
Chapter 4 Introduction to population genetics 

§4.1 Hardy-Weinberg Law 

First we introduce a minimum of the terminology and mechanisms of population 

genetic systems. Chromosomes—usually found in the nucleus—mostly govern the 

inheritable characteristics of an organism, Chromosomes may occur singly (the haploid 

case) as in some fungi, in pairs (the diploid case), as in mammals, or in large groups 

(triploid, tetraploid, in general polyploid) as in many plants. The associated pairs, 

triplets, etc., of chromosomes are called homologous. Locus is the position at which a 

gene (a sort of unit of the chromosome) occurs on a chromosome. Alleles are alternate 

gene forms at given locus. Genotypes are the various possible combinations of alleles 

at corresponding loci on homologous chromosomes. In the diploid case if the alleles are 

A  and a , the genotypes are AA , Aa , and aa . 

 The population to be considered here, unless specified otherwise, contain diploid 

individuals. We concentrate our attention, for the most part, on characters determined by 

one or two loci, on a given pair of chromosomes. We usually assume that two 

alternative genes (alleles) may occur at each locus. Consider the case of two loci, where 

the alleles A  and a  are possible at the first locus and alleles B  and b  at the 

second locus. A typical one of the ten possible genotypes (see listing immediately below) 

could be written abAB / . The symbol abAB /  signifies that AB  sit on the 

chromosomes A  at first locus, B  at the second locus and ab  are situated on the 

second chromosome. The ten genotypes are explicitly 
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The physical manifestation of the genotype is called the phenotype. If the 

genotype Aa  has the phenotype of the AA  individual, then A  is said to be a 



dominant gene and a  is called recessive to A . 

 We shall assume that an offspring is found by the donation of a gamete (one of 

each pair of homologous chromosomes) from each of two parents. In the case of one 

locus, each parent, depending on its genotype, may donate either A  or a  to form a 

zygote (fertilized egg) having genotype AA , Aa  or aa . Individuals with genotype 

AA  or aa  are homozygotes; Aa  is a heterozygote. For two loci, the donated 

gametes can be of four kinds, AB , Ab , aB  or ab  and ten zygotes are possible as 

listed previously. Generations are taken to be non-overlapping. 

Considering the one locus case, we are primarily interested in tracing the frequencies of 

the three genotypes over time. Assume that the population size is very large, effectively 

infinite. Let nu , nv , and nw  be the frequencies of AA , Aa  and aa , respectively, 

in the n th generation. In order to follow the vector ),,( nnn wvu  as n  increases we 

must describe the mating system, i.e., the way mating pairs are to be selected. 

 One of the most widely studied systems of mating is random-mating. This occurs 

when any one individual of one sex is equally likely to mate with any one of the 

opposite sex. Thus, in the one locus case above, the mating AAAA  would occur with 

frequency 2
nu  at the n th generation. From this mating only AA  offspring result. 

However, from the mating AaAa , AA , Aa  and aa  offspring will be produced 

with probabilities 4
1 , 2

1 , 4
1  respectively. This equally likely case of segregation is 

called Mendelian segregation. 

In an infinite population, not subject to any outside influences, and in which 

random mating takes place the following Hardy-Weinberg Law holds. This states that, 

if in a given generation the frequencies of the A  and a  gene are p  and pq 1  

respectively, then in all subsequent generations the frequencies remain the same. We 



shall this, and the fact that random mating is equivalent to random union of gametes. 

 

The Hardy-Weinberg Law 

We consider a random-mating population which is so large that we may ignore 

small chance variations in gene frequencies and treat all processes as being 

deterministic. Suppose that at any given locus only two alleles may occur, namely 1A  

and 2A , and that individuals are diploid but monoecious, (I.e. can act as both male and 

female parents). Further, suppose that in any generation, the proportions of the three 

genotypes 11 AA , 21 AA  and 22 AA  are P , Q2  and R  respectively. 

