
§4.3 Fundamental Theorem of Natural Selection 

The essence of the theory of evolution through selection is that in any population there 

will exist genetic variation between individuals and that those genotypes which are 

better suited to the environment than others will contribute rather more than their fair 

share of offspring to the following generation. Thus the genetical make-up of the 

following generation will differ somewhat from that of the parent generation, leading to 

substantial changes over large numbers of generations. 

 Such evolution depends on the existence of genetical variation in the population, so 

that it might be expected that the greater the variation, the greater will be the changes 

which occur. Further, it appears that in some sense the process leads to an 

‘improvement’ in the population. The theory which has so far been developed allows a 

more precise quantitative examination of these intuitive notions. 

 

Random-mating populations 

Consider firstly the case where only two alleles 1A  and 2A  are allowed at the locus in 

question. Using the notation developed in the previous two chapters, if the frequency of 

1A  in any generation is p , and that of 2A  is pq  1 , the frequency p  of 1A  in 

the following generation is 
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The mean fitness W   of the population in the second generation is 
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and the increase W  in mean fitness between the two generations is 
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Writing ppp   and using the expression )1.3(  for p , it is possible after some 

manipulation to reduce eqn. )3.3(  to the form 
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Clearly W  is always non-negative, so that we can conclude that gene frequencies 

move, under natural selection, in such a way as to increase, or at worst maintain, the 

mean fitness of the population. 

If, furthermore, the ijw  are close to unity, eqn. )4.3(  may be approximated by 
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where 
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and 
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The quantities 1E  and 2E  can be given the following interpretation. If the 

heterozygotes 21 AA  are divided into two halves, the first half going to form a group 

with the homozygotes 11 AA  and the second half going to form a group with the 

homozugotes 22 AA , then 1E  and 2E  represent respectively the deviations from the 

mean fitness of the population of the mean fitnesses of the two groups. The quantity 

21 EE   is called the ‘average excess’ of 1A  (Fisher, 1930). 

It was remarked earlier than it is expected that W  will be related in some way 

to the variation in fitness in the population. This possibility is now investigated more 

closely. It is clear from eqn. )5.3(  that if 21 EE  , that is to say if 
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then 0W . In the case when 12w  exceeds both 11w  and 22w , *p  is, as we know, 

a stable equilibrium point, so that it could have been anticipated that W  will remain 

unchanged when *pp  . But the total variance in fitness, namely 

222
22

2
12

22
11

2 2 Wqwpqwpw      )9.3(  

will be positive when 12w  exceeds both 11w  and 22w . Thus if W  is to have some 

interpretation as a variance, it can only be as some component of the total variance of 

fitness. 

To guide us in trying to isolate some component of 2  which is related to W , it is 

useful to consider the particular case 2
1 qp , 12211  ww , cw  112 . Different 

values of c  lead to different values of 2 , but irrespective of c  it is always true that 

0W . This suggests that it would be useful to isolate some component of 2  which 

is zero irrespective of the value of c . A component of 2  fulfilling this requirement is 

that part of the total variance which is removed by fitting a weighted least-squares 

regression line to the fitnesses ijw . It is therefore reasonable to consider generally the 

effect of fitting such a line. Any regression line will yield fitness value xW 2 , 

yxW  , yW 2  for 11 AA , 21 AA , and 22 AA , and the least-squares regression line 

is that line for which 
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is minimized with respect to variation in x  and y . The required solutions for x  and 

y  are 
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where 1E  and 2E  are defined by eqn. )6.3(  and )7.3( . Standard regression theory 

shows that the sum of squares removed by fitting this least-squares line is 
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which is identical to eqn. )5.3( . Thus to the order of approximation used the increase in 

mean fitness of the population is identical to that part of the total genetic variance which 

can be accounted for by fitting a weighted least-squares regression line to the fitnesses. 

For this reason, this component is called the ‘additive’ part of the total variance. 

 

Two sex viability models with two alleles. Consider next a population divided 

into males and females, mating randomly subject to viability selection where the fitness 

coefficients may differ between the sexes. The array in Table 1 describes the process 

(assuming male and female offspring are produced with equal probability). 

Sex Male Female 

Gamete  A  a   A  a  

Frequency  p  q   P  Q  

Genotype AA Aa  aa  AA Aa  aa  

Fitness coefficients 

(viabilities) 
  1   s  1 t  

Relative frequencies after 

random mating and selection 
pP qPpQ   qQ spP qPpQ   tqQ

Table 1 

With Mendelian segregation we obtain for the gene frequencies in the next 

generation the transformation equations 
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Where the denominators are the required normalization factors (cf. Model 1). 

