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Figure 3.9 Solutions to the normalized predator-prey systenl whenr = 3.landc = 2.1 (periodic solution)

and whenr = 25and ¢

= 1.1 (period 2 solutions for the prey and the predator goes extinct).

3.7 Population Genetics Models

Inheritance depends on the information contained in the chromosomes that are
passed down from generation fo generation. FHumans have two sets of 23
chromosomes (diploid}, making a total of 46 chromosomes; one set is obtained
from each parent. Certain locations along the chromosormes contain the instruc-
tions for some characteristic, such as eye or hair color. The locations along the
chromosomes are called the loci (a single location is called a locus). The instruc-
tions within the chromosomes are referred to as the genes. Each gene gives a
unique instruction (for color of eyes, color of hair, etc.) and each human has two
genes per locus because there are two sets of chromosomes. The physical
characteristics (eye or hair color) unique to each individual are determined by
¢hat individual’s genes. In simple Organisms, such as bacteria, there are 2000 to
3000 genes, whereas in higher organisms such as plants and animals there are
50,000 to 100,000 genes (Clark and Russell, 1997). Each gene has different
variant forms (the gene for eye color can be green, blue, brown, etc.). These
different variant forms of the genes are referred to as alleles. Here, we shall
consider the simplest possible case, the case where there are only two different
alleles associated with a particular gene.

Suppose there are tWo alleles for a given gene. The two alleles are denoted
2 and A. A human with two sets of chromosomes could then have one of three
different combinations on his or her chromosome: AA, Aa,or ag. The combina-
tions AA and aa are homozygous, whereas the combination Aa is heteroZygOus.
The three combinations, AA, Aa, and aq, are called the genoitypes of the locus.

One of the two alleles may be dominant. For example, if A is the dominant
allele, then a i8 referred to as the recessive allele. Then genotypes AA and Aa
correspond to the same physical trait, tut different from that of aa. This is also
described as saying that genotypes AA and Aa have phenotype A and aa has
phenotype a (Hoppensteadt, 1975).

We explore the question of whether the allele frequencies (associated with
a particular gene) change in a given population over time as individuals within
that population mate and reproduce. Our population genetics model is a simple
one-locus, two-allele model. We assume that during each time step, the popula-
tion in generation ! is replaced by the population in generation f + 1.
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An important principle in population genetics is known as the Hardy-
Weinberg law. First, the following assumptions must hold: (1) Mating is random,
(2) there is no variation in the number of progeny from parents of different
genotypes, (3) all genotypes are equally fit, and (4) there are no mutations. Then
the Hardy-Weinberg law asserts that gene frequencies and allele frequencies do
not change from one generation to the next. Our population genetics model is
based on these assumptions. We will show that our model follows the Hardy-
Weinberg law. The name Hardy-Weinberg recognizes the work of G. H. Hardy,
a famous English mathematician (number theorist) and Wilhelm Weinberg,
a German physician and human geneticist, who independently discovered this
result in 1908 (Felsenstein, 2003).

The following definitions and assumptions are needed. Let N be the total
population size. Since each individual has two alleles per locus, there are a total
of 2N alleles in the population. Let

p = frequency of allele A = (total number of A alleles)/(2N),
g = frequency of allele a = (total number of a alleles)/(2N),

thenp + g = 1. Let

Paa = frequency of AA genotype,
Paq = frequency of Aa genotype,
Paa = frequency of aa genotype.

Thus, the frequency of A alleles is

_ 2Npaa + Npa, PAa
PTG T T

The frequency of a alleles is

Paa
2

g=1l-—p= + Paa-

To determine what happens after one generation of mating, it is necessary to
consider all possible matings, their frequency, and all possible offspring and
their frequency. The possible matings are obtained by considering all possible
pairings of AA, Aa, and aa (representing a genotype for each parent) for which
there are 3(2) = é:

AA X AA, AA X Aa, AA X aa, Aa X Aa, Aa X aa, aa X aq.

Each of these occur with the corresponding frequencies:

»Uw{., Nﬁm\:ml«: Nﬁl\:_u\:: ﬁw:: Nﬁmaﬁmau ﬁhma.

