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Abstract. A model of competit ion between plasmid-bearing and plasmid-free or- 
ganisms in a chemostat  was proposed in a paper  of Stephanopoulis and Lapidus. 
The model was in the form of a system of nonlinear ordinary differential equations. 
Such models are relevant to commercial production by genetically altered organ- 
isms in continuous culture. The analysis there was local (using index arguments). 
This paper provides a mathematically rigorous analysis of the global asymptotic 
behavior of the governing equations in the case of uninhibited specific growth 
rate. 
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1 Introduction 

Genetically altered organisms are frequently used to produce foreign products. The 
alteration is accomplished by the introduction of D N A  into the cell in the form of 
a plasmid. The load imposed by the production can result in the genetically altered 
(the plasmid-bearing) organism being a less able competitor than the plasmid free 
(or "wild" type) organism. Unfortunately, the plasmid can be lost in the reproduc- 
tive process. Since commercial production can take place on a scale of many 
generations, it is possible for the plasmid-free organism to take over the 
culture. 

The chemostat  is a common model in microbial ecology. (It is also known as 
a "continuous culture" or as a "continuously stirred tank reactor".) It is used as an 
ecological model of a simple lake, as a model of waste-treatment, and as a model for 
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commercial production of fermentation processes. It is important in ecology 
because the parameters are readily measurable, and thus, the mathematical results 
are readily testable. 

The following model of competition between plasmid-bearing and plasmid-free 
organisms in a chemostat based on the mass balances of the organisms was 
proposed by Ryder and DiBiasio [RD]. 

S' = (S  (°) - S ) D  - x l a l ( S )  - Xza2(S)  

X'l = xl(f~(S)(1-q) - D) (1.1) 

xl =xz(f2(S) - D)  + qx ,  f~(S)  

S(0) > 0, x,(0)>0, i = 1,2. 

S( t )  is the nutrient concentration at time t, x~( t )  is the concentration of plas- 
mid-bearing organisms at time t, and x z ( t )  is the concentration of plasmid-free 
organisms at time t. The consumption rates and the specific growth rates of 
plasmid-bearing and plasmid-free organisms are a~, a2, f~ and f2, respectively. The 
probability that a plasmid is lost in reproduction is represented by q, and hence 

0 < q < l .  

The operating parameters are S (°), the input concentration of the nutrient and D, 
the washout rate of the chemostat. 

Assuming that a~(S)= az(S), Ryder and DiBiasio [RD] presented a local 
stability analysis of the rest points for very general growth kinetics. Based on this 
analysis they suggest an operational strategy involving feedback control to en- 
hance plasmid stability in chemostat systems. 

Instead of assuming that a~(S) -- oh(S), we consider the model proposed by 
Stephanopoulis and Lapidus [SL], who assume that 

f/(S) 
a i ( S ) = - -  f o r i - = l ,  2 ,  

7 

where ? is the yield constant (assumed to be the same for both populations). They 
used very clever index theory arguments to determine the steady state portraits 
based on the shape and mutual disposition of the specific growth rate curves. They 
do an exhaustive analysis for the two most common growth models, the Monod 
model (also referred to as Michaelis-Menten kinetics or Holling type II) for 
uninhibited growth, 

#m,x S (1.2) 
K s + S  

and the Andrews model for inhibited growth, 

/~max S 
$2  • (1.3) 

K s + S + - -  
Kx 

We restrict our attention in this paper to arbitrary response functions that are 
uninhibited within the range of interest. That is, we assume only that the functions 
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f (S)  satisfy: 
fdS) is continuously differentiable, (1.4) 

f~(o) = o ,  (1.5) 

/ '~(S)>0 for all 0 < S  _<_ S O . (1.6) 

Besides the Monod model (1.2), another important model of uninhibited growth 
has an S-shaped or sigmoidal form and is often referred to as Holling Type III (see 
for example [JDFT]), 

/-/max S2 
$2 . (1.7) 

Ks + S + K--~r 

Ivlev's functional response, 
/4~ax (1 - e - k ' ) ,  (1.8) 

also an example of uninhibited growth, is the most common functional response 
used to describe zooplankton grazing. 

