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Abstract. A model of competition between plasmid-bearing and plasmid-free 
organisms in a chemostat was proposed in a paper of Stephanopoulis and 
Lapidus. The model was in the form of a system of nonlinear ordinary 
differential equations. Such models were relevant to commercial production 
by genetically altered organisms in continuous culture. The analysis there was 
local. The rigorous global analysis was done in a paper of Hsu, Waltman and 
Wolkowicz in the case of the uninhibited specific growth rates. This paper 
provides a mathematically rigorous analysis of the global asymptotic behav- 
ior of the governing equations in the cases of combinations of inhibited and 
uninhibited specific growth rates. 
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1 Introduction 

Genetically altered organisms are frequently used to produce foreign prod- 
ucts. The alteration is accomplished by the introduction of a recombinant 
DNA into the cell in the form of a plasmid. The load imposed by production 
can result in the genetically altered (the plasmid-bearing) organism being 
a less able competitor than the plasmid-free (or "wild type") organism. Unfor- 
tunately, the plasmid can be lost in the reproductive process. Since commer- 
cial production can take place on a scale of many generations, it is possible 
for the plasmid-free organism to take over the culture. In pharmaceuticals, 
changes in the plasmid could cause changes in the amino acid sequence 
of a protein product or changes in the background from which it must be 
purified. It is vital to produce a uniform product if it is a drug intended 
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for human use. Since commercial production of products manufactured by 
genetically altered organisms is a reality, understanding the competition 
between the plasmid-bearing organisms and plasmid-free organsims in 
a mathematically rigorous fashion seems important. 

The chemostat is a common model of waste-treatment and a model for 
commerical production of the fermentation process. It is important in ecology 
because the parameters are readily measurable, and thus, the mathematical 
results are readily testable. The following model of competition between 
plasmid-bearing and plasmid-free organisms in a chemostat based on 
the mass balance of the organisms was proposed by Ryder and Dibiasio [-RD] 

(S ~°~ - S ) D  - o l ( S ) x  1 - o 2 ( S ) . x ;  2 , 

X l ( f l  (S)(1 - -  q) - -  O ) ,  

22 = xz(f2 (S) -- D) + q x i f l  (S) , 
(1.1) 

S (0 )=S0=0 ,  xi(0)>0, i - - 1 , 2 .  

S(t) is the nutrient concentration at time t, xl(t) is the concentration of 
plasmid-bearing organisms at time t, x2 (t) is the concentration of plasmid-free 
organisms at time t. The consumption rates and the specific growth rates of 
plasmid-bearing and plasmid-ffee organisms are o-z, o-2, fx and f2, respec- 
tively. The probability that a plasmid is lost in reproduction is represented by 
q, and hence 

0 < q < l .  

The operation parameters are S (°), the input concentration of the nutrient 
and D, the washout rate of the chemostat. 

Assuming that al (S) = o'2(S), Ryder and Dibiasio [RD] presented a local 
stability analysis of the rest points for very general growth kinetics. Based on 
this analysis they suggest an operational strategy involving feedback control 
to enhance plasmid stability in the systems. 

Instead assuming that O-l(S ) = o-2(X), Stephanopoulis and Lapidus [SL] 
studied the following case: 

f~(S) 
ai(S) = for i = 1, 2 ,  

7 

where 7 is the yield constant (assumed to be the same for both populations). 
They used very clever index theory arguments to determine the steady por- 
traits based on the shape mutual disposition of the specific growth rate curves. 
They did an exhaustive analysis for the two most common growth models, the 
Monod model (also referred to as Michaelis-Menten kinetics or Holling 
type II) for uninhibited growth 

#max S 
K s + S  
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and the Andrews model for inhibited growth 

I~max S 
Ks -k- S -}- $2/K1 " 

Their analysis was local. In the paper of Hsu, Waltman and Wolkowicz 
[HWW],  the authors provide a rigorous global analysis for the case that the 
specific growth rates fl(S), f2(S) are both monotone, i.e., uninhibited. 

In this paper we deal with general response functions that are uninhibited 
and inhibited within the range of interest. The response function f (S)  is called 
uninhibited, if it satisfies the following conditions: 

i) f (S)  is continuously differentiable; 
ii) f(0)  = 0; 

iii) f (S)  > 0 for all 0 < S __< S(°); 

iv) f'(S) > 0 for all 0 < S < S (°). 

On the other hand, the response function f(S) is called inhibited, if it satisfies 
the following conditions: 

i) f (S)  is continuously differentiable; 
ii) f(0) = 0; 

iii) f (S)  > 0 for all 0 < S < S(°); 
iv) there exists p (0 < p < S (°)) such that f'(S) > 0 for all 0 < S < p; f'(S) < 0 
for all p < S < S (°). 

By measuring concentrations of nutrient in units of S (°), time in units of I/D, xz 
in units of 1/7S (°) and each f~ in units of 1/D, the number of parameters can be 
reduced and the equations (1.1) becomes 

= 1 - s - x l f l ( s )  - x 2 f i ( s ) ,  

£c~ = x ~ ( f ~  ( S ) ( 1  - q )  - 1 ) ,  

~ = x ~ ( f :  (S)  - 1) + q x ~ f ,  (S)  , 

(1.2) 

S(0)=So > 0 ,  x i (0 )>0 ,  i = 1 , 2 .  

The operating parameters have been scaled out, or, from another point of 
view, such parameters as # . . . .  Ks and K~ are measured relative to the 
operating environments. (The parameters have changed their biological 
meaning.) This is mathematically convenient although to be useful, the results 
must be returned to biologically meaningful units. 

Remark 1.1. It is easy to show limsupt-.oo S(t) __< 1. So the response func- 
tion f~(S), i = 1, 2 in (1.2) is a uninhibited function or an inhibited function 
depending on p > S(0 ) or p < S (°) respectively where S (°) is equal to 1. 
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2 P r e l i m i n a r i e s  

Let N(t )  = 1 - -  S ( t )  - -  x i ( t )  - -  Xz(t). The  system (1.2) m a y  be writ ten 

2 = - X ,  

= 1 - S - x l f l ( S )  - (1 - £ - S - x l ) f ~ ( S ) ,  (2.1) 

21 = x l ( f l ( S ) ( 1  - q ) -  1).  

Clearly limt_~ooX(t)= 0 and so the omega  limit set of solut ion of (1.2) is 
conta ined  in the set 

A = {(S,  x l , x 2 ) l S  > 0 ,x l  _-> 0,x2 > 0,X = 0} .  

The  limiting system, obta ined  by restricting the initial condi t ions to the set 
A is 

= (1 -- S)(1 -- f2(S)) -- x ~ ( f ~ ( S )  - f2(S)) ,  
(2.2) 

:~1 = x l ( k  ( s ) ( 1  - q )  - 1 ) .  

These equations,  of course, are restricted to the region 

(2 = {(s, x l ) l s  > O, x l  >-_ 0 , s  + Xl _-< 1} 

The  b o u n d a r y  of (2 satisfies the following properties:  

i) ( S + x l ) ( t o ) = l ,  for some t o > 0 ,  then S + 2 1 =  - q x l f l ( S ) < 0  
( S x l  # 0); 
ii) S ( t o )  = 0 for some to > 0 then S > 0; 

iii) x l ( t o )  = 0 for some to > 0 then x l ( t )  = 0 and  0 < S( t )  < 1 as t > to. 

Therefore,  (2 is a posit ively invar iant  region. 
We use the following no ta t ion  for the relevant  rest points  of  system (1.2). 

We say that  a rest point  of  (1.2) does not  exist if any  one of its componen t s  is 
negative. Since l i m t _ ~ X ( t ) =  0, any  rest point  E = (S,2~1,2~2) of  (1.2) must  
satisfy 

1 - S - x 1  - ) ~ 2  = 0 . 