This information plus the information needed for the offspring frequencies are
given in the following mating and offspring table, Table 3.1 (Hastings, 1998).
Note that the sum of the mating frequencies equals (py4 + pa, + Pac)

Let plaa. plas, and pp, denote the genotypic frequencies in the next genera-
tion. Then, applying the results from Table 3.1,

PAd = Pan + PaaPaa + Phafd
= (Paa ¥ Pad/2)
= .mmu
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Table 3.1 Mating and offspring table.
Offspring Fraction Next Generation
: Mating
Mating Frequency AA Aa  aa AA Aa aa
AA X AA  phy, 1 0 0 pha 0 0
AAX Aa 2paapas Y2 12 0 pasPas  PaaPaa 0
AA X aa 2P 44Paa 0 1 0 0 2PAAPaa o
Aa X Aa Pha 14 12 14 Pad4  Phd2  Phd*
Aa X aa  2ppePea 0 12 172 0 PacPaa  PacPec
aa X aa 72, 0 0 1 0 0 P

Nuw_a\# + Paalan + ﬁma
Cug + »Ubn\wvm
7,

3
ﬁah

It

and

Pha = PaaPaz + 2PasPas + Pad/2 + PaaPea
2(paa + hf.a\ 2)(Paa T Pad/2)
= 2pq.

These results can be used to find the allele frequencies in the next generation,
p'and g’,

r

P

pgwra + ﬁra\w
pr+opg
plptq =p

and
Q' = Pua T Padf?
= ¢+ pq
=glp+qg =g

The frequencies remain constant from generation to generation, that is, from
generation ttot + 1, py = p, and g,.; = g, Hence,

pr=py and ¢ = qo

The Hardy-Weinberg law has been verified.

(Hardy-Weinberg Law). Assume in a parent population, a particular gene has
two alleles A and a, and the initial proportion of allele A is py and the initial pro-
portion of allele a is gy In addition, assume (i) mating is random, (ii) there is no
variation in the number of progeny from parents of different genotypes, (iii) all
genotypes have equal survival probability, (iv) there is no immigration nor

Ed
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emigration, (v) there are no mutations, and (vi) generations are nonoverlapping,
Then, in generation t, the allele frequencies do not change,

pr=py and g, = gy

In addition, the genotypic frequencies do not change from the second generation
onwards,

PAA= DG Paa=2p0gs, and py = qé.

|

According to the Hardy-Weinberg law, the recessive trait will not die out but
remain in the population at a fixed proportion. If the assumptions in Theorem 3.2
are violated, then the Hardy-Weinberg proportions change. We consider a violation
of assumption (iii).

Suppose the survival rates depend on genotype. In this case, different geno-
types have different fitnesses. The frequencies of allele A and the proportion p are
modeled over time. Let p, be the frequency of allele A in generation ¢ and g, be the
frequency of allele a (p, + g, = 1).Let w, 4 and 2, be the constant survival rates
of genotypes AA and aa relative to the heterozygote genotype Aa, which is
assumed to satisly w,, = 1.Note that w4 4 and w,, can be less than or greater than
one, but must be nonunegative. Let the mean fitness be denoted as

W= pPwys + 2pqusg + e

Suppose initially the genotypic frequencies AA, Aa, and ag are in the
proportions p?, 2pg, and ¢?, respectively. Then, it follows from the following
genotypic frequency table, Table 3.2, that the next generation satisfies

where

Prs1 = Paa+ Puof2

Piwaa/w + (1/2)2pgauaew,
Ppwas T qUaq)/ W,

= Ppwas + (1 — plwag)/w,

I

— 2
W = pPrwas + 20q 00 + P

is the mean fitness in generation ¢ (see Hastings, 1998). The following difference
equation models the change in the allele frequency A from generation ¢ to
generation ¢ + 1,

_ Piwaa * pll = phwa,
P11 = .
Wy

Table 3.2 Genotypic frequency table, where the mean fitness
is given by w = pw, . + 2pg + ¢*w,,.

Genotype
AA Aa aa
Juvenile frequencies p? 2pq ¢
Relative survival rates Wagu Wag Wa
Relative adult frequencies P AA 2pqity, g%,

Adult frequencies PPwas/w  2pquaw  qrwe/w

(3.7)
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Note thatif wys = Wa, = Wy, = 1, thenw, = 1 and p,yy = p,.
Suppose that the relative survival rates satisfy
Waga =1—8, Wy, =1 and w,, =1-—7r
'Then s and » can be positive or negative but w, 4 and w0, must be nonnegative
so that », s < 1 (but not both zero). Then

w, = pi(l —s) +2pg + g1 —r) =1 = pis = (1 = p)’r.
\IIIIII'III
The difference equatidon m p satisfies

——

Py = pdp(l — 5) + (1 — p)] _ il — pes) = f(p). (38)
1 — - - . .
T leps-(-p)r 1-pis- (o p) h
Next the equilibria are determined for the difference equation (3.8) and their
local stability assessed.

There are three equilibria for the difference equation (3.8). They are 5 = 0
and the solutions to

s + (1 — p)r = ps.
Solutions to the latter equation satisfy (1 — j)* = sp(1 — p). Therefore,
P = lis another equilibrium. Dividing by 1 — pleads to {1 — p)r = sp s0 that
the third equilibrium is

r

hul_..._.,n.