In fact, inhibited growth is also covered in this analysis provided (1.6) holds. In 
particular, the Andrews model (1.3) for inhibited growth would be covered pro- 
vided that x ~ s  Ks > S °. 

The arguments given by Stephanopoulis and Lapidus do not exclude the 
possibility of nontrivial periodic solutions and hence they cannot make assertions 
about the eventual outcome that are global in the sense that they are independent 
of the initial conditions. (See [BWb] and [HW] for examples of other similar 
chemostat models that do have limit cycles.) Although we do not find any new 
asymptotic behavior patterns under the above conditions, we prove rigorously that 
there are no nontrivial periodic solutions and hence provide a mathematically 
rigorous determination of the global asymptotic behavior of solutions of (1.1). We 
thus predict the outcome of competition and show how the outcome depends on 
the parameters of the system, but is independent of the initial concentrations in the 
inoculant. Given the unavoidable competition within cultures of genetically altered 
organisms, it seems important to have the problem rigorously understood from the 
mathematical viewpoint. Further comments may be found in Sect. 5. 

By measuring concentrations of nutrient in units ofS (°), time in units of 1/D, and 
xi in units of 7S (°), the number of parameters can be reduced and the equations take 
the form 

S' = 1 -- S -- x l f f f S )  - x2f2(S) 

x'l = x d A ( S ) ( 1 - q )  - 1) (1.9) 

X; = x 2 ( f 2 ( S  ) -- 1) + q x t f ~ ( S )  

S(0) > 0, xi(0)>0, i = 1, 2, 

where we abuse notation, since each f ( S )  in (1.9) is defined to be f . ( S  (°) S ) /D)  in 
(1.1). Therefore, these scaled response functions f~ (S) satisfy (1.4), and (1.5)-(1.6) for 
all 0 < S < 1 .  

The operating parameters have been scaled out, or, from another point of view, 
such parameters as # . . . .  Ks and Ks are measured relative to the operating 
environments. (These parameters have changed their biological meaning.) This is 
mathematically convenient although to be useful, the results must be returned to 
biologically meaningful units. We do this in the discussion in Sect. 5 where we 
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interpret our results in terms of the operating parameters and thus provide 
a strategy to maintain mixed cultures in the chemostat. 

The reader is referred to Levin and Stewart [LS] and Macken, Levin and 
Waldst~itter [MLW] and the references included in these papers for other ap- 
proaches to modeling competition between plasmid-bearing and plasmid-free 
organisms. 

2 P r e l i m i n a r i e s  

Let S ( t ) =  1 - S ( t ) - x l ( t ) - x 2 ( t ) .  The system (1.9) may be written equivalently as 

U = - I ;  

x'l = x~(f~(1 - £ - x l - x 2 )  (1 - q ) -  1) 

x'2 = x 2 ( f 2 ( 1 -  S - x l - x 2 ) -  l ) + q x ~ f ~ ( 1  - £ - X l -  X2) , 

1 - X ( O ) - x l ( O ) - x 2 ( O )  >= O, xi(O) >= O, i = 1, 2 .  

Clearly limt_~® Z( t )=0 ,  and so the omega limit set of any solution of (1.9) is 
contained in the set 

~.~3 = {(S,  Xl, X2)[S ~_ O, Xl~0, x2 ~_~ 0, X = 0}. (2.1) 

The limiting system, obtained by restricting the initial conditions to the set/23 , is 

x'l = x, (fl(1 - x x - x 2 )  (1 - q ) -  1) (2.2) 

x~ = x 2 (f2 (1 - x1 - x2) - 1) + qx  I f l  (1 - x1 - x2). 

These equations, of course, are restricted to the region 

n = {(x i ,  x2)lx~ > o, x2 > o, x , + x 2  <-_ 1}. 
The boundary of f2 satisfies the following properties. 

( X I + X 2 ) ( Z ) = I  , f o r s o m e z > _ _ O ~ x i ( v ) = - x i ( z ) < O ,  i = 1 , 2 .  (2.3) 

x~(z) = 0 for some z > 0 ~ xi(z) = 0 . (2.4) 

X2(q2 ) = 0 for some r > O~x'2( 'c)  = q x l ( z ) f l ( 1 - x l ( r ) )  > 0 . (2.5) 

Therefore, f2 is a positively invariant region (where uniqueness of initial value 
problems is applied in case (2.4)). Similar arguments show that ~3 defined in (2.1) is 
positively invariant. 