The washou t  rest point  is denoted E~ =(1 ,0 ,0 ) .  There  are two possible 
plasmid-free rest points,  denoted E~ = (22,0, 1 -- 22), E~ = (#2,0,  1 -- #2) 
where 22 and  #2 solve the equat ion  f2(S) = 1. (If bo th  exist, let 22 be the 
smaller  one.) The  mixed culture rest points  are denoted E~ = (21, x11, x12), 
E 3 c2 -- (#1,x21,x22), where 21 and #1 solve the equa t ion  f l ( S )  = 1/(1 - q) (if 
bo th  exist, let "~1 be the smaller  one) and  

(1 -- 21)(1 -- f2(2~)) 

X~l = A ( , ~ )  - A ( , h )  ' 

x12 = ( 1  - 2 1  - x11) , 
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(1 - u ~ ) ( 1  - A ( u ~ ) )  

x21 = f l ( # l )  - f 2 ( ~ 1 )  ' 

X22 = (1 -/~1 - x21) . (2.3) 

I t  can easily be seen that no rest point can exist where there are plasmid-bearing 
but no plasmid-free organisms. The corresponding rest points of(2.2) are simply 
the projections on (S - xl)  space and are denoted: E1 = (1,0), E2 = (22, 0), 
E3 = (#2, 0), E c t  = (~l, Xll) ,  Eta  = (]~1,x21). 

We assume that these do not exist if either component is negative or if 
the sum of the compounds exceeds 1, since then it would be outside f2. (This 
would force the x2 component in the corresponding rest point in (1.2) to be 
negative.) 

In this paper we analyze the following three types with different response 
functions: 

Type A: f l  is inhibited, f2 is uninhibited; 
Type B: f l  is uninhibited, f2 is inhibited; 
Type C: f l ,  f2 are both inhibited. 

(Note: We will write x instead of xl in (2.2) to avoid unnecessary sub- 
scripting.) 

The case that f l  and f2 are both uninhibited was analyzed in the paper 
[HWW]. In the Sect. 3, we shall give the mathematical analysis and the 
biological interpretations of Type A species. The mathematical analysis and 
the biological interpretations of Type B species and Type C species are given 
in the Sect. 4 and Sect. 5 respectively. There will be a biological discussion for 
the model (1.2) in the Sect. 6. At the end of this paper, we have Appendices A, 
B, C, D, and E which contain the figures for references. 

3 Analysis of Type A species 

3.1. If we consider the analysis of Type A on ~2, there are nine subcases. The 
reader can refer to the Table 3.1. 

From the list in the Table 3.1, we can easily solve the rest point in each 
case. The set of rest points are shown in the Table 3.2 for each case. 

The variational matrix J of (2.2) takes the form 

J : U - ( 1  - f 2 ( S ) ) -  (1 - S) f j ( S ) -  x ( f [ (S )  --f~(S)), - ( f l ( S ) -  f2(S))~ 
k x f~(S ) (1  -- q), fl(S)(1 -- q) - 1 ] 

It is easy to compute the eigenvalues of the variational matrix J at the 
associated rest points. The Table 3.3 shows the local stability property for 
each case of Type A. 
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1 
At f~(p,) < , f2(1) < 1 

t - - q  

1 
A2 fl(Pl) < , f2(1) > 1 

t - q  

l 1 
Aa A(Pl) > , f~(1) > , f2(1) < 1 

l - q  1 - q  

l 1 
A4 A(P~) > , A(1)>  

1 - q  1 - q  
, f 2 ( 1 ) > 1 , 0 < 2 1 < 2 2 < 1  

1 1 
A5 f l ( P l )  > , f l (1)  > 

1 - q  1 - q  
, f2(1) > 1, 0 <)~z < 21 < 1 

1 1 
, f 1 ( l )  < , f2(1)  < 1 A6 f , ( ; O  > 1 - q 1 - q 

1 1 
A~ f~(p~) > , f l ( t )  < 

1 - -q  1 - - q  
, f z ( 1 ) > 1 , 0 < 2 1 < 2 2 < # 1 < 1  

1 1 
A s  f ~ ( P l )  > , A ( t )  < 

1 --q 1 --q 
, f2(1)  > 1, 0 < 22 < 22 < 1 

1 1 
A9 f~ (p l )> l~q ,  f l ( 1 ) < l _  q , fz(1) > 1, 0 </1~ < 22 < 1 

Pl is the maximum point of fl,  21 and #1 solve fl(S) = 1/(1 - q) and 22 solves 
f2(S) = i. 

Remark 3.1. In  Table  3.3, for the rest po in ts  E 1 and  E2, s table  and  uns tab le  
means  s table  node  and  uns tab le  node  respectively.  However  for the in te r io r  
rest po in t  Eel, s table  (unstable)  means  s table node  (unstable  node) or  s table  
focus (unstable  focus) depend ing  on the p a r a m e t e r  q or  D. Simi lar ly  for the 
Table  4.3 and  Tab le  5.3 in Sect. 4 and  Sect. 5, "s table"  and  "uns tab le"  have the 
same in te rp re ta t ions  for b o u n d a r y  rest  po in ts  E l ,  E2, E3 and  in te r ior  rest 
po in t  Eel. 

Based on the local  s tabi l i ty  analysis  in the Table  3.3, the ma in  results  are 
s ta ted  in the fol lowing theorems.  

Theorem 3.1 i) For the case A1, E1 is a global attractor of O. ii) For each of the 
cases A2, As, A8, E2 is a global attractor of f2. (See Figs. A1, A2, As, A8 in 
Appendix A.) 

Theorem 3.2 For each of the cases A3, A4, A7, Ecl is a global attractor in the 
interior of O. (See Figs. A3, A4, A7 in Appendix A.) 
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Table 3.2 

Case The rest points set 

A1 E1 

A2 El, E2 

A3 El, E~I 

A4 El, E2, Ec, 

A5 El, E2 

A6 El, Ec~, Ec2 

A7 El, E2, E~ 

As El, E2 

A9 El, E2, Ecl, Ec2 

47 

Table 3.3 

E~ E 2 Ec~ E~ 

A ~ s .  4, * * 

A 2  sa  s .  * * 

A 3 sa 4, s** * 

A 4 u. k sa s** * 

A5 u .  s .  * 

A6 s .  * s** sa 

A 7 sa  sa s** * 

As sa s .  * * 

A 9 sa s ,  s , ,  sa 

s: stable; u: unstable; sa: saddle; *: the absence of 
the rest point; . :  node; **: node or focus 

Theorem 3.3 i) For the case A6, the stable manifold F of  Ec2 separates the 
region 0 into two regions (2a and ~-~2 where 01,  02 are attracted by Eel, E ,  

respectively, ii) For the case A9, the stable manifold F of  Ec2 separates the 

region 0 into two regions 01, 02 where 01,  02 are attracted by Ecl, E 2 

respectively. (See Figs. A6, A 9 in Appendix A.) 
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Proo f  o f  Theorem 3.1. Since there is no interior rest point  in O for each case of 
Ax, A2, As, As, it follows that  for each of  these cases no limit cycle exists. Thus 
the global stability of  E1 and E2 for the case Aa and the cases A2, As,  As,  
respectively follows directly f rom the Pioncar6-Bendixson Theorem and the 
local asymptot ic  stability of  E1 and E2. Q.E.D. 

Two lemmas will be given before we prove Theorem 3.2. 

L e m m a  3.4 For each o f  the cases A3, A4, AT, there exist  1)1, Y2, such that 

£2' - f2c~{(S,x)] 0 < vl < S < v2 < 1} 

is a positive invariant set. On the region 0' ,  we have that f l (S )  > 1 > f2(S). The 
trajectory will enter f2' eventually. 

Proof. Let vl satisfies f l ( v l )  = 1. Since f1(21) = 1/(1 - q) > 1, it follows that  
0 < vl < 21. Let v2 be 22 if f2(1) > 1 or  v2 = 1 if f2(S) < 1 for 0 < S < 1. We 
note  that  in cases A3, A4, A7, 21 < 2 2 if 22 exist. Hence f2(21) < 1. Let 

£2' = f2c~{(S,x) I 0 < vl < S < v2 < 1}.  

