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Abstract

This paper is devoted to the study of two advection-dispersion-reaction

models arising from the dynamics of harmful algae and zooplankton in flowing-

water habitats where a main channel is coupled to a hydraulic storage zone,

representing an ensemble of fringing coves on the shoreline. For the system

modeling the dynamics of algae and their toxin that contains little limiting

nutrient, we establish a threshold type result on the global attractivity in

terms of the basic reproduction ratio for algae. For the model with zooplank-

ton that eat the algae and are inhibited by the toxin produced by algae, we

show that there exists a coexistence steady state and the zooplankton is uni-

formly persistent provided that two basic reproduction ratios for algae and

zooplankton are greater than unity.
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1 Introduction

Prymnesium parvum (a haptophyte alga), also called “golden algae”, occurs world-

wide and is capable of forming large fish-killing blooms in coastal and inland water

∗Department of Mathematics and The National Center for Theoretical Science, National Tsing

Hua University, Hsinchu 300, Taiwan. Research supported in part by National Council of Science,

Taiwan.
†Department of Natural Science in the Center for General Education, Chang Gung University,

Kwei-Shan, Taoyuan 333, Taiwan. Research supported in part by National Council of Science,

Taiwan. Correspondence should be directed to F.-B. Wang: fbwang@mail.cgu.edu.tw.
‡Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s,

NL A1C 5S7, Canada. Research supported in part by the NSERC of Canada and the URP fund

of Memorial University.

1



environments. The first recorded P. parvum bloom occurred in 1985 in a semiarid

region of the country in a stretch of the Pecos River in Texas [12]. Since this event,

blooms of P. parvum have increased in the inland waters of Texas and other parts

of USA ([25, 28]). A viable phytoplankton community usually emerges during the

occurrence of harmful algal blooms in riverine ecosystems. It is important to un-

derstand the persistence of algae in the presence of flow and the spatial variation

of algal abundance and toxicity during bloom and flow events. Recently, it has

been suggested that management of flow is a possible strategy to control harmful

algal blooms and mitigate their effects in some river systems ([17, 18, 29]). Another

fact is that coves along the shoreline of riverine reservoirs might represent habitats

where dynamics of harmful algae differ from the main reservoir. Motivated by

those observations, a theoretical exploration of harmful algal dynamics in flowing

conditions was proposed in [8].

In flowing-water habitats, the flow enters at one boundary supplying nutrient

resource(s), and exits at another, removing nutrients and organisms, while both ad-

vection and diffusion transport organisms and nutrient across the habitat domain

[1, 2, 16, 30]. A basic question on persistence remains to be answered. Rapid advec-

tive flow in such habitats can prevent persistence even for one species and realistic

parameters. The presence of hydraulic storage zones in flowing-water habitats is

a possible resolution of the persistence paradox [27]. Although nutrient concen-

tration and population densities vary with location in both the flowing channel

and the storage zone, advective and diffusive transport occur only in the flowing

zone, not the storage zone. The flow reactor and its modifications are especially

important because they provide a simple model for riverine reservoirs and fluvial

lakes formed in drowned river valleys, which have strong advective flows [8]. In

order to study the longitudinal distribution of algal abundance and toxicity under

various flows, the authors of [8] conceived of an idealized riverine reservoir where

a main channel with advective transport and dispersion is coupled to a hydraulic

storage zone, representing an ensemble of fringing coves on the shoreline.

In this paper, a one-dimensional model with simple habitat geometry and trans-

port processes [8] will be investigated to study spatial variations of harmful algae

and its toxin production and decay, in riverine reservoirs. Here, we further adopt

a continuum approach using an advection-dispersion-reaction system to resolve

transport and biochemical reaction kinetics along the main channel of a riverine

reservoir. We neglect several potential complications including vertical stratifica-

tion, light limitation, and higher trophic levels. Those simplifications in this model

permit us to concentrate on the study of population dynamics and toxin produc-

tion and decay. The model structures are simplified but they support elaboration

with details necessary for modeling specific flowing water systems in Texas, where

harmful blooms have occurred. Hence, the model could be modified to represent
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conditions found in other riverine systems worldwide [8].

The organization of the paper is as follows. Some physical setting are introduced

in next section. In section 3, we study the model describing the dynamics of algae

and their toxin that contains little limiting nutrient. By appealing to the theory

of monotone dynamical systems and chain transitive sets, we are able to prove

that the washout steady state is globally stable if the basic reproduction ratio

for algae is less than unity, and there exists a globally stable coexistence steady

state if this ratio is greater than unity. In section 4, we consider the model with

zooplankton that eat the algae and are inhibited by its toxin. The main result for

this model shows that there exists a coexistence steady state and the zooplankton

is uniformly persistent provided that two basic reproduction ratios for algae and

zooplankton are greater than unity. A brief discussion is presented in section 5.