In the case at hand it is more convenient to express the changes of gene frequencies 

over successive generations in terms of the equivalent pair of variables qpx / , 



QPy / , x0 , y . We obtain 
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 Write T  for the mapping defined in )6.2( . The fixed point )0,0(0   

corresponds to the pure population of only aa  genotypes and ),(   represents 

the pure population of AA  genotypes. 

We wish to ascertain the character of all equilibria of T  and their domains of 

attraction. The analysis of T  and its iterates is much facilitated by exploiting the 

feature that T  is monotone, i.e., where )~,~(~),( yzzyxz   holds (the ordering 

signifies the inequality for each coordinate). Then we have 

zTTz ~  with strict inequality in each coordinate unless zz ~ .  )6.2( a  

The stability nature of any equilibrium is customarily ascertained by analysis of the 

local linear approximation to the non-linear mapping T  in the neighborhood of the 

fixed point. More specifically, we examine the matrix transformation given by the 

gradient matrix 
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evaluated at the fixed point )ˆ,ˆ(ˆ yxz  . 

All equilibria can be determined in general, and for some special cases, viz., 

  ,   1 , 0  or 1, the full convergence behavior can be analysed. 

Thus, when 0 , 1)( nx  rapidly. 

When 1   and 2
1 , again we find 1)( nx . 

For    and 2
1 , then it can be proved that 
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The following can be readily checked. Assume by symmetry )10(    then: 

(i) For 2
10   , there exists a unique locally stable polymorphism. 

(ii) For 10 2
1   , there exists no internal equilibrium. It can be 

proved that fixation in the 1A  allele occurs. 

(iii) If 12
1   , there exists a unique internal non-stable equilibrium. 

The global convergence behavior of )20.2(  for arbitrary parameters  ,   is in 

general unsettled. 

 

SOME MODELS OF POSITIVE ASSORTATIVE MATING 

 Consider a two-allele ( A  and a ) single locus population displaying certain 

preferences in mating behavior. We consider here the case where the preference is 

exercised by one of the sexes, say the female sex, (this covers most situations of insect 

and mammal populations). 

 

A model of assortative mating. Assume that A  is dominant to a  so that 

phenotypically AA  and Aa  are alike. The degree of partial assortative mating in the 

phenotypes is measured by two parameters:   )10(   will be the fraction of 

dominant females preferring to mate with their own kind and   )10(    that of 

recessive females preferring their own kind. Thus a fraction, 1 , of A  (of AA  or 

Aa ) females mate indifferently, i.e., at random. We assume all females are fertilized 

(i.e., find a suitable mate). This happens if the males. Consider the genotypes AA , Aa , 

aa  ( A  dominant) with the frequencies u , v  and w  respectively in the female 

population. 



When the prohibitions of assortative mating are operating, it is obligate that each 

mate of an aa  individual is of the same genotype so that the frequence of the aaaa  

mating type is w . Therefore the frequency of the matings of the dominant phenotypes 

is vuw 1 . Among the matings of dominants the frequency of occurrence 

considering of the AAAA  mating type is 2u  and its frequency of occurrence 

considering all admissible mating is then )1/(2 wu  . The frequencies of the mating 

types are listed in Table 3. 

 Frequencies 

Mating Type Of Assorting Types Random Mating 

AAAA  )/(2 vuu   2)1( u  

AaAA  )/(2 vuuv   uv)1(2   

aaAA   uw)2(    

AaAa  )/(2 vuv   2)1( v  

aaAa   vw)2(    

aaaa  w  2)1( w  

Table 3 

 The corresponding recurrence relations connecting genotype frequencies over 

successive generations in accordance with Mendelian segregation laws become 
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Introducing the A  gene frequency, vup 2
1 , and for the next generation, 

vup  2
1  and, letting np  denote the frequency of the gene A  in the n th 

generation, we drive, from )1.3( , the relationship 



])(1[ 2
1 wpp   .       )2.3(  

 The following inferences can now be made: 

(i) For   , np  increases to 1, the pure homozygous AA  state. The rate 

of convergence is algebraic. 

(ii) For   , the population ultimately fixes in the pure homozygous aa  

state and convergence occurs with an asymptotic factor of decrease per 

generation )(1 2
1   . 

When    it is readily checked that )0()( pp n   for all n . Then v  

simplifies to 
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where p  is the constant gene frequency. Thus )(vf  is a linear fractional 

transformation and therefore the n th generation frequencies ))(()( 010 vffvfv nnn   

can be explicitly evaluated. Indeed we have 
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where 1  and 2  are the fixed points of vvf )(  and 
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Because )(vf  is concave increasing, we deduce 1nv . For the case 1  we 

obtain )2/(2 00 pnvpvvn   so that 0nv  at an algebraic rate. 

 


