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This paper examines a model of a flowing water habitat with a hydraulic storage zone in which no flow
occurs. In this habitat, one or two microbial populations grow while consuming a single nutrient resource.
Conditions for persistence of one population and coexistence of two competing populations are derived
from eigenvalue problems, the theory of bifurcation and the theory of monotone dynamical systems. A
single population persists if it can invade the trivial steady state of an empty habitat. Under some condi-
tions, persistence occurs in the presence of a hydraulic storage zone when it would not in an otherwise
equivalent flowing habitat without such a zone. Coexistence of two competing species occurs if each
can invade the semi-trivial steady state established by the other species. Numerical work shows that both
coexistence and enhanced persistence due to a storage zone occur for biologically reasonable parameters.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In ecology, the understanding of competition between species
for resources has been greatly facilitated by the theory of the che-
mostat. The chemostat is a continuous culture device of constant
volume for microorganisms into which a nutrient medium is
pumped, balanced by an outflow that removes nutrients and
organisms. Resident species compete for the nutrient resource(s)
needed for growth, and the culture vessel is well mixed. Under this
mixing assumption, an extensive body of theory addresses compe-
tition and coexistence [12,29].

The chemostat provides a simple model for many microbial hab-
itats, but the assumption of idealized mixing is often questionable,
and several models have been introduced where the habitat is not
well mixed. For the unstirred chemostat, flow enters at one boundary
supplying nutrient resource(s), and exits at another, removing nutri-
ents and organisms, while diffusion transports organisms and nutri-
ent across the habitat domain [13]. The flow reactor model has
similar boundary flows, but with advective transport in addition to
diffusion [2,18,27]. Assuming that a single nutrient governs popula-
tion growth, conditions for persistence of a single species and for
coexistence of two competing species in these habitats have been de-
ll rights reserved.

: +1 817 272 2855.
rived by similar approaches. One species persists and reaches steady
state if it invades under the nutrient conditions pertaining to the
trivial equilibrium, expressed as a principal eigenvalue problem. If
two species can each persist alone, then the two can also coexist if
each can invade the semi-trivial equilibrium defined by the steady
state of the other species. These invasion conditions again involve
principal eigenvalue problems. For flow reactor models, these persis-
tence conditions involve the advective flow term, among others.

Motivated by considering habitats such as broad high-order
rivers or riverine reservoirs constructed by damming a river, we
introduce a modification of the flow reactor model. Rapid advective
flow in such habitats can prevent persistence even of one species for
realistic parameters. The presence of hydraulic storage zones in
flowing water habitats might resolve this persistence paradox
[25]. Storage zones were originally introduced in hydraulic models
to accurately describe transport of non-reactive tracers [3]. Here we
introduce a storage zone model for phytoplankton growing in both
the flowing zone and the storage zone and derive conditions for per-
sistence of a single species and coexistence of two competing species.
2. The model

The model represents the dynamics of one nutrient and one or
two phytoplankton populations in a channel of length L. The cross-
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section of the channel is partitioned into a flowing zone of area A,
and a static storage zone of area AS (assumed to be constants here).
Exchange of nutrient and populations between the flowing and
storage zones occurs by Fickian diffusion with rate a (time�1). Flow
enters at the upstream end of the channel ðx ¼ 0Þ, and an equal
flow exits at the downstream end ðx ¼ LÞ. Flow is parameterized
as a constant dilution rate D (time�1), and assuming constant
water volume in the channel implies that advection occurs at a
speed m ðm ¼ DLÞ. The habitat for organisms occupies the portion
of the channel from x ¼ 0 to x ¼ L in which the populations
Niðx; tÞ; i ¼ 1; 2 compete for nutrient Rðx; tÞ. The competition is
purely exploitative in the sense that organisms simply consume
the nutrient, thereby making it unavailable for competitors. The
flow of water in the channel in the direction of increasing x brings
fresh nutrient at a constant concentration Rð0Þ into the reactor at
x ¼ 0 and carries medium, unused nutrient and organisms out of
the reactor at x ¼ L. Nutrient and organisms are assumed to diffuse
throughout the vessel with the same diffusivity d. Both advective
and diffusive transport occur at the upstream boundary ðx ¼ 0Þ.
The downstream boundary is assumed to be a dam, over which
there is advective flow but through which no diffusion can take
place. Let RSðx; tÞ; NS;iðx; tÞ denote nutrient concentration and pop-
ulation densities in the storage zone respectively. Given these
assumptions, the governing equations are

@R
@t
¼ d

@2R
@x2 � m

@R
@x
� q1f1ðRÞN1 � q2f2ðRÞN2 þ aðRS � RÞ;

@N1

@t
¼ d

@2N1

@x2 � m
@N1

@x
þ aðNS;1 � N1Þ þ f1ðRÞN1;

@N2

@t
¼ d

@2N2

@x2 � m
@N2

@x
þ aðNS;2 � N2Þ þ f2ðRÞN2;

@RS

@t
¼ �a

A
AS
ðRS � RÞ � q1f1ðRSÞNS;1 � q2f2ðRSÞNS;2;

@NS;1

@t
¼ �a

A
AS
ðNS;1 � N1Þ þ f1ðRSÞNS;1;

@NS;2

@t
¼ �a

A
AS
ðNS;2 � N2Þ þ f2ðRSÞNS;2; 0 < x < L; t > 0

ð2:1Þ

with boundary conditions

mRð0; tÞ � d
@R
@x
ð0; tÞ ¼ mRð0Þ;

mNið0; tÞ � d
@Ni

@x
ð0; tÞ ¼ 0;

@R
@x
ðL; tÞ ¼ @Ni

@x
ðL; tÞ ¼ 0; i ¼ 1;2;

ð2:2Þ

and initial conditions

Rðx;0Þ ¼ R0ðxÞP 0; Niðx; 0Þ ¼ N0
i ðxÞP 0; 0 < x < L;

RSðx; 0Þ ¼ R0
S ðxÞP 0; NS;iðx;0Þ ¼ N0

S;iðxÞP 0; i ¼ 1;2;
ð2:3Þ

where qi is the constant nutrient quota for species i.
The non-linear functions fiðRÞ describe the nutrient uptake and

growth rates of species i at nutrient concentration R. We assume
that these functions satisfy

fið0Þ ¼ 0; f 0i ðRÞ > 0; f i 2 C2; i ¼ 1;2:

A usual example is the Monod function

fiðRÞ ¼
lmax;iR
Kl;i þ R

:

In the following, we will demonstrate that mass conservation is sat-
isfied in the flow and storage zones for the equations given by (2.1)–
(2.3). Let

Tðx; tÞ ¼ Rðx; tÞ þ q1N1ðx; tÞ þ q2N2ðx; tÞ;
and

Uðx; tÞ ¼ RSðx; tÞ þ q1NS;1ðx; tÞ þ q2NS;2ðx; tÞ:

Then Tðx; tÞ and Uðx; tÞ satisfy the following coupled differential
equations

@T
@t
¼ d

@2T
@x2 � m

@T
@x
þ aU � aT;

@U
@t
¼ �a

A
AS

U þ a
A
AS

T; 0 < x < L; t > 0
ð2:4Þ

with boundary conditions

mTð0; tÞ � d
@T
@x
ð0; tÞ ¼ mRð0Þ;

@T
@x
ðL; tÞ ¼ 0; ð2:5Þ

and initial conditions

Tðx;0Þ ¼ T0ðxÞP 0; Uðx;0Þ ¼ U0ðxÞP 0: ð2:6Þ

Let

R ¼ fðT0;U0Þ 2 ðCð½0; L�ÞÞ2jT0ðxÞP 0;U0ðxÞP 0 on ½0; L�g:

Obviously, (2.4), (2.5) and (2.6) is a cooperative system and its solu-
tions generate a strongly monotone semiflow in the interior of R
([27]). From ([27, p. 130]), we note that ðM;MÞððm;mÞÞ is a strictly
upper (lower) solution for the system (2.4), (2.5) and (2.6) provided
that M > Rð0Þðm < Rð0ÞÞ. It is easy to see that (2.4), (2.5) and (2.6) has
a unique steady-state solution ðRð0Þ;Rð0ÞÞ. For a monotone dynamical
system, the unique steady state is globally asymptotically stable if
and only if every forward orbit has compact closure (see [14, Theo-
rem D]). Thus, ðRð0Þ;Rð0ÞÞ is globally asymptotically stable, that is,

lim
t!1
ðTðx; tÞ;Uðx; tÞÞ ¼ ðRð0Þ;Rð0ÞÞ uniformly for x 2 ½0; L�:

Thus, we conclude that the limiting systems of (2.1), (2.2) and (2.3)
take the forms

