coefficient matrix is 

Let Ki =D((bi-1)s" -ai)/(ai+S*),i =2, - . . ,n. The eigenvalues of the above 
matrix satisfy 

K1<0 , i =2, - . . ,n, by (H,). The quadratic has positive coefficients and hence its 
roots have negative real parts. This establishes the asymptotic stability of the 
critical point. 

Proof of Theorem 3.3. From Lemma 4.6 it follows that lirn,,, xi(t)=0, i = 

2,  . . . ,n. If also lirn,,, xl ( t )=0, then from (4.3)it follows that lirn,,, S( t )=s'". 
This makes the exponent in (4.1')positive for sufficiently large t, and contradicts 
the above limits being zero. If lirn,,, S( t )exists, then the theorem is proved by 
(4.3) and (F-3).If this limit does not exist, denote the omega limit set [12]of a 
trajectory of (2.1),, (S( t ) ,  xl( t) ,  . ,xn(t)),by a. 

Recall that if lirn,,, S( t )does not exist, there is a sequence {t,),lirn,,, $ =a, 
such that S($)=a l / (b l -  1) =S*. Thus by (4.3), must contain the closure of the 
set 

or (S*,  xT, 0 ,  . - - ,0 )E a.But this critical point is asymptitically stable by Lemma 
4.7, that is, a=(s*, x f ,  0 ,  . . - ,0). The theorem follows since a trajectory is 
asymptotic to its omega limit set. 

Proof of Theorem 3.4. From Theoerem 3.2, lirn,,, xi(t)=0,  i =2, . - ,n. 
Since s")=al / (b l -  1), by (4.15) there exists to such that S( t )  cannot cross 
S = al / (b l-1)= S'O) from below for t 2 to.From (F-3)and (4.3),lirn,,, xl ( t )=0 
and lirn,,, S( t )=a l / (b l -  1). 

Proof of Theorem 3.5. Let S* <s").If A, SO, then, differentiating (4.3),it 
follows that 
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From this we know that either there exists a to such that S(t) 2S* for all t 2 to or 
S(t)<S*for t>O. If S(t)<S*, thenlim,,,xi(t) =x"or i = 1,2 , .  - - ,n b (F-1). 
1f xf =0 for all i = 1,2,  - . ,n, then (4.3) would contradict S(t) <S*<S'O[ so for 
some k, lirn,,, xk (t) =X: >0. Using this in (4.1) yields 

Furthermore, since S(t) is bounded, 

lom(S(5) -S*) d5 >-a. 

For i # k, 

>-co. 

Using this in (5.1) yields 

If S(t) 2 s*, t B to, then xl(t) 20, and necessarily lirn,,, xi(t)=xf >0. In either 
case, (F-3) and (4.3) finish the proof. 

If A, >0, then 

for all t. Thus either S(t) >S* for t 20 or there is a to such that S(t) <S* for t > to. 
In either case one of the above arguments will apply. 

If S* =s"', one may argue as above to obtain lim,,,xi(t)=xf and 
lirn,,, S(t) =S* = s'". From (4.3) it follows that xf =0, i = 1, . . . ,n. 

5. Discussion. Most of the analysis centers on the parameter hi =ai/(bi- I), 
where ai is the Michaelis-Menten constant and bi =mi/D, where mi is the 
maximum specific growth rate and D is the constant dilution rate. For any species i 
whose parameter is too large (Ai greater than the input concentration, s")), 
survival is not posssible even in the absence of competition from other micro- 
organisms for the nutrient. Under this condition, the concentration of the species 
tends to zero as t +co.For those species where hi is not too large, competition 
determines survival. For different species it is biologically reasonable to assume 
that the corresponding A's are not precisely identical (the A's are, after all, 
measured quantities). With this assumption-hypothesis (H,) of the preceding 
section-we give a complete answer: only the species having the smallest A 
survives, and its limiting value is determined. This is the principal result of the 
paper (Theorem 3.3). 

Powell's result [14] is a special case of our result. In fact, our result is a more 
rigorous proof even in Powell's special case. Powell made the simplifying assump- 
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tion that the culture had achieved an equilibrium of one micro-organism before 
the appearance of the second competing organism, contaminant, or mutant. We 
do not require this assumption. Moreover, the paper provides a mathematical 
proof of the observation of Taylor and Williams' numerical experiment [18] which 
concluded that "only a single species will survive if growth is limited by a single 
substrate." This conclusion was also reached by Stewart and Levin [17] although a 
mathematically rigorous proof was not given. This conclusion applies in the case 
for which nutrient is input at a constant rate. It is of some importance that 
the outcome of competition is independent of the initial number of competi- 
tors. Survival, although not the limiting value, is independent of the yield 
constant, yi. 