When p = 0, only the aliele a is present in the population. When p = 1, only
allele A is present, and when p = r/(r + s) both alleles are present. The local
stability of these equilibria are determined next.

The derivative of f(p) = p(1 — ps)/(1 — p% — (1 — p)%) in simplified
form is
1+ p% —r+rp*— 2ps + 2psr — 2pPsr

(1~ p’s — v+ 2rp — rp?)?

(1 - 9)p’ +20 - 90— p(l = p) + (L = N — py

— . 3.9
(1—p% —r+ 2rp — JGMVN (39)

fp) =

Note that f'(p) > 0for0 = p = landr,s < 1.

The equilibrium p is locally asymptotic stable if —1 < f'(p) < 1.However,
since f'(p) > 0for0 = p = 1l andr,s < 1, we only need to show for 1ocal sta-
bility that f'(p) < L.Atp = 0,

1
" =—.
1o =
Thus, p = 0 is locally asymptotically stable if » < 0 (i.e., the relative survival
rate of aa is w,, = 1 — r > 1 or the fitness value of the homozygote aa is
greater than that of the heterozygote, w,, = 1).
Atp =1,

L
1 -5

1)

Thus, p = 1 is locally asymptotically stable if s << 0 (i.e., the relative survival
rate of AA is wy,s = 1 — s > 1 or the fitness value of the homozygote AA is
greater than that of the heterozygote, w,, = 1).
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Figure 3.10 Graphs of the
function p1y = f(p,) in

i Pr+1 plane. The solid curve is
the function p,.; = f{p,) and
the dotted curve is the line,

P = p.The intersection
points of these two curves
represent the equilibria: 0,1,
and p.In (a),s < 0 and
t<r<1,limp =1.1In

=00

(b),r < Oand0 < 5 < 1,
lim p, = 0.In(c),r,s < 0,

— 00

mo that the limit depends on
initial conditions. Solutions
approach one of the two
equilibria, 0 or 1. In

(@).0 < r,s <1, lim p, = p,
the positive polymorphic
equilibrinm,

Finally, at the equilibrium p = r/(r + s),

Ao s —r—y

wﬁw+qvl r§s—r—1s’

In order for p to be positive and less than one, either both r and s are positive or

both are negative, rs > 0. Suppose rs —~ r — s > 0; then Fiirf(r +5)) > 1,

which means for stability rs — » — s = 0. This means r and s must both be
positive for stability.

We will show that if , s € (0, 1), then the equilibrium P = rf(r + s5),where
0 < p < 1,islocally asymptotically stable. First,if r,s € (0, 1),thenrs < r + .
Second, it follows from (3.10) that 2rs < r + s [because f'(5) > 0]. Hence
fi(PY = (r +s = 2rs)/(r + 5 — rs) < 1. Therefore, if r, s € (0, 1), the equi-
librium p = r/(r + s) is locally asymptoticaily stable. This result can be inter-
preted biologically. When r, s € (0, 1), the heterozygous genotype has the
largest survival rate, w,, > max{w,,, Wsa}- Because the heterozygote has an
advantage, both alleles persist in the population.

It is interesting to note that in all cases, the mean fitness, w = w,, increases
over time until an equilibrium is reached, either p = 0,5 = 1 or D =rf(r+ ),
This result can be verified mathematically (see Exercise &). That is, for
t=0,1,...,

(3.10)

W] = Wy

An alternate method to verify stability of the equilibria is to consider the
graph of p.y; = f(p,) and use the cobwebbing method or apply the theorems in
Chapter 2. For example, there are four possible configurations for p.. = f(p,)
in the p,-p.4) plane. They are graphed in Figure 3.10. In Exercise 9, the stability
conditions derived for the positive equilibrium are shown to be global asymp-
totic stability conditions,

Pr+1 ”, DPr+1 /

14 A Pe

(a) (b)

Prat Pr+a ﬁ 7

() (d
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Selection depends on many different factors, and the importance of these
factors differs significantly between animal and plant populations. Hedrick (2000)
classifies the types of selection into several categories based on the underlying
biological principles: viability selection (dependent on survival such as in the
previous model}, fecundity selection (differential production of offspring), sexual
selection (males or females have preferential mating), and gametic selection {for
example, equal proportion of alleles may not be produced). In addition, population
size may affect selection for mates. For example, when the fitnesses %44 and wq,
depend on the frequency p of allele A, this is referred to as frequency-dependent
selection (Nagylaki, 1992). According to Nagylaki (1992), polymorphism can be
maintained by frequency-dependent selection which favors rare genotypes.