@N1

@t
¼d

@2N1

@x2 �m
@N1

@x
þaðNS;1�N1Þþ f1ðRð0Þ �q1N1�q2N2ÞN1;

@NS;1

@t
¼�a

A
AS
ðNS;1�N1Þþ f1ðRð0Þ �q1NS;1�q2NS;2ÞNS;1;0<x<L; t>0

@N2

@t
¼d

@2N2

@x2 �m
@N2

@x
þaðNS;2�N2Þþ f2ðRð0Þ �q1N1�q2N2ÞN2;

@NS;2

@t
¼�a

A
AS
ðNS;2�N2Þþ f2ðRð0Þ �q1NS;1�q2NS;2ÞNS;2;

ð2:7Þ

with boundary conditions

mNið0; tÞ � d
@Ni

@x
ð0; tÞ ¼ 0;

@Ni

@x
ðL; tÞ ¼ 0; i ¼ 1;2;

ð2:8Þ

and initial conditions

Niðx;0Þ ¼ N0
i ðxÞP 0;

NS;iðx; 0Þ ¼ N0
S;iðxÞP 0; 0 < x < L; i ¼ 1;2:

ð2:9Þ

From the biological viewpoint, the initial value functions for the
limiting system (2.7), (2.8) and (2.9) are given by

X¼ N0
1;N

0
S;1;N

0
2;N

0
S;2

� �
2 ðCð½0;L�ÞÞ4jN0

i ðxÞP 0;N0
S;iðxÞP 0;q1N0

1ðxÞ
n
þq2N0

2ðxÞ6Rð0Þ; q1N0
S;1ðxÞþq2N0

S;2ðxÞ6Rð0Þ on ½0;L�; i¼1;2:
o
:

ð2:10Þ

A similar model of competition between two species for a nutrient
in a habitat with flow was formulated by Kung and Baltzis in [18]
and analyzed by Smith [27]. Their governing equations are



(0) (0 )

( , )

(0, 0)

(0)

S

R
N

q

(0)R
N

q

(I)

(II)

(III)

(IV)

SN

N
S

R R

q q

N N

Fig. 1. One of four cases must occur if D is not positively invariant under Ut .
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@R
@t
¼ d

@2R
@x2 � m

@R
@x
� q1f1ðRÞN1 � q2f2ðRÞN2;

@N1

@t
¼ d

@2N1

@x2 � m
@N1

@x
þ f1ðRÞN1;

@N2

@t
¼ d

@2N2

@x2 � m
@N2

@x
þ f2ðRÞN2; 0 < x < L; t > 0

ð2:11Þ

with the usual boundary conditions (2.2) and initial conditions.
This earlier model lacks a hydraulic storage zone but is other-

wise similar to system (2.1), (2.2) and (2.3), and in particular it
has the following limiting system:

@N1

@t
¼ d

@2N1

@x2 � m
@N1

@x
þ f1ðRð0Þ � q1N1 � q2N2ÞN1;

@N2

@t
¼ d

@2N2

@x2 � m
@N2

@x
þ f2ðRð0Þ � q1N1 � q2N2ÞN2;

0 < x < L; t > 0

ð2:12Þ

with boundary conditions (2.8) and initial conditions that resemble
(2.7), (2.8) and (2.9) with terms relating to the storage zone omitted.
System (2.1), (2.2) and (2.3) generalizes these earlier models by add-
ing a hydraulic storage zone, and has some similar properties as
elaborated below. In another related work [1], the model in
[18,27] is generalized by considering cell death and dropping the
assumption that diffusivities of nutrient and organisms are identical.

3. Single population model

In this section, we first consider the single population model.
Mathematically, it simply means that we set ðN1; NS;1Þ ¼ ð0; 0Þ or
ðN2; NS;2Þ ¼ ð0; 0Þ in equations (2.7), (2.8) and (2.9). In order to sim-
plify notation, all subscripts are dropped in the remaining equa-
tions and we consider

@N
@t
¼ d

@2N
@x2 � m

@N
@x
þ aðNS � NÞ þ f ðRð0Þ � qNÞN;

@NS

@t
¼ �a

A
AS
ðNS � NÞ þ f ðRð0Þ � qNSÞNS; 0 < x < L; t > 0;

ð3:1Þ

with boundary conditions

mNð0; tÞ � d
@N
@x
ð0; tÞ ¼ 0;

@N
@x
ðL; tÞ ¼ 0;

ð3:2Þ

and initial conditions

Nðx;0Þ ¼ N0ðxÞP 0;

NSðx;0Þ ¼ N0
S ðxÞP 0; 0 < x < L:

ð3:3Þ

The biologically relevant domain for the system (3.1), (3.2) and (3.3)
is given by

D ¼ N0;N0
S

� �
2 ðCð½0; L�ÞÞ2jN0ðxÞP 0; N0

SðxÞP 0;
n

qN0ðxÞ 6 Rð0Þ; qN0
SðxÞ 6 Rð0Þ on ½0; L�

o
:

By the theory of C0 semigroups of bounded linear operators in a Ba-
nach space (see [23]) and in [19, Theorem 1, Remark 1.1, 1.10 ] (tak-
ing delay as zero), it follows that for every initial value function
ðN0;N0

S Þ in a suitable space, system (3.1), (3.2) and (3.3) has a unique
non-continuable solution

Nðx; t; ðN0;N0
SÞÞ;NS x; t; N0;N0

S

� �� �� �
;

with the maximal interval of existence ½0; s N0;N0
S

� �
Þ and

s N0; N0
S

� �
¼ 1 provided ðN x; t; N0;N0

S

� �� �
; NS x; t; N0;N0

S

� �� �
has

an L1-bound on ½0; s N0; N0
S

� �
Þ. The solution semiflow is defined by
UtðN0;N0
SÞ ¼ N :; t; N0;N0

S

� �� �
;NS :; t; N0;N0

S

� �� �� �
:

In order to prove the positive invariance of the set D under the
semi-flow Ut generated by (3.1), (3.2) and (3.3), we need to extend
the function f ðRÞ in a natural way as follows:

f̂ ðRÞ ¼
f ðRÞ for R P 0;
�f ðjRjÞ for R < 0:

�
ð3:4Þ

Introduce

Y ¼ Rð0Þ � qN; YS ¼ Rð0Þ � qNS:

Now, we consider the extended system corresponding to (3.1), (3.2)
and (3.3)

@N
@t
¼ d

@2N
@x2 � m

@N
@x
þ aðNS � NÞ þ f̂ ðYÞN;

@NS

@t
¼ �a

A
AS
ðNS � NÞ þ f̂ ðYSÞNS; 0 < x < L; t > 0; ð3:5Þ

with boundary conditions (3.2) and initial conditions (3.3).

Proposition 3.1. The interior of D is positively invariant under the
semiflow Ut generated by (3.1), (3.2) and (3.3).

Proof. It suffices to show that the set D is positively invariant
under the semiflow Ut generated by (3.5). Fix any pair of initial
value functions ðN0;N0

SÞ in D. By the continuity of the solutions
with respect to initial value functions, we may assume that
0 < N0ðxÞ < Rð0Þ

q and 0 < N0
SðxÞ < Rð0Þ

q on ½0; L�. Thus UtðN0;N0
S Þ 2 D

for all sufficiently small t.
Suppose that the Proposition is false. Let

t� ¼ supfsUt N0;N0
S

� �
2 D on ½0; s�g:

Then 0 < t� < sðN0;N0
S Þ. This implies that one of the following four

cases (see Fig. 1) must occur.

(I) Nðx; tÞ > 0 for all 0 6 x 6 L; 0 6 t < t�, and Nðx�; t�Þ ¼ 0 for
some x� in ½0; L�, and NSðx; tÞP 0; Yðx; tÞP 0; YSðx; tÞP 0
on ½0; L� � ½0; t��;

(II) NSðx; tÞ > 0 for all 0 6 x 6 L; 0 6 t < t�; NSðx�; t�Þ ¼ 0 for
some x� in ½0; L�, and Yðx; tÞP 0, YSðx; tÞP 0; Nðx; tÞ > 0 on
½0; L� � ½0; t��;

(III) Yðx; tÞ > 0 for all 0 6 x 6 L; 0 6 t < t�, for any t > t� suffi-
ciently close to t� there is a point ð�x;�tÞ 2 ½0; L� � ðt�; tÞ such
that Yð�x;�tÞ < 0, and YSðx; tÞP 0; Nðx; tÞ > 0, NSðx; tÞ > 0 on
½0; L� � ½0; t��;

(IV) YSðx; tÞ > 0 for all 0 6 x 6 L; 0 6 t < t�, for any t > t� suf-
ficiently close to t� there is a point ð�x;�tÞ 2 ½0; L� � ðt�; tÞ such
that YSð�x;�tÞ < 0, and Yðx; tÞ > 0; Nðx; tÞ > 0, NSðx; tÞ > 0 on
½0; L� � ½0; t��.
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Let Xt ¼ ð0; LÞ � ð0; t�. In each case, we shall deduce a contra-
diction as follows.