F r o m  (2.2) we have for (S, x) ~ £2' 

d S  S=121 = (1 - Vx)(1 - f2(vl)) - x ( f x ( v l )  - f2(vl)) 

= (1 -- f2(vl))(1 -- vl -- x) 

> 0 ,  

dS s = (1 - v2)(1 -- f2(v2)) - x ( f l ( v2 )  -- f2(v2)) • 
= v 2 

If  v2 = 22 then from fl(v2) > 1/1 - q > 1, it follows that  

d ~  s ~ v2 = - x ( A ( v 2 )  - 1 )  < 0 .  

It is easy to verify that  £2' is a positively invariant  region and from 
Poincar6-Bendixson Theorem the trajectory will enter f2' in finite time (see 
Figs. A3, A4, A7 in Appendix A). Since f l  (vl) = 1 and f2(v2) ~< 1, it follows 
that  

f l (S )  > 1 > f2(S) in f2 ' .  (3.1) 

Q.E.D. 

Lemma 3.5 Let  a > b > 1 > c > d > O. Then (1 - c)/(a - c) < (1 - d)/(b - d). 

Proof. Let h(x), 9(x) be strictly increasing differentiable functions defined on 
[0, 1] satisfying 

h(0) = d, h(1) = c, 9(0) = b, 9(1) = a 
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and  

T h e n  

f ' ( x )  = 

H e n c e  

o r  

1 - h ( x )  
f ( x )  - 

g(x) - h(x) 

(g -- h)( - h') - (1 - h)(g' -- h') 
(g - -  h) 2 

h'(1 - g) + (h - 1)g'  
( g - h )  2 

< 0 .  

f ( 1 ) < f ( 0 )  

1 - c  1 - d  
- - <  
a - - c  b - d "  

Q.E.D.  

Proo f  o f  Theorem 3.2. W e  cons t ruc t  a L y a p u n o v  func t ion  

V(S,x)  = fl(~/)(1 - q) - 1 I / -  x* 
1 ~, r/ 

where  x* = xzl  in (2.3), then 

= (A(S)(1  - q ) -  1) (!1 S)(1 f2(S)) 17 

There  are  two possible  cases, namely ,  

i) V x < V 2 < p t ;  
ii) Vx < Pl  < v2. 

Let  (vl, v2) = ( v l , 2 1 ) w  [21,v2). Let  

~b(S) = (1 - S)(1 - f2(S)) _ x* . 
f a ( S ) -  f2(S) 

T h e n  q~(2~) = 0. F r o m  (3.3), if we are  able to show tha t  

~b(S) > 0 on  (v1,~1) 

and  

on  f2 ' ,  (3.2) 

- x * ) .  (3.3) 

(3.4) 

(3.5) 

~b(S) < 0 o n  (/~1,v2) (3.6) 

then  12 < 0. By LaSal le 's  Inva r i ance  Principle  [-HI, we comple te  the  p r o o f  of  
T h e o r e m  3.2. If  vl < v2 < P l ,  then 

f ; ( S ) > O ,  f o r v l < S < v 2 .  (3.7) 
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Since 

~ ' ( S ) =  
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( f ~ ( S ) -  f z ( S ) ) ( f 2 ( S ) -  1) + ( f ~ ( S ) -  f2(S))(1 - S ) ( -  fd(S)) 
( k ( s ) -  A(s))  ~ 

(1 - S ) ( 1  - f2(S))(f~(S)- f~(S)) 
( k ( s ) -  A(s))  ~ 

( f ~ ( S ) -  f 2 ( S ) ) ( f 2 ( S ) -  1) + ( 1  - f2(S))(1 - S ) ( -  f~(S)) 

( k ( s )  - A(s))  ~ 

(1 - S ) ( f a ( S )  - 1 ) ( / ~ ( S ) )  

(A (s) - A(s ) )  2 
/ 

F r o m  (3.1), (3.7) qT(S) < 0, for all vl < S < v2. Hence/(3.5) and (3.6) hold. 
If  v1 < Pl < v2, then f rom the fact 21 < pl ,  we~write 

(Vl , l )2 )  = (Vl,}cl]U[21,pl)~[pi,v2). 

Since f; (S) > 0 on (vl, Pl),  we have ~b'(S) < 0 on (vl, Pl). Obvious ly  (3.5) hold. 
In  order  to establish (3.6), it suffices to show that  ~b(S) < 0 for Pl < S < v2. 
F r o m  (3.3) it suffices to show 

(1 - S ) ( 1  - f 2 ( S ) )  

A ( s ) -  A ( s )  

(1 - 2 1 ) ( 1  - f2(21)) < 
k ( , h ) -  A( ,h)  

for Pl < S < 1) 2 . 

Since 1 - 21 > 1 - S for Pl < S < v2, it suffices to show tha t  

(1 -- f2(21)) (1 -- f2(S)) 
> f o r / 9 1  < S < v 2. 

f~(21) - f2(21) f l (S)  - f2(S)' 

L e t d  = f2(21), c = f2(S),b = f1(21), and  a = fl(S),  since 21 < Pl < S < v2,i t  
follows that  

and 

f 2 ( v 2 ) =  1 > c =  f 2 ( S ) >  f 2 ( 2 1 ) = d  

1 
a = f l ( S ) > - - = f l ( 2 1 ) = b > 1 .  

1 - q  

F r o m  L e m m a  3.5, we have 

(1 - - S ) ( 1  - f 2 ( S ) )  

A (s) - A ( s )  

(1 - ~1)(1 - /2 ( ;o l ) )  
< 

A ( x l ) -  f2( ,h)  

Thus  we comple te  the p roof  of T h e o r e m  3.2. Q.E.D. 

Proof of Theorem 3.3. It  is easy to see that  E1 and  Ez at t racts  each point  
of  02 in the c a s e  A 6 and the c a s e  A 9 respectively (see the Figs. A6,  A 9 in 
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Appendix A). From Poincar~-Bendixson Theorem, the trajectory with intial 
conditions in f2~, it will enter the region S < #1 in finite time. For  the cases A6, 
A 9 we have v2 = /~2 > ~1 and v2 = 1 > #1 respectively. Then the trajectory 
will stay in the region f2' = {(S,x) lvl < S < / q  < v2}. As we did in Theorem 
3.2, we construct the Liapunov function V in (3.2) with 12 < 0 in f2'c~f21. If 
there exists a periodic orbit in Qa, then the periodic orbit {(S*(t), x*(t))}0 <~ < r 
lies in the region f2'n~21. Then 

f o d V  fT 0 = ~ (S*(t),x*(t))dt = l /dt  < O. 
0 

This is a contradiction. Hence no periodic solution in f21. Hence Eel attracts 
each point in f21. Q.E.D. 

3.2 In Theorem 1.5 of IT] states that for an asymptotically quasi- 
autonomous system if there is no chain of equilibria in the limit equation, then 
the o-limit set of a bounded trajectory of the asymptotically autonomous 
system will consists of an equilibrium or a periodic orbit. From this theorem 
and the above analysis, the global results for Type A species in the equations 
(1.2) follows. In order to give biological interpretations in this section and also 
in Sect. 4 and Sect. 5, for the uninhibited growth function f (S) ,  we restrict our 
attentions to the Monod model 

miS 
A(S) - (3.8) 

a i +  S 

where m~ is the maximal specific growth rate and a~ is the Michaelis-Menten 
constant. For  the inhibited growth function f (S) ,  we restrict our attentions to 
the Andrews model 

m~S 
fdS) = a, + S + K,S 2 (3.9) 

where the parameter Ki measure the inhibition effect. It is easy to verify that 
the function J~(S) in (3.8) is strictly monotone and the function f/(S) in (3.9) 

attains the unique maximum mi/(1 + 2 ~ )  at S = Pi = x/~JKi.  Hence 
when the inhibition constant K~ is large, Pi and f/(p~) become small. Under the 
scaling which reduce the equations (1.1) to the equation (1.2), the "new" 
parameters mi, ai, K~, S, xg are the "old" miD, affS (°), KiS (°), S/S (°), xi/?S (°) 
respectively, where S (°), D are input concentration of the substrate and the 
dilution rate respectively. For the biological interpretation of the results of 
Type A species, we state in terms of the original parameters and 
f l (S)  = mlS/(al  + S + K 1 S  2) and f2(S) = m2S/(a2 + S). 