Since random mating obtains, the frequency of matings of the type 1111 AAAA   is 

2P , that of 2111 AAAA   is PQ4 , and so on. We must now consider the outcomes of 

each of these matings. If the very small probability of mutation is ignored, elementary 

Mendelian rules indicate that the outcome of an 1111 AAAA   mating must be 11 AA , 

that half the 2111 AAAA   matings will produce 11 AA  offspring, the other half 

producing 21 AA , with similar results for the remaining matings. 

It follows that, since 11 AA  offspring can be obtained only from 1111 AAAA   

matings (with frequency 1 for such matings), from 2111 AAAA   matings (with 

frequency 2
1  for such matings), and from 2121 AAAA   matings (with frequency 4

1  

for such matings), and since the frequencies of these matings are 2P , PQ4 , 24Q , the 

frequency P  of 11 AA  in the following generation is 
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Similar considerations give 
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Note that in deriving these results we have assumed no selective differences between 

genotypes; that is we have assumed that the genotype of an individual affects neither his 

chance of surviving to produce offspring nor the number of such offspring. 

 The frequencies P  , Q 2  and R   for the next generation are found by replacing 

P , Q2  and R  by P  , Q 2  and R   and P , Q2  and R  by P , Q2  and 

R  in eqns. )1.1( - )3.1( . Thus, for example, 
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and similarly it is found that QQ  , RR  . Thus the genotypic frequencies stabled 

by the second generation are maintained in the third generation and consequently in all 

subsequent generations. Note that frequencies having this property can be characterized 

as those satisfying the relation 

RPQ  2)( .        )4.1(  

Clearly, if this relation holds in the first generation, so that 

PRQ 2 ,        )5.1(  

then not only would there be no change in genotypic frequencies between the second 

and subsequent generations, but also these frequencies would be the same as those in 

the first generation. Populations for which eqn. )5.1(  is true are said to have genotypic 

frequencies in Hardy-Weinberg form. 

Since 12  RQP , only two of the frequencies P , Q2  and R  are 

independent. If, further, eqn. )5.1(  holds, only one frequency is independent. 

Examination of eqns. )1.1( - )3.1(  shows that the most convenient quantity for 

independent consideration is QPp  , that is to say the frequency of the gene 1A . 



For convenience the notation pq  1  for the frequency of 2A  is often introduced, 

but this is not strictly necessary. 

The above results may be summarized in the form of a theorem: 

Theorem (Hardy-Weinberg). Under the assumptions stated, a population having 

genotypic frequencies P  (of 11 AA ), Q2  (of 21 AA ) and R  (of 22 AA ) achieves 

after one generation of random mating, stable genotypic frequencies 2p , pq2 , 2q  

where QPp   and RQq  . If the initial frequencies P , Q2 , R  are already 

of the form 2p , pq2 , 2q , then these frequencies are stable for all generations. This 

theorem was established independently by Hardy (1908) and Weinberg (1908).  

 

Random union of gametes 

The Hardy-Weinberg law was derived above under a number of simplifying 

assumptions, and in order to derive analogous laws under less restrictive assumptions, 

and to facilitate the mathematical arguments in general, we will now rederive the law in 

a more efficient way. 

Any 11 AA  parent will transmit an 1A  gene to his offspring. Any such gene is 

called, at this stage, a gamete; the union of two gametes forms a zygote or individual. 

Now the population considered in Section 1.1 produces 1A  gametes with frequency 

QP   and 2A  gametes with frequency RQ  ; furthermore, random mating of 

individuals is equivalent to random union of gametes. Thus the frequency of 11 AA  in 

the following generation is the frequency with which two gametes drawn independently 

are both 1A , namely 2)( QP  . This establishes eqn. )1.1(  and eqn. )2.1(  and )3.1(  

follow similarly. The derivation of genotypic frequencies from the argument of random 

union of gametes will be used subsequently on a number of occasions. 