We use the following notation for the relevant rest points of system (1.9). We say 
that a rest point of(1.9) does not exist if any one of its components is negative. Since 
l imt ,  oo 2 ( 0 = 0 ,  any rest point E=(S ,  21, :c2) of (1.9) must satisfy 

1 - S - 2 1 - x 2  = 0 . 

The washout rest point is denoted E} = (1, 0, 0). There is only one possible 
rest point involving plasmid-free organisms but no plasmid-bearing organisms, 
denoted E23 = (22, 0, 1 -  22) where 22 is defined as the unique value of S where 

f2 (22) = 1 (2.6) 
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Ec=()~ , x l ,  x*), where 2* is (if one exists). The mixed culture rest point is denoted 3 , , 
defined as the unique value of S where 

1 
f~ (2*) - - -  (2.7) 

( l - -q )  

(if it exists) and we assume x * > 0  for i=1  and 2. When E3c exists (this will be 
discussed in Sect. 3.2), 

( 1 - 2 " )  (1 --f2 (2")) 
x *  = , ( 2 . 8 )  

fi(2*)-A(2*) 

x* = ( 1 - 2 * - - x * ) .  (2.9) 

It can easily be seen that no rest point can exist where there are plasmid-bearing 
organisms but no plasmid-free organisms. 

The corresponding rest points of (2,2) are simply the projections on (Xl-X2)- 
space and are denoted: 

E~ = (0, 0), E2 = (0, 1 - 22), E c - (x *, x*) .  

We assume that these do not exist if either component is negative or if the sum 
of the components exceeds 1, since then it would be outside ~2. (This would force the 
S component in the corresponding rest point in (1.9) to be negative.) 

3 Ana lys i s  on 12 

We shall proceed by first determining the dynamics on the two dimensional 
globally attracting set f2. To justify our conclusions for arbitrary initial conditions 
for the full three dimensional system (1.9), and hence prove the main result of the 
paper, Theorem 4.1, we will use the theory of asymptotically autonomous systems 
(see Thieme [T]). 

The analysis of the two dimensional system (2.2) breaks conveniently into four 
cases. These are summarized in Table 1. Note that strict inequalities are made to 
avoid non-hyperbolic cases (cases where a rest point has a variational matrix with 
an eigenvalue with zero real part). For  example, due to the strict inequalities, we 
make the implicit assumption that when both 22 and 2* exist, )~2 4: 2*. In each case, 

Table 1. 

Case  Criteria for existence of rest points and global stability Rest 
of boxed rest point points 

I f~ (1 ) (1 -q )  < 1 f2(1) < 1 {[~) 

II L(1)(1--q) > 1 A(1) < 1 (EI,[~]) 

III L(1)(1-q) < 1 f2(1) > 1 {EI,[~]} 

IVa fl(1)(1-q) > 1 f2(1) > 1 f~()~2)(1-q) < 1 {E,,[~} 
IVb L ().a)(1 --q) > 1 {El, E2,[~]} 
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we also state which rest points exist. The rest point that will be proven to be the 
global attractor in each case is enclosed in a box. 

The main result in this section can now be stated. 

Theorem 3.1 
i) In case I, E~ is a 91obal attractor of f2. 
ii) In cases 11I and 1Va, Ez is a 91obal attractor of any solution initiating at a point in 
f2 with xl(0)+x2(0)>0.  
iii) In cases II  and IVb, Ec is a 91obal attractor of any solution initiatin9 at a point in 
f2 with xl(0)>0. 

In order to prove this we require some preliminary work. 

3.1 Elimination of nontrivial periodic solutions on (2 

Lemma 3.1. System (2.2) admits no nontrivial periodic solutions. 