The rest points in terms of the original parameters are: 

gx = (S (°), O, 0), 

~2 = (22,0,7(S (°) - 22)) where f2(22) = D ,  
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7(S (°) --  2 i ) ( D  - f2(2~)) 7(S (°) - 2 i ) ( f l ( 2 1 )  --  D ) )  

E c ,  = f 1 ( 2 1 ) -  ' - ' 

7(S (°) - #1) (D --  f2(#1)) 7 ( S ( ° J - - # i ) ( f i ( # 1 )  - D)~ 

where  21,/11 s o l v e / i ( S ) ( 1  - q) = D a n d  21 < #2. The  resca l ing  of T a b l e  3.1 is 
s h o w n  in  T a b l e  3.4. 

R e m a r k  3.2. In  the  fol lowings ,  we recall  some  resul ts  f rom [ H H W ]  a n d  [ B W ] .  
C o n s i d e r  the  one  species c h e m o s t a t  e q u a t i o n  

= (S (°) - S )D - f ( S ) x ,  

= ( f (S )  - D ) x ,  (3.10) 

S(O) > O, x(O) > O, i = 1 , 2 .  

If  the  f u n c t i o n a l  r e sponse  f ( S )  is of  M i c h a e l i s - M e n t e n  type,  i.e., 

f (S )  = m S / ( a  + S) ,  t h e n  the  a u t h o r s  of  [ H H W ]  p r o v e d  the  fol lowings:  

(i) I f f ( S  {°)) < D, t h e n  l i m t _ ~ x ( t )  = 0 a n d  limt_~o~S(t) = S (°). In  this case, 
the  i n p u t  c o n c e n t r a t i o n  S (°) is t oo  smal l  o r  the  d i l u t i o n  ra te  D is too  large for 
the  species to survive.  

Table 3.4 

Case Criteria for existence of rest points Rest points 

A1 fl(Pl)(1 - q) < D, f2(S (°)) < D gl 

A2 fi(Pl)(1 - q) < D, f2(S (0)) > D ffl, g2 

A3 fi(Pi)(1 -- q) > D, fl(S(°))(1 - q) > D, f2(S (°)) < D gi, d°cl 

A4 ft(Pi)(1 - q) > D, fl(S(°))(1 - q) > D, f2(S (°)) > D, gi, d~2, gel 

0 < 2i < 22 < S (°) 

As fl(p~)(1 -- q) > D, f~(S(°))(1 -- q) > D, f2(S (°)) > D, gl, ~'~2 

0 < 2 2 < 2 ~  < S  (°) 

A6 f , (pl)(1 -- q) > D, fi(S(°))(1 -- q) < D, f2(S (°)) < D d°t, ~ , ,  N~2 

A7 fl(p~)(1 -- q) > D, f,(S(°))(1 -- q) < D, f2(S (°)) > D, gl, E2,N~ 

0 < 21 < 22 < #l < S (°) 

As f i (P i ) ( l  - q) > D, fi(S(°)) (1 - q) < D, f2(S (°)) > D, gl, if2 

0 < 22 < 2~ < S (°) 

A 9 f~(pl)(1 -- q) > D, f~(S~°)) (1 - q) < D, f2(S (°)) > D, g~, g2, ~ l ,  gc~ 

0 < # i  < 2 2 < S  (°) 
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(ii) I f f ( S  (°)) > D, i.e., the break-even concentrat ion 2 = a/(m/D - 1) < S (°), 
then lim~_,o~x(t) = x* = S (°) - 2 and l i m ~ x ( t )  = 2. In this case the species 
survives due to the larger S (°) and smaller D. 

If  the functional  response f ( S )  is inhibited and is of Andrews type, i.e., 
f ( S )  = mS/(a + S + KS2), then the authors  of  [BW]  proved  the followings: 

(i) If  D > maxo<_s<<_s,o,f(S) = f(p) = m/(1 + 2 x / ~  ) then l im,_~x( t )  = 0 
and limt_~ o~ S(t) = S (°). In this case, the highly inhibited growth  of the species 
or the large dilution rate causes the extinction of the species. 

(ii) If  f ( S  (°)) < D < f ( p )  then we have three rest points  Eo = (S (°), 0), 
E 1 = (2, X1"), E 2 = ( # , x * )  where 0 < 2 < # < S (°) satisfy f (2)  = f ( # )  = D, 
2 + x ~  = #  + x *  = S (°). Fu r the rmore  (#,x*) is a saddle point  with one- 
dimensional  manifold  F separat ing the first quadran t  of the S-x  plane into 
two regions t21 and t22. The  asymptot ical ly  stable rest points  (2,x*), (S (°), 0) 
at t racts  each points  of O1, 02 respectively. In this case, the species either goes 
to extinction or survives depending on the initial populat ions.  

(iii) If  f ( S  (°)) > D, then l i m , ~ x ( t )  = x* and lim~_~ooS(t) = 2 where 
f(2) = D and 2 + x * =  S (°). In this case the species survives and  goes to 
a s teady state. 

Next  we consider the chemos ta t  equat ion with two species: 

= (S (°) - S)D - f l ( S ) x l  - f2(S)x2 

xl  = ( f l  (S) - D)x l  , (3.11) 

22 = (f2 (S) - D ) x 2 ,  

S ( 0 ) > 0 ,  X z ( 0 ) > 0 ,  x 2 ( 0 ) > 0 ,  i = 1 , 2 .  

where the functional  response fi(S), i = 1, 2 is either uninhibited or inhibited. 
F o r  each i = 1, 2 let 2/, # / b e  the break-even concentra t ions  o f i - th  species, i.e., 
2/, #/ satisfy f~(2/) = f~(#/) = D, 2 / <  #i in the case of inhibited functional  
response and setting # / =  + oo when f~(S) is uninhibited. 

In the following we state the results in [BW] which will be used in the 
biological interpretat ions for the Type  A, B, C species. 

Theorem 3.6 [BW].  Let  Q = (21, #1)k-)(22, #2) and 21 < 22 < S (0) and A denote 
the set o f  left endpoints of  components o f  Q together with S ~°), i f  S (°~ is not in the 
set Q. Wi th  the exception of  a set o f  initial conditions of  Lebesque measure zero, 
all solutions of(3.11) satisfy 

l imberS( t )  = 7, 7 ~ A 

with the corresponding asymptotic behavior 

limt-~ooxi(t) = S (°) - 2i, limt-~ooxj(t) = 0 , 

where j ¢ i i f  7 = 2i and lim~_~oxj(t) = 0 , j  = 1, 2 / f7  = S(°). Furthermore if  Q is 
connected, then limt~ o~ Xz(t) = 0. I f  in addition, S (°) e Q then (21, S ~°) - 21, 0) is 
globally asymptotically stable for  (3.11). 
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Now we are in a position to give the biological interpretations for each 
case Ai: A1 ~ A2: Species 1 (plasmid-bearing species) cannot survive alone 
due to the large dilution rate D or highly inhibited growth. In the case A 1, the 
input concentration S ~°) is too small or D is too large to support the survival 
of the species 2 (plasmid-free species) alone. Hence both species go to extinc- 
tion. In the case A2, species 2 is able to survive alone under S (°) and D. 
Hence species 1 goes to extinction and species 2 eventually takes over the 
culture. 

A3 ~ As: In these cases, species 1 is able to survive alone. In the case A3, 
species 2 cannot survive alone. However a fraction of species 1 is converted 
into species 2, the coexistence of both species follows. In the case A4, species 
2 is also able to survive alone. The break-even concentration 21 of species 1 is 
smaller than 2z, the break-even concentration of species 2. Then species 2 is an 
inferior competitor. Hence both species coexist due to the conversion of 
a fraction of species 1 into species 2. In the case As, species 1 has larger 
break-even concentration. Then species 1 is an inferior competitor. This 
causes the extinction of species 1. 