The proofs involving chain transitive sets and persistence theory are deferred to

the Appendix.

2 Basic settings

We shall study spatially explicit models that describe the dynamic interactions of

a main lake and its coves via an advection-dispersion-reaction system. This con-

tinuum approach has one spatial dimension, the longitudinal axis (x) of a riverine

reservoir from the headwaters (x = 0) to the dam (x = L) (see, e.g., [8, Fig. 1]).

The main channel is connected to an ensemble of fringing coves treated as a hy-

draulic storage zone [3]. We assume that advective and diffusive transport occur

only in the main flowing zone, not the storage zone. The cross-section of the chan-

nel is partitioned into a flowing zone of area A, and a static storage zone of area AS
(assumed to be constants here). Exchange of nutrient and populations between the

flowing and storage zones occurs by Fickian diffusion with rate α (time−1). A flow

of water enters at the upstream end (x = 0), with discharge F (dimensions length3

/ time). An equal flow exits at the downstream end (x = L), which is assumed

to be a dam. Based on this flow, a dilution rate D (dimensions time−1) is defined

as F/V . The advective flow within the channel is set to maintain water balance,

by transporting water with a net velocity ν = DL. Flow enters the headwaters

at a rate F (dimensions length3 / time), carrying the limiting nutrient for algal

growth at a concentration R(0) (µmol / liter), and a balancing flow exits at the

dam, removing algae, nutrients, and algal toxin.

In the following, the assumptions for algal population growth, and toxin produc-

tion and decay will be imposed. Algal growth is a Monod function of the limiting

nutrient concentration (R) at a given location:

f(R) =
µmaxR

K +R
. (2.1)
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Here, µmax (time−1) represents the maximal growth rate and K (µmol / liter)

represents the half saturation constant.

There are two types of production for dissolved toxins. The first assumes that

the rate of toxin production p (µg toxin liter−1 time−1) is proportional to the degree

of algal nutrient limitation and to algal abundance N (cells/liter):

ϵp(R,N) = ϵ[µmax − f(R)]N = ϵ
µmaxK

K +R
N, (2.2)

where ϵ (µg toxin/cell) is a constant coefficient. We refer to this as the flagellate

case since some toxic flagellates (e.g. Prymnesium parvum ) have been observed to

produce toxins more rapidly when stressed by nutrient limitation ([4, 7, 13, 15]).

The second type of toxin production assumes that the rate of production is pro-

portional to algal productivity, i.e. to the product of growth rate and abundance:

ϵp(R,N) = ϵf(R)N = ϵ
µmaxR

K +R
N. (2.3)

This case assumes that toxin is produced in proportion to other cellular products,

and is then released to the water at a constant rate. We refer to this as the

cylindrospermopsin case [6, 10].

3 The model for harmful algae

Suppose R(x, t), N(x, t) and C(x, t) denote dissolved nutrient concentration, algal

abundance and dissolved toxin concentration at location x and time t in the flow-

ing channel, respectively; Suppose RS(x, t), NS(x, t) and CS(x, t) denote dissolved

nutrient concentration, algal abundance and dissolved toxin concentration at lo-

cation x and time t in the storage zone, respectively. For simplicity, we suppose

that the nutrient content of algae that die is instantaneously and locally recycled.

Further, toxin degradation is assumed to follow first order kinetics with a decay

coefficient k (time−1). For many flagellate toxins, the toxin contains little or none

of the limiting nutrient [21] and the governing equations take the following form

[8]: 

∂R
∂t

= δ ∂
2R
∂x2

− ν ∂R
∂x

− qN [f(R)−m]N + α(RS −R),
∂N
∂t

= δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N) + [f(R)−m]N,
∂C
∂t

= δ ∂
2C
∂x2

− ν ∂C
∂x

+ α(CS − C) + ϵp(R,N)− kC,
∂RS

∂t
= −α A

AS
(RS −R)− qN [f(RS)−m]NS,

∂NS

∂t
= −α A

AS
(NS −N) + [f(RS)−m]NS,

∂CS

∂t
= −α A

AS
(CS − C) + ϵp(RS, NS)− kCS,

(3.1)
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in (x, t) ∈ (0, L)× (0,∞) with boundary conditions
νR(0, t)− δ ∂R

∂x
(0, t) = νR(0),

νN(0, t)− δ ∂N
∂x

(0, t) = νC(0, t)− δ ∂C
∂x
(0, t) = 0,

∂R
∂x
(L, t) = ∂N

∂x
(L, t) = ∂C

∂x
(L, t) = 0,

(3.2)

and initial conditions{
R(x, 0) = R0(x) ≥ 0, N(x, 0) = N0(x) ≥ 0, C(x, 0) = C0(x) ≥ 0,

RS(x, 0) = R0
S(x) ≥ 0, NS(x, 0) = N0

S(x) ≥ 0, CS(x, 0) = C0
S(x) ≥ 0,

(3.3)

in x ∈ (0, L). Here the mortality of algae is assumed to be a constant rate m

(time−1); qN(µmol/cell) represents the constant quota of algae.