Suppose that the case I occurs. Then

Yðx; tÞ ¼ Rð0Þ � qNðx; tÞP 0 in �Xt� :

By the assumptions of the case I, it follows that:

dNxx � mNx � Nt � aN ¼ �aNSðx; tÞ � f ðYÞN 6 0 on Xt� :

We note that Nðx; tÞP 0 on �Xt� and Nðx�; t�Þ ¼ 0. Applying the
strong maximum principle ([24, p. 174, Theorem 7]), we obtain that
Nðx; tÞ � 0 on �Xt� if 0 < x� < L, which is impossible because
Nðx;0Þ ¼ N0ðxÞ > 0 on ½0; L�. Thus x� ¼ 0 or L. Assume that x� ¼ 0,
that is, Nð0; t�Þ ¼ 0. Then by [24, p. 170, Theorem 3], Nxð0; t�Þ > 0,
that is, mNð0; t�Þ � dNxð0; t�Þ < 0, contradicting (3.2). Assume
x� ¼ L. By the same theorem in [24], it follows that NxðL; t�Þ < 0, con-
tradicting (3.2) again.

Suppose case II occurs. Then

@NS

@t

����
t¼t� ;x¼x�

¼ �a
A
AS
ðNSðx�; t�Þ � Nðx�; t�ÞÞ þ f̂ ðYSðx�; t�ÞÞNSðx�; t�Þ

¼ a
A
AS

Nðx�; t�Þ > 0;

which contradicts the direction of the semi-flow Ut near the bound-
ary: NSðx; tÞ � 0; 0 < Nðx; tÞ 6 Rð0Þ

q .
Suppose case III occurs. Then

dYxx � mYx � Yt ¼ qaðNS � NÞ þ qf̂ ðYÞN on X�t:

Let Yðx; tÞ attain its minimum at the point eP ¼ ð~x;~tÞ on X�t . By
assumption, YðePÞ 6 Yð�x;�tÞ < 0, which implies that YxðePÞ ¼ 0 and
YtðePÞ ¼ 0 in the case 0 < ~x < L. From the definition of eP and the
picture in Fig. 1, it follows that NSðePÞ 6 NðePÞ. Thus,
YxxðePÞ ¼ qa

d ðNSðePÞ � NðePÞÞ þ q
d f̂ ðYðePÞÞNðePÞ < 0, contradicting the

necessary condition for a function to have a minimum at a point.
If ~x ¼ 0, then Yxð0;~tÞ ¼ �qNxð0;~tÞ ¼ � qm

d Nð0;~tÞ < 0 by the boundary
condition (3.2). Therefore, Yðx;~tÞ is strictly decreasing as 0 < x� L,
contradicting that Y attains a minimum at ð0;~tÞ. Assume that ~x ¼ L.
Then YxðL;~tÞ < 0 by [24, p. 170, Theorem 3]. On the other hand,
YxðL;~tÞ ¼ �qNxðL;~tÞ ¼ 0 by the boundary condition (3.2). This yields
a contradiction.

Suppose case IV occurs. By the assumptions of case IV and the
picture in Fig. 1, it follows that NSð�x;�tÞ > Nð�x;�tÞ. However,

@NS

@t

����
t¼�t;x¼�x

¼ �a
A
AS
ðNSð�x;�tÞ � Nð�x;�tÞÞ þ f̂ ðYSð�x;�tÞÞNSð�x;�tÞ < 0:

This contradicts the direction of the semi-flow Ut near the bound-
ary: 0 < NSðx; tÞ 6 Rð0Þ

q ;Nðx; tÞ � Rð0Þ

q . h
3.1. Steady state solution of (3.1), (3.2) and (3.3)

The steady-state solutions corresponding to (3.1), (3.2) and
(3.3) take the form

dN00 � mN0 þ aðNS � NÞ þ f ðRð0Þ � qNÞN

¼ 0;�a
A
AS
ðNS � NÞ þ f ðRð0Þ � qNSÞNS ¼ 0; 0 < x < L; ð3:6Þ

with boundary conditions

mNð0Þ � dN0ð0Þ ¼ 0; N0ðLÞ ¼ 0: ð3:7Þ

LeteN ¼ e�
m

2dxN; eNS ¼ e�
m

2dxNS: ð3:8Þ

Then (3.6) and (3.7) is equivalent to
deN 00 þaðeNS� eNÞ� m2

4d
eN þ f Rð0Þ �qe

m
2dx eN� �eN ¼ 0;

�a
A
AS
ð ~NS� eNÞþ f Rð0Þ �qe

m
2dx eNS

� �eNS ¼ 0; 0< x< L; ð3:9Þ

with boundary conditions

m
2
eNð0Þ � deN 0ð0Þ ¼ 0;

m
2
eNðLÞ þ deN 0ðLÞ ¼ 0: ð3:10Þ

We use the bifurcation result of Crandall–Rabinowitz [5] or [28,
Theorem1.2 ] to establish the existence of positive solutions to
(3.9) and (3.10).

Let X ¼ feN 2 C2ð½0;L�Þ : m
2
eNð0Þ � deN 0ð0Þ ¼ 0; m2

eNðLÞ þ deN 0ðLÞ ¼ 0g,
and Y ¼ Cð½0;L�Þ. Define F : R�X! Y by

FðRð0Þ; eNÞ ¼ deN 00 þ aðeNS � eNÞ � m2

4d
eN þ f Rð0Þ � qe

m
2dx eN� �eN ; ð3:11Þ

where eNS � eNSðRð0Þ; eNÞ can be determined by the second equation
of (3.9).

Suppose g0 is the principal eigenvalue of the eigenvalue
problem

dw001 þ gw1 ¼ 0;
m
2

w1ð0Þ � dw01ð0Þ ¼ 0;
m
2

w1ðLÞ þ dw01ðLÞ ¼ 0:

ð3:12Þ

From [27, (p. 147–p. 148)], the principal eigenvalue g0 is positive
and the corresponding positive eigenfunction w1ðxÞ is uniquely
determined by the normalization max½0;L�w1ðxÞ ¼ 1. Let R� satisfy

f ðR�Þ þ af ðR�Þ
a A

AS
� f ðR�Þ

� m2

4d
¼ g0 and f ðR�Þ–a

A
AS
: ð3:13Þ

From the second equation of (3.9) we have the following results:

@ eNS

@ eN jeNS¼eN¼0;Rð0Þ¼R�
¼

a A
AS

a A
AS
� f ðR�Þ

;

@ eNS

@Rð0Þ

�����eNS¼eN¼0;Rð0Þ¼R�

¼ 0;

@

@Rð0Þ
@ eNS

@ eN
 !�����eNS¼eN¼0;Rð0Þ¼R�

¼
f 0ðR�Þa A

AS

ða A
AS
� f ðR�ÞÞ2

;

and

@

@ eN @ eNS

@ eN
 !

jeNS¼eN¼0;Rð0Þ¼R�
¼ �2qe

m
2dxf 0ðR�Þ

ða A
AS
Þ2

ða A
AS
� f ðR�ÞÞ3

:

From (3.11) we have the following results:

FeN ðR�;0Þ½w� ¼ dw00 þ a
@ eNS

@ eN
 �����eN S¼eN¼0;Rð0Þ¼R�

� 1

1A� m2

4d
þ f ðR�Þ

24 35w

¼ dw00 þ a
a A

AS

a A
AS
� f ðR�Þ

� 1

 !
� m2

4d
þ f ðR�Þ

" #
w

¼ dw00 þ af ðR�Þ
a A

AS
� f ðR�Þ

� m2

4d
þ f ðR�Þ

" #
w ¼ dw00 þ g0w;

F
Rð0Þ ;eN ðR�;0Þ½w� ¼ a

@

@Rð0Þ
@ eNS

@ eN
 !�����eNS¼eN¼0;Rð0Þ¼R�

0@ 1Aþ f 0ðR�Þ

24 35w

¼
a2f 0ðR�Þ A

AS

ða A
AS
� f ðR�ÞÞ2

þ f 0ðR�Þ
" #

w; ð3:14Þ

and
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FeN ;eN ðR�;0Þ½w�2 ¼ a
@

@ eN @ eNS

@ eN
 !�����eNS¼eN¼0;Rð0Þ¼R�

0@ 1A� 2qe
m

2dxf 0ðR�Þ

24 35w2

¼ �2qe
m

2dxf 0ðR�Þ
a3 A2

A2
S

a A
AS
� f ðR�Þ

� �3 þ 1

264
375w2: ð3:15Þ

Thus,

FeN ðR�; 0Þ½w1� ¼ dw001 þ g0w1 ¼ 0;

that is the kernel

NðFeN ðR�;0ÞÞ ¼ spanfw1g;

where w1 is the eigenfunction of (3.12). Next, we will show that the
range

RðFeN ðR�;0ÞÞ ¼ g 2 Y :

Z L

0
gðxÞw1ðxÞdx ¼ 0

� �
:

In fact, g 2 RðFeN ðR�;0ÞÞ if and only if g ¼ dw00 þ g0w, for some
w 2 X. Thus

R L
0 gðxÞw1ðxÞdx ¼

R L
0 ½dw00ðxÞw1ðxÞ�dxþ

R L
0 ½g0wðxÞw1ðxÞ�dx.