A 6 ~ A9: In these cases, species 1 either goes to extinction or survives in the 
absence of species 2. In the case A6, species 2 cannot survive alone. Hence 
either both species are washed out or both coexists. The outcomes depend on 
the initial populations. In the cases A7, A8, A9, species 2 is able to survive 
alone. In the case AT, the break-even concentration 2 2 of species 2 lies between 
those 21,/~1 of species 1. From Theorem 3.6, species 1 is a better competitor. 
Hence both species coexists. In the case As, species 2 has smaller break-even 
concentration. From Theorem 3.6, species 2 is a better competitor and hence 
species 1 goes to extinction. In the case A9, in the absence of conversion of 
species 1 into species 2, either species 1 or species 2 survive (see Theorem 3.6). 
Hence either species 1 goes to extinction or they coexist depending on the 
initial populations. 

In order to see how the species 1 (the plasmid-bearing species) 
survives as the dilution rate D is gradually decreased, we consider the 
following case, namely, f2(S) > fl(S)(1 - q) for all 0 < S < S, f2(S) < 
fl(S)(1 - q) for all S < S < S ~°) where 0 < S < Pl for demonstration. Fig. E1 
in Appendix E is the bifurcation diagram of the dilution rate D with 
respect to the plasmid-bearing population in the steady state for this 
case. In a similar manner it is easy to see that effect of varying the input 
concentration S ~°). 

4 Analysis of Type B species 

4.1 For  the analysis of Type B on ~2, there are ten subcases. The reader can 
refer to the Table 4.1. 

The set of rest points are shown in Table 4.2 for each case of Type B. 
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1 
B, fa(1) < , f2(P2) < 1 

1 - -q  

1 
B2 f~(1) < , f2(P2) > 1, f2(1) > 1 

1 - -q  

1 
B3 fx(1) < , f2(P2) > 1, f2(1) < 1 

1 - q  

1 
B4 fl(1) > 

1 - q  
, f 2 ( P 2 ) < 1 , 0 < 2 1 < p 2 < l  

1 
B5 A(1) > 

1 - q  
, f2(,02) <7 1, 0 < ,02 < 21 < 1 

1 
B6 f1(1) > 

1- -q  
, f z (P2)  > 1, f 2 ( 1 )  > 1, 0 < .,t,1 < A2 < 1 

1 
B7 fl(1) > 

1 - q  
, f2(P2) > 1, f2(1) > 1, 0 < 22 < )~1 < 1 

1 
Bs fl(1) > 

1 - -q  
, f2(P2) > 1, f2(1) < 1, 0 < Rl < 22 < I 

1 
B9 fl(1) > 

1 - -q  
, f z (P2)  > l,  f2(1) < l ,  O < 22 < 2 1 <  #2 < l 

1 
Blo f~(1) > 

1 - q  
, fz(P2) > 1, f2(1) < 1, 0 < #2 < }~I < 1 

,02 denotes the maximal point of fz, 21 solves f l (S)  = 1 / (1  - q),  and 22, #2 solves 
f2(S) = 1. 

It is a routine computa t ion  to evaluate the eigenvalues of the variational 
matrix J at the associated rest points. The following Table 4.3 gives the local 
stability properties for each case of Type B. 

Since the analysis for the cases of Type B on f2 is similar to that  of 
Type A on O, we only state the results in the following. In the meantime, the 
reader can refer to the phase portrai t  of each case in Appendix B. 

Ba: Obviously  E1 is globally asymptotical ly stable. 
B2: Obviously  E2 is globally asymptotical ly stable. 
B3: The stable manifold F of  E 3 separates the region f2 into two regions O1, 
02. Obviously  E2, E1 have the domain  of at t ract ion f2~, 02 respectively. 
B4: This case and Bs, Blo are the most  interesting cases of Type B in 
mathemat ical  sense. Here we only state the results. The further details will be 
described later. 
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Table 4.2 Table 4.3 

Case The rest points set 

BI E1 

B 2 E~, E 2 
k 

B3 El, E2, E3 

B~ E~, E~ 

B5 El, E~, 

B6 El, E2, Ec, 

B7 El, E2 

B8 El, E2, E3, Ecl 

B9 El, E2, E3 

Blo El, E2, E3, Ecl 

E1 Ez E3 Ec~ 

B~ s .  * ~ 

B 2 sa s .  * * 

B3 sa s .  sa 

B 4 S~r ~: #r s~:~r 

B5 sa * * s** or u**  

B 6 u~ sa * s . .  

B 7 u .  s~ #r 

B8 sa sa u .  s * *  

B9 sa s .  u .  * 

Bl  o sa s ,  sa s**  or u , ,  

s: stable; u: unstable; sa: saddle; *: the absence of 
the rest point; *: node; **: node or focus 

i) If f2(21) < f2(1), Eel is globally asymptotically stable. 
ii) If  f2(2~) > f2(1), we are not able to prove the global stability of Ecl .  

Bs: Ecl may be stable or unstable. As some parameters  vary, there is a Hopf  
bifurcation for Ecl .  

B6: As we did in Theorem 3.2, the trajectory will enter the region f2'. We 
construct a Lyapunov function V on f2' and show that Ec~ is globally 
asymptotically stable in the interior of f2. 
BT: Since E~ does not exist, obviously E2 is globally asymptotically stable. 
Bs: Similar to the proof  of Theorem 3.2, we can construct a Lyapunov fuction 
V on the invariant region f2' and show that E~I is globally asymptotically 
stable in the interior of f2. 
B9: Since no interior rest point exists, it is obvious that E2 is globally 
asymptotically stable in the interior of f2. 
B~o: The stable manifold F of E3 separates the region f2 into two regions f2~ 
and f22. In 02, each point is attracted by E2. In 02, as parameters vary, there is 
a Hopf  bifurcation for Ec~ as in the case Bs. 

Now we state some results for the cases B4 and Bs. Let 
a(S )  = (t - S)(1 - f2(S)) and b(S)  = f a ( S )  - f z ( S ) ,  then the equations (2.2) 
becomes 

t dS ~ [  = a(S)  -- x b ( S )  , 

d x  
x ( f ~  (S) (1 - q) - 1) . 

(4.1) 
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The  interior  rest poin t  of (4.1) is (21, x*), where 

1 

A ( 2 1 )  - 1 - q '  

x ~ =  
(1 -- 21)(1 -- f2(21)) 

k(21)-f2(21) 
(4.2) 

Fo r  the cases B4 and Bs, Ec, = (21, x*) exists because 

1 - f 2 ( 2 1 )  
x* = (1 - 21) < 1 - 2, .  

k ( 2 1 ) -  f2(21) 

The var ia t ional  matr ix  at Ec, is 

[ a/(21)- x~ b ' (21) , -  b0(21) 1 
x*(1 - q) f~(21), 

Since - b(21)x*(1 - q)f~'(21) < 0, so the eigenvalues of the 
mat r ix  have negative real parts  if and only if 

var ia t ional  

or 

or 

a'(21) - x~b'(21) < 0 

a,(21) _ a(21) b'(21) < 0 b LS1) 

b<) (a(S)'; < 0  
\ b ( S ) J  Is =~1 

Hence Ec1 = (21, x*) is locally asymptot ica l ly  stable if and only if the isocline 
x = h(S)  = a(S) /b(S)  has negative slope at S = 21 and Ec, is unstable  if and 
only if 

h'(21) > 0 . 

Hence  in order  to unders tand  the stability p roper ty  of Ec, ,  it suffices to know 
the shape of the isocline x = h(S). Since 

(1  - S ) ( 1  - f 2 ( S ) )  
h(S)  = 

f l  (S) - f2  (S) 

it follows that  

f 2 (S )  - 1 1 - S 
h '(S)  - + 

f l ( S ) -  f2(S) ( f ~ ( S ) -  f2(S)) 2 

• [ f [ ( S ) ( f 2 ( S )  - 1) + f ; (S)(1 - fl(S))] (4.3) 

i) Fo r  the case B4, the assumpt ion  21 < P2 implies h'(21) < 0, i.e, Eel is 
locally asymptot ica l ly  stable. 
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ii) For  the case Bs, the assumption is 21 > P2. If we fix f l (S)  for S ~> 0 and 
f2(S) for S < P2. Let the function fz(S) change rapidly for some interval 
(P2, P2 + c), then from (4.3), h'(S) > 0 for P2 < S < fi2 + c (P2 > P2). Then 
from (4.2) there is an interval (qmin, qmax) such that if q e (qmin, qmax) then 
h'(21) > 0. Hence it is possible to find parameters such that Eel is unstable 
and hence there exists a periodic solution for (2.2). Another way to explain 
the existence of periodic solutions, we may consider the important special 
case 

Since 

f ~ ( s )  = 
m2S 

a2 + S + KS  2 " 

A ( s )  = 
m2(a 2 - KS 2) 

(a 2 + S + KS2) 2 ' 

f2(S) attains its maximum at P2 = (a2/K) 1/2. Assume f2 (P2)  = 1 then 

or 

K = K * - ( m 2 - -  1) 2 
4a2 

Assume 0 </)2 < 1 or m 2 - -  1 > 2a2. When K = K*, from (4.3) the shape of 
the isocline x = h(S, K*) is like the Fig. D1 in Appendix D. 