3.1 The well-posedness

We first study the well-posedness of the initial-boundary-value problem (3.1)-(3.3).

Let X+ = C([0, L],R6
+) be the positive cone of the Banach space X = C([0, L],R6)

with the usual supremum norm. In order to simplify notations, we set u0 = R,

u1 = N , u2 = C, u3 = RS, u4 = NS, u5 = CS and u = (u0, u1, u2, u3, u4, u5). We

assume that the initial data in (3.3) satisfying

(u00, u
0
1, u

0
2, u

0
3, u

0
4, u

0
5) := (R0, N0, C0, R0

S, N
0
S, C

0
S) ∈ X+.

For the local existence and positivity of solutions, we appeal to the theory developed

in [20] where existence and uniqueness and positivity are treated simultaneously

(taking delay as zero). The idea is to view the system (3.1)-(3.3) as the abstract or-

dinary differential equation in X+ and the so-called mild solutions can be obtained

for any given initial data. More precisely,
u0(t) = V (t)u00 +

∫ t
0
T0(t− s)B0(u(s))ds,

ui(t) = Ti(t)u
0
i +

∫ t
0
Ti(t− s)Bi(u(s))ds, i = 1, 2,

ui(t) = u0i +
∫ t
0
Bi(u(s))ds, i = 3, 4, 5,

(3.4)

where Ti(t) is the positive, non-expansive, analytic semigroup on C([0, L],R) (see,
e.g., [30, Chapter 7]) such that u = Ti(t)u

0
i , i = 0, 1, 2, satisfies the linear initial

value problem 
∂u
∂t

= δ ∂
2u
∂x2

− ν ∂u
∂x
, t > 0, 0 < x < L,

νu(0, t)− δ ∂u
∂x
(0, t) = ∂u

∂x
(L, t) = 0, t > 0,

u(x, 0) = u0i (x), i = 0, 1, 2.

(3.5)
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V (t), t > 0, is the family of affine operators on C([0, L],R) (see, e.g., [24, Chap-

ter 5]) such that u = V (t)u00 satisfies the linear system with nonhomogeneous,

boundary condition given by
∂u
∂t

= δ ∂
2u
∂x2

− ν ∂u
∂x
, t > 0, 0 < x < L,

νu(0, t)− δ ∂u
∂x
(0, t) = νR(0), ∂u

∂x
(L, t) = 0, t > 0,

u(x, 0) = u00(x).

(3.6)

The nonlinear operator Bi : C([0, L],R+) → C([0, L],R) is defined by

B0(u) = −qN [f(u0)−m]u1 + α(u3 − u0),

B1(u) = α(u4 − u1) + [f(u0)−m]u1,

B2(u) = α(u5 − u2) + ϵp(u0, u1)− ku2,

B3(u) = −α A
AS

(u3 − u0)− qN [f(u3)−m]u4,

B4(u) = −α A
AS

(u4 − u1) + [f(u3)−m]u4,

B5(u) = −α A
AS

(u5 − u2) + ϵp(u3, u4)− ku5.

(3.7)

By standard maximum principle arguments (see, e.g., [30, Chapter 7]), it follows

that V (t)C([0, L],R+) ⊂ C([0, L],R+) and Ti(t)C([0, L],R+) ⊂ C([0, L],R+), ∀ t >
0. The operator V and semi-group T0 are related to [20, Eq.(1.9)] by setting

β(x, t) ≡ νR(0). Since f(0) = 0, it follows that Bi(u) ≥ 0 whenever ui ≡ 0,

∀ 0 ≤ i ≤ 5, and hence, B̃ := (B0, B1, B2, B3, B4, B5) is quasipositive (see, e.g., [20,

Remark 1.1]). By [20, Theorem 1 and Remark 1.1], we have the following result.

Lemma 3.1. The system (3.1)-(3.3) has a unique noncontinuable solution and the

solutions to (3.1)-(3.3) remain non-negative on their interval of existence if they

are non-negative initially.