Proof We apply the Dulac criterion (see [ALGM]) with the auxiliary function 

1 
B(xl,  x2) - 

X1 X2 

to the vector field given by (2.2). An easy computation yields 

 B(xl, x2)x', , B(xl, xd xl 
+ 

Oxl c~x2 

(f'~ (1 --x~--x2) +f ;  (1 --x~--x2) + qf~ (1 - -Xl -  x2)'] < 0 .  
\ 

Hence there are no nontrivial periodic solutions. [] 

3.2 Rest points of (2 and their local stability 

First we discuss when the rest points exist. The washout rest point E1 = (0, 0) always 
exists. Since fz is monotone for 0 < S <  1 with f2(0)=0, 

22 exists, satisfying 0<22<  1 and f2(22) = 1 ¢=>f2(1)> 1 . (3.1) 

In this ease there is a plasmid-free rest point E2, where Ez = (0, 1 -22). Otherwise, no 
such rest point exists. 

Next consider the mixed-culture (interior) rest point Ec=(x*, x*). Since fi is 
monotone with f~ (0) = 0, 

1 1 
- - .  (3.2) 2* exists, satisfying 0 < 2 " < 1  and fl(2*) = l_qeC-f i (1)>  
1 - q  

In addition, for E¢ to exist, both x* and x* must be positive. By (2.8)-(2.9), 

x* = 1 - 2* - x* 

( 1 - 2 " )  (1 -f2 (2")) 
= 1 - 2 "  

f~ ( ,~*)-f~ (2") ' 

( 1 - 2 . ) ( f ~ ( 2 . ) -  1) 
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1 
Assuming f~ (1)> , it follows that the numerator of x* is always positive, 

1 - q  
since f~(2*)-1 >0. Therefore, for x* >0  to hold, the denominator must also be 
positive. But x* has the same denominator (see (2.8)), and so the numerator of 
Xl* must also be positive. This is true if and only if either no 22 exists (i.e. f2 (1))< 1) 
or 22>2*. Since f~(2*)>l ,  if the numerator of x* is positive, then so is the 
denominator. Note that 

1 
= . (3.3) "~2 ) 2 ' ' ¢ : > f l  (22) > f l ( 2 . )  1 - - q  

Thus Ec exists if and only if 

1 
f~(1)(1-q) > 1 and either f2(1) < 1 or f~(22) > - -  (3.4) 

1 - q  

T h e r e f o r e ,  E 2 exists in cases III and IV and Ec exists in cases II and IVb. This is 
indicated in Table 1. 

Next we investigate the local stability of these rest points by finding the 
eigenvalues of the associated variational matrices. 

The variational matrix J of (2.2) takes the form 

where 

kJ21 Jzz J 

jll = - f l (1 -x1- -x2) ( l - -q ) - -1 -x~f~(1-x~- -xz)  ( l - -q ) ,  

j~2 = -- Xl f'l (1 - xl -- x2) (1 - q),  

j2~ = -- x2 f'2 (1 - -  x 1 - -  x2) -q- q fl (1 -- x, -- x2) - qxlf'l (1 - x, -- x2), 

j22 =f2 (1 - x l - x 2 ) - -  1 -x2f'2(1 - x l - - x 2 ) - q x ~ f l  (1 --xl--x2).  

A t  E l ,  

J ( E 1 ) = I f ~ ( 1 ) ( 1 - - q ) - l  O 1 (3.5) 
qf~(1) f2(1)-- 1 " 

The eigenvalues lie on the diagonal. 
When Ez exists (cases III and IV), the variational matrix at Ez is 

I f~ (2z) ( l - -q ) - i  0 1 (3.6) 
J(Ez) = _ (1 -- 22)f'2 (22) + qf1(22) - -  (1 -- 22)f;(22) " 

Again the eigenvalues lie on the diagonal. 
When Ec exists (cases II and IVb), the variational matrix at Ec takes the form 

--x*f'l(2*)(1--q) --x*f'l!,2*)(1--q) , -] 
J(Ec) = - x *  f '2(2*)+qf~(2*)-qx* f'~(2*) f 2 (2" ) -  1-x*fz()~*)--qx*fl(2*)_] 

(3.7) 
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If we perform an elementary column operation on J(E~): replace column 2 of J(Ec) 
by column 2 minus column 1, to obtain Jp, the matrix Jv has the same determinants as 
J(Ec). 