We note that the analysis here is global; at no point do we assume that the 
initial conditions are in the neighborhood of a critical point, an assumption which 
is implicit, though not always stated, if a linear stability analysis is performed. 

It is of interest to relate these findings to general questions of competition and 
the coexistence of species in nature. hi can be related to the population growth 
parameter, ri, the intrinsic rate of natural increase of the ith species, as: hi = 

(ai/ri)D. In Equation (2.1),, ri is formally equivalent to the quantity (mi -D), 
where mi is interpreted as the maximal "birth" rate under resource-unlimited 
conditions and D is the "death" rate. Note the simplicity of the result in these 
terms; the species whose Michaelis-Menten constant is smallest in comparison with 
its intrinsic rate of increase will win (note that all species experience the same death 
rate due to washout by dilution). If the intrinsic rates of increase for a series of 
competing micro-organisms are all roughly equivalent, then the result is even 
more elegant: the species whose Michaelis-Menten constant is smallest (r's equal) 
for the limiting nutrient will win. Recall that this constant is the nutrient con- 
centration for which rate of uptake is half maximal. It is irrelevant how abundant 
the competitors are at the start, or how efficiently the species convert the nutrient 
into cell growth (yield). 

In the Introduction we mentioned the applicability of results of our model 
system to the planktonic communities of unicellular algae in lakes and oceans. 
Dugdale's paper [2] was one of the earliest to discuss algal growth rates under 
conditions of nutrient limitation in terms of Michaelis-Menten kinetics. He 
suggested the significance of nutrient limitation theory to the study of phytoplank- 
ton competition and succession, but not many workers have attacked these 
problems directly or indirectly. A few people, however, have made very explicit 
hypotheses based on Michaelis-Menten kinetics, as this quote from Eppley and 
Coatsworth [3] demonstrates: 

Our hypothesis is that [Michaelis-Menten] values for solute uptake provide a quantitative 
comparison of the abilities of different species to utilize low levels of nutrients. As such, 
[considering nitrogen uptake], values for the uptake of NO;, NO;, and NH: for a series of 
species of phytoplankton, involved sequentially in a seasonal succession, should follow in order - . -
of declining nutrient concentrations. Each succeeding species should show a lower [Michaelis- 
Menten] constant than the preceding one if declining level of the nutrient in question is indeed 
significant in succession. 

As we have seen from the mathematical analysis, this was a very prophetic 
remark. Kilham [6] made a similar suggestion in discussing the Michaelis-Menten 
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constants for a silica uptake in diatoms, and predicted that which diatom was 
dominant during seasonal succession would be determined by the species with the 
lowest Michaelis-Menten constant still capable of growing at the given ambient 
level of silica. Because of the nonsteady-state condition of nutrient flow into lakes 
during seasonal succession, Kilham's prediction seems very likely, provided that 
the diatom species have similar intrinsic rates of increase and sinking rates. The 
dominant species would be expected to exclude the remaining species if nutrient 
conditions were to stabilize. 

Much has been made of the so-called "paradox of the plankton"-the 
seemingly paradoxical coexistence of many species of planktonic algae in a 
well-mixed body of water with usually one or at least few limiting nutrients. How 
is such coexistence possible? Our analysis suggests that for an indefinite number of 
species to survive together they must have equal ratios of Michaelis-Menten 
constants to intrinsic rates of increase. If the ratios are very close, the rate of 
competitive exclusion will proceed at a very slow pace. The pace may be slow 
enough that the species at a disadvantage can persist until some random flush of 
nutrients results in regeneration. This is contrary to conventional ecological 
wisdom which says that stable coexistence is impossible for two or more species 
making a living in identical ways. However, May [8] reached a similar conclusion, 
arguing from a modified set of classical Lotka-Volterra competition equations, 
that his deterministic model set no limit to the number of coexisting, identical 
species. See also the example of McGehee and Armstrong [9] and the analysis of 
Smith, Shugart, O'Neill, Booth, and McNaught [16] of zooplankton feeding on 
phytoplankton. 

The conclusions of this paper apply to pure exploitative competition with no 
direct interference between rivals. All species or strains have access to the limiting 
nutrient and compete only by lowering the common nutrient pool. Under this case 
it should be noted that it is possible to predict the outcome of competition from the 
dynamics of nutrient uptake and growth of each species or strain grown alone. 
This contrasts with the classical Lotka-Volterra-type equations, which cannot 
predict outcomes until the species are actually grown together to measure 
interaction coefficients. 
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