Obviously for K near K*, there exist an interval on which h'(S,K) > O. 
Thus we may vary the parameter q such that 21 as a function of q satisfies that 
h'(21, K) is greater than zero. Hence the instability of Eel is possible. The 
Figs .  D 2  and D3 in Appendix D illustrate the existence of a stable limit cycle. 
Fig. D2 gives the time course, while Fig. D3 shows the limit cycle in the 
three-dimensional phase space. The result suggests that the plasmid-bearing 
organisms and the plasmid-free organisms may coexist in the form of 
oscillations. 

For  the case B4, we have partial result for the global asymptotic stability 
of Eel. Let 

f2(21) < j~(1) . (4.4) 

First we shall show that under the assumption (4,4) the isocline x = h(S) 
satisfies 

( S - 2 1 ) ( h ( S ) - x * ) < 0  f o r 0 < S < l ( S # 2 1 ) .  (4.5) 

From the assumption 21 < p c  and (4.3), it follows that h ' ( S ) < 0  for 
0 < S < 21. To show (4.5), it suffices to show that h(S) < h(21) for 21 < S < 1 
or equivalently 

(1 -- X)(1 - f2(S)) (1 -- 21)(1 -- f2(21)) 
< for all21 < S < l .  

f l ( S ) -  f2(S) f l ( 2 a ) -  f2(21) 
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Since 1 - S < 1 - 21 for 21 < S < 1, it suffices to show that 

(1 - A ( s ) )  (1 - A ( 2 1 ) )  
< (4.6) 

f~(S)- f2(S) f~(21)- f2(21) 

for all 21 < S <  1. Let a =  f~(X), b = f ~ ( 2 1 ) = l / ( 1 - q ) ,  c = f 2 ( S )  and 
d = f2(21) where 21 < S < 1 (f2(1) > f2(21)), then a > b > 1, 1 > c > d and 
(4.6) follows directly from Lemma 3.5. Hence under the assumption (4.4), we 
obtain the global stability of E~. 

4.2 As we did in Sect. 3, we can apply Theorem 1.5 of IT] to obtain the global 
results of Type B for the equation (1.2). In the following, we give the biological 
interpretations for Type B species. Here fl(S)=mlS/(al +S) and 
f2(S) = mzS/(a 2 + S + K2SZ). The rest points in terms of the original para- 
meters are: 

gl  = (S (°), 0, 0 ) ,  

~v 2 ~- ( 2 2 , 0 ,  ~)(S (0) - -  2 2 ) ) ,  

63 = ( m , 0 , 7 ( s  (°) - m ) ) ,  

o~cl = (21, ?(S(°)-2t)(D-f1(21) -- f2 (21) f2 (21)) ,7(S (0)-?~_2~) ~ f ~ l )  21) (f1(21) -- D)) 

where f1(21)(1 - q) = D and f 2 ( 2 2 )  = f2 ( ]22)  = D, 22 </~z < S (°). The rescal- 
ing of Table 4.1 is as follows. 

In the following, we give the biological interpretations for each case Bi. 

B1 ~ B3: In these cases, species 1 (plasmid-bearing species) cannot survive 
alone due to the large dilution rate D or small input concentration S (°). In the 
case B1, species 2 (plasmid-free species) also cannot survive alone. Hence both 
species go to extinction. In the case B2, species 2 is able to survive alone. 
Hence species 1 goes to extinction and species 2 takes over the culture. In the 
case B3, in the absence of species 1, species 2 either survive or goes to 
extinction depending on the initial population. Hence either both species 
will be washed out or only species 2 survives depending on initial 
populaions. 

B4 ~ Bs: In these cases, species 1 is able to survive alone and species 2 cannot 
survive alone. Then both species coexist in the steady state for the case B4 and 
may coexist in the form of oscillations for the case Bs. 

B6 ~ B7: In these cases, both species are able to survive alone. In the case B6, 
species 1 has smaller break-even concentration 21, hence both species coexist. 
In the case BT, species 1 has larger break-even concentration and it is an 
inferior competitor. Due to the conversion of species 1 into species 2, species 
1 goes to extinction and species 2 survives. 
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Case Criteria for existence of rest points Rest points 

B, fl(S(°))(l - q) < D,  f z ( P 2 )  < D ~1 

B2 fl(S(°))(1 - q) < D, f2(P2) > D, f2(S (°)) > D d~l, 82 

B3 f l (S(°))( l - -q)<D, f2(p2) > D, f2(S(°))<D ~1, d°2, d~3 

B 4 fl(S(°))(1 - q) > D, f2(P2) < D, 0 < 21 < P2 < S (°) #1, E~ 

Bs fl(S(°))(1 - q) > D, f2(P2) < D, 0 < P2 < 21 < S ~°) gl, Go, 

B6 f~(S(°))(1 - q) > D, f2(P2) > D, f2(S (°)) > D, #1, g2, C~, 
0 < 21 < 22 < S (°) 

B7 f1(S(°))(1 - q) > D, fe(Pe) > D, f2(S (°)) > D, g~, C2 
0 < 2 2 < 21 <~ X (0) 

Bs fl(S(°))(1 - q ) > n ,  f2(p2)>D, fa(S(°))<D, gi, #2, #3, gcl 
0<2~ < 2 2 < S  (°) 

B 9 fl(S(°)) (1 - q) > D, f2(P2) > D, f2(S (°)) < D, gl, g2, g3 
0 < 22 < 21 < ~2 < S(°) 

Blo f l (S (° ) ) (1 -q)>O,  f2(P2)>D, fz(S(°)) <O, gl, g2, g3,#~ 
0 <1~2 < 21< S (°) 

Bs ~ Blo: In these cases, species 1 is able to survive alone and species 2, in the 
absence of  species 1, either goes to extinction or survives depending on the 
initial populat ion.  In  the case Bs, species 1 has smallest break-even concen- 
t rat ion 22 and it should be a better competi tor .  Hence both  species 
coexist. In the case B9, 21 lies between two break-even concentra t ion 22, 
#2 of  species 2. F r o m  Theorem 3.6, species 2 is a better competi tor .  Hence 
species 2 survives and species 1 goes to extinct. It is interesting that  our  
analysis shows species 2 survives in the steady state. In the case B~o, f rom 
Theorem 3.6, it follows that  either species 1 or  species 2 survives in the absence 
of  conversion of species 1 into species 2. Hence either bo th  species coexist or 
species 1 goes to extinction and species 2 survives depending on initial 
populat ions.  

In  order  to see how the species 1 (the plasmid-bearing species) survives as 
the dilution rate D is gradual ly decreased, we consider the following case, 
namely, f l  (S) (1 - q) < f2 (S) for all 0 < S < S and fa (S) (1 - q) > f2 (S) for all 

< S < S (°) where P2 < S < S (°) and fl(S(°)) (1 - q) < f2(P2) for demonst ra-  
tion. Figure E2 in Appendix E is the bifurcation diagram of the dilution rate 
D with respect to the plasmid-bearing popula t ion  in the steady state for this 
case. In a similar manner  it is easy to see that  effect of  varying the input 
concent ra t ion  S (°). 
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5 Analysis of Type C species 

5.1 In Type  C, if we consider  the analysis on ~ then there are twenty one 

subcases which are shown in the following. 