 



Dioecious populations 

We assumed that individuals are monoecious. While this assumption is of some 

independent interest, it was made mainly for convenience; to find how relevant the 

derived from it are for other situations, some consideration must be given to populations 

where individuals are dioecious. 

Suppose that the frequencies of 11 AA , 21 AA  and 22 AA  among males are MP , 

MQ2  and MR  and among females are FP , FQ2  and FR . The gametic outputs from 

the two sexes are then MM QP   (of 1A ) and MM RQ   (of 2A ) from males and 

FF QP   (of 1A ) and FF RQ   (of 2A ) from females. The frequencies of he three 

genotypes (in both sexes) in the following generation are therefore 

))(( FFMM QPQP  , ))(())(( MMFFFFMM RQQPRQQP  , 

))(( FFMM RQRQ   respectively. The gametic output from this daughter generations 

is for both sexes, )(2
1

FMFM QQPP   (of 1A ) and )(2
1

FMFM RRQQ   (of 

2A ). It is easy to show also that the genotypic frequencies in this following generation 

satisfy eqn. )5.1(  for both sexes. Thus after one generation of random mating, the 

frequencies of three genotypes are the same in both males and females, while a further 

generation of random mating ensures that these frequencies are in Hardy-Weinberg 

form. 

 Thus it is reasonable in many circumstances to ignore the dioecious nature of the 

population, and we shall indeed almost always do this, mentioning it only on occasions 

when special attention is necessary. 

 

Sex-linked genes and multiple alleles 

The theory of the preceding section does not apply when the genes in question are 

sex-linked, i.e. located on the sex chromosome. To analyse the behaviour for sex-linked 



genes, suppose that the male sex is heterogametic and that the initial frequencies are 

 male  female  

 1A  2A   11 AA  21 AA  22 AA   

 Mp  Mq   FP  FQ2  FR   

Consideration of the gametic output from each sex shows that in the following 

generation these frequencies become 

 male  

 1A  2A   

 FF QP   FF RQ    

female 

11 AA  21 AA  22 AA  

)( FFM QPp   )()( FFMFFM RQpQPq  ).( FFM RQq   

The difference between the frequency of 1A  in males and the frequency of 1A  in 

females in the initial generation is 

)( FFM QPp  ,        )6.1(  

while in the second generation this difference is 
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which in absolute value is half of )6.1( . Clearly, with succeeding generations, this 

difference rapidly approaches zero. If, then, it is assumed that initially 

pQPp FFM   (say), the above theory shows that in one generation the 

frequencies 

 male  female  

 1A  2A   11 AA  21 AA  22 AA   

 p  q   2p  pq2  2q   



are attained, and that these frequencies are unaltered in subsequent generations. For 

arbitrary initial values of FP  and FQ , this dose not happen, although a very rapid 

convergence to such an equilibrium state occurs. In any event, the important part of the 

Hardy-Weinberg law relating to essential stability of genotypic frequencies still stands. 

The Hardy-Weinberg law can be extended immediately to the case where more 

than two types of genes are allowed at the locus in question. If alleles 1A ,  , kA  

occurs with frequencies 1p ,  , kp , then after one generation of random mating the 

frequency of ii AA  is 2
ip , while that of ji AA  ( ji  ) is ji pp2 ; in subsequent 

generations these frequencies are unaltered. The proofs of these statements follow 

immediately by considering gamete frequencies, and are omitted; again it is clear that 

genotypic frequencies are essentially stable. 

 

Miscellaneous results 

Some elementary considerations derived from the Hardy-Weinberg law will be 

examined. 

 In a number of case, the gene 1A  is dominant to 2A ; that is, 11 AA  individuals 

are indistinguishable from 21 AA . A common fallacy in such a situation is to suppose 

that such dominance ‘spreads’ and that eventually all individuals will be 

indistinguishable. Such is not the case, for the stable frequencies derived in Section 1.1 

apply irrespective of the existence of dominance; what is gained in the frequency of 

dominant individuals by mating of 11 AA  with 22 AA  and of 21 AA  with 22 AA  is 

exactly counterbalanced by the loss in frequency through mating of 21 AA  with 21 AA  

and of 21 AA  with 22 AA . 