By integration by parts and the boundary conditions of w and w1,
it follows that

R L
0 ½dw00ðxÞw1ðxÞ�dx ¼ d w1ðxÞw0ðxÞ � w01ðxÞwðxÞ

� ���L
0

þ
R L

0 dwðxÞw001ðxÞ
� �

dx ¼
R L

0 dwðxÞw001ðxÞ
� �

dx. Therefore,Z L

0
gðxÞw1ðxÞdx ¼

Z L

0
dwðxÞw001ðxÞ þ g0wðxÞw1ðxÞ
� �

dx

¼
Z L

0
dw001ðxÞ þ g0w1ðxÞ
� �

wðxÞdx ¼ 0:

From (3.14), it follows that:Z L

0
fF

Rð0Þ ;eN ðR�;0Þ½w1�gw1 dx ¼
Z L

0

a2f 0ðR�Þ A
AS

ða A
AS
� f ðR�ÞÞ2

þ f 0ðR�Þ
" #

w2
1 dx > 0:

Thus we have proved that F
Rð0Þ ;eN ðR�;0Þ½w1� 2 =RðFeN ðR�;0ÞÞ.

Thus we can apply in [28, Theorem 1.2] to conclude that the set
of positive solutions to (3.9) and (3.10) near ðRð0Þ; eNÞ ¼ ðR�;0Þ is a
smooth curve

C ¼ fðRð0ÞðsÞ; eNðsÞÞ : s 2 ð�d; dÞ; for some d > 0g ð3:16Þ

with Rð0Þð0Þ ¼ R�; eNð0Þ ¼ 0; eN 0ð0Þ ¼ w1. Moreover, d
ds Rð0ÞðsÞ

���
s¼0

can

be calculated by Formula (4.5) in [28, (p. 507)] (see also Refs. [7–9]):

d
ds

Rð0ÞðsÞ
����

s¼0
¼ �

hFeN ;eN ðR�;0Þ½w1�
2
; li

2hF
Rð0Þ ;eN ðR�; 0Þ½w1�; li

; ð3:17Þ

where l is a linear functional on Y defined as hg; li ¼
R L

0 gðxÞw1ðxÞdx.
By (3.14) and (3.15), it follows that:

F
Rð0Þ ;eN ðR�; 0Þ½w1� ¼

a2f 0ðR�Þ A
AS

ða A
AS
� f ðR�ÞÞ2

þ f 0ðR�Þ
" #

w1;

and

FeN ;eN ðR�;0Þ½w1�
2 ¼ �2qe

m
2dxf 0ðR�Þ

a3 A2

A2
S

ða A
AS
� f ðR�ÞÞ3

þ 1

24 35w2
1:

Thus,

d
ds

Rð0ÞðsÞ
����

s¼0
¼

R L
0 qe

m
2dxf 0ðR�Þ

a3A2

A2
S

ða A
AS
�f ðR�ÞÞ3

þ 1

" #
w3

1ðxÞdx

R L
0 ½

a2 f 0 ðR�Þ A
AS

ða A
AS
�f ðR�ÞÞ2

þ f 0ðR�Þ�w2
1ðxÞdx

: ð3:18Þ

The uniqueness of non-negative solutions to (3.9) and (3.10) (or
(3.6) and (3.7)) will be established in Theorem 3.1. Due to the
uniqueness and the bound obtained for positive solutions of (3.9)
and (3.10), a standard global bifurcation consideration as in ([10,
p.1135] ) will ensure the following results:
Lemma 3.1. Suppose the value of (3.18) is positive. Then

(1) If Rð0Þ 6 R�, then the trivial solution of (3.9) and (3.10) is the
unique non-negative solution;

(2) If Rð0Þ > R�, then there exists exactly one solution eN of (3.9)
and (3.10) with eNðxÞ > 0 for 0 6 x 6 L.
Remark 3.1. It is worth noting that the value of (3.18) must be
positive provided that a A

AS
� f ðR�Þ > 0.

From Lemma 3.1 and the relation (3.8), the following results
hold.

Lemma 3.2. Suppose the value of (3.18) is positive.

(1) If Rð0Þ 6 R�, then the trivial solution ð0; 0Þ of (3.6) and (3.7)
is the unique non-negative solution;

(2) If Rð0Þ > R�, then there exists exactly one solution ðN; NSÞ of
(3.6) and (3.7) with NðxÞ > 0 and NSðxÞ > 0 for 0 6 x 6 L.
3.2. Dynamics of (3.1), (3.2) and (3.3)

Since one equation in (3.1), (3.2) and (3.3) has no diffusion term,
its solution semiflow Ut is not compact. Due to the lack of com-
pactness, we need to impose the following condition:

a
A
AS
> f ðRð0ÞÞ: ð3:19Þ

We note that the condition (3.19) holds if the function f satisfies
(3.38). Under the condition (3.19), we can further prove that Ut is
asymptotically compact in the sense that limt!1aðUtðBÞÞ ¼ 0 for
any bounded set B � D, where a is the Kuratowski-measure of
non-compactness (see [6,16]). By the continuous-time version in
[22, Theorem 2.6], Ut has a global attractor that attracts each
bounded set in D.

In order to prove the global behavior of the solutions of the sin-
gle population model (3.1), (3.2) and (3.3), we need some notation
and preliminary results. Let X ¼ ðCð½0; L�ÞÞ2 and ðX;XþÞ be an or-
dered Banach space with positive cone Xþ having non-empty inte-
rior IntXþ. We use 6(< and �) to denote the (strict and strong)
order relation defined by the cone Xþ. Let a; b 2 X, we define
two order intervals as follows: ½½a; b� ¼ fx 2 Xja� x 6 bg (pro-
vided that a� b) and ½a;1�� ¼ fx 2 Xþja 6 xg.

Theorem 3.1. Suppose the value of (3.18) is positive. Then the
following statements hold:

(1) If Rð0Þ > R�, then system (3.1), (3.2) and (3.3) has a unique
positive steady state which is globally asymptotically stable
in the feasible set D.

(2) If Rð0Þ 6 R�, then there is no positive steady state in D and
every solution of the system (3.1), (3.2) and (3.3) with initial
condition in D satisfies ðNð	; tÞ; NSð	; tÞÞ ! ð0;0Þ as t !1.

Proof. The existence of steady-state solutions of (3.1), (3.2) and
(3.3) has been proved in Lemma 3.2. Now we assert that the steady
state in D is unique and globally asymptotically stable.