Table 5.1 

1 
C, A ( P l )  < , f2(P2) < 1 

1 - q  

1 1 
c~ k(p l )  > , kO)  > 

1 - - q  1 - q  
,f2(P2) < 1, 0 < -~1 "< P2 < 1 

1 1 
C3 A(Pl) > , f~(1) > 

1 - q  1 - q  
,f2(P2) < 1, 0 < P2 < 21 < 1 

1 1 
C4 A ( P l )  > , A(1) < 

1 - q  1 - q  
,f2(P2) < 1, 0 < 2 1  < p 2  < 1 

1 1 
C5 A ( p l )  > , A(1) < 

1 - q  1 - q  
,f2(P2) < 1, 0 < P2 < 21 < i 

1 
C6 f~(pl )  < , fz(p2) > 1, f2(1) > 1 

1 - q  

1 
C7 A ( p l )  < , f2(p2) > 1, f2(1) < 1 

1 - q  

1 1 
C8 A ( p l )  > , f~(1) > 

1 - - q  1 - - q  
,f2(P2) > 1, f2(1) > 1, 0 < 21 < 22 < 1 

1 1 
C9 f~(pl )  > , A( I )  > 

1 - q  1 - q  
,f2(P2) > 1, f2(1) > 1, 0 < 21 </~2 < 1 

1 1 
Clo A(pl) > , A(1) < 

1 - q  1 - q  
, fe(P2)  > 1, f2(1) > 1, 0 < 22 < 21 < 1 

1 1 
Cll fl(Pl) > , f l(1) < 

1 - q  1 - q  
,f2(P2) > 1, f2(1) > 1, 0 < 21 < 22 < #1 < 1 

1 1 
c~2 f , (p , )  > , A O )  < 

1 - - q  1 - q  
,f2(P2) > 1, f2(1) > 1, 0 < 2~ < / q  < 22 < 1 

1 1 
c ~  A(p~) > , AO) > 

1 - q  1 - q  
,f2(P2) > 1, f2(1) < 1, 0 < 2x < 22 < 1 

1 1 
C14 fl(Pl) > , ./'1(1) > 

1 - q  1 - q  
,fdPz) > 1, f2(1) < 1, 0 < 22 < ) q  < #z < 1 
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Table 5.1 (continued) 
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1 1 
Cls fl(Pl) > , fx(1) > ,f2(P2) > 1, f2(1) < 1, 0 < #2 < 21 < 1 

1 - - q  1 - - q  

1 1 
C16 f~(Pl) > , fl(1) < ,f2(P2) > 1, f2(1) < 1, 

1 - - q  1 - q  
0 < ) o 1 < # 1 < 2 2 < # z < 1  

1 1 
C17 fl(Pl) > , fl(1) < ,f2(P2) > 1, f2(1) < 1, 

1 - q  1 - q  
0 < 2 1  <22 <#1 < # 2 < 1  

1 1 
Cl, A(p,) > , f,(1) < ,f2(p2) > 1, f20) < 1, 

1 - q  1 - q  
0 < 2 2 < 2 1  < # i  </~2<1 

1 1 
c,9 A(pl) > , fi(1) < ,f2(p2) > 1, fz(1) < 1, 

1 - - q  1 - - q  
0 < 2 ~ < 2 2 < # 2 < # a < 1  

1 1 
C2o A(pl) > , A(1) < ,fz(p2) > 1, A(1) < 1, 

1 - - q  1 - - q  
0 < 2 2  <21 <#2  <#1 < i 

1 1 
C21 fl(pl) > , fl(1) < ,fz(P2) > 1, f2(1) < 1, 

1 - - q  1 - q  
0 < 2 2  <#2  <21 <#1  < 1 

pl, p2 denote the maximal point of fl,fz respectively, )q, #1 solve f1(S) = 1/(1 - q), and 1~2, 
#z solve f2(S) = 1. 

The rest points set and the local analysis correspondence to each case are 
shown in the Tables 5.2 and 5.3. 

Since the analysis for Type  C on (2 is similar to that  for Type  A and 
Type  B on O, we only state the results in the following. (See the figures in 
Appendix C.) 

C1: Obviously  E1 is globally asymptot ical ly  stable. 
C2: Ecl is locally asymptot ical ly  stable. As in the case B4, we have 

i) If  f2(1) > f2(21), then Eel is globally asymptot ical ly  stable; 
ii) f2(1) < f2(21), the global result is unknown.  

C3: Similar to the case Bs, Eel m a y  be stable or unstable. 
C4:Ec2 is a saddle point  with one dimensional  stable manifold F separating 
the region .2 into two regions O1 and 02. E1 is locally asymptotical ly stable 
and attracts each point  in *22. As in the case A3, it can be shown that  
if /q  < P2, then Ec~ attracts each point  in the interior of O1. When  
fz(21) > fz(I-h), we conjecture that  Ec~ attracts each point  in .21. 
Cs: Ec, may  be stable or  unstable. Hence H o p f  bifurcation may  occur  as the 
parameters  vary. 
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C6: Obviously E 2 is globally asymptotically stable. 
C7:E3 is a saddle point. As in the case B3, E2 attracts each point in O1, and 
E1 attracts each point in 02. 
C8: Obviously E2 is globally asymptotically stable. 
C9: As we did in Theorem 3.2, the trajectory will enter the region O'. We 
construct a Lyapunov function V on O' and show that Ec, is globally 
asymptotically stable in the interior of O. 
Clo: Obviously E2 is globally asymptotically stable. 
C,1: Similar to the proof of Theorem 3.2, we can construct a Lyapunov 
function V on the invariant region ~' to show that Ec~ is globally asymp- 
totically stable in the interior of O. 
C12:Ee2 is a saddle point with one dimensional stable manifold F. As in the 
case  A9, Ecl attracts each points in the interior of O1, E2 attracts each point 
in f22. 
C13: As in the case Bs, Ec, is globally asymptotically stable. 
C1,: Since the interior rest point does not exist, as in the case Bg, E2 is 
globally asymptotically stable. 
C1 s: Ec~ exists. As in the case  B l o  , E 2 is locally asymptotically stable and E 3 is 
a saddle point with one dimensional stable manifold F which separates the 
region O into two regions f21, 02. E2 attracts each point in ~'~1 while Ecx may 
be stable or unstable as the parameters vary. 
C16: The interior rest points Ec~, Ec2 exist. Ec2 and E 3 a re  saddle points, E l ,  

E2, Ecl are locally asymptotically stable. The stable manifolds of E3, 
Ec2 separate the region ~2 into three regions ~21, f22 and 03. E1 attracts each 
point in f23, E2 attracts each point in 02 and Eq attracts each point in the 
interior of O1. 
C17: E~ exists, but Ec2 does not exist. The stable manifold F of E3 separates 
the region O into two regions O1, ~22. Ecl attracts each point in the interior of 
Q1 and E1 attracts each point in £22. 
Cls: E3 is a saddle point with one dimensional stable manifold F which 
separates the region O into two regions ~21, 02. E1 attracts each point in O2 
and E2 attracts each point in f21. 
C19: E~, and E~2 exist. Ee~ is connected to E3. Ec~ attracts each point in the 
interior of £21. E1 is an attractor for ~22. 
C20: E~ does not exist. E~ is chained to E3. E1 attracts each point in f22 and 
E2 attracts each point in O1. 
C21: E3, E~ are saddle points with one dimensional stable manifold F1, F2 
respectively. F1, F2 separate f / into three regions f21, g22, and 03. E2 attracts 
the points in Oa. E~ is the global attractor of ~22. The rest point E~ is stable or 
unstable as parameters vary. 