A second consequence of the Hardy-Weinberg law is that if 2A  is recessive to 1A  



and has small frequency, we shall rarely observe recessive individuals. Further, the 

parents of recessives will usually both be heterozygotes. For example, if the frequency 

q  of 2A  is 0.001, then the frequency of 22 AA  is 0.000001. The frequency with 

which an 22 AA  individual has both parents 21 AA  may be found from the fact that the 

parents of an 2A  individual must both be 2A , where the unknown gene is either 1A  

or 2A . The frequency with which both unknown genes are 1A  is (0.999)2=0.998001. 

This indicates that the attempted removal of a rare recessive gene by removal of 

recessives 22 AA  will have but a minor effect; later on the rate at which such removal 

will decrease the frequency of 2A  will be considered. 

Finally, we remark that the Hardy-Weinberg law has been derived here under the 

assumption that generations do not overlap. Thus if this assumption does not hold, the 

law itself may not hold. For example, suppose as a continuous time analogue to the 

above that in a small time dt  a fraction dt  of the population dies and is replaced, by 

random sampling, from he population at large. Under this system the frequency p  of 

1A  does not change with time, but if )(tP  is the frequency 11 AA  at time t , then 

dtpdttPdttP 2)1)(()(  . 

Passing to the limit in this equation, 
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so that 

22 )exp(})0({)( ptpPtP  . 

Clearly a population initially in Hardy-Weinberg equilibrium will remain in equilibrium, 

but for non-populations, the equilibrium state is approached asymptotically (and 

rapidly). It is clear that the important conclusions derived from the Hardy-Weinberg law 

remain unchanged. 



The effect of selection 

The results given above have been derived under the assumption that no selective 

differences exist between the three genotypes 11 AA , 21 AA  and 22 AA . In attempting to 

discuss the effect of selection one immediately comes up against the problem that 

selective values are not properties of genes; they are rather properties of individuals (i.e. 

of the whole interacting collection of genes which an individual has), and then refer 

properly only to a given environment. Thus it may, and often does, happen that a gene 

which is selectively and advantageous against one genetic background is 

disadvantageous against another. It will be shown later that such interaction effects can 

have major evolutionary consequences, and that it appears difficult even to define a 

concept of ‘ independence’ of loci. For the moment, we make the rough approximation 

that selective differences depend on the genotype at a given locus; despite the above 

remarks, this approximation leads to a number of valuable results. 

To be definite, suppose that if, at the time of conception of any generation, the 

frequencies of the genotypes are P , Q2 , R , then these genotypes contribute gametes 

to form the individuals of the following generation in the proportions 

RwQwPw 221211 :2: . (Note that the population is being considered at the time of 

formation of zygotes from that gametes of the previous generation. When selective 

differences exist, this is the only time when Hardy-Weinberg proportions strictly apply; 

later on, when considering finite populations, the population will be counted at the age 

of sexual maturity.) The differential reproduction rates may be due to several causes, 

including in particular different survival rates and different offspring distributions. The 

quantities 11w , 12w , and 22w  will be called the ‘fitnesses’ of the three genotypes, and 

genotypic frequencies will usually change from one generation to the next. 

 With the fitnesses given above, the frequencies of the various genotypes in the 



following generation now satisfy the equation 

RQP  :2:  
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where 
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Clearly, after on generation of random mating, Hardy-Weinberg proportions are 

achieved. In the next generation, the same arguments show that 

RQP  :2:  
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It follows that the equation pp   no longer holds in general. Thus while genotype 

frequencies settle down immediately to Hardy-Weinberg form, the more important part 

of the Hardy-Weinberg theorem relating to constancy of genotypic frequencies no 

longer holds. We shall examine some consequences of this conclusion in the next 

section. 

 