Assume w4, = 1 and w,,(p)we{p) = 1 so that the heterozvgote has fitness equal
to the geometric mean of the homozygotes (Elaydi, 2000). In addition, assume that
the frequency-dependent fitnesses are symmetric, w4 4(p) = Wol — P) = wlq)
and wa4(p) = F(p) = 1/w,(p). The function f(p) is a positive, strictly decreasing
function with £(0) > 1 and ' continuous. Thus, when p is small or 4 is rare, the fit-
ness W, 4(p) 1s large and when p is large, 1 — p is small, a is rare, the fitness Waal P)

is large. The population genetics model (3.7) has the form

_ F%Ahbqh + G. - Fv\%@:ﬁ _ F.\A?v _ m.m )
?@g@_v+Tp§+a|a§§i@:-p b

This model has three equilibria, p = 0, 7 = 1, and the polymorphic equilibrium
p# satisfying f(p*) = 1.The polymorphic equilibrium is unique because of the
assumptions on f. Now,

_ fp) + p(1 = p)f'(p)
[pf(p) + 1 — pF

so that F'(0) = £(0) > 1and F'(1) = 1/f(1) = wa(1) = wa4(0) = F(0) > 1.
The equilibria p =0 and p =1 are unstable. Since the derivative
F'(p*y = 1 + p*(1 — p*)f'(p*) < 1, for stability of p*, it is only necessary
to show that F'(p*) > — 1 or p*(1 — p*)f'(p*) > — 2. For example, if
f(p) = exp(l — 2p), then p* = 1/2 and p*(1 — p*)f'(p*) = -1/2 >~ 2 so
that the polymorphic equilibrium is locally asymptotically stable. Elaydi (2000)
has shown that for suitably chosen f(p), the model can exhibit period-doubling
behavior (see Exercise 10). =

F'(p)

k)

We formulate a population genetics model for two populations. Assume the two
populations are diploid. We model one gene in each population and assume
there are only two alleles. In the first population, the two alleles are V and v and
in the second population, the two alleles are R and . We model the frequency of
alleles V and R for the first and second population, respectively. Let the propos-
tion of allele V in the first population be denoted as n, and the proportion of
allele R in the second population be denoted as p. Then the model takes the form

2
Wy + EHAH_. - 3~v.~t<d

zw8<< + 2nf1 — n)wy, + (1 - Evmég

iyl =

f(ne, pe).

ﬁwgwx + p(l — POWr:

Il

P11 = gn, p). (3.11)

prwgg + 2p(1 — pwg, + (1 = AR
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Population genetics models of this form have been studied in relation to plant
pathogens. The first population represents a pathogen, whereas the second popu-
lation represents a plant that is attacked by the pathogen. Allele V represents
a virulent allele and v an avirulent allele in the pathogen population and R
represents a resistant allele and r a susceptible allele in the host plant. A virulent
gene in the pathogen population is matched by a resistant gene in the plant popu-
lation. Such types of gene relationships are referred to as gene-for-gene systems
and have been studied by Leonard (1977,1994) and many others (see, e.g., Sasaki,
2002; Kesinger and Allen, 2002 and references therein). The gene-for-gene
hypothesis states that for each gene determining resistance in the host there is
a corresponding gene for avirulence in the parasite with which it interacts
(Thompson and Burdon, 1992). This hypothesis was originally applied to flax and

flax rust (Flor, 1956) but has been applied to varjety of plant pathogens including

wheat stem rust and potato late blight (Vanderplank, 1984).

The fitnesses of the various pathogen genotypes, wyy, Wy, and 1w, depend
on the frequency of the plant resistance allele p. The fitnesses of the plant geno-
Lypes, Wgg, War, and w,,, depend on the frequency of the pathogen virulence
gene n, Model (3.11) is studied in more detail in Exercise 12, -

‘The subject of inheritance and population genetics is much more compli-
cated than the short introduction we have given here. For example, selection,
mutation, nonrandom mating, migration, recombination, and gene linkage
atfect the outcome of the genetic makeup of a population. Please consult
population genetics textbooks Hartl and Clark (1997) or Hedrick (2000) for
a wealth of biological examples.

3.8 Nonlinear Structured Models

Two theoretical nonlinear Leslie matrix models and two structured models
applied to specific populations are studied. The nonlinear Leslie matrix models
are presented in the next subsection. Then the two structured models are pre-
sented in the next two subsections. The structured models are applied to a flour
beetle population and to the northern spotted owl. The final example in this
section is a generalization of the Leslie matrix model to a two-sex model.

3.8.1 Density-Dependent Leslie Matrix Models

Assume that the population size or density affects the survival and/or fecundity
of each age class. Assume that as the total population size or density increases,
food resources are depleted resulting in a decrease in survival and/or fecundity.
Competition, cannibalism, and predation also tend to increase with population
density, which ultimately leads to decreased survival and fecundity.

Recall that the Leslie matrix model has the form X(z - 1) = LX(t), where
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