5.2 Use Theorem 5 of IT] again to get the similar global results of Type C on 
the equation (1.2) as above. The reader can try to modify the description of the 
results of Type C on ~ for oneself. For the biological interpretation of the 
results of Type C species, we state in terms of the original parameters and 
f l(S) = mlS/(al + S + K1S 2) and f2(S) --- mzS/(az + S + K2S2) .  The rest 
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Table 5.2 

Case The rest points set Case The rest points set 

C~ E1 C12 El, E2, Ecl, Ec2 

C2 El, E~ Ca3 El, E2, E3, E~ 

C3 El, E~ C14 El, E2, E 3 

C4 El, Ec,, Ec2 Cls El, E2, E3, Eel 

C5 El, E~, E~ C16 El, E2, E3, E~, E~ 

C6 El, E2 C17 Ea, E2, E3, Ec, 

C7 El, E2, E3 C18 El, E2, E3 

C8 El, E2 C19 El, E2, E3, Ecl, Ec2 

C9 El, E2, Ec~ C20 Eb E2, E3, Ec 2 

C10 El, Ez C2i El, E2, E3, E~, E~ 

C11 El, E2, E~ 

T.-K. Luo, S.-B. Hsu 

points in terms of the original parameters are: 

g l  = (S (°), 0, 0 ) ,  

g2  = (22,0,  7(S (°) - 22) ) ,  

•3 = (#2,  O, 7 ( 8  (0) - -  #2) )  , 

( '~(S (0, -- .,~I)(D -- f2(~1)) '~(S (0, - ) . ,1)(f1(~1)- D).) 
: 7 7 , i 7 7 -  7r7{,   ' 77, 55 _ ' 

OXeC2 : (#1, 3/(S(°) -- #1)(D -- f1(#1) - f2 (#1)f2(#1)) ' '~(S(°) -- #1) ( f l  (#1) -- ?~-~-17: f~ -~ i i  D! )  

where f l ( 2 1 ) ( 1 - q ) = f l ( # 1 ) ( 1 - q ) = D ,  2 1 < # 1 < S  (°) and f2(22)=  
f2(#z) = D, 22 < #2 < S(°)- The rescaling of Table 5.1 is as follows. 

In the following, we give the biological interpretations for each 
case C~. 

Ca, C6, C7: In these cases, species 1 (plasmid-bearing species) cannot survive 
alone. In the case C1, species 2 (plasmid-free species) also cannot survive 
alone. Hence both species go to extinction. In the case C6, species 2 is able to 



Plasmid-bearing, plasmid-free competition 

Table 5.3 

E1 E2 E3 E~ E~ 

C1 s. k -k -k -k -k 

Cz sa * * s * *  * 

C3 sa ~ -k s~4 r or u.k-. k -k 

C4 s .  * * s * *  sa 

C5 s .  * * s** or u * *  sa 

C6 sa s .  * * * 

C 7 s., x s. k sa -it 

C 8 uqt s4t ax .it .Jr 

C 9 U4~ sa * s * *  . 

C ~ o sa S4t 4t 4~ ax 

C~ ~ sa sa * s * *  * 

C12 sa s .  * s * *  sa 

C13 sa sa u .  s * *  * 

C~4 sa s .  u .  * * 

C15 sa s .  sa s * *  or u** * 

C16 so x s..k sa s4r4x sa 

C1v s .  sa sa s * *  * 

C l s s4 x s~  sa -it 

C19 S4 x sa u .  s e e  sa 

C2o s .  s .  u .  . sa 

Cz~ s .  s4, sa s * *  or u * *  sa 

s: stable; u: unstable; sa: saddle; *: the absence of the rest point; 
, :  node; **: node or focus 
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survive alone. Hence species 1 goes to extinction and  species 2 survives. In  the 
case C7, species 2 either goes to ext inct ion or survives in the absence of species 
1 depending  on the initial  popula t ion.  Hence as expected either both  species 
go to ext inct ion or species 2 takes over the culture depending on the initial  
populat ions .  
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C2 ~ C5: In these cases species 2 cannot survive alone. In the cases C2 and 
C3, the species 1 is able to survive alone. Hence both species coexist. In the 
case C4 and Cs, species 1 either goes to extinction or survives depending on 
the initial population. Hence either both species are washed out or both 
coexist depending on the initial populations. 

C 8 ~ C12: In these cases, species 2 is able to survive alone. In the cases Cs and 
C9, species 1 is also able to survive alone. However in the case Cs, species 1 has 
larger break-even concentration 21. It follows that species 1 is an inferior 
competitor and species 2 takes over the culture eventually. In the case C9, 
species 1 has smaller break-even concentration and hence both species coexist. 
In the cases Clo, Cll ,  C12, species 1 either goes to extinction or survives in the 
absence of species 2. In the case Clo, species 1 has larger break-even concen- 
tration. It follows that species 2 survives and species 1 goes to extinction. In 
the case Cll ,  since 21 < 22 < #1, from Theorem 3.6, species 1 is a better 
competitor. Hence both species coexist. In the case C12, since 21 < #1 < 22, 
from Theorem 3.6, in the absence of conversion of species 1 into species 2, 
either species 1 or species 2 survives. Hence either both species coexist or 
species 2 takes over the culture eventually depending on the initial popula- 
tions. 

C13 ~ C15: In these cases, species 1 is able to survive alone, and species 
2 either survives or goes to extinction in the absence of species 1. In the case 
C13, since 21 < 22 </~2 < ]21 ~--- CO, from Theorem 3.6, species is a better 
competitor. Hence both species coexist. In the case C14, since 22 < 21 </~2, 
from Theorem 3.6, species 2 is a better competitor. As we did in case B9, the 
species 2 survives and the species 1 goes to extinction. In the case Cls, as we 
did in case Blo, either both species coexist or only species 2 survives. 

C16 ~ C21: In these cases, both species either survives or goes to extinction in 
the absence of the other species. In the cases C17, C19, from Theorem 3.6, 
species 1 is a better competitor. Hence either both species go to extinction or 
both coexist. In the case Cls, C2o, from Theorem 3.6, species 2 is a better 
competitor. Hence either species 2 go to extinction or only species 2 survives. 
In the c a s e  C 1 6  , Cal , as we did in the case C12, either both species coexist or 
both species go to extinction or only species 2 survives. 

In order to see how the species 1 (the plasmid-bearing species) survives 
as the dilution rate D is gradually decreased, we consider the following 
cases: 

1. f l ( S ) ( 1 - q ) < f 2 ( S )  for S < S  and f l ( S ) ( 1 - q ) >  f2(S) for 
S (°) > S > S, where /)2 > S >  ,01 and fl(S(°))(1 - q) < f2(S) < f2(P2) < 
f~(pl)(1 -- q). 

2. fl(S)(1 -- q) > f2(S) for S < $1, fl(S)(1 - q) < fa(S) for $1 < S < $2 
and fl(S)(1 - q) > f2(S) for S (°) > S > $2 where Pl < $1 < P2 < $2 and 
f l (p l ) (1  - q) < f2(P2) for demonstration. 
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/ 

Figs. E3, E4 in Appendix E are the bifurcation diagrams of the dilution 
rate D with respect to the plasmid-bearing population in the steady state for 
these cases. In a similar manner it is easy to see that effect of varying the input 
concentration S (°). 

6 Discussion 

In this paper we give a global analysis of the asymptotic behavior of the model 
studied by Stephanopoulis and Lapius [SL], assuming uninhibited or 
inhibited growth for both plasmid-bearing and plasmid-free populations. In 
[HWW] the authors gave a complete analysis for the case of uninhibited 
growth rates. The foregoing sections gave a global analysis for the Type 
A species (plasmid-bearing species is inhibited and plasmid-free species is 
uninhibited), Type B species (plasmid-bearing species is uninhibited and 
plasmid-free species is inhibited) and Type C species (both of plasmid-bearing 
and plasmid-free species are inhibited). Although it is not very realistic to have 
the Type A and the Type B species in practice, we follow the same line as the 
authors of [SL] and [RD] did, to do the analysis for the sake of completeness. 
In reality, both of the plasmid-bearing and plasmid-free species have the same 
type of growth response functions for the substrate. Hence the results of 
Type C species in this paper and those in [HWW] are important in 
application. 

Our results demostrate the existence of multiple states as Macken, Levin 
and Waldst~itter did for the bacteria-plasmid systems [MLW]. Our analysis 
also shows that the possibility of coexistence in the form of oscillations in the 
cases of Bs, Blo, Cts, C21. There are a number of models for plasmid loss 
referenced in [SL]. There is also a nice paper of Simonsen [Sl, surveying 
a number of experiments and giving an estimate q as 10 3 _ 10- 5 HR- 1. The 
interested reader may consult it for further biological considerations. 
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