I -x*f'~()o*)(1-q) 0 J. (3.8) 
JP= -x*  f'z(2*)+qfl(2*)-qx* f'~(2*) fz(2*)-- l - -qf~(2*)  

Whenever Ec exists, by (2.6)-(2.7) and (3.2) (3.4), f2(2") < 1 and so the two diagonal 
elements of J~ are always negative, and so the determinant of J(Ec) is positive. 
Similarly, the trace of Ec, given by 

trace(E~) = f2 ( 2 " ) -  1 - x*fl (2*) - x*f'2 (2*).  

is always negative and so Ec is always locally asymptotically stable. 
We are now in a position to prove the main (global) results of this section. 

3.3 Proof of Theorem 3.1 

In all cases f2 is bounded and positively invariant (see (2.3)-(2.5)). Also, by 
Lemma 3.1 there are never any nontrivial periodic solutions in O. 

i) From (3.5), E~ is locally asymptotically stable if 

f x ( 1 ) ( 1 - q ) - i  < 0 and f2(1) < 1. (3.9) 

This is case I. Note that the second inequality precludes the existence of E2 and the 
first, precludes the existence of Ec (see (3.1) and (3.2), respectively). Hence in case I, 
E1 is the only rest point as claimed in Table 1. Moreover, since t2 is bounded and 
positively invariant, the result follows directly from the Poincar6-Bendixson 
Theorem. 
ii) First consider case III. By (3.2), in this case, Ec does not exist, and so there is no 
interior rest point. By (3.5), E1 has one positive and one negative eigenvalue and so 
is unstable. Since f2(1)> 1 and f2 is continuous, for any t > 0, provided that 
(xl(t), Xz(t)) satisfies (Xl+Xz)(t)>O and is sufficiently close to El, then x; ( t )>0.  
Hence, the stable manifold of E1 cannot intersect f2\ {El}. By (3.6), both eigen- 
values of E2 are negative, and hence E2 is locally asymptotically stable. Again, the 
result follows by the Poincar~-Bendixson Theorem. 

Next consider case IVa. We already showed that Ec does not exist in this case 
and so there is no interior rest point. By (3.5), E~ is a repellor and by (3.6), E2 is 
locally asymptotically stable. Again the result follows by the Poincarb-Bendixson 
Theorem. 
iii) First consider case II. By (3.4), Ec exists, and from (3.8) it is locally asymp- 
totically stable. E2 does not exist by (3.1). From (3.5), E1 has one positive and one 
negative eigenvalue. In this case, the stable manifold of E~ is one dimensional and 
lies along the x:-axis. Again the result follows by the Poincar~Bendixson 
Theorem. 

Finally, consider case IVb. In this case all three rest points exist. Ec is locally 
asymptotically stable. E1 is a repellor. E2 has a one dimensional stable manifold 
that lies along the x2-axis. Again the result follows by the Poincar6-Bendixson 
Theorem. [] 
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4 Global analysis of (1.9) 

We now use the results of asymptotically autonomous systems to show the 
connection between the dynamics for system (2.2) and system (1.9). 

Theorem 4.1 
i) In case I, E 3 is a 9lobal attractor for solutions of(1.9). 
ii) In cases I I I  and IVa, E~ is a 91obal attractor of any solution of(1.9) initiatin9 at 
a point where xl(0) + xz(0) > 0. 
iii) In cases II  and IVb, E3~ is a olobal attractor of any solution of(1.9) initiating at 
a point where x~(O)> O. 

Proof Note that because all of the inequalities in Table 1 are strict, in all cases 
I-IV, all rest points for both systems (2.2) and (1.9) are hyperbolic and hence 
isolated. From the proof of Theorem 3.1, it is clear that every solution of (2.2) 
converges to a rest point and that there are no homoclinic orbits or chains of rest 
points for (2.2). It follows by Corollary 4.3 of [T], that every solution of (1.9) 
converges to one of the rest points of (1.9), either E~, E~, or E3c. Since an unstable 
rest point cannot be the only point in the omega limit set of a solution unless that 
solution lies in its stable manifold it remains only to consider the stable manifolds 
of E~ and E~, when they are unstable. Since ~,~3 is globally attracting, except for an 
additional negative eigenvalue, the eigenvalues of E~, E~, and E3c are identical to 
those of El, E2 and Ec, respectively. 

i) No rest point is unstable in this case and so the result follows. 
ii) In these two cases the only unstable rest point is E~. 

In case III, the stable manifold is two dimensional, containing the S-axis but not 
interesecting f23\{E]}, where Q3 was defined in (2.1) (see the proof of The- 
orem 3.1 ii). Therefore, the only solutions that E~ can attract in this case are 
solutions initiating on the S-axis. 

In case IVa, E~ is a repellor with respect to ~23 (see the proof of Theorem 3.1ii)). 
Its stable manifold is the one dimensional S-axis. 

Hence in cases III and IVa, E~ attracts all solutions with x1(0) + x2(0) > 0. 
iii) In case II the only unstable rest point is E~ and its stable manifold is the same as 
in Case III (see the proof of Theorem 3.1iii)). 

In case IVb, E~ and E32 exist and are both unstable. The stable manifold of E~ is 
as in case IVa (see the proof of Theorem 3.1iii)). The two dimensional stable 
manifold of E 3 is the entire (S-x2)-face where x l -  0. 

Hence, in cases II and IVb E~ attracts any solution where xl(0)>0. [] 

The above theorem could also be proved directly, using the Butler-McGehee 
Lemma (see Appendix 1 of [FW]) as in the proof of Theorem 3.3 of Butler and 
Wolkowicz [BWa]. 

5 Discussion 

The foregoing sections gave a global analysis of the asymptotic behavior of the 
model studied by Stephanopoulis and Lapidus [SL], assuming uninhibited growth, 
i.e. monotone response functions, as well as a very restrictive case of inhibited 
growth. The analysis of [-SL] dealt rigorously only with existence and stability of 
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rest points. For example, no account was taken there of the possibility of nontrivial 
periodic solutions. Since we are able to prove that in all cases there is a globally 
attracting rest point, the outcome of the competition between the plasmid-free and 
the plasmid-bearing organisms, depends only on the relative values of the para- 
meters in the model and is always independent of the initial concentrations, 
provided that initially there is at least some of the appropriate organism present. 

There are a number of models for plasmid loss referenced in [SL]. There is also 
a nice paper of Simonsen IS], surveying a number of experiments and giving an 
estimate of q as 10- 3_10-5 HR-  1. Since commercial production of products manu- 
factured by genetically altered organisms is a reality, understanding these models in 
a mathematically rigorous fashion seems important. For example, the existence 
(and resulting global stability) of E3c represents a loss of the (desired) efficiency of the 
biological reactor. On the other hand, the global stability of E~ represents no 
production at all. In this case, the plasmid-free organism has taken over the 
chemostat and excluded the plasmid-bearing organism. 

In order to easily see how the operating parameters D and S (°) effect whether 
a mixed culture can be achieved, we give a bifurcation analysis for model (1.1) in 
terms of the biological meaningful parameters. The rest points in terms of the 
original parameters are: 

~'° 1 ~--- ( S  (0) , 0,  0 )  

#2 = (22, 0, y(S(°)-22)) where fi(22) = O.  

y(S(O)_2,)(D_f2(2,11 7(S(°)--2*)(fl(2*)-D)) 
4 =  ' ) 

where f~(2*)(1-q) = D 

Table 2 is just the rescaling of Table 1 to obtain criteria in terms of the 
biologically meaningful parameters. 

If one fixes S (°) one can in theory always select the dilution rate D, large enough 
so that case I of Table 2 holds and both organisms washout. If one assumes that the 
functions (1 - q ) f l  (S) and fi (S) intersect at most once for S > 0, as in the case that 
the specific growth rate functions are either both Monod (see (1.2)) or both Ivlev 
(see (1.8)) in form, then either: 

1. ( 1 - q ) ~ ( S )  > f i (S )  for all S>0,  or 
2. (1-q)f~(S)  <f2(S) for all 0 < S < g  and (1-q) f i (S)  >f2(S) for all S > g, or 
3. (1-q) f l (S)  <f2(S) for all S>0,  or 
4. (1-q) f l (S)  >f2(S) for all 0 < S < ~  and (1-q) f i (S)  <f2(S) for all S>S.  

For the sake of genericity, assume S(°)+S. Without loss of generality, assume 
also that S(°)> g. (If not, cases 2. and 4. would be covered by cases 3. and 1., 
respectively.) 

If case 1 holds, then as D is gradually decreased, eventually there is a bifurcation 
and case II of Table 2 holds. In this case the coexistence rest point becomes the 
global attractor. Decreasing D further, since 2 2 must initially be very close to Sm), 
the next bifurcation is to case IVb and so the coexistence rest point remains the 
global attractor. Since, in this case, 22 remains larger than 2* no matter how much 
more D is decreased, there is not another case change. Thus, in this case, the 
sequence of bifurcations as D decreases, results in the global stability passing from 
#1 to #c and remaining there. 
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Table 2. 

741 

Case  Criteria for existence of rest points and global stability Rest 
of boxed rest point points 

I fi(S°)(1 - q )  < D fz(S °) < D {~]} 

II f i ( S ° ) ( 1 - q ) > D  f2(S°) < D { ~'~1, ~-~} 
III f l (S°) (1-q)  < D f2(S °) > D {~,,p-~} 

IVa f~(S°)(1-q) > D fz(S °) > D f~(2z)(1--q) < D {d°l, F~} 
IVb f~ (22)(1-q) > D {e,, e2, N }  

If case 2 holds, then as D is decreased, the same initial sequence of bifurcations 
occurs as in case 1, but there is an additional bifurcation as D is decreased further 
so that one passes from case IVb to case IVa and one obtains a plamid-free culture. 
Thus the bifurcation sequence has the global stability passing from ~1 to gc to ~2 
and then remaining there. In this case, the experimenter must be very careful to 
operate the chemostat at low enough dilution rate, but not too low, if the aim is to 
maintain a mixed culture. 

Similarly, in case 3, one can show that the bifurcation sequence is from case I to 
case III to case IVa and hence global stability passes from gl to g2 and so it is not 
possible to obtain a mixed culture in this case. In case 4, the bifurcation sequence is 
from I to III to IVa to IVb and hence global stability passes from gl to g2 to ~c and 
remains there. Thus in this case, it is only necessary to operate the chemostat at low 
enough dilution rate to obtain a mixed culture. 

If one wanted to allow one or both of the specific growth rate functions to be 
sigmoidal using for example the form (1.7), one would have to consider two more 
cases, since it is then possible to have two intersections of (1 - q ) f i  (S) and f2 (S) for 
S>0:  

5. ( 1 - q ) f i ( S )  <f2(S)  for all 0 < S < S 1 ,  
( 1 - q ) f i ( S )  > f i ( S )  for all $ 1 < S < ~ 2 ,  

( 1 - q ) f l ( S )  < f i ( S )  for all $2 < S .  

6. (1 -q ) f~ (S)  >f2(S)  for all 0 < S < S 1 ,  

( 1 - q ) f i ( S )  <f2(S)  for all S ~ < S < g 2 ,  

( 1 - q ) f i ( S )  > f i ( S )  for all $2<S. 

Case 5 is initially the same as case 4, but there is an additional bifurcation resulting 
in a final case change from case IVb to case IVa. Thus the sequence of bifurcations 
is from d~ to E2 to gc and then back to C2. Case 6 is initially the same as case 2, but 
there is an additional bifurcation resulting in a final case change from case IVa to 
case IVb. Thus the sequence of bifurcations is from g~ to gc to g2 and then back 
to go. 

In a similar manner it is easy to see that effect of varying S (°). The principal 
question is the relative values of S (°) and S. Although q is not usually under the 
investigators control, one could also consider the effect of q. The determining factor 
is how varying q effects the relative values of (1 - q)fi (S) and fi (S) and whether or 
not they intersect. 
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It is not possible to achieve total efficiency (exclusion of plasmid-free organ- 
isms) since there is no attracting solution with xz(t)= 0 and xl(t)> 0. The best that 
can be done is to optimize the location ofgc, that is, to operate the chemostat so as 
to maximize the concentration of plasmid-bearing organism in gc within, of course, 
the many other practical limitations on the operating parameters. 

A common way to alter the parameters intrinsic to the organisms, so as to alter 
the competitive advantage of the plasmid-free type is to add an inhibitor to the 
chemostat along with the nutrient. This was done in the experiments of Hansen and 
Hubbell [HH] who use Naladixic acid to modify the value of m~. The chemostat 
with an inhibitor has been analyzed in [HW]. It would be interesting to investigate 
the effect of an inhibitor in the present context. 
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