The uniqueness of positive solution for the system (3.1), (3.2)
and (3.3) is due to the sublinear property. Rewrite the system (3.1),
(3.2) and (3.3) in vector form. Let V ¼ ðN;NSÞ and

GðVÞ¼ ðaðNS�NÞþ f ðRð0Þ �qNÞN;�a
A
AS
ðNS�NÞþ f ðRð0Þ �qNSÞNSÞ;

D¼
d 0

0 0

 !
; E¼

m 0

0 0

 !
:
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Then (3.1), (3.2) and (3.3) takes the form

Vt ¼ DVxx � EVx þ GðVÞ; 0 < x < 1; t > 0;

mVð0; tÞ � d
@V
@x
ð0; tÞ ¼ 0;

@V
@x
ðL; tÞ ¼ 0:

It is easy to verify the following sublinear property of G: for any
0 < s < 1,

GðsVÞ > sGðVÞ:

If Vðx;0Þ ¼ sP 2 D then Vðx; tÞ ¼ UtðsPÞ. Let Yðx; tÞ ¼ sUtðPÞ. Then

Yt ¼ s½DðUtðPÞÞxx � EðUtðPÞÞx þ GðUtðPÞÞ�
¼ DðsUtðPÞÞxx � EðsUtðPÞÞx þ sGðUtðPÞÞ
< DðsUtðPÞÞxx � EðsUtðPÞÞx þ GðsUtðPÞÞ ¼ DYxx � EYx þ GðYÞ:

Since Ut is strongly monotone in the interior of D, from the compar-
ison principle, it follows that:

sUtðPÞ ¼ Yðx; tÞ < Vðx; tÞ ¼ UtðsPÞ:

Hence the system (3.1), (3.2) and (3.3) is sublinear. Such kinds of
systems have been studied extensively (see [11,15,17,26,30,31]).
Therefore, the solution semiflow has the property:

UtðsðN0;N0
SÞÞ > sUtðN0;N0

SÞ for 0 < s < 1

and ðN0;N0
S Þ 2 D: ð3:20Þ

Suppose that P� is a positive steady state in D for the system (3.1),
(3.2) and (3.3), that is, P� 
 0. Thus sP� 2 D for each 0 < s < 1. We
claim that P� is globally asymptotically stable. In fact, by (3.20),

UtðsP�Þ > sP� for 0 < s < 1 and t > 0:

Since the solution semiflow is strongly monotone in the interior of
D,

UtðsP�Þ 
 sP� for 0 < s < 1 and t > 0: ð3:21Þ

Thus by the Convergence Criterion for monotone semiflows (see
[27, p. 3, Theorem 2.1]), UtðsP�Þ converges to a steady state of
(3.1), (3.2) and (3.3) for each 0 < s < 1.

Similarly, we can prove that

UtðsP�Þ � sP� for s > 1 such that sP� 2 D and t > 0: ð3:22Þ

Now we assert that the steady state in D is unique. If not, then there
exists another positive steady state Q � 2 D. It is easy to see that
½½0; P�� \ D and ½P�;1�� \ D are positively invariant. We may assume
that there is a unique number 0 < b < 1 such that bQ � lies on the
boundary of ½½0; P�� \ D. The above (3.21) shows that

UtðbQ �Þ 
 bQ � for any t > 0:

This contradicts the invariance for ½½0; P�� \ D. Similarly, we may as-
sume that there is a unique number b > 1 such that bQ � lies on the
boundary of ½P�;1�� \ D. The above (3.22) shows that

UtðbQ �Þ � bQ � for any t > 0:

This contradicts the invariance for ½P�;1�� \ D. Hence, the steady
state P� is unique. For a monotone dynamical system, the unique
steady state is globally asymptotically stable if and only if every for-
ward orbit has compact closure (see [14, Theorem D]). Thus, P� is
globally asymptotically stable in D.

In the rest of this subsection, we discuss the stability of the
trivial solution of (3.1), (3.2) and (3.3). The stability properties of
the trivial solution are governed by the eigenvalue problem

k/1ðxÞ ¼ d/001ðxÞ � m/01ðxÞ þ að/2ðxÞ � /1ðxÞÞ þ f ðRð0ÞÞ/1ðxÞ;

x 2 ð0; LÞ; k/2ðxÞ ¼ �a
A
As
ð/2ðxÞ � /1ðxÞÞ þ f ðRð0ÞÞ/2ðxÞ; ð3:23Þ

m/1ð0Þ � d/01ð0Þ ¼ /01ðLÞ ¼ 0: �
Remark 3.2 (The existence of the principal eigenvalue for
(3.23)). Consider the following differential equations:

@u
@t
¼ d

@2u
@x2 � m

@u
@x
þ aðv � uÞ þ f ðRð0ÞÞu;

@v
@t
¼ �a

A
AS
ðv � uÞ þ f ðRð0ÞÞv ; 0 < x < L; t > 0;

ð3:24Þ

with boundary conditions

muð0; tÞ � d
@u
@x
ð0; tÞ ¼ 0;

@u
@x
ðL; tÞ ¼ 0; ð3:25Þ

and initial conditions

uðx;0Þ ¼ u0ðxÞP 0; vðx; 0Þ ¼ v0ðxÞP 0; 0 < x < L: ð3:26Þ

It is easy to see that ðu; vÞ ¼ ð0; 0Þ is a steady-state solution to
(3.24), (3.25) and (3.26) and the stability of (0,0) is determined by
(3.23). Although the solution semiflow generated by (3.24), (3.25)
and (3.26) is not compact, we can prove that it is an a-contraction
on Xþ ([16, p. 316]), where X ¼ ðCð½0; L�ÞÞ2. Note that system (3.24),
(3.25) and (3.26) is cooperative and irreducible. By the proof of [27,
Theorem 7.6.1 ] and a generalized Krein–Rutman Theorem (e.g.
[16], Lemma 2.2), it follows that the principal eigenvalue and the
corresponding positive eigenfunctions of (3.23) exist.

We denote k0 to be the principal eigenvalue of the eigenvalue
problem (3.23) with the corresponding positive eigenfunctions
/1ðxÞ and /2ðxÞ uniquely determined by normalization. From
([27, p. 138, Theorem 6.2] and [20, p. 21–24]), it follows that the
trivial solution of (3.1), (3.2) and (3.3) is unstable (asymptotically
stable) if k0 > 0ðk0 < 0Þ. The next results show that a single popu-
lation persists if the trivial steady-state solution is unstable, and
washes out if it is stable.

Theorem 3.2. The following statements hold
(1) If k0 > 0, then system (3.1), (3.2) and (3.3) has a unique
steady state which is globally asymptotically stable in the
feasible set D.

(2) If k0
6 0, then there is no steady state in D and every solu-

tion of the system (3.1), (3.2) and (3.3) with initial condition
in D satisfies ðNð	; tÞ;NSð	; tÞÞ ! ð0;0Þ as t ! 1.
Proof.

(1) Suppose that k0 > 0.
Claim 1.

ðN; NSÞ ¼ Rð0Þ
q ; Rð0Þ

q

� �
is a strictly upper solution ([27], p. 130) for the

system (3.1), (3.2) and (3.3), since
mNð0; tÞ � d
@N
@x
ð0; tÞ ¼ mRð0Þ

q
> 0;

@N
@x
ðL; tÞ ¼ 0 P 0;

and

� @N
@t
þ d

@2N
@x2 � m

@N
@x
þ aðNS � NÞ þ f ðRð0Þ � qNÞN ¼ 0 6 0;

� @NS

@t
� a

A
AS
ðNS � NÞ þ f ðRð0Þ � qNSÞNS ¼ 0 6 0:

Thus Claim 1 is proved.

Claim 2. ðNð�Þ; NSð�ÞÞ ¼ ð�/1; �/2Þ is a strictly lower solution ([27],
p. 130) for the system (3.1), (3.2) and (3.3), where ð/1; /2Þ is the
eigenfunction of (3.23) and � is small enough, since
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� @Nð�Þ
@t
þ d

@2Nð�Þ
@x2 � m

@Nð�Þ
@x

þ aðNSð�Þ � Nð�ÞÞ þ f ðRð0Þ

� qNð�ÞÞNð�Þ

¼ �d/001 � �m/01 þ �að/2 � /1Þ þ f ðRð0Þ � �q/1Þ�/1

¼ �½k0/1 � f ðRð0ÞÞ/1� þ f ðRð0Þ � �q/1Þ�/1

¼ �½k0 � f ðRð0ÞÞ þ f ðRð0Þ � �q/1Þ�/1 P 0;

and

� @NSð�Þ
@t

� a
A
AS
ðNSð�Þ � Nð�ÞÞ þ f ðRð0Þ � qNSð�ÞÞNSð�Þ

¼ ��a A
AS
ð/2 � /1Þ þ f ðRð0Þ � q�/2Þ�/2

¼ �½k0 � f ðRð0ÞÞ þ f ðRð0Þ � �q/2Þ�/2 P 0;

provided that k0 > 0 and � is small enough. Thus Claim 2 holds.

By applying Proposition 3.1, it follows that UtðN; NSÞðUtðN; NSÞÞ is in
D for all t > 0. Thus, one obtains that UtðN; NSÞðUtðN; NSÞÞ is increas-
ing (decreasing) in D as t is increasing (see, for example, p. 132, Cor-
ollary 3.6 of [27]). Therefore, as t goes to infinity,
UtðN; NSÞðUtðN; NSÞÞ converges to a minimal (maximal) solution
ðN��; NS��ÞððN��; N��S ÞÞ to the system (3.1), (3.2) and (3.3) satisfying
the inequality:

ðN;NSÞ 6 ðN��;NS��Þ 6 ðN��;N��S Þ 6 ðN;NSÞ:

By the same argument in the proof of Theorem 3.1, it follows that
the steady state of (3.1), (3.2) and (3.3) is unique and globally
asymptotically stable in D.

(2) Suppose that k0
6 0.
Claim 3.