In the following, we will demonstrate that mass conservation is satisfied in the

flow and storage zones for the equations given by (3.1)-(3.3). Let

W (x, t) = R(x, t) + qNN(x, t) and WS(x, t) = RS(x, t) + qNNS(x, t). (3.8)

Then W (x, t) and WS(x, t) satisfy the following coupled differential equations
∂W
∂t

= δ ∂
2W
∂x2

− ν ∂W
∂x

+ αWS − αW, 0 < x < L, t > 0,
∂WS

∂t
= −α A

AS
WS + α A

AS
W, 0 < x < L, t > 0,

νW (0, t)− δ ∂W
∂x

(0, t) = νR(0), ∂W
∂x

(L, t) = 0, t > 0,

W (x, 0) = W 0(x) ≥ 0, WS(x, 0) = W 0
S(x) ≥ 0.

(3.9)

By similar arguments to those in [9] and [11, Lemma 2.3], we have the following

results on the global dynamics of system (3.9).
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Lemma 3.2. The system (3.9) admit a positive steady-state solution (R(0), R(0))

such that any mild solution (W (x, t),WS(x, t)) of (3.9) with (W (·, 0),WS(·, 0)) ∈
C([0, L],R2) satisfies lim

t→∞
(W (x, t),WS(x, t)) = (R(0), R(0)) uniformly for x ∈ [0, L].

3.2 The basic reproduction ratio for algae

In order to find a trivial steady-state solution of (3.1)-(3.3), we let the densities

of the algae compartments (N and NS) be zero. Since (R,RS) satisfies (3.9), it

follows from Lemma 3.2 that

lim
t→∞

(R(x, t), RS(x, t)) = (R(0), R(0)) uniformly for x ∈ [0, L].

Further, (C,CS) satisfies
∂C
∂t

= δ ∂
2C
∂x2

− ν ∂C
∂x

− (α + k)C + αCS, 0 < x < L, t > 0,
∂CS

∂t
= −(α A

AS
+ k)CS + α A

AS
C, 0 < x < L, t > 0,

νC(0, t)− δ ∂C
∂x
(0, t) = ∂C

∂x
(L, t) = 0, t > 0,

C(x, 0) = C0(x) ≥ 0, CS(x, 0) = C0
S(x) ≥ 0, 0 < x < L.

(3.10)

Let T (t) be the solution semigroup generated by (3.10) on C([0, L],R2). It is

easy to see that T (t) is a positive C0-semigroup on C([0, L],R2), and its generator

B can be written as

B =

(
δ ∂2

∂x2
− ν ∂

∂x
− (α + k) α

α A
AS

−(α A
AS

+ k)

)
.

Further, B is a closed and resolvent positive operator (see, e.g., [33, Theorem 3.12]).

The following result is concerned with the global dynamics of system (3.10).

Lemma 3.3. Let σ(B) be the spectral set and s(B) = sup{Reλ : λ ∈ σ(B)} be the

spectral bound of B. Then the following statements are valid:

(i) s(B) is a geometrically simple eigenvalue of B with a positive eigenvector.

(ii) The steady-state solution (0, 0) is globally asymptotically stable on C([0, L],R2)

for (3.10), and hence, (0, 0) is the unique steady-state solution for (3.10).

More precisely, lim
t→∞

(C(x, t), CS(x, t)) = (0, 0) uniformly for x ∈ [0, L].

Proof. We first consider part (i). In order to make use of [35, Theorem 2.3], we

define an one-parameter family of linear operators on C([0, L],R):

LΛ = δ
∂2

∂x2
− ν

∂

∂x
− (α+ k) +

α2A
AS

Λ + (αA/AS) + k
, ∀ Λ > −αA

AS
− k.
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According to [30, pp.147-148], the eigenvalue problem{
Λϕ(x) = δϕ′′(x)− νϕ′(x), 0 < x < L,

νϕ(0)− δϕ′(0) = ϕ′(L) = 0,
(3.11)

has a principal eigenvalue, denoted by Λ0, with an associated eigenvector ϕ0 ≫ 0,

and Λ0 < 0. Let

Q(Λ) = Λ2 + [
αA

AS
+ α + 2k − Λ0]Λ + (α + k − Λ0)(

αA

AS
+ k)− α2A

AS
.

Then Q(−αA
AS

− k) = −α2A
AS

< 0. This implies that there are two distinct real roots

of the algebraic equation Q(Λ) = 0, and we denote the largest root by Λ∗. Thus,

Λ∗ > −αA
AS

− k. Since δ ∂
2ϕ0(x)
∂x2

− ν ∂ϕ
0(x)
∂x

= Λ0ϕ0(x), it follows that

LΛ∗ϕ0(x) =
Λ∗(Λ0 − α− k)− [(α + k − Λ0)(αA

AS
+ k)− α2A

AS
]

Λ∗ + (αA/AS) + k
ϕ0(x) = Λ∗ϕ0(x).

(3.12)

By [35, Theorem 2.3 (i)], it follows that s(B) is a geometrically simple eigenvalue

of B with a positive eigenvector (ϕ∗(·), ϕ∗
S(·)).

We are in a position to prove part (ii). Substituting C(x, t) = eΛtϕ(x) and

CS(x, t) = eΛtϕS(x) into (3.10), we obtain the associated eigenvalue problem
Λϕ(x) = δϕ′′(x)− νϕ′(x)− (α + k)ϕ(x) + αϕS(x), 0 < x < L,

ΛϕS(x) = −(α A
AS

+ k)ϕS(x) + α A
AS
ϕ(x), 0 < x < L,

νϕ(0)− δϕ′(0) = ϕ′(L) = 0.

(3.13)

Then s(B) and (ϕ∗(·), ϕ∗
S(·)) are eigenvalue and eigenvector of (3.13). From (3.12),

it is easy to see that s(LΛ∗) = Λ∗. It then follows from [35, Theorem 2.3 (ii)] that

s(B) = Λ∗. Since Q(0) = (α + k − Λ0)(αA
AS

+ k)− α2A
AS

> 0, it follows that Λ∗ < 0.

Further, for each t > 0, the spectrum radius of T (t), r(T (t)), is the principal

eigenvalue of T (t), and hence,

r(T (t)) = eΛ
∗t, ∀ t > 0. (3.14)

In view of (3.14) and the fact that Λ∗ < 0, we see that r(T (t)) < 1 for each t > 0.

This implies that (0, 0) is globally asymptotically stable on C([0, L],R2) for (3.10),

and hence, (0, 0) is the unique steady-state solution for (3.10).

Linearizing system (3.1)-(3.3) at the steady-state solution (R(0), 0, 0, R(0), 0, 0),
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we get the following cooperative system for the algae population:
∂N
∂t

= δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N) + [f(R(0))−m]N, 0 < x < L, t > 0,
∂NS

∂t
= −α A

AS
(NS −N) + [f(R(0))−m]NS, 0 < x < L, t > 0,

νN(0, t)− δ ∂N
∂x

(0, t) = ∂N
∂x

(L, t) = 0, t > 0,

N(x, 0) = N0(x) ≥ 0, NS(x, 0) = N0
S(x) ≥ 0, 0 < x < L.

(3.15)

Substituting N(x, t) = eλtϕ(x) and NS(x, t) = eλtϕS(x) into (3.15), we obtain the

associated eigenvalue problem
λϕ(x) = δϕ′′(x)− νϕ′(x) + α(ϕS(x)− ϕ(x)) + [f(R(0))−m]ϕ(x), 0 < x < L,

λϕS(x) = −α A
AS

(ϕS(x)− ϕ(x)) + [f(R(0))−m]ϕS(x), 0 < x < L,

νϕ(0)− δϕ′(0) = ϕ′(L) = 0.

(3.16)

By similar arguments to those in Lemma 3.3 (i), we can show that the eigenvalue

problem (3.16) has a principal eigenvalue, denoted by λ0, with a positive eigenvector

(ϕ(·), ϕS(·)) ≫ 0 provided that

α
A

AS
+m > f(R(0)). (3.17)

In the following, we shall adopt the ideas in [34, 35] to define the basic reproduc-

tion ratio for algae. Let S(t) : C([0, L],R2) → C([0, L],R2) be the C0-semigroup

generated by the following system
∂N
∂t

= δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N)−mN, 0 < x < L, t > 0,
∂NS

∂t
= −α A

AS
(NS −N)−mNS, 0 < x < L, t > 0,

νN(0, t)− δ ∂N
∂x

(0, t) = ∂N
∂x

(L, t) = 0, t > 0.

(3.18)

It is easy to see that S(t) is a positive C0-semigroup on C([0, L],R2).

In order to define the basic reproduction ratio for algae, we assume that both

algae individuals in the flow and storage zones are near the trivial steady-state

solution (0, 0) for (3.15), and introduce fertile individuals at time t = 0, where the

distribution of initial algae individuals in the flow and storage zones is described

by φ := (φ2, φ5) ∈ C(Ω̄,R2). Thus, it is easy to see that S(t)φ represents the

distribution of fertile algae individuals at time t ≥ 0.

Let L : C([0, L],R2) → C([0, L],R2) be defined by

L(φ)(·) =
∫ ∞

0

(
f(R(0)) 0

0 f(R(0))

)
(S(t)φ)(·)dt. (3.19)
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It then follows that L(φ)(·) represents the distribution of the total new population

generated by initial fertile algae individuals φ := (φ2, φ5), and hence, L is the next

generation operator. We define the spectral radius of L as the basic reproduction

ratio for algae, that is,

R0 := r(L). (3.20)

By [35, Theorem 3.1 (i) and Remark 3.1], we have the following observation.

Lemma 3.4. R0 − 1 and λ0 have the same sign.

3.3 The global stability

We first consider the following auxiliary system which will be used in our subsequent

discussions:{
∂N
∂t

= δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N) + [f(R(0) − qNN)−m]N,
∂NS

∂t
= −α A

AS
(NS −N) + [f(R(0) − qNNS)−m]NS,

(3.21)

in (x, t) ∈ (0, L)× (0,∞) with boundary conditions

νN(0, t)− δ
∂N

∂x
(0, t) =

∂N

∂x
(L, t) = 0, t > 0, (3.22)

and initial conditions

N(x, 0) = N0(x) ≥ 0, NS(x, 0) = N0
S(x) ≥ 0, 0 < x < L. (3.23)

The biologically relevant domain for the system (3.21)-(3.23) is given by

Y + =

{
(N0, N0

S) ∈ C([0, L],R2
+) : 0 ≤ N0(·) ≤ R(0)

qN
, 0 ≤ N0

S(·) ≤
R(0)

qN

}
.

For convenience, we let Y0 = Y +\{(0, 0)}, ∂Y0 := Y +\Y0 = {(0, 0)}. By similar

arguments to those in [11, Lemma 3.1], we have the following result.

Lemma 3.5. For any (N0, N0
S) ∈ Y +, system (3.21)-(3.23) has a unique mild so-

lution (N(·, t), NS(·, t)) with (N(·, 0), NS(·, 0)) = (N0, N0
S) and (N(·, t), NS(·, t)) ∈

Y + for all t ≥ 0.

By Lemma 3.5, we can define the solution semiflow Φ1(t) : Y
+ → Y + of (3.21)-

(3.23) by

Φ1(t)(P ) = (N(·, t, P ), NS(·, t, P )), ∀P := (N0(·), N0
S(·)) ∈ Y +, t ≥ 0. (3.24)

By similar arguments to those in [11, Lemma 3.2, Theorem 3.1 and Theorem 3.2],

we have the following result.
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Lemma 3.6. Assume that (3.17) holds and λ0 is principal eigenvalue of (3.16).

For any (N0(·), N0
S(·)) ∈ Y +, let (N(·, t), NS(·, t)) be the solution of (3.21)-(3.23).

Then the following statements are valid:

(i) If λ0 ≤ 0, then lim
t→∞

(N(x, t), NS(x, t)) = (0, 0) uniformly for x ∈ [0, L];

(ii) If λ0 > 0, then (3.21)-(3.23) admit a unique positive steady-state solution

(N∗(x), N∗
S(x)) and for any (N0(·), N0

S(·)) ∈ Y0, we have

lim
t→∞

(N(x, t), NS(x, t)) = (N∗(x), N∗
S(x)), uniformly for x ∈ [0, L].

Since the equations ofR, N , RS andNS in (3.1) are independent of the equations

of C and CS, we first study the following subsystem:
∂R
∂t

= δ ∂
2R
∂x2

− ν ∂R
∂x

− qN [f(R)−m]N + α(RS −R),
∂N
∂t

= δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N) + [f(R)−m]N,
∂RS

∂t
= −α A

AS
(RS −R)− qN [f(RS)−m]NS,

∂NS

∂t
= −α A

AS
(NS −N) + [f(RS)−m]NS,

(3.25)

in (x, t) ∈ (0, L)× (0,∞) with boundary conditions
νR(0, t)− δ ∂R

∂x
(0, t) = νR(0),

νN(0, t)− δ ∂N
∂x

(0, t) = 0,
∂R
∂x
(L, t) = ∂N

∂x
(L, t) = 0,

(3.26)

and initial conditions{
R(x, 0) = R0(x) ≥ 0, N(x, 0) = N0(x) ≥ 0,

RS(x, 0) = R0
S(x) ≥ 0, NS(x, 0) = N0

S(x) ≥ 0, 0 < x < L.
(3.27)

By similar arguments to those in Lemma 3.1, we have the following result.

Lemma 3.7. The system (3.25)-(3.27) has a unique noncontinuable solution and

the solutions to (3.25)-(3.27) remain non-negative on their interval of existence if

they are non-negative initially.

We rewrite the system (3.25)-(3.27) as follows:
∂W
∂t

= δ ∂
2W
∂x2

− ν ∂W
∂x

+ αWS − αW,
∂WS

∂t
= −α A

AS
WS + α A

AS
W,

∂N
∂t

= δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N) + [f(W − qNN)−m]N,
∂NS

∂t
= −α A

AS
(NS −N) + [f(WS − qNNS)−m]NS,

(3.28)
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in (x, t) ∈ (0, L)× (0,∞) with boundary conditions{
νW (0, t)− δ ∂W

∂x
(0, t) = νR(0),

νN(0, t)− δ ∂N
∂x

(0, t) = ∂W
∂x

(L, t) = ∂N
∂x

(L, t) = 0, t > 0,
(3.29)

and initial conditions{
W (x, 0) = W 0(x) ≥ 0, N(x, 0) = N0(x) ≥ 0,

WS(x, 0) = W 0
S(x) ≥ 0, NS(x, 0) = N0

S(x) ≥ 0, x ∈ (0, L),
(3.30)

where W and WS are defined in (3.8).

Let

Σ = {(W 0,W 0
S , N

0, N0
S) ∈ C([0, L],R4

+) : qNN
0(·) ≤ W 0(·) and qNN0

S(·) ≤ W 0
S(·)},

and

Σ0 = {(W 0,W 0
S , N

0, N0
S) ∈ Σ : (N0, N0

S) ̸= (0, 0)}.

Lemma 3.8. If P ∈ Σ, then the solution of (3.28)-(3.29) through P satisfies

(W (·, t, P ),WS(·, t, P ), N(·, t, P ), NS(·, t, P )) ∈ Σ, ∀ t ≥ 0.

Proof. Let R(x, t) = W (x, t) − qNN(x, t) and RS(x, t) = WS(x, t) − qNNS(x, t).

Then (R(x, t), N(x, t), RS(x, t), NS(x, t)) satisfies (3.25)-(3.27). By Lemma 3.7, it

follows that

(R(·, t, P ), N(·, t, P ), RS(·, t, P ), NS(·, t, P )) ≥ 0, ∀ t ≥ 0.

This completes our proof.

Let X+ = C([0, L],R4
+), X0 = X+\{(R(0), 0, R(0), 0)}, ∂X0 := X+\X0 =

{(R(0), 0, R(0), 0)}. Then we have the following threshold type result, whose proof

is given in the Appendix.

Theorem 3.1. Assume that (3.17) holds. Let

(R(x, t), N(x, t), RS(x, t), NS(x, t))

be the solution of (3.25)-(3.27) with initial data in X+. Then the following state-

ments are valid:

(i) If R0 ≤ 1, then

lim
t→∞

(R(x, t), N(x, t), RS(x, t), NS(x, t)) = (R(0), 0, R(0), 0),

uniformly for x ∈ [0, L].
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(ii) If R0 > 1, then (3.25)-(3.27) admit a unique positive steady-state solution

(R∗(x), N∗(x), R∗
S(x), N

∗
S(x)), and for any

(R0(·), N0(·), R0
S(·), N0

S(·)) ∈ X0,

we have

lim
t→∞

(R(x, t), N(x, t), RS(x, t), NS(x, t))

= (R∗(x), N∗(x), R∗
S(x), N

∗
S(x)), uniformly for x ∈ [0, L].

In order to discuss the global dynamics of the full system of (3.1)-(3.3), we first

consider the following system:
∂C
∂t

= δ ∂
2C
∂x2

− ν ∂C
∂x

+ ϵp(R∗(x), N∗(x))− (α + k)C + αCS, 0 < x < L, t > 0,
∂CS

∂t
= ϵp(R∗

S(x), N
∗
S(x))− (α A

AS
+ k)CS + α A

AS
C, 0 < x < L, t > 0,

νC(0, t)− δ ∂C
∂x
(0, t) = ∂C

∂x
(L, t) = 0, t > 0,

C(x, 0) = C0(x) ≥ 0, CS(x, 0) = C0
S(x) ≥ 0, 0 < x < L,

(3.31)

where (R∗(x), N∗(x), R∗
S(x), N

∗
S(x)) is the unique positive steady-state solution of

(3.25)-(3.27). It is easy to see that system (3.10) is the homogenous linear system

of (3.31), and (0, 0) is linearly stable for system (3.10) by Lemma 3.3. By the

arguments similar to those in [11, Lemma 2.3], we have the following result on the

global dynamics of system (3.31).

Lemma 3.9. The system (3.31) admit a positive steady-state solution (C∗(x), C∗
S(x))

such that any solution (C(x, t), CS(x, t)) of system (3.31) with (C(·, 0), CS(·, 0)) ∈
C([0, L],R2) satisfies lim

t→∞
(C(x, t), CS(x, t)) = (C∗(x), C∗

S(x)) uniformly for x ∈
[0, L].

Recall thatX+ = C([0, L],R6
+) is the biologically relevant domain for the system

(3.1)-(3.3). For convenience, we set X0 := X+\{(R(0), 0, 0, R(0), 0, 0)}, ∂X0 :=

X+\X0 = {(R(0), 0, 0, R(0), 0, 0)}.

Theorem 3.2. Assume that (3.17) holds. Let (R∗(x), N∗(x), R∗
S(x), N

∗
S(x)) and

(C∗(x), C∗
S(x)) be the positive steady-state solutions of (3.25)-(3.27) and (3.31),

respectively, and let (R(x, t), N(x, t), C(x, t), RS(x, t), NS(x, t), CS(x, t)) be the so-

lution of (3.1)-(3.3) with initial data in X+. Then the following statements are

valid:

(i) If R0 ≤ 1, then

lim
t→∞

(R(x, t), N(x, t), C(x, t), RS(x, t), NS(x, t), CS(x, t)) = (R(0), 0, 0, R(0), 0, 0),

uniformly for x ∈ [0, L].
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(ii) If R0 > 1, then (3.1)-(3.3) admit a unique positive steady-state solution

(R∗(x), N∗(x), C∗(x), R∗
S(x), N

∗
S(x), C

∗
S(x)), and for any

(R0(·), N0(·), C0(·), R0
S(·), N0

S(·), C0
S(·)) ∈ X0,

we have

lim
t→∞

(R(x, t), N(x, t), C(x, t), RS(x, t), NS(x, t), CS(x, t))

= (R∗(x), N∗(x), C∗(x), R∗
S(x), N

∗
S(x), C

∗
S(x)), uniformly for x ∈ [0, L].

Proof. Suppose that R0 ≤ 1. Then Theorem 3.1 (i) implies that the equation for

C and CS in (3.1)-(3.3) is asymptotic to the system (3.10). Thus, Lemma 3.3 and

the theory for asymptotically autonomous semiflows (see, e.g., [32, Corollary 4.3])

imply that

lim
t→∞

(C(x, t), CS(x, t)) = (0, 0)

uniformly for x ∈ [0, L]. This proves statement (i).

Suppose that R0 > 1. Then Theorem 3.1 (ii) implies that the equation for C

and CS in (3.1)-(3.3) is asymptotic to the system (3.31). Thus, Lemma 3.9 and

the theory for asymptotically autonomous semiflows (see, e.g., [32, Corollary 4.3])

implies that limt→∞(C(x, t), CS(x, t)) = (C∗(x), C∗
S(x)) uniformly for x ∈ [0, L].

This proves statement (ii).

4 The model for harmful algae and zooplankton

In this section, we introduce the zooplankton into the model (3.1)-(3.3). Suppose

Z and ZS represent the densities of zooplankton in the flow and storage zones; qZ
is the constant nutrient quota for zooplankton; mZ is the mortality of zooplankton.

Then the governing equations take the following form:

∂R
∂t

= δ ∂
2R
∂x2

− ν ∂R
∂x

− qN [f(R)−m]N + α(RS −R),
∂N
∂t

= δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N) + [f(R)−m]N − qZg(N)e−ηCZ,
∂C
∂t

= δ ∂
2C
∂x2

− ν ∂C
∂x

+ α(CS − C) + ϵp(R,N)− kC,
∂Z
∂t

= δ ∂
2Z
∂x2

− ν ∂Z
∂x

+ α(ZS − Z) + [g(N)e−ηC −mZ ]Z,
∂RS

∂t
= −α A

AS
(RS −R)− qN [f(RS)−m]NS,

∂NS

∂t
= −α A

AS
(NS −N) + [f(RS)−m]NS − qZg(NS)e

−ηCSZS,
∂CS

∂t
= −α A

AS
(CS − C) + ϵp(RS, NS)− kCS,

∂ZS

∂t
= −α A

AS
(ZS − Z) + [g(NS)e

−ηCS −mZ ]ZS,

(4.1)
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in (x, t) ∈ (0, L)× (0,∞) with boundary conditions
νR(0, t)− δ ∂R

∂x
(0, t) = νR(0),

νN(0, t)− δ ∂N
∂x

(0, t) = νC(0, