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Abstract

In this paper, we demonstrate some special behavior of steady-state solutions to a predator–

prey model due to the introduction of spatial heterogeneity. We show that positive steady-

state solutions with certain prescribed spatial patterns can be obtained when the spatial

environment is designed suitably. Moreover, we observe some essential differences of the

behavior of our model from that of the classical Lotka–Volterra model that seem to arise only

in the heterogeneous case.
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1. Introduction

To capture the influence of heterogeneous spatial environment on population
models is not easy in general. Traditionally population models were considered
in homogeneous spatial environments, and hence the coefficients appearing in
the models are usually chosen to be positive constants. To include spatial variations
of the environment, naturally these coefficients should be replaced by positive
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functions of the space variable x: However, the mathematical techniques developed
to study these models are typically either not sensitive to this change (e.g.,
the bifurcation approach, the topological degree approach, the upper and
lower solution argument), in which case the effects of heterogeneous spatial
environment are difficult to observe in the mathematical analysis, or the
techniques are too sensitive to this change (e.g., the various Lyapunov function
techniques) and become unapplicable when the constant coefficients are replaced
by functions.
It has been observed recently that, in general, the behavior of these models are

very sensitive to certain coefficient functions becoming small in part of the
underlying spatial region. This observation was successfully used in [D1,D2,D3] for
the Lotka–Volterra competition model and in [DD] for the Lotka–Volterra
predator–prey model to reveal the effects of spatial heterogeneous environments
on these models. It would be interesting to know whether this approach works for
sufficiently different non-Lotka–Volterra models. In this paper we examine such a
predator–prey model and demonstrate that the approach indeed yields interesting
results that reveal certain effects of the heterogeneous spatial environment on the
model. Moreover, as will become clear later, the effects turn out to be significantly
different in a number of ways from those observed in the Lotka–Volterra predator–
prey model in the study of [DD].
As in [DD,D1,D2,D3], to make the ideas more transparent, we have restricted our

consideration to the simplest forms of the corresponding Holling–Tanner models in
order to avoid excessive technicalities. We believe that our techniques are applicable
to more general models.
Let us now be more precise. The model to be studied in this paper is the following

diffusive predator–prey system:

ut � d1Du ¼ lu � au2 � buv; xAO; t40;

vt � d2Dv ¼ mv 1� d
v

u

� �
; xAO; t40;

@u

@n
¼ @v

@n
¼ 0; xA@O; t40;

8>>>><
>>>>:

ð1:1Þ

where O is a bounded domain in RN with smooth boundary @O; d1; d2; l; m; a; b; d
are continuous positive functions of xA %O: This system describes the interaction
of a prey species u and a predator species v in a given spatial region O; the
Neumann boundary condition means that no species can pass across the boundary
of O:
The main part of this paper is concerned with the steady-state solutions of (1.1),

though some special cases of the parabolic problem are also considered. We
are interested in revealing new phenomena caused by the introduction of
inhomogeneous spatial environment, in particular the existence of steady-state
solutions with certain prescribed spatial patterns. We also want to reveal
some essential differences between (1.1) and the following classical Lotka–Volterra
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predator–prey model:

ut � d1Du ¼ lu � au2 � buv; xAO; t40;

vt � d2Dv ¼ mv � av2 þ buv; xAO; t40;

@u

@n
¼ @v

@n
¼ 0; xA@O; t40;

8>><
>>: ð1:2Þ

where a; b; a and b are positive continuous functions, l; m are continuous functions
not necessarily positive.
To put our discussions into perspective, let us mention that (1.1) and (1.2) are

special cases (i.e., g ¼ 0) of the following well-known Holling–Tanner-type predator–
prey models (see [M,R]):

ut � d1Du ¼ lu � au2 � buv

1þ gu
; xAO; t40;

vt � d2Dv ¼ mv 1� d
v

u

� �
; xAO; t40;

@u

@n
¼ @v

@n
¼ 0; xA@O; t40;

8>>>>>><
>>>>>>:

ð1:3Þ

ut � d1Du ¼ lu � au2 � buv

1þ gu
; xAO; t40;

vt � d2Dv ¼ mv � av2 þ buv

1þ gu
; xAO; t40;

@u

@n
¼ @v

@n
¼ 0; xA@O; t40:

8>>>>>><
>>>>>>:

ð1:4Þ

It is well known that predator–prey models are generally rather sensitive to the
changes of their reaction terms, i.e., the dynamical behavior may change drastically
under small changes of the right-hand sides of the equations. This already occurs in
the ODE models. For example, for the corresponding ODE models of (1.3) and (1.4),
it is known that their dynamics is simple in the case g ¼ 0 where the unique positive
equilibrium ðu�; v�Þ (when exists) attracts all the positive solutions as t-N; but
when g40; stable limiting cycles may exist (see [Hz,HH1,HH2]).
For the PDE models (1.3) and (1.4) in a homogeneous environment (i.e., when all

the coefficient functions take constant values), the case g ¼ 0 does not seem to give
rise to interesting phenomenon either. Indeed, for (1.2) it is well known that the
constant positive steady-state ðu�; v�Þ attracts all the positive solutions of (1.2) as
t-N (see [B,DR,L]); for (1.1), we will show that a similar result holds, at least when
a=b is not small (see Section 2 below).
The main purpose of this paper is to closely examine (1.1) in a heterogeneous

environment and reveal that, in contrast to the homogeneous case mentioned above,
certain interesting phenomena do arise. Firstly, we show that positive steady-state
solutions of (1.1) with certain prescribed spatial patterns can be obtained if the
coefficient functions are chosen suitably (see Remark 3.19). To achieve this, we use
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various elliptic estimates to show that if a degeneracy appears in the model, i.e., if
aðxÞ vanishes in a subdomain of O; then the model undergoes an essential change of
its behavior; this enables us to perturb the degenerate aðxÞ by aðxÞ þ e and obtain the
desired patterned solutions. This strategy is adapted from [D1,D2,D3] where it was
used for the competition model. The technical difficulties of this paper, however, are
considerably different from that in [D1,D2,D3].
Secondly, by comparing our results here with those obtained in [DD], we reveal

that in a heterogeneous environment, the behavior of (1.1) and (1.2) exhibits some
essential differences which do not seem to appear in the homogeneous case (see
Remarks 3.14 and 3.20 for details).
The rest of this paper is organized as follows. In the short Section 2, we apply a

Lyapunov function argument to show that, in the homogeneous case, the dynamics
of (1.1) is simple, at least when a=b is not small. Section 3 constitutes the main body
of the paper, where the heterogeneous case of (1.1) is carefully examined, through the
use of various elliptic estimates, topological degree theory, and boundary blow-up
solutions.
We would like to remark that our results for the heterogeneous case of (1.1) are

mainly on its steady-state solutions. A deep understanding of the global dynamical
behavior of (1.1) in this case seems a very difficult and interesting problem, awaiting
for further studies.
Finally, we note that the effects of heterogeneous environment on competition

models have been considered in several recent papers, see, for example
[AC,CCH,D1,D2,D3,HLM,HMP], the survey paper [D4], and the references
therein.

2. The homogeneous case

We assume throughout this section that all the coefficient functions in (1.1) are
positive constants. By replacing u by u=d; and a by ad; we readily see that (1.1) is
reduced to

ut � d1Du ¼ uðl� au � bvÞ; xAO; t40;

vt � d2Dv ¼ mv 1� v

u

� �
; xAO; t40;

@u

@n
¼ @v

@n
¼ 0; xA@O; t40:

8>>><
>>>:

ð2:1Þ

Clearly,

ðu�; v�Þ ¼ l
aþ b

;
l

aþ b

� �

is the only constant positive equilibrium of (2.1).
Let ðuðx; tÞ; vðx; tÞÞ be a positive solution of (2.1). A simple comparison

argument yields 0ouðx; tÞoUðx; tÞ for all t40 and xAO; where U is the unique
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solution of

Ut � d1DU ¼ lU � aU2 in O� ð0;NÞ; Unj@O�ð0;NÞ ¼ 0; Uðx; 0Þ ¼ uðx; 0Þ:

It is well known that Uðx; tÞ-l=a as t-N uniformly in x: From these facts, it
follows by standard comparison arguments that uðx; tÞ and vðx; tÞ exist and remain
positive for all t40; and

lim
t-N

uðx; tÞpl=a; lim
t-N

vðx; tÞpl=a:

Adapting the Lyapunov function in [HH1], we define

Vðu; vÞ ¼
Z

u � u�

u2
du þ c

Z
v � v�

v
dv;

WðtÞ ¼
Z
O

Vðuðx; tÞ; vðx; tÞÞ dx;

where c40 is a constant to be determined later, and ðuðx; tÞ; vðx; tÞÞ is an arbitrary
positive solution of (2.1).
Denote

f ðu; vÞ ¼ uðl� au � bvÞ; gðu; vÞ ¼ mvð1� v=uÞ:

We have

Vuðu; vÞf ðu; vÞ þ Vvðu; vÞgðu; vÞ

¼ u � u�

u
ðl� au � bvÞ þ cmðv � v�Þð1� v=uÞ

¼ u � u�

u
ðau� þ bv� � au � bvÞ þ cmðv � v�Þ u � u� þ v� � v

u

¼ �a
ðu � u�Þ2

u
þ ðcm� bÞ ðu � u�Þðv � v�Þ

u
� cm

ðv � v�Þ2

u
:

We now choose c ¼ b=m and obtain

Vuðu; vÞf ðu; vÞ þ Vvðu; vÞgðu; vÞ ¼ �a
ðu � u�Þ2

u
� b

ðv � v�Þ2

u
:
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It follows that

W 0ðtÞ ¼
Z
O
ðVuðuðx; tÞ; vðx; tÞÞut þ Vvðuðx; tÞ; vðx; tÞÞvtÞ dx

¼
Z
O

u � u�

u2
d1Du þ c

v � v�

v
d2Dv

� �
dx �

Z
O

a
ðu � u�Þ2

u
þ b

ðv � v�Þ2

u

 !
dx

¼ �
Z
O

d1
2u� � u

u3
jruj2 þ d2

v�

v2
jrvj2 þ a

ðu � u�Þ2

u
þ b

ðv � v�Þ2

u

 !
dx:

Suppose that a4b: Then 2u� ¼ 2l=ðaþ bÞ4l=a: Since uðx; tÞoUðx; tÞ and
Uðx; tÞ-l=a as t-N; we can find T40 large such that Uðx; tÞo2l=ðaþ bÞ for
all tXT and all xAO: Therefore, w0ðtÞp0 for all t4T and equality holds only if
ðu; vÞ � ðu�; v�Þ: Together with some standard arguments based on the boundedness
of ðu; vÞ and parabolic regularity, this proves the following result.

Proposition 2.1. When a4b; ðu�; v�Þ attracts every positive solution of (2.1).

Next, we show how the restriction a4b can be relaxed by using a different
Lyapunov function. Define

V �ðu; vÞ ¼
Z

u2 � ðu�Þ2

u2
du þ c

Z
v � v�

v
dv;

with c40 to be chosen later. We have

V �
u ðu; vÞf ðu; vÞ þ V �

v ðu; vÞgðu; vÞ

¼ u2 � ðu�Þ2

u
ðl� au � bvÞ þ cmðv � v�Þð1� v=uÞ

¼ 1

u
ð�aðu þ u�Þx2 þ ½cm� bðu þ u�Þ
xZ� cmZ2Þ;

x ¼ u � u�; Z ¼ v � v�:

If

½cm� bðu þ u�Þ
2 � 4aðu þ u�Þcmo0; ð2:2Þ

then the quadratic form

�aðu þ u�Þx2 þ ½cm� bðu þ u�Þ
xZ� cmZ2

is negative unless x ¼ Z ¼ 0:

ARTICLE IN PRESS
Y. Du, S.-B. Hsu / J. Differential Equations 203 (2004) 331–364336



We now show that it is possible to choose c40 so that (2.2) holds under less
restrictive conditions than a4b: To this end, we rewrite (2.2) as

ðmcÞ2 � 2ðu þ u�Þðbþ 2aÞðmcÞ þ b2ðu þ u�Þ2o0: ð2:3Þ

We find that (2.3) holds if and only if mcAðc1; c2Þ where

c1 ¼ c1ðuÞ ¼ ðu þ u�Þ bþ 2a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ 2aÞ2 � b2

q� �
;

c2 ¼ c2ðuÞ ¼ ðu þ u�Þ bþ 2aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ 2aÞ2 � b2

q� �
:

To choose a proper c; we need to find out when the inequality c1ðl=aÞoc2ð0Þ holds,
i.e.,

l
a
þ l
aþ b

� �
bþ 2a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ 2aÞ2 � b2

q� �
o

l
aþ b

bþ 2aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ 2aÞ2 � b2

q� �
:

This is equivalent to, after some simple calculations,

ðbþ aÞðbþ 2aÞ2o4aðbþ 3aÞ2;

or, writing s ¼ a=b;

hðsÞ ¼ 32s3 þ 16s2 � s � 140:

Since hð0Þ ¼ h0ð0Þ ¼ �1; the cubic hðsÞ has a unique positive zero s0 and hðsÞ40

when s4s0: Since h 1
4

� �
404h 1

5

� �
; we conclude that s0A 1

4
; 1
5

� �
:

Now suppose a=b4s0: Then c1ðl=aÞoc2ð0Þ holds and hence we can choose e40

small so that c1
l
a þ e
� �

oc2ð0Þ: We now choose c40 such that

c1
l
a
þ e

� �
omcoc2ð0Þ:

Then

c1ðuÞpc1
l
a
þ e

� �
omcoc2ð0Þpc2ðuÞ 8uA 0;

l
a
þ e

� �
:

Therefore, for this choice of c; (2.3) holds for uA½0; la þ e
: It follows that

Zðu; vÞ :¼ V �
u f þ V�

v gp0 8uA 0;
l
a
þ e;

� �

and equality holds only if ðu; vÞ ¼ ðu�; v�Þ:
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Define

W �ðtÞ ¼
Z
O

V �ðuðx; tÞ; vðx; tÞÞ dx:

Then

d

dt
W �ðtÞ ¼

Z
O

�d1
2u�

u3
jruj2 � cd2

v�

v2
jrvj2 þ Zðu; vÞ

� �
dx:

Since uðx; tÞoUðx; tÞ-l=a; we can find T40 such that uðx; tÞpl
a þ e for t4T :

Thus,

d

dt
W �ðtÞp0 for t4T and equality holds only if ðu; vÞ � ðu�; v�Þ:

This proves the following result.

Theorem 2.2. Suppose a=b4s0A 1
4
; 1
5

� �
; then ðu�; v�Þ attracts every positive solution

of (2.1).

Remark 2.3. We conjecture that the conclusion of Theorem 2.2 is valid for all
positive constants a and b:

3. The heterogeneous case

As this section is rather long, we divide it into three subsections. Section 3.1 gives
some general results which are obtained from rather standard methods. Section 3.2
considers a degenerate case and reveals that the degeneracy can cause the system to
undergo an essential change of behavior. This is used in Section 3.3 to construct
solutions with prescribed patterns.

3.1. Some general results

We now consider the case that all the coefficients in (1.1) are continuous positive

functions on %O:Given any continuous positive function pair ðu0ðxÞ; v0ðxÞÞ over %O; let
ðuðx; tÞ; vðx; tÞÞ be the unique solution of (1.1) satisfying

ðuðx; 0Þ; vðx; 0ÞÞ ¼ ðu0ðxÞ; v0ðxÞÞ:

Standard theory of parabolic equations implies that the solution exists as long as it is
bounded (in the LN-norm, for example). A simple comparison argument shows that
the solution remains positive and 0ouðx; tÞoUðx; tÞ for t40; xAO; where U is the
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unique solution to

Ut � d1DU ¼ lU � aU2 in O� ð0;NÞ;
Un ¼ 0 on @O� ð0;NÞ;
Uðx; 0Þ ¼ u0ðxÞ:

8><
>: ð3:1Þ

From well-known results on the logistic model, we know that

Uðx; tÞ-U�ðxÞ as t-N uniformly in x; ð3:2Þ

where U� is the unique positive steady-state of (3.1). By the maximum principle we

have U�ðxÞ40 on %O:
If we denote by Vðx; tÞ the unique solution of

Vt � d2DV ¼ mV 1� d
V

U

� �
in O� ð0;NÞ;

Vn ¼ 0 on @O� ð0;NÞ;
Vðx; 0Þ ¼ v0ðxÞ;

8>>><
>>>:

we find from the comparison principle that 0ovðx; tÞoVðx; tÞ for t40 and xAO:
Moreover, using (3.2), one easily shows that Vðx; tÞ-V�ðxÞ as t-N uniformly in x;
where V � is the unique positive solution of

�d2DV ¼ mV 1� d
V

U�

� �
in O; Vnj@O ¼ 0:

Therefore, we have

lim
t-N

uðx; tÞpU�ðxÞ; lim
t-N

vðx; tÞpV �ðxÞ: ð3:3Þ

Unfortunately, we are not able to go much further from (3.3) about the long-time
behavior of (1.1). From now on, we will mainly consider the positive steady-state of
(1.1). We will obtain existence and some interesting spatial properties for the positive
steady-states under suitable assumptions of the coefficient functions. This is based on
various elliptic estimates, topological degree theory and the use of boundary blow-up
solutions. We suspect that (1.1) has a unique positive steady-state which attracts
every positive solution as t-N:
It turns out that the spatial behavior of the steady-states is very sensitive to aðxÞ

being small. To simplify the mathematical presentation, we will from now on assume
that all the coefficient functions are positive constants, except a; which is a
nonconstant function of x: As we are concerned with steady-states only, we need
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only study the positive solutions of the elliptic system

�d1Du ¼ lu � aðxÞu2 � buv; xAO;

�d2Dv ¼ mv 1� d
v

u

� �
; xAO;

un ¼ vn ¼ 0; xA@O:

8>><
>>: ð3:4Þ

By some simple change of scales, (3.4) can be reduced to the following simpler
form:

�Du ¼ lu � aðxÞu2 � buv; xAO;

�Dv ¼ mv 1� v

u

� �
; xAO;

un ¼ vn ¼ 0; xA@O:

8>><
>>: ð3:5Þ

We would like to remark that our techniques in the rest of this paper work as well
without these simplifications, but using form (3.5) greatly simplifies the notations in
our later discussions.
Let us recall that in (3.5), l; m; b are positive constants, and aðxÞ is a continuous

positive function over %O:

Theorem 3.1. Problem (3.5) always has a positive solution.