ðbNð�Þ; bNSð�ÞÞ ¼ ð�/1; �/2Þ is a strictly upper solution ([27], p.
130) for the system (3.1), (3.2) and (3.3), where ð/1; /2Þ is the
eigenfunction of (3.23) and � is a positive number, since

� @
bNð�Þ
@t

þ d
@2 bNð�Þ
@x2 � m

@ bNð�Þ
@x

þ aðbNSð�Þ � bNð�ÞÞ þ f ðRð0Þ � qbNð�ÞÞbNð�Þ
¼ �d/001 � �m/01 þ �að/2 � /1Þ þ f ðRð0Þ � �q/1Þ�/1

< �d/001 � �m/01 þ �að/2 � /1Þ þ f ðRð0ÞÞ�/1

¼ �k0/1 6 0;

and

� @
bNSð�Þ
@t

� a
A
AS
ðbNSð�Þ � bNð�ÞÞ þ f ðRð0Þ � qbNSð�ÞÞbNSð�Þ

¼ ��a A
AS
ð/2 � /1Þ þ f ðRð0Þ � q�/2Þ�/2

< ��a A
AS
ð/2 � /1Þ þ f ðRð0ÞÞ�/2

¼ �k0/2 6 0:

Thus Claim 3 holds.

Since Pð�Þ :¼ ðbNð�Þ; bNSð�ÞÞ is an upper solution of system (3.1), (3.2)
and (3.3) for � sufficiently small. Thus UtðPð�ÞÞ is decreasing as t in-
creases. It is not difficult to see that Nð:; t; Pð�ÞÞ tends to zero as
t !1. From the second equation of (3.1), (3.2) and (3.3),
NSð:; t; Pð�ÞÞ also converges to zero. Let P 2 D and xðPÞ be its x-
limit set. Suppose that xðPÞ–f0g. Then since D is convex, xðPÞ
has the least upper bound Q 2 D. Then UtðxðPÞÞ 6 UtðQÞ for all
t and xðPÞ 6 UtðQÞ by the invariance of x-limit set. Thus
Q 6 UtðQÞ. Therefore, by the Convergence Criterion (see [27, p. 3,
Theorem 2.1]), UtðQÞ converges to a steady state P� 
 0. The proof
of part (1) (or the proof of Theorem 3.1) shows that P� is globally
asymptotically stable in D, contradicting that UtðPð�ÞÞ converges
to zero. This completes the proof. h
3.3. Does a system with storage zones facilitate persistence of
planktonic algae in flowing habitats?

In order to compare a system with a storage zone with a system
without such a zone, we reconsider the single population model
corresponding to (2.12), that is,

@N
@t
¼ d

@2N
@x2 � m

@N
@x
þ f ðRð0Þ � qNÞN; 0 < x < L; t > 0 ð3:27Þ

with boundary conditions (3.2) and initial conditions (3.3). The
steady-state solutions corresponding to (3.27) take the form

dN00 � mN0 þ f ðRð0Þ � qNÞN ¼ 0; 0 < x < L ð3:28Þ
with boundary conditions

mNð0Þ � dN0ð0Þ ¼ 0; N0ðLÞ ¼ 0: ð3:29Þ

The above single population model had been discussed in [27, (p.
151)], but we will use the theory of bifurcation to analyze it again.

LeteN ¼ e�
m

2dxN ð3:30Þ

Then (3.28) and (3.29) is equivalent to

deN 00 þ f ðRð0Þ � qe
m

2dxÞeN � m2

4d
eN ¼ 0; 0 < x < L; ð3:31Þ

with boundary conditions
m
2
eNð0Þ � deN 0ð0Þ ¼ 0;

m
2
eNðLÞ þ deN 0ðLÞ ¼ 0: ð3:32Þ

Let R�� satisfy

f ðR��Þ � m2

4d
¼ g0; ð3:33Þ

where g0 is defined in (3.12). We use the similar arguments in Sec-
tion 3.1 to ensure the following results:

Lemma 3.3. (Existence for single population model in simple channels)

(1) If Rð0Þ 6 R��, then the trivial solution eN � 0 of (3.31) and
(3.32) (or N � 0 of (3.28) and (3.29)) is the unique non-neg-
ative solution;

(2) If Rð0Þ > R��, then there exists exactly one positive solution of
(3.31) and (3.32) (or (3.28) and (3.29)) in its feasible domain
for 0 6 x 6 L.
From (3.13) and (3.33), it follows that:

f ðR�Þ þ af ðR�Þ
a A

AS
� f ðR�Þ

¼ f ðR��Þ: ð3:34Þ

It is not hard to see that R� and R�� are uniquely determined by
(3.13) and (3.33), respectively. We discuss two cases.

Case 1. Suppose a A
AS
� f ðR�Þ > 0. From (3.34), it follows that:
f ðR�Þ < f ðR�Þ þ af ðR�Þ
a A

AS
� f ðR�Þ

¼ f ðR��Þ;

that is,

R� < R��: ð3:35Þ

Moreover, the value of (3.18) is always positive in this case. From
Lemmas 3.2 and 3.3 and (3.35), we conclude that the positive solu-
tion of (3.6) and (3.7) is easier to exist when it is compared with
(3.28) and (3.29).



al Biosciences 222 (2009) 42–52 49
Case 2. Suppose a A
AS
� f ðR�Þ < 0. From (3.34), it follows that:
f ðR�Þ > f ðR�Þ þ af ðR�Þ
a A

AS
� f ðR�Þ

¼ f ðR��Þ;

that is,

R� > R��: ð3:36Þ

Moreover, the value of (3.18) will be positive if the following
inequality holds:

a3 A2

A2
S

ða A
AS
� f ðR�ÞÞ3

þ 1 > 0: ð3:37Þ

From Lemmas 3.2 and 3.3, (3.36) and (3.37) we conclude that the
positive solution of (3.6) and (3.7) is harder to obtain when it is
compared with (3.28) and (3.29).

Remark 3.3. If the Monod function f ðRÞ satisfies

f ðRÞ ¼ lmaxR
Kl þ R

with lmax < a
A
AS
; ð3:38Þ

then it follows that

f ðR�Þ ¼ lmax
R�

Kl þ R�
< lmax < a

A
AS
:

This is exactly case 1 and our numerical simulations confirm that a
system with a storage zone facilitates persistence of planktonic al-
gae in flowing habitats when the Monod function satisfies (3.38)
(see the first paragraph in Section 5). We note that conditions
(3.38) means that the cross-section of the storage zone is small or
the exchange rate is large.

J.P. Grover et al. / Mathematic
3.4. How does advection m affect the existence of positive steady state
for (3.6) and (3.7)?

In this subsection, we want to know how (3.6) and (3.7) de-
pends on the parameter m. Consider (3.12):

dw001 þ g0ðmÞw1 ¼ 0;
m
2

w1ð0Þ � dw01ð0Þ ¼ 0;
m
2

w1ðLÞ þ dw01ðLÞ ¼ 0;
ð3:39Þ

where g0ðmÞ is the principal eigenvalue of above eigenvalue prob-
lem. It is not hard to prove that g0ðmÞ is increasing in m and bounded
above, thus

lim
m!1

g0ðmÞ :¼ g0;1 > 0 exists:

From (3.13),

f ðR�Þ þ af ðR�Þ
a A

AS
� f ðR�Þ

¼ m2

4d
þ g0ðmÞ ! 1 as m!1: ð3:40Þ

If we choose f ðRÞ to be the Monod function and satisfies (3.38), it
follows that a A

AS
� f ðR�Þ is always positive and the function in the

L.H.S. of (3.40) is bounded above. Thus, R� does not exist, that is,
bifurcation never occurs as m becomes sufficiently large. This means
that the species is washed out as m ! 1 for the system (3.6) and
(3.7).

Let m ¼ 0 in (3.39). Then (3.39) becomes

dw001 þ g0ð0Þw1 ¼ 0; w01ð0Þ ¼ 0; w01ðLÞ ¼ 0: ð3:41Þ

It is easy to see that g0ð0Þ ¼ 0. From (3.13),

f ðR�Þ þ af ðR�Þ
a A

AS
� f ðR�Þ

¼ m2

4d
þ g0ðmÞ ! 0 as m! 0: ð3:42Þ
This implies that R� ! 0 as m ! 0 and it means that species will
always persist as m ! 0 for the system (3.6) and (3.7). In fact, if
we choose m ¼ 0 in (3.6) and (3.7), it follows that

dN00 þ aðNS � NÞ þ f ðRð0Þ � qNÞN ¼ 0;

� a
A
AS
ðNS � NÞ þ f ðRð0Þ � qNSÞNS ¼ 0; 0 < x < L; ð3:43Þ

with boundary conditions

N0ð0Þ ¼ 0; N0ðLÞ ¼ 0: ð3:44Þ

It is easy to see that Rð0Þ

q ; Rð0Þ

q

� �
is always a positive constant solution

of the above system.
We would like to ask for the exact range of m for which R� exists

since the range of m appears to be important for the existence of a
positive steady state. But it is still an open problem for us.

4. Coexistence

Since two equations in (2.7), (2.8) and (2.9) have no diffusion
terms, its solution semiflow Pt is not compact and we require
the following conditions in this section:

a
A
AS
> fiðRð0ÞÞ; i ¼ 1;2: ð4:1Þ

By similar arguments as in Section 3.2, it follows that Pt has a glo-
bal attractor that attracts each bounded set in X, where X is defined
in (2.10).

Theorem 3.1 can be applied to either of the two systems ob-
tained from (2.7), (2.8) and (2.9) by setting one of the two ordered
pairs ðN1; NS;1Þ or ðN2; NS;2Þ to be ð0; 0Þ. Therefore, we conclude that
the system (2.7), (2.8) and (2.9) has the following equilibria:

(i) Trivial solution E0 ¼ ð0; 0; 0; 0Þ always exists;
(ii) Semi-trivial solution E1 ¼ ðN�1; N�S;1; 0; 0Þ exists provided that

the conditions for f ¼ f1 and q ¼ q1 in Theorem 3.1 are
satisfied;

(iii) Semi-trivial solution E2 ¼ ð0; 0; N�2; N�S;2Þ exists provided that
the conditions for f ¼ f2 and q ¼ q2 in Theorem 3.1 are
satisfied.

Here, ðN�i ; N�S;iÞ denotes the unique positive solution of (3.1),
(3.2) and (3.3) resulting from putting f ¼ fi and q ¼ qi. Of course,
there may be additional equilibria as well and these must be po-
sitive. The two organisms can coexist if a positive equilibrium
exists.

In order to discuss the persistence of (2.7), (2.8) and (2.9), we
denote K1 to be the principal eigenvalue of the eigenvalue
problem,

K1/̂1ðxÞ ¼ d/̂001ðxÞ � m/̂01ðxÞ þ að/̂2ðxÞ � /̂1ðxÞÞ
þ f2ðRð0Þ � q1N�1Þ/̂1ðxÞ; x 2 ð0; LÞ;

K1/̂2ðxÞ ¼ �a
A
As
ð/̂2ðxÞ � /̂1ðxÞÞ þ f2ðRð0Þ � q1N�S;1Þ/̂2ðxÞ; ð4:2Þ

m/̂1ð0Þ � d/̂01ð0Þ ¼ /̂01ðLÞ ¼ 0;

with the corresponding positive eigenfunctions /̂1ðxÞ and /̂2ðxÞ un-
iquely determined by normalization.

Remark 4.1 (The existence of K1; /̂1ðxÞ and /̂2ðxÞ). Consider the
following differential equations:

@u
@t
¼ d

@2u
@x2 � m

@u
@x
þ aðv � uÞ þ f2ðRð0Þ � q1N�1Þu;

@v
@t
¼ �a

A
AS
ðv � uÞ þ f2ðRð0Þ � q1N�S;1Þv ; 0 < x < L; t > 0;

ð4:3Þ
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with boundary conditions (3.25) and initial conditions (3.26). It is
easy to see that ðu; vÞ ¼ ð0; 0Þ is a steady-state solution to (4.3)
and the stability of (0,0) is determined by (4.2). We can use similar
arguments as in Remark 3.2 to show that the principal eigenvalue
and the corresponding positive eigenfunctions of (4.2) exist.

Similarly, we denote K2 to be the principal eigenvalue of the
eigenvalue problem,

K2ŵ1ðxÞ ¼ dŵ001ðxÞ � mŵ01ðxÞ þ aðŵ2ðxÞ � ŵ1ðxÞÞ
þ f1ðRð0Þ � q2N�2Þŵ1ðxÞ; x 2 ð0; LÞ;

K2ŵ2ðxÞ ¼ �a
A
As
ðŵ2ðxÞ � ŵ1ðxÞÞ þ f1ðRð0Þ � q2N�S;2Þŵ2ðxÞ; ð4:4Þ

mŵ1ð0Þ � dŵ01ð0Þ ¼ ŵ01ðLÞ ¼ 0;

with the corresponding positive eigenfunctions ŵ1ðxÞ and ŵ2ðxÞ un-
iquely determined by normalization.

Proposition 4.1. The interior of X is positively invariant under the
semiflow Pt generated by (2.7), (2.8) and (2.9), where the region X is
defined in (2.10).

Proof. The proof is similar to the proof in Proposition 3.1 and we
omit it.

From now on, we restrict our attention to the system (2.7), (2.8)
and (2.9) with initial condition in the feasible set X. The Jacobian of
the reaction terms in (2.7), (2.8) and (2.9) with respect to
ðN1; NS;1; N2; NS;2Þ at points ðN1; NS;1; N2; NS;2Þ 2 X has the form

J ¼

� þ � 0
þ � 0 �
� 0 � þ
0 � þ �

0BBB@
1CCCA:

Obviously, J has the block structure characteristic of a type K mono-
tone system [27], consisting of diagonal 2� 2 blocks with non-neg-
ative off-diagonal entries and off-diagonal 2� 2 non-positive
blocks, where K ¼ N0

1;N
0
S;1;N

0
2;N

0
S;2

� �
2 ðCð½0; L�ÞÞ4jN0

1 P 0;
n

N0
S;1 P 0; N0

2 6 0;N0
S;2 6 0g. Thus, the semiflow Pt generated by

the system (2.7), (2.8) and (2.9) is monotone [27] under the partial
order 6K . Furthermore, J is irreducible (See Appendix in [29]), which
implies that such a semiflow Pt is strongly monotone in the interior
of X.

In order to present our final result on coexistence or persis-
tence, we need some notation and preliminary results. Set
C :¼ ðCð½0; L�ÞÞ4. For P; Q 2 C with P�K Q , define type�K order
intervals

½P;Q �K ¼ fR 2 CjP6K R6K Qg;

and

½½P;Q ��K ¼ fR 2 CjP�K R�K Qg:

For i ¼ 1; 2, recall the following single population model:

@Ni

@t
¼ d

@2Ni

@x2 � m
@Ni

@x
þ aðNS;i � NiÞ þ fiðRð0Þ � qiNiÞNi;

@NS;i

@t
¼ �a

A
AS
ðNS;i � NiÞ þ fiðRð0Þ � qiNS;iÞNS;i;

0 < x < L; t > 0; ð4:5Þ

with the boundary conditions (2.8) and initial conditions (2.9). If the
conditions for fi and qi in Theorem 3.1 are satisfied, it follows that
(4.5) has a unique positive steady state ðN�i ; N�S;iÞ which is globally
asymptotically stable in its feasible region by Theorem 3.1. h

Lemma 4.1. Suppose that semi-trivial solution E1 ¼ N�1; N�S;1; 0; 0
� �

and E2 ¼ 0; 0; N�2; N�S;2
� �

both exist. Then xðPÞ � ½E2; E1�K for any
P 2 X.
Proof. Fix a point P ¼ N0
1; N0

S;1; N0
2; N0

S;2

� �
2 X. Let

PtðPÞ ¼ ðN1ð:; t; PÞ;NS;1ð:; t; PÞ;N2ð:; t; PÞ;NS;2ð:; t; PÞÞ

be the solution of (2.7), (2.8) and (2.9) with initial data P. Then
ðNið:; t; PÞ; NS;ið:; t; PÞÞ satisfies

@Ni

@t
6 d

@2Ni

@x2 �m
@Ni

@x
þaðNS;i�NiÞþ fiðRð0Þ �qiNiÞNi;

@NS;i

@t
6�a

A
AS
ðNS;i�NiÞþ fiðRð0Þ �qiNS;iÞNS;i; 0< x< L; t>0;

ð4:6Þ

with boundary conditions (2.8) and initial conditions (2.9).
From [27, p. 130, Theorem 3.4] it follows that for any t > 0, for

i ¼ 1;2:

ðNið:; t; PÞ;NS;ið:; t; PÞÞ 6 PðiÞt N0
i ;N

0
S;i

� �
;

where PðiÞt ðN
0
i ;N

0
S;iÞ is the solution for (4.5). Thus, applying Theorem

3.1, we obtain that

Q ðiÞxðPÞ 6 N�i ;N
�
S;i

� �
;

where

Q ðiÞ N0
1;N

0
S;1;N

0
2;N

0
S;2

� �
¼ N0

i ;N
0
S;i

� �
; i ¼ 1;2;

is a projection mapping, that is,

xðPÞ � ½E2; E1�K :

Let E1ð�1Þ ¼ N�1;N
�
S;1; �1/̂1; �1/̂2

� �
and E2ð�2Þ ¼ �2ŵ1; �2ŵ2;N

�
2;N

�
S;2

� �
,

where ð/̂1; /̂2Þ and ðŵ1; ŵ2Þ are defined in (4.2) and (4.4),
respectively. h

Lemma 4.2. Suppose that semi-trivial solution E1 ¼ ðN�1;N
�
S;1;0;0Þ

and E2 ¼ ð0;0;N�2;N
�
S;2Þ both exist.

(i) Let K1 > 0. Then for e1 > 0 sufficiently small, E1ð�1Þ is a strict
upper solution for the system (2.7), (2.8) and (2.9).

(ii) Let K2 > 0. Then for e2 > 0 sufficiently small, E2ð�2Þ is a strict
lower solution for the system (2.7), (2.8) and (2.9).
Proof. Let

ðN1;NS;1;N2;NS;2Þ :¼ E1ð�1Þ ¼ N�1;N
�
S;1; �1/̂1; �1/̂2

� �
:

It is straight forward to show the following inequalities:

�@N1

@t
þd

@2N1

@x2 �m
@N1

@x
þaðNS;1�N1Þþ f1ðRð0Þ�q1N1�q2N2ÞN1

¼d
@2N�1
@x2 �m

@N�1
@x
þaðN�S;1�N�1Þþ f1ðRð0Þ�q1N�1�q2�1/̂1ÞN�1

<d
@2N�1
@x2 �m

@N�1
@x
þaðN�S;1�N�1Þþ f1ðRð0Þ�q1N�1ÞN

�
1¼0;

�@NS;1

@t
�a

A
AS
ðNS;1�N1Þþ f1ðRð0Þ�q1NS;1�q2NS;2ÞNS;1

¼�a
A
AS
ðN�S;1�N�1Þþ f1ðRð0Þ�q1N�S;1�q2�1/̂2ÞN�S;1

<�a
A
AS
ðN�S;1�N�1Þþ f1ðRð0Þ�q1N�S;1ÞN

�
S;1¼0;

�@N2

@t
þd

@2N2

@x2 �m
@N2

@x
þaðNS;2�N2Þþ f2ðRð0Þ�q1N1�q2N2ÞN2

¼�1 d/̂001ðxÞ�m/̂01ðxÞþað/̂2ðxÞ�/̂1ðxÞÞþf2 Rð0Þ�q1N�1��1q2/̂1

� �
/̂1

h i
¼�1 K1� f2 Rð0Þ�q1N�1

� �
þ f2ðRð0Þ�q1N�1��1q2/̂1Þ

h i
/̂1

P0; provided thatK1>0 and�1 is small enough;

and
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� @NS;2

@t
� a

A
AS
ðNS;2 � N2Þ þ f2ðRð0Þ � q1NS;1 � q2NS;2ÞNS;2

¼ ��1a
A
As
ð/̂2ðxÞ � /̂1ðxÞÞ þ �1f2ðRð0Þ � q1N�S;1 � �1q2/̂2Þ/̂2

¼ �1½K1 � f2ðRð0Þ � q1N�S;1Þ þ f2ðRð0Þ � q1N�S;1 � �1q2/̂2Þ�/̂2

P 0; provided that K1 > 0 and �1 is small enough:

From the discussions above, it follows that part(i) is true. Part(ii)
can be proved in a similar way and we omit it. h

Theorem 4.1. Suppose that semi-trivial solution E1 ¼ N�1;N
�
S;1;0;0

� �
and E2 ¼ 0;0;N�2;N

�
S;2

� �
both exist and Ki > 0; i ¼ 1;2. Then there is

a minimal steady state E� 2 X which is lower asymptotically stable
and a maximal steady state Eþ 2 X which is upper asymptotically
stable such that

xðPÞ � ½E�; Eþ�K \X for any P 2 X:

The system (2.7), (2.8) and (2.9) is uniformly persistent and PtðPÞ
tends to a steady state for P in an open and dense subset in X.

Proof. Combining Theorem 3.4 in [27, p.130 ], Lemma 4.2 and
strong monotonicity for Pt , we get that for any t > 0

E2ð�2Þ�KPtðE2ð�2ÞÞ�KPtðE1ð�1ÞÞ�K E1ð�1Þ:

The Convergence Criterion in [27, p. 3, Theorem 2.1] implies that
PtðE2ð�2ÞÞ converges to a lower asymptotically stable steady state
E�ð�2Þ
K E2ð�2Þ, and PtðE1ð�1ÞÞ tends to an upper asymptotically
stable steady state Eþð�1Þ�K E1ð�1Þ. Since Eþð�1Þ attracts E1ð�1Þ for
an open neighborhood of �1; E

þð�1Þ is independent of �1 for �1 > 0
sufficiently small, similarly for E�ð�2Þ.

By Lemma 4.1,

xðPÞ � ½E2; E1�K for any P 2 X:

Then

E26KPtðPÞ6K E1 for any P 2 X; t > 0:

The strong monotonicity for Pt implies that

E26KPsðE2Þ�KPtþsðPÞ�KPsðE1Þ6K E1 for any P 2X; t > 0; s > 0:

Thus for t sufficiently large, say t P t0,

E2�KPtðPÞ�K E1:

This implies that for �1 > 0; �2 > 0 sufficiently small,

E2ð�2Þ�KPtðPÞ�K E1ð�1Þ:

From the discussions above, it follows that

E�6KxðPÞ6K Eþ:

The remaining results follow from the theory of strongly monotone
dynamical systems (see [27]). h
5. Numerical work

Numerical simulations of dynamics were conducted using an
implementation of the MacCormack algorithm, a generalization
of the improved Euler method [4]. We first illustrate conditions
for persistence, fixing all parameters for a single species and vary-
ing the dilution rate ðDÞ and nutrient supply ðRð0ÞÞ, using parame-
ters assigned to represent phosphorus-limited algae. For fixed
Rð0Þ, washout occurs when D exceeds a critical value, and persis-
tence occurs below this value (Fig. 2), as judged from simulated
invasions of the trivial steady state. For a channel of a given length,
the critical dilution rate corresponds to a critical advective flow
above which washout occurs. Through the biologically relevant
.

range of Rð0Þ, the critical value of D depends only weakly on Rð0Þ.
Moreover, the critical value of D is higher for a system with a stor-
age zone, than for an otherwise equivalent simple channel without
such a zone. Thus persistence is possible at higher advective flows
in the system with a storage zone. These results illustrate cases
covered by Remark 3.3 (above).

Next, we illustrate conditions for coexistence, as judged from
simulated invasions of the semi-trivial steady states. We fix all
parameters except the maximal growth rates of the two species
(lmax;1;lmax;2). For appropriate choices of these parameters, coexis-
tence (mutual invasibility) occurs for a narrow range of values
(Fig. 3). Outside of this range, competitive exclusion occurs.
6. Discussion

Conditions for persistence and coexistence in a flowing habitat
with a hydraulic storage zone are similar to those for the flow reac-
tor model without such a zone, and are derived by a similar anal-
ysis. Quantitatively, however, species can persist at higher flow
rates when a storage zone is present than when it is not (Fig. 2)
provided the conditions of Remark 3.3 are satisfied. Thus such
zones might be important to the persistence of planktonic algae
in rivers and riverine habitats, as previously suggested [25].

The magnitude of this effect on persistence depends on the
physical parameters characterizing flow and transport. These
parameters vary widely from small rapidly flowing streams that
likely have very strong advective transport and small storage zones
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[3], to slow-flowing wetland channels with extensive fringing veg-
etation that likely have large storage zones [21]. Intuitively, the lat-
ter habitat should be more conducive to persistence of planktonic
algae than the former, but quantitative evaluations are now
needed.

Like the unstirred chemostat and the flow reactor without a
storage zone, coexistence in flowing systems with a storage zone
appears to require a narrow balance of relevant biological param-
eters. This might be interpreted as indicating that competitive
exclusion is nearly inevitable, but at least two considerations mod-
erate this conclusion. First, the number of species available in the
vicinity of any realistic habitat and likely to colonize it (the ‘‘spe-
cies pool”) is large. Thus parameters might be sufficiently densely
distributed so that the necessary combination for coexistence ex-
ists among species reaching a habitat. Second, competitive exclu-
sion of species whose parameters are close to the coexistence
zone is a slow process (as it is in the flow reactor model, e.g. [2]).
Thus there may be transient persistence of weakly competitive
species over time intervals of practical interest.
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