Proof. We will use a continuation and topological degree argument. Let ðu; vÞ be an
arbitrary positive solution of the following problem with parameter tA½0; 1
:

�Du ¼ lu � aðxÞu2 � tbuv; xAO;

�Dv ¼ mv 1� v

u

� �
; xAO;

un ¼ vn ¼ 0; xA@O:

8>><
>>: ð3:6Þ

A simple comparison argument shows

0oupu�
l; 0ovpjjujj

N
pjju�

ljjN;

where u�
l denotes the unique positive solution of

�Du ¼ lu � aðxÞu2 in O; unj@O ¼ 0:

By standard elliptic regularity, u; vAW 2;pðOÞ 8p41: Hence, u; vAC1ð %OÞ:
We now want to apply Lemma 2.1 of [LN] to obtain a positive lower bound for u

and v: But this requires u; vAC2ðOÞ-C1ð %OÞ: Since aðxÞ is only assumed to be
continuous, we do not have enough regularity for u in general (see [GT]). To
overcome this difficulty, we first prove the result of Theorem 3.1 for a smooth, say in
C1ð %OÞ: Under this extra assumption, by standard elliptic regularity, we find that

u; vAC2ð %OÞ: If uðx0Þ ¼ min %O u; vðy0Þ ¼ min %O v; then we can apply Lemma 2.1 of [LN]
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to conclude that

l� aðx0Þuðx0Þ � tbvðx0Þp0; 1� vðy0Þ
uðy0Þ

p0:

It follows that

jjajj
N
min

%O
u þ bjjvjj

N
Xl; min

%O
vXmin

%O
u:

From the equation for u we obtain,

�Du ¼ bðxÞu in O; unj@O ¼ 0;

with bðxÞ ¼ l� aðxÞuðxÞ � tbvðxÞ satisfying

jjbjj
N
plþ jjajj

N
jjujj

N
þ bjjvjj

N
plþ ðjjajj

N
þ bÞjju�

ljjN:

By the Harnack inequality in [LNT], we can find a constant cl40 such that,

min
%O

uXclmax
%O

u:

Therefore,

lp jjajj
N
min

%O
u þ bjjvjj

N
pjjajj

N
min

%O
u þ bjjujj

N

p ðjjajj
N

þ bc�1l Þmin
%O

u:

It follows that

min
%O

uXlðjjajj
N

þ bc�1l Þ�1:

Let us now define

O ¼ Ol ¼ fðu; vÞACð %OÞ � Cð %OÞ : mlouoMl; mlovoMlg;

where

ml ¼ ðl=2Þðjjajj
N

þ bc�1l Þ�1; Ml ¼ 2jju�
ljjN:

We find from the above discussion that for any tA½0; 1
; (3.6) has no solution ðu; vÞ in
@O: When t ¼ 0; (3.6) reduces to

�Du ¼ lu � aðxÞu2; xAO;

�Dv ¼ mv 1� v

u

� �
; xAO;

un ¼ vn ¼ 0; xA@O;

8>><
>>: ð3:7Þ

ARTICLE IN PRESS
Y. Du, S.-B. Hsu / J. Differential Equations 203 (2004) 331–364 341



which has a unique positive solution in O; namely, ðu; vÞ ¼ ðu�; v�Þ; where u� ¼ u�
l

and v� is the unique positive solution of

�Dv ¼ mvð1� v=u�Þ in O; vnj@O ¼ 0:

We now apply a degree argument to show that (3.5) has a positive solution.
Denote

f ðt; u; vÞ ¼ u þ uðl� au � tbvÞ; gðu; vÞ ¼ v þ mvð1� v=uÞ

and let L ¼ ð�Dþ IÞ�1 under Neumann boundary conditions. Define

Aðt; u; vÞ ¼ ðLf ðt; u; vÞ;Lgðu; vÞÞ:

It is easily checked by standard method that A is completely continuous from ½0; 1
 �
O to Cð %OÞ � Cð %OÞ; and ðu; vÞAO solves (3.6) if and only if it satisfies ðu; vÞ ¼
Aðt; u; vÞ: By the choice of O; we have

ðu; vÞaAðt; u; vÞ 8tA½0; 1
 8ðu; vÞA@O:

Therefore, the topological degree degðI � Aðt; �Þ;O; 0Þ is well-defined and is
independent of tA½0; 1
: Since ðu�; v�Þ is the only fixed point of Að0; �Þ in O; we deduce

degðI � Að0; �Þ;O; 0Þ ¼ index ðI � Að0; �Þ; ðu�; v�ÞÞ:

A simple linearization analysis shows that ðu�; v�Þ is nondegenerate and linearly
stable as a solution of (3.7). By the well-known Leray–Schauder formula, this yields

indexðI � Að0; �Þ; ðu�; v�ÞÞ ¼ 1

Therefore, degðI � Að1; �Þ;O; 0Þ ¼ 1: By the properties of the degree, Að1; �Þ has a
fixed point in O; i.e., (3.5) has a positive solution in O: This proves our theorem

under the extra assumption that a is C1:

If a is only continuous, we can find a sequence of C1 functions an converging to a
in the LN-norm. By the above discussion, for each n; we can find a positive solution
ðun; vnÞ of (3.5) with a replaced by an: Moreover, an inspection of our above proof
leading to the a priori estimates for ðu; vÞ shows that we can find 0omoMoN

independent of n such that

mounoM; movnoM 8n:

It follows that un and vn are bounded in W 2;pðOÞ 8p41: Hence we can find a

subsequence of ðun; vnÞ that converges in C1ð %OÞ to some ðu; vÞ which is a positive
solution of (3.5). This finishes the proof. &

In the case that the space dimension is one, i.e., O is a finite interval, we can use
existing results to show that (3.5) has at most one positive solution.
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Theorem 3.2. Suppose that O is a finite interval, and that aðxÞ is a nonnegative

continuous function that is not identically zero on O: Then (3.5) has at most one

positive solution. Moreover, any positive solution ðu0; v0Þ of (3.5), if exists, is

nondegenerate, i.e., zero is not an eigenvalue of the linearized eigenvalue problem of

(3.5) at ðu0; v0Þ:

Proof. Suppose that, apart from ðu0; v0Þ; (3.5) has another positive solution ðu1; v1Þ:
Then it is easily checked that ðU ;VÞ ¼ ðu1 � u0; v1 � v0Þ satisfies an equation of the
form (1.1) in [LP] with t ¼ 0: By Theorem 3.1 in [LP], we deduce ðU ;VÞ ¼ ð0; 0Þ:
This proves the uniqueness part of the theorem. If zero is an eigenvalue of the
linearized eigenvalue problem of (3.5) at some positive solution ðu0; v0Þ; and ðf;cÞ
the corresponding eigenfunction, then ðf;cÞ also satisfies an equation of the form
(1.1) in [LP] with t ¼ 0: By the same result of [LP], we deduce ðf;cÞ ¼ ð0; 0Þ: This
contradiction proves the nondegeneracy of ðu0; v0Þ: &

Remark 3.3. (i) Theorem 3.2 can also be proved by using the method of [H].
(ii) By the implicit function theorem, the nondegeneracy of the unique positive

solution of (3.5) implies that it depends continuously on all the parameters in the
problem.

3.2. Effects of a degeneracy

In this subsection, we consider the effect on (3.5) when aðxÞ is allowed to vanish on
some parts of O:More precisely, we assume throughout this subsection that aðxÞ ¼ 0

on %DCO and aðxÞ40 on %O\ %D; where D ¼
Sm

j¼1 Dj; D1;y;Dm are connected open

sets with smooth boundaries and %Di- %Dj ¼ | when iaj: We assume that the

subscripts in Dj are chosen so that

lD1

1 plD2

1 p?plDm

1 ;

where lDj

1 denotes the first eigenvalue of �D over Dj under Dirichlet boundary

conditions. We will reveal a crucial difference of the behavior of (3.5) between the

case lolD1

1 and the case l4lD1

1 :

Let us first observe that if lAð0; lD1

1 Þ; then by the main result in [O] (see also

[FKLM]), the problem

�Du ¼ lu � aðxÞu2 in O; unj@O ¼ 0;

still has a unique positive solution u�
l: It follows that the proof of Theorem 3.1

carries over to the present degenerate case. Therefore we have the following
result.

Theorem 3.4. If lAð0; lD1

1 Þ; then (3.5) has a positive solution for every m40 and b40:
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In terms of the existence of positive solutions of (3.5), in view of Theorem 3.1
where aðxÞ is positive on O; Theorem 3.4 suggests that the vanishing of aðxÞ on D

does not cause essential changes to the behavior of (3.5) in the case lolD1

1 ; indeed, in
either theorems, the existence of a positive solution is guaranteed for every m40 and
b40:
In sharp contrast, we will show in the following that this is no longer the case once

l4lD1

1 : In fact, for any fixed l in this range, we will prove that for each mAð0; lD1

1 Þ;
there exists a bl;m40 so that (3.5) has no positive solution when 0obobl;m: This
implies that the dynamics of the model undergoes some deep changes when the value

of l crosses lD1

1 :

For convenience of notation, we make the convention that lDmþ1
1 ¼ N: Let us fix

mAð0; lD1

1 Þ and suppose lAðlDk

1 ; lDkþ1
1 Þ for some 1pkpm: By Lemma 2.6 in [DL], for

l in this range, the boundary blow-up problem

�Du ¼ lu � aðxÞu2 in On
�[k

j¼1
%Dj

�
; unj@O ¼ 0; ujSk

j¼1 ð@DjÞ
¼ Nð3:8Þ

has a minimal positive solution Ul: Applying Lemma 2.3 in [DL], we find that if
ðu; vÞ is a positive solution of (3.5), then

uðxÞpUlðxÞ 8xAOn
�[k

j¼1
%Dj

�
:

Define

alðxÞ ¼
0; xA

Sk
j¼1 %Dj ;

1=UlðxÞ; xAOn
Sk

j¼1 %Dj

� �
:

8<
:

Clearly al is continuous on %O and al40 on O\
Sk

j¼1 %Dj

� �
: By our choice of m and the

main result of [O], the problem

�DV ¼ mVð1� alðxÞVÞ in O; Vnj@O ¼ 0 ð3:9Þ

has a unique positive solution Vl:
We want to show that vpVl if ðu; vÞ is a positive solution of (3.5). Indeed, we

already know that uðxÞpUlðxÞ on O\
Sk

j¼1 %Dj

� �
: Hence

1=uðxÞXalðxÞ 8xAO:

It follows that

�Dv ¼ mvð1� v=uÞpmvð1� alðxÞvÞ in O:
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Thus, v is a lower solution of (3.9). It is easily checked that for any constant M41;
MVl is an upper solution of (3.9), and MVl4v if M is large enough. Therefore,
vpVlpMVl in O:
Let us introduce some notations for our discussions to follow. We will use lo;N1 ðfÞ

and lo1 ðfÞ to denote the first eigenvalues of the operator �Dþ f over o under

Neumann and Dirichlet boundary conditions, respectively. It is well known that

lo;N1 ðfÞolo1 ðfÞ

and both lo;N1 ðfÞ and lo1 ðfÞ are increasing with f in the following sense:

f1pf2 and f1cf2 imply lo;N1 ðf1Þolo;N1 ðf2Þ; lo1 ðf1Þolo1 ðf2Þ:

If ðu; vÞ is a positive solution of (3.5), then from the equation for u we obtain

l ¼ lO;N1 ðau þ bvÞolO1 ðau þ bvÞolDi

1 ðau þ bvÞ ¼ lDi

1 ðbvÞ:

Since vpVl; we obtain

lolDi

1 ðbVlÞ; i ¼ 1;y;m: ð3:10Þ

From well-known properties of principle eigenvalues, we see that fiðbÞ ¼ lDi

1 ðbVlÞ
is a continuous, strictly increasing function of b; and fið0Þ ¼ lDi

1 ; fiðNÞ ¼ N: Since

l4lDj

1 for j ¼ 1;y; k; we can find a unique bj ¼ bjðlÞ40 such that fjðbjÞ ¼ l:
Therefore,

l ¼ lDj

1 ðbjVlÞ; lXlDj

1 ðbVlÞ 8bpbj ; j ¼ 1;y; k: ð3:11Þ

Comparing (3.11) with (3.10), we immediately obtain the following result.

Theorem 3.5. Suppose mAð0; lD1

1 Þ and lAðlDk

1 ; lDkþ1
1 Þ for some 1pkpm: Let b1;y; bk

be as in (3.11). Then (3.5) has no positive solution if 0obpmaxfb1;y; bkg:

The restriction that mAð0; lD1

1 Þ in Theorem 3.5 can be relaxed. Indeed, if we

assume mAð0; lDk

1 Þ instead, then by replacing Vl by the minimal positive solution of

(3.9) on O\
Sk�1

j¼1 Dj

� �
with boundary conditions Vnj@O ¼ 0; V jSk�1

j¼1 @Dj

¼ N; then it

is easy to show that there exists some *bk40 such that (3.5) has no positive solution if

0obo *bk:

Our next result shows that even if l4lDk

1 for some kAf1;y;mg; (3.5) can still

have a positive solution for every b40 if m is large enough; precisely, if

m4maxflDm

1 ; lg: Thus, existence of a positive solution is regained when m becomes

large.
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Theorem 3.6. Suppose that m4lDm

1 ; then (3.5) has a positive solution for every

lAð0; mÞ and b40:

The proof of Theorem 3.6 relies on the following a priori estimates.

Lemma 3.7. Suppose that an is a sequence in Cð %OÞ that converges to a in this space,

and an ¼ 0 on D: Let m4lDm

1 be fixed and lnA½m;M
Cð0; mÞ: Then there exists a

positive constant C independent of n such that any positive solution ðun; vnÞ of (3.5) with

ðl; aÞ replaced by ðln; anÞ satisfies

jjunjjN þ jjvnjjNoC:

Proof. Suppose that the conclusion of the lemma is not true. Then we can find a
sequence of positive function pairs ðun; vnÞ satisfying

�Dun ¼ lnun � anðxÞu2n � bunvn; xAO;

�Dvn ¼ mvn 1� vn

un

� �
; xAO;

ðunÞn ¼ ðvnÞn ¼ 0; xA@O;

8>>><
>>>:

ð3:12Þ

such that jjunjjN þ jjvnjjN-N as n-N:
We necessarily have jjunjjN-N since vnpjjunjjN: Denote

ûn ¼ un=jjunjjN; v̂n ¼ vn=jjvnjjN:

We have

�DûnpMûn; �Dv̂npmv̂n:

Therefore, Z
O
jrûnj2 þ

Z
O

û2npðM þ 1Þ
Z
O

û2npðM þ 1ÞjOj:

This implies that fûng is a bounded sequence in H1ðOÞ: Therefore, subject to a

subsequence, ûn converges to some ûAH1ðOÞ weakly in H1ðOÞ and strongly in L2ðOÞ:
Since ûn has LN-norm 1, we also have ûn-û in LpðOÞ 8p41: Clearly 0pûp1: We

claim that û is not the zero function in H1ðOÞ: Assume on the contrary that û ¼ 0:

Then from ûn-0 in Lp for every p41 we deduce ð�Dþ IÞ�1ûn-0 in C1ð %OÞ: But
from ð�Dþ IÞûnpðM þ 1Þûn we deduce

0pûnpðM þ 1Þð�Dþ IÞ�1ûn:

It follows that ûn-0 in LNðOÞ; contradicting the fact that jjûnjjN ¼ 1: Therefore,
ûa0:
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Similarly, subject to a subsequence, v̂n-v̂ weakly in H1ðOÞ; strongly in
LpðOÞ 8p41; and v̂a0:
By passing to a further subsequence, we have two cases to consider:
(i) fjjvnjjNg is bounded, (ii) jjvnjjN-N:
In case (i), we may assume that ln-l� and bjjvnjjN-x: From the equation for un

we obtain

�Dûn ¼ lnûn � anunûn � bjjvnjjNûnv̂n:

Multiply this equation by a smooth function f whose support is in D; and integrate
by parts. It results Z

D

rûn � rf ¼ ln

Z
D

ûnf� bjjvnjjN
Z

D

ûnv̂nf: ð3:13Þ

Letting n-N we obtain Z
D

rû � rf ¼
Z

D

ðl� � xv̂Þûf:

This implies that û satisfies in the weak sense

�Du ¼ ðl� � xv̂Þu in D: ð3:14Þ

For all small positive s; the set Ds ¼ fxAO : dðx;DÞosg has the same property as
D; namely, it has m disjoint components each with smooth boundary, and %DsCO:
By our assumption, for all large n; an4a=240 on %O\Dd: By [DH], the problem

�Du ¼ lu � ½aðxÞ=2
u2 in O\ %Ds; uj@Ds
¼ N; unj@O ¼ 0

has a minimal positive solution Ul;s:We need to be more precise here as O\Ds might

have several components; the number of components must be finite due to the
smoothness of the boundary of Ds: If this is the case, then the restriction of Ul;s on

each component is understood to be the minimal positive solution on that
component. This case was not stated clearly in [DH] thought it could as well
happen there.

By Lemma 2.3 in [DL], we find that unpUM;s on O\ %Ds: Therefore, we must have

û ¼ 0 a.e. in O\ %Ds: As s40 can be arbitrarily small, this implies that û ¼ 0 on O\ %D:

Since D has smooth boundary, this implies that ûjDAH1
0 ðDÞ: Recalling that ûa0 we

find that ûjDAH1
0 ðDÞ is a nontrivial nonnegative solution of (3.14). As ðl� �

xv̂ÞALNðOÞ; by Harnack’s inequality we infer that û40 or identically zero on each
component of D: Therefore, there exists some Dj such that ûjDj

40 on Dj and is a

weak solution to

�Du ¼ ðl� � xv̂Þu in Dj; uj@Dj
¼ 0:

By standard elliptic regularity, we find that ûjDj
AC1ð %DjÞ:
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Since m4lDm

1 XlDj

1 ; we can find d40 very small so that m4l
Dd

j

1 ; where

Dd
j ¼ fxADj : dðx; @DjÞ4dg:

On Dj; ûn satisfies

�Dûn ¼ lnûn � bvnûn

whose right-hand side has an LN bound independent of n: By standard interior

estimate for elliptic equations, we deduce that fûnjDd
j
g is a precompact set in C1ðDd

j Þ:

Therefore, ûnjDd
j
-û in C1ðDd

j Þ: In particular, for all large n; ûn4û=2 on Dd
j :

Since m4l
Dd

j

1 ; it is well known that the logistic equation

�DV ¼ mVð1� ð2=ûÞVÞ in Dd
j ; V j@Dd

j
¼ 0

has a unique positive solution V0: From the equation for vn; we find that vn=jjunjjN
satisfies, for all large n;

�Dv ¼ mvð1� v=ûnÞXmvð1� ð2=ûÞvÞ in Dd
j :

Therefore, we can apply Lemma 2.1 in [DM] to conclude that vn=jjunjjNXV0 on Dd
j

for all large n: As jjunjjN-N; clearly this implies that jjvnjjN-N; contradicting
our assumption that we are in case (i). Therefore, case (i) cannot happen.
Suppose now case (ii) happens. We can still have (3.13). Divide this identity by

bjjvnjjN and let n-N: We deduce Z
D

ûv̂f ¼ 0:

This implies that

ûv̂ ¼ 0 on D: ð3:15Þ

Since the problem

�Dv þ m
vn

un

� �
v ¼ mv in O; vnj@O ¼ 0

has a positive solution v ¼ vn; m must be the first eigenvalue of the differential
operator ð�Dþ mvn=unÞ on O with Neumann boundary conditions. It follows from
the variational characterization of the first eigenvalue that,Z

O
jrfj2 þ ðmvn=unÞf2

Xm
Z
O
f2 8fAH1ðOÞ:
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Taking f ¼ un; we obtain Z
O
jrunj2 þ munvnXm

Z
O

u2n:

Therefore, Z
O
jrûnj2 þ ðmjjvnjjN=jjunjjNÞ

Z
O

ûnv̂nXm
Z
O

û2n: ð3:16Þ

Recall that we always have vnpjjunjjN: Therefore, by (3.15),

0pðmjjvnjjN=jjunjjNÞ
Z
O

ûnv̂npm
Z
O

ûnv̂n-m
Z
O

ûv̂ ¼ m
Z
O\D

ûv̂:

But as before we always have û ¼ 0 on O\D: Therefore,

ðmjjvnjjN=jjunjjNÞ
Z
O

ûnv̂n-0

as n-N: We now let n-N in (3.16) and obtain

lim
n-N

Z
O
jrûj2Xm

Z
O

û2:

On the other hand, from the equation for un in (3.12) and the assumption
lnpMom; we obtain

lim
n-N

Z
O
jrûj2pM

Z
O

û2om
Z
O

û2:

This contradiction shows case (ii) cannot happen either. This finishes our proof. &

Proof of Theorem 3.6. We first prove the result under the extra condition that

aAC1ð %OÞ: Suppose that ðu; vÞ is a positive solution of (3.5) with lA½m;M
; where
0omolD1

1 oMom: By Lemma 3.7, there exists C40 independent of l and ðu; vÞ
such that uoC; voC on %O: By standard elliptic regularity, u; vAC2ð %OÞ: An
inspection of the proof of Theorem 3.1 shows that we can use jjvjj

N
pjjujj

N
oC

and the same results of [LNT,LN] to obtain a positive lower bound for u and v that is
independent of lA½m;M
 and ðu; vÞ; say

uðxÞ4c; vðxÞ4c 8xA %O:

Note that these arguments are not affected by aðxÞ ¼ 0 on D:
Now define

O ¼ fðu; vÞACð %OÞ � Cð %OÞ : couoC; covoCg
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and

Aðl; u; vÞ ¼ ðð�Dþ IÞ�1ðu þ lu � au2 � buvÞ; ð�Dþ IÞ�1ðv þ mv � mv2=uÞÞ:

We find that degðI � Aðl; �Þ;O; 0Þ is well-defined and independent of lA½m;M
:
At l ¼ mAð0; lD1

1 Þ; by [O] (see also [DL]), the degenerate logistic problem

�Du ¼ mu � aðxÞu2 in O; unj@O ¼ 0

has a unique positive solution u0: We now notice that the argument in the proof of
Theorem 3.1 can be used for our present case once we replace u�

l there by u0 here.

Therefore, there exist 0om0oM0 such that every possible positive solution of (3.5)
with l ¼ m belongs to O0; where

O0 ¼ fðu; vÞACð %OÞ � Cð %OÞ : m0ouoM0;m0ovoM0g

and degðI � Aðm; �Þ;O0; 0Þ ¼ 1: Since any possible positive solution of (3.5) with
l ¼ m belongs to O-O0; by the properties of the degree,

degðI � Aðm; �Þ;O; 0Þ ¼ degðI � Aðm; �Þ;O0; 0Þ:

Therefore,

degðI � Aðl; �Þ;O; 0Þ ¼ 1 8lA½m;M
:

This implies that (3.5) has a positive solution in O for every lA½m;M
:
If a is only in Cð %OÞ; then we can find a sequence of C1 functions an such that an-a

in Cð %OÞ and an ¼ 0 on Dn ¼
Sm

j¼1 Dn
j ; an40 on %O\Dn; where each Dn

j is a small

neighborhood of Dj and Dn
j -Dn

i ¼ | when iaj; l
Dn

j

1 -lDj

1 as n-N: Therefore, for

each fixed large n and lA½m;M
; by what has been proved above, (3.5) with a
replaced by an has a positive solution ðun; vnÞ: By Lemma 3.7, un; vn are uniformly
bounded from above by some positive constant C: Using this and results in
[LNT,LN] as before, we can obtain a uniform positive lower bound for un; vn; say
un; vn4c: Then from elliptic regularity we deduce that ðun; vnÞ has a subsequence that
converges to a positive solution of (3.5), as in the proof of Theorem 3.1. Therefore,
(3.5) has a positive solution for each lA½m;M
: Since m40 can be arbitrarily small
and M can be arbitrarily close to m; this finishes our proof. &

Remark 3.8. We do not know whether (3.5) has a positive solution for every b40

when lXm4lDm

1 :

The nonexistence result, Theorem 3.5, provides us a chance of constructing
positive solutions of (3.5) with prescribed patterns. More precisely, if we perturb the
degenerate aðxÞ in (3.5) by aðxÞ þ e with small positive e; then by Theorem 3.1 we
know that the perturbed (3.5) has a positive solution ðue; veÞ; Theorem 3.5 suggests
that if l; m and b are chosen suitably, then as e-0; the function pair ðue; veÞ has no
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finite limit and hence may exhibit sharp spatial patterns. This is indeed the case but
we are unable to determine the exact location of the pattern in the general case. To
overcome this difficulty, we are led to the study of the behavior of bjðlÞ as l-N:

Let us recall that for mAð0; lD1

1 Þ and l4lDm

1 ; b ¼ bjðlÞ is the unique solution to

l ¼ lDj

1 ðbVlÞ; j ¼ 1;y;m;

where Vl is given by (3.9).

Let us fix mAð0; lD1

1 Þ and define Ṽl ¼ l�1Vl; Ũl ¼ l�1Ul; where Ul is given by

(3.8) with k ¼ m: We easily see that Ũl satisfies

�DU ¼ lUð1� aðxÞUÞ in O\ %D; U j@D ¼ N; Unj@O ¼ 0; ð3:17Þ

and Ṽl satisfies

�DV ¼ mVð1� *alðxÞVÞ in O; Vnj@O ¼ 0; ð3:18Þ

where

*alðxÞ ¼
0; xA %D;

1=ŨlðxÞ; xA %O\ %D:

�

Lemma 3.9. liml-N ŨlðxÞ ¼ 1=aðxÞ uniformly on any compact subset of O\ %D:

Proof. For arbitrary e40 and x0AO\ %D; we can find a small open ball Bdðx0Þ of

radius d and center x0 such that %Bdðx0ÞCO\ %D; and

jaðxÞ�1 � aðx0Þ�1jpe 8xABdðx0Þ:

Denote by a� and a�; respectively, the maximum and minimum of aðxÞ on the closure
of Bdðx0Þ and consider the auxiliary problems,

�Dw ¼ lwð1� a�wÞ in Bdðx0Þ; wj@Bdðx0Þ ¼ 0 ð3:19Þ

and

�Dz ¼ lzð1� a�zÞ in Bdðx0Þ; zj@Bdðx0Þ ¼ N: ð3:20Þ

By Lemmas 2.2 and 2.3 of [DM], we find that (3.19) has a unique positive solution wl

for all large l and wlðxÞ-1=a� as l-N uniformly on Bd=2ðx0Þ; (3.20) has a unique
positive solution zl for every l and zlðxÞ-1=a� as l-N uniformly on Bd=2ðx0Þ: By
Lemma 2.1 of [DM] (which is valid for C1 functions), we deduce

wlpŨlpzl in Bdðx0Þ:
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Therefore, we can find le40 sufficiently large so that

1=a� � epŨlðxÞp1=a� þ e 8l4le 8xABd=2ðx0Þ:

This implies that

jŨlðxÞ � 1=aðxÞjp2e 8l4le 8xABd=2ðx0Þ:

Hence ŨlðxÞ-1=aðxÞ as l-N uniformly in Bd=2ðx0Þ: By a standard finite covering

argument, this implies that ŨlðxÞ-1=aðxÞ as l-N uniformly on any compact

subset of O\ %D: &

Lemma 3.10. As l-N; *al-a uniformly on %O:

Proof. For small d40; let us denote

Ad ¼ fxAO : dðx; @OÞodg; Bd ¼ fxAO\ %D : dðx; @DÞodg:

Since *al ¼ a ¼ 0 on %D and by Lemma 3.9, *a-a uniformly on compact subsets of

O\ %D as l-N; it suffices to show the uniform convergence on %Ad0 and %Bd0 for some

small positive d0:
Let us now fix d0 small. For any given e40; we can find dAð0; d0Þ such that

ad :¼ max %Bd
aoe=3: By Lemma 3.9, we can find L140 large enough such that, for

l4L1;

1=ŨlðxÞo2aðxÞp2ad 8xA@1Bd :¼ fxAO\ %D : dðx; @DÞ ¼ dg:

Therefore, Ũl is an upper solution to the problem,

�Du ¼ luð1� 2aduÞ in Bd; uj@Bd
¼ 1=ð2adÞ;

which has a unique solution u � 1=ð2adÞ: By Lemma 2.1 of [DM], we deduce

ŨlX1=ð2adÞ in Bd: Therefore, for l4L1;

j*alðxÞ � aðxÞjp*alðxÞ þ aðxÞp3adpe 8xABd:

By Lemma 3.9, we can find L2XL1 sufficiently large such that,

j*alðxÞ � aðxÞjpe 8l4L2 8xA %Bd0 \Bd:

Therefore, *al-a as l-N uniformly on %Bd0 :

It remains to prove the uniform convergence on %Ad0 :We argue indirectly. Suppose

there exist a sequence xnA %Ad0 and a sequence of increasing numbers ln-N such

that

j*aln
ðxnÞ � aðxnÞjXe040:
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By Lemma 3.9, on @1Ad0 :¼ @Ad0 \@O; Ũln
ðxÞ-1=aðxÞ uniformly. If we denote

a0 ¼ infAd0
a and a0 ¼ supAd0

a; then we easily see that for all large l; Ũl is a lower

solution to

�Du ¼ luð1� ða0=2ÞuÞ in Ad0 ; uj@1Ad0
¼ 2=a0; unj@O ¼ 0;

which has a unique solution u � 2=a0: Therefore we can apply Lemma 2.3 of [DL] to

conclude that Ũln
p2=a0 on %Ad0 for all large n:

A parallel consideration shows Ũln
X1=ð2a0Þ on %Ad0 for all large n: Therefore

f*aln
ðxnÞg is a bounded sequence that has a subsequence converging to a positive

constant. Without loss of generality we assume

*aln
ðxnÞ-*a�; xn-x�; aðxnÞ-a� ¼ aðx�Þ:

By Lemma 3.9, we necessarily have x�A@O: Our assumption implies that j*a� �
a�jXe040:

We now define WnðxÞ ¼ Ũln
ðxn þ l�1=2n xÞ and apply a standard blowing-up

argument. We find that Wn-W uniformly on any bounded subset of T ; where T is

the entire RN or a half space of RN ; and W satisfies

�DW ¼ W � a�W 2; 1=ð2a0ÞpWp2=a0 in T ; Wð0Þ ¼ 1=*a� ð3:21Þ

and in case T is a half-space, Wnj@T ¼ 0; where n is the outward unit normal of @T :

However, by Theorem 1.2 of [DM], the only positive solution of

�Dw ¼ w � a�w2 in RN ð3:22Þ

is w � 1=a� which does not satisfy the last part of (3.21). Therefore T must be a half-
space. But the boundary condition on @T implies that the even extension of W

across @T ; which we denote by W̃; is a positive solution of (3.22). Therefore we must

have W̃ � 1=a� which yields a contradiction to the last part of (3.21) too. This shows
that we must have *an-a uniformly on %Ad0 as l-N; as we wanted. The proof is now
complete. &

Lemma 3.11. As l-N; Ṽl-Ṽ in C1ð %OÞ; where Ṽ is the unique positive solution of

�DV ¼ mVð1� aðxÞVÞ in O; Vnj@O ¼ 0: ð3:23Þ

Proof. Let flng be an arbitrary sequence that converges toN; and denote Ṽn ¼ Ṽln
:

Since molD1

1 ; we can find a small d40 such that Dd
j :¼ fxARN : dðx;DjÞodg has

smooth boundary, Dd
j -Dd

i ¼ | for iaj; and mol
Dd

j

1 for j ¼ 1;y;m:
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Let adðxÞ be a continuous function such that adðxÞ ¼ 0 on Dd :¼
Sm

j¼1 Dd
j ; and

0oadðxÞoaðxÞ=2 on %O\Dd: By our choice of d and the main result of [O], the
problem

�DV ¼ mVð1� adðxÞVÞ in O; Vnj@O ¼ 0 ð3:24Þ

has a unique positive solution Vd: From Lemma 3.10, we see that *aln
Xad on O for all

large n: Therefore, for such n; Ṽn is a lower solution to (3.24). Clearly, for large

M41; MV d is an upper solution of (3.24) and MVd4Ṽn: Therefore, the unique

positive solution V d must satisfy ṼnpVdpMV d in O for all large n: Hence fjjṼnjjNg
is a bounded sequence. It follows now from the equation for Ṽn and standard elliptic

estimates that fṼng is bounded in W 2;pðOÞ for any p41: Therefore, by passing to a

subsequence, Ṽn-Ṽ in C1ð %OÞ and Ṽ is a nonnegative solution of (3.23). Let M40

be a large constant such that jj*aln
jj
N
pM for all n: Then Ṽn is an upper solution to

�DV ¼ mVð1� MVÞ in O; Vnj@O ¼ 0;

which has a unique positive solution V � 1=M: Since any small positive constant s0
is a lower solution of this equation, we must have ṼnX1=MXs0 in O: Therefore
ṼX1=M in O and Ṽ is the unique positive solution of (3.23). Since ln is an arbitrary

sequence converging to N; we can conclude that Ṽl-Ṽ in C1ð %OÞ as l-N: &

Theorem 3.12. Let Ṽ be as in Lemma 3.11. Then

lim
l-N

bjðlÞ ¼ bNj :¼ min
%Dj

Ṽ

 !�1

:

Proof. For fixed b40; denote mDj

1 ðlÞ ¼ lDj

1 ðblṼÞ=l: We easily see that mDj

1 ðlÞ is the
first eigenvalue of the operator �l�1Dþ bṼ over Dj under Dirichlet boundary

conditions. Therefore, by its variational characterization,

mDj

1 ðlÞ ¼ inf
fAH1

0
ðDjÞ\f0g

l�1
R

Dj
jrfj2 þ

R
Dj
bṼf2R

Dj
f2

Xbmin
%Dj

Ṽ: ð3:25Þ

On the other hand, for any m4min %Dj
Ṽ; we can find a small ball B0CDj such that

Ṽpm on B0: We now let f0 be a smooth nonnegative function with support in B0

and satisfying
R

B0
f2
0 ¼ 1: Then we find

mDj

1 ðlÞpl�1
Z

Dj

jrf0j
2 þ bm-bm as l-N:
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Together with (3.25), this implies that

lim
l-N

mDj

1 ðlÞ ¼ bmin
%Dj

Ṽ:

By Lemma 3.11, for any given e40; we can find Le40 large enough such that

ṼðxÞ � epṼlðxÞpṼðxÞ þ e 8xAO 8lXLe:

Therefore,

lDj

1 ðbVlÞ
l

¼ lDj

1 ðblṼlÞ
l

A
lDj

1 ðblṼ � eblÞ
l

;
lDj

1 ðblṼ þ eblÞ
l

 !

¼ðmDj

1 ðlÞ � eb; mDj

1 ðlÞ þ ebÞ:

Since e is arbitrary, it follows that,

lim
l-N

lDj

1 ðbVlÞ
l

¼ lim
l-N

mDj

1 ðlÞ ¼ b min
%Dj

Ṽ: ð3:26Þ

Since

lDj

1 ðbjðlÞVlÞ
l

� 1;

we easily see from (3.26) that

lim
l-N

bjðlÞ ¼ min
%Dj

Ṽ

 !�1

:

This finishes our proof. &

Corollary 3.13. Suppose that mAð0; lD1

1 Þ and bAð0;maxfbN1 ;y; bNm gÞ: Then there

exists L40 such that (3.5) has no positive solution for l4L:

Proof. By our assumption, bobNj for some 1pjpm: By Theorem 3.12, we can find

L40 such that bjðlÞ4b for l4L: Therefore l4lDj

1 ðbVlÞ for l4L: Due to (3.10),

this implies that (3.5) has no positive solution for l4L: &

Remark 3.14. Our results in this subsection provide interesting contrast to those in
Section 2 of [DD], where the Lotka–Volterra model

�Du ¼ lu � aðxÞu2 � buv; xAO;

�Dv ¼ mv � v2 þ duv; xAO;

u ¼ v ¼ 0; xA@O;

8><
>: ð3:27Þ
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was considered. Here we have modified the notations in [DD] to match the notation
for (3.5). Assume that l; b; d are positive constants, m is allowed to be negative,

and aðxÞ is continuous and positive on %O\ %D; and is identically zero on D ¼ D1: It is

shown in [DD] that (3.27) behaves as if aðxÞ is a positive constant when lolD
1

while essential changes occur once l4lD
1 ; namely, the range of the other parameters

for the existence of positive solutions is greatly enlarged when l4lD
1 : For (3.5),

under such conditions for aðxÞ; by results of this subsection, when lolD
1 ; similar to

(3.27), it behaves as if a is a positive constant, but for the case l4lD
1 ; in sharp

contrast to (3.27), the behavior of (3.5) has an essential change in that the range
of the other parameters for the existence of positive solutions is greatly reduced.
This difference has important consequences in terms of existence of patterned
solutions (see Remark 3.20 later). We wish to point out that these different
effects of aðxÞ on the two models are not due to the Dirichlet boundary conditions
in (3.27); similar results can be proved for (3.27) under Neumann boundary
conditions.

3.3. Positive solutions with prescribed patterns

Throughout this subsection, we assume that aðxÞ is as in Section 3.2, that is, aðxÞ is
continuous over %O; is positive on %O\ %D; and aðxÞ � 0 on D ¼

Sm
j¼1 Dj: Moreover, we

assume that,

mAð0; lD1

1 Þ; bAð0;minfbN1 ;y; bNm gÞ:

Therefore, in view of Theorem 3.12, there exists L40 such that

bobjðlÞ 8l4L; j ¼ 1; 2;y;m:

We now fix l4L and consider the following perturbation of (3.5):

�Du ¼ lu � ½aðxÞ þ e
u2 � buv; xAO;

�Dv ¼ mv 1� v

u

� �
; xAO;

un ¼ vn ¼ 0; xA@O;

8>><
>>: ð3:28Þ

where e40 is a positive constant. By Theorem 3.1, (3.28) always has a positive
solution. Denote by ðue; veÞ an arbitrary positive solution of (3.28), we want to show
that as e-0; ðue; veÞ exhibits a clear spatial pattern. To this end, let feng be an
arbitrary sequence of positive numbers decreasing to 0 as n-N; and denote
ðun; vnÞ ¼ ðuen

; ven
Þ:

Lemma 3.15. As n-N; unðxÞ-N uniformly on %D:
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Proof. Let alðxÞ be defined as in (3.9). We easily see that

�Dvnpmvnð1� alðxÞvnÞ in O:

Therefore, vn is a lower solution to (3.9), which has a unique positive solution Vl: On
the other hand, for any constant M41; MVl is an upper solution of (3.9) and
MVl4vn if M is large enough. It follows that vnpVlpMVl in O:
By our choice of l and b; we have

l4lDj

1 ðbVlÞ; j ¼ 1; 2;y;m: ð3:29Þ

Let Un be the unique positive solution of

�Du þ bVlu ¼ lu � ½aðxÞ þ en
u2 in O; unj@O ¼ 0:

By Theorem 2.2(iii) of [DL], (3.29) implies that Un-N uniformly on %D as n-N:
(To avoid confusion, let us note that the Dj’s in [DL] are closed sets, and therefore

correspond to %Dj here.)

Since vnpVl; we deduce from the equation for un that,

�Dun þ bVlunXlun � ½aðxÞ þ en
u2n in O:

Hence, by a simple comparison argument similar to that leading to vnpVl above,

unXUnXUn�1X?XU1 in O: It follows that un-N uniformly on %D as n-N: &

Theorem 3.16. fðun; vnÞg has a subsequence, still denoted by ðun; vnÞ; such that,

un-ũ in C1ð %oÞ for any subdomain o satisfying %oC %O\ %D;

un-N uniformly on %D; vn-ṽ in C1ð %OÞ;

where ũ is a positive solution to

�Dũ ¼ lũ � aðxÞũ2 � bũṽ in O\ %D; ũj@D ¼ N; ũnj@O ¼ 0 ð3:30Þ

and ṽ is a positive solution to

�Dṽ ¼ mṽð1� *aðxÞṽÞ in O; ṽnj@O ¼ 0; ð3:31Þ

where

*aðxÞ ¼ 0; xA %D;

1=ũðxÞ; xA %O\ %D:

�
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Moreover,

lDj

1 ðbṽÞ ¼ l; j ¼ 1; 2;y;m: ð3:32Þ

Remark 3.17. Note that ðũ; ṽÞ is determined by (3.30)–(3.32) altogether, and
Theorem 3.16 implies that there is at least one positive solution ðũ; ṽÞ to (3.30)–

(3.32), provided that mAð0; lD1

1 Þ; bAð0;minfbN1 ;y; bNm gÞ and l4L:

Proof of Theorem 3.16. By the proof of Lemma 3.15, we find that,

0ovnpVl; 0o1=unp1=Unp1=U1 in O 8nX1:

Therefore, f�Dvng and fvng are both bounded sets in LNðOÞ: By standard elliptic

estimates, it follows that fvng is bounded in W 2;pðOÞ for all p41: Hence, subject to a

subsequence, vn-ṽ in C1ð %OÞ:
Let Ul denote the minimal positive solution of

�Du ¼ lu � aðxÞu2 in O\ %D; uj@D ¼ N; unj@O ¼ 0:

By Lemma 2.3 in [DL], we obtain

unðxÞpUlðxÞ 8xAO\ %D; n ¼ 1; 2;y : ð3:33Þ

For small d40; let us denote Dd ¼ fxAO : dðx;DÞodg: Then, by (3.33) we find
that funj %O\Dd

g is a bounded sequence in LNðO\DdÞ: Therefore we can apply standard
elliptic regularity results (up to @O but away from @Dd) to conclude that funj %O\D2d

g is
compact in C1ð %O\D2dÞ:
We now use a diagonal process to extract a subsequence of fung that converges in

%O\ %D: Let fdng be a sequence of small positive numbers decreasing to 0 as n-N:

Then we can find a subsequence fu1ng of fung that converges to some u1 in

C1ð %O\D2d1Þ: From fu1ng we can find a further subsequence fu2ng that converges to

some u2 in C1ð %O\D2d2Þ: In general, for k ¼ 1; 2;y; we have a subsequence fukþ1
n g of

fuk
ng that converges to some ukþ1 in C1ð %O\D2dkþ1Þ: Clearly we must have uk ¼ ukþ1 on

%O\D2dk
: Therefore, if we define ũðxÞ ¼ ukðxÞ for xA %O\D2dk

; k ¼ 1; 2;y; then ũ is

well-defined in %O\ %D; and un
n-ũ in C1ð %O\DdÞ for every small d40: In other words,

fung has a subsequence which we still denote by un that converges to ũ in C1ð %O\DdÞ
for any small d40:

Now from the equation for un and the fact that vn-ṽ in C1ð %OÞ; we find

�Dũ ¼ lũ � aðxÞũ2 � bũṽ in O\ %D; ũnj@O ¼ 0:

By the proof of Lemma 3.15, we have unXUn: But we know from Theorem 2.2 of

[DL] that, as n-N; Un-Ul uniformly on %O\Dd for any d40: It follows that ũXUl;
and hence ũj@D ¼ N: Thus we have proved that ũ satisfies (3.30).
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Consider now 1=un: From Lemma 3.15 we easily see that 1=un-0 uniformly on %D:

By our above discussion, we have 1=un-1=ũ uniformly over %O\Dd for every small

d40: Since unXUnXU1 for all nX1; we have 1=unp1=U1 in %O\ %D: Therefore, by the
dominate convergence theorem, we have 1=un-*a in LpðOÞ for all p41: We now
easily see from the equation for vn that,

�Dṽ ¼ mṽð1� *aðxÞṽÞ in O; ṽnj@O ¼ 0:

This verifies that ṽ satisfies (3.31).
It remains to prove (3.32). To this end, we denote ûn ¼ un=jjunjjN: Then

�Dûnplûn in O;

and as in the proof of Lemma 3.7, this implies that, subject to a subsequence, ûn-û

weakly in H1ðOÞ and strongly in LpðOÞ for every p41; and ûc0: From (3.33) we find
that û � 0 on O\D: Multiplying the equation for un by fj=jjunjjN; where fjACNðDjÞ
and has support contained in Dj ; integrating by parts over Dj and then letting n-N;

we obtain

Z
Dj

rû � rfj ¼
Z

Dj

ðl� bṽÞûfj:

This implies that ûjDj
is a nonnegative solution to

�Du ¼ ðl� bṽÞu in Dj; uj@Dj
¼ 0: ð3:34Þ

Clearly (3.32) follows from (3.34) if we can show that ûjDj
c0:

Since l4lDj

1 ðbVlÞ; the problem

�Dz þ bVlz ¼ lz � z2 in Dj; zj@Dj
¼ 0 ð3:35Þ

has a unique positive solution yj: On the other hand, it is easily seen that zn :¼ enun

satisfies

�Dzn ¼ lzn � z2n � bvnznXlzn � z2n � bVlzn in Dj; znj@Dj
40:

Therefore, by Lemma 2.1 of [DM], we deduce

enunXyj in Dj 8nX1: ð3:36Þ

On the other hand,

�Dzn ¼ lzn � ½e�1n aðxÞ þ 1
z2n � bvnznplzn � z2n in O:
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Therefore by a simple comparison consideration, zn is not larger than the unique
positive solution z � l of the problem

�Dz ¼ lz � z2 in O; znj@O ¼ 0;

that is, enunpl: Hence jjunjjNpl=en: Using (3.36), we obtain

un=jjunjjNXenun=lXyj=l in Dj:

It follows that ûXyj=l in Dj: Thus we have l ¼ lDj

1 ðbṽÞ: The proof is complete. &

Theorem 3.16 implies that for all large n; ðun; vnÞ is close to a function ðu�; v�Þ of
the form u�ðxÞ ¼ N on %D; u�ðxÞ ¼ ũðxÞ on %O\ %D; v� ¼ ṽ in O; where ðũ; ṽÞ solves
(3.30)–(3.32). Clearly un develops a sharp pattern over O: its value over D is much
bigger than that over the rest of O: However, vn does not develop into a sharp
pattern. The following result further describes the profile of un for large n:

Theorem 3.18. Suppose that ðun; vnÞ converges to ðũ; ṽÞ as in Theorem 3.16. Then

enun-w in Cð %OÞ; where w ¼ 0 on %O\D; and on each Dj; j ¼ 1;y;m; w is the unique

positive solution of

�Dw ¼ lw � w2 � bṽw in Dj; wj@Dj
¼ 0:

Proof. From the proof of Theorem 3.16, we find that,

yjðxÞpenunðxÞ 8xADj 8nX1;

where yj denotes the unique positive solution of (3.35). We also find from there that

enunpl: Hence c0penjjunjjNpC0 for some positive constants c0; C0 and all n: We

may assume that enjjunjjN-xA½c0;C0
 as n-N: Therefore, by the proof of

Theorem 3.16, enun-xû in LpðOÞ for any p41: When restricted on D; zn :¼ enun

satisfies

�Dzn ¼ ðl� bvnÞzn � z2n;

whose right-hand side has a bound in LN that is independent in n: Therefore, by

standard interior elliptic estimates, we can conclude that zn-xû in the C1 norm over
any compact subset of D: By (3.33), we find that zn-0 uniformly on any compact

subset of %O\ %D:

Claim 1. For each j ¼ 1;y;m; Zn ¼ Zj
n :¼ max@Dj

zn-0 as n-N:

Arguing indirectly we assume that there exists 1pjpm; a sequence xnA@Dj and

some d040 such that znðxnÞXd0 for all nX1:
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For each small d40; let Dd
j denote the d-neighborhood of Dj and consider the

problem

�Du ¼ lu � u2 � bðṽ � dÞu in Dd
j ; uj@Dd

j
¼ 0: ð3:37Þ

Since ṽpVl and l4lDj

1 ðbVlÞ; we find that for all small d40; l4l
Dd

j

1 ðbðṽ � dÞÞ:
Hence (3.37) has a unique positive solution ud: By the uniqueness and a standard
regularity and compactness argument, we can easily show that

udjDj
-wj in C2ð %DjÞ as d-0; ð3:38Þ

where wj is the unique positive solution of (3.37) with d ¼ 0: For each fixed d40; by

our discussion above, zn-0 uniformly on @D
d=2
j : Hence znpud on @D

d=2
j for all large

n: Moreover, in D
d=2
j ; zn satisfies

�Dzn ¼ lzn � z2n � bvnznplzn � z2n � bðṽ � dÞzn;

provided that n is large enough, since vn-ṽ uniformly on %O: Therefore we can apply

Lemma 2.1 in [DM] to conclude that znpud in D
d=2
j for all large n: In particular, for

all large n;

udðxnÞXznðxnÞZd0:

This implies that max@Dj
udXd0 for all small d40: Clearly this contradicts (3.38), and

the proof of Claim 1 is complete.

Claim 2. zn-wj uniformly on %Dj for j ¼ 1; 2;y;m; and zn-0 uniformly on %O\D:

Let dn ¼ bjjvn � ṽjj
N
: Then dn-0 as n-N: A simple upper and lower solution

consideration shows that the problem

�Dw ¼ ðlþ dnÞw � w2 � bṽw in Dj; wj@Dj
¼ Zj

n

has a positive solution wn: By Lemma 2.1 of [DM], the solution is unique. It is then

easily shown that wn-wj uniformly on %Dj as n-N:

One easily checks that, for all large n;

�Dznpðlþ dnÞzn � z2n � bṽzn in Dj; znpwn on @Dj:

By Lemma 2.1 of [DM], it follows that

znpwn in Dj:

ARTICLE IN PRESS
Y. Du, S.-B. Hsu / J. Differential Equations 203 (2004) 331–364 361



On the other hand, the problem

�Dw ¼ ðl� dnÞw � w2 � bṽw in Dj; wj@Dj
¼ 0

has a unique positive solution
%
wn and

%
wn-wj uniformly on %Dj as n-N: Since

�DznXðl� dnÞzn � z2n � bṽzn in Dj; znj@Dj
40;

we can apply Lemma 2.1 of [DM] to obtain znX
%
wn in Dj: Therefore,

%
wnpznpwn in Dj for all large n:

It follows that zn-wj uniformly on %Dj as n-N: This proves the first half of

Claim 2.
To prove the second half of Claim 2, we consider the problem,

�Du ¼ ðlþ dnÞu � u2 � bṽu in O\ %D; uj@D ¼ xn; unj@O ¼ 0; ð3:39Þ

where xn ¼ max@D zn: By what has just been proved, we know that xn-0 as n-N:
It is easily seen by a lower and upper solution argument that (3.39) has a unique
positive solution zn: A standard regularity and compactness argument shows that zn

converges uniformly to zN which is the maximal nonnegative solution of the
problem

�Du ¼ lu � u2 � bṽu in O\ %D; uj@D ¼ 0; unj@O ¼ 0: ð3:40Þ

It is well known that zN ¼ 0 when lplO\D1 ðbṽÞ and zN is the unique positive

solution of (3.40) in the remaining case.
Applying Lemma 2.3 of [DL] we find that znpzn in O\D: Therefore, for any

sequence fxngCO\D satisfying dðxn;DÞ-0; we have, as n-N;

znðxnÞpznðxnÞpjjzn � zNjjLNðO\DÞ þ zNðxnÞ-0: ð3:41Þ

We have already proved that zn-0 uniformly on any compact subset of %O\ %D:

Combined with (3.41), we find that zn-0 uniformly on %O\D: This finishes the proof
for the second half of Claim 2 and hence the proof of the theorem. &

It seems worthwhile to point out that if ðue; veÞ is a positive solution to (3.28), then
ðze; veÞ; with ze ¼ eue; is a positive solution to the predator–prey model

�Dz ¼ lz � ½e�1aðxÞ þ 1
z2 � bzv; xAO;

�Dv ¼ mv 1� e
v

z

� �
; xAO;

zn ¼ vn ¼ 0; xA@O:

8>><
>>:
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Remark 3.19. Theorem 3.18 implies that for small e40; ze exhibits a sharp pattern

over O: it is close to 0 over %O\D; and is close to a continuous positive function over
D: Note that ve is close to a continuous positive function over the entire O: By
choosing D suitably, we see that rather arbitrary patterns can be realized by ze:

Remark 3.20. It is easy to check that if we perturb the classical Lotka–Volterra
model (3.27) by replacing a degenerate aðxÞ with aðxÞ þ e; then no positive solution
ðue; veÞ of the perturbed (3.27) develops a sharp pattern as e-0: In fact, it is easy to
show that ðue; veÞ is close to a positive solution of the unperturbed (3.27) when e is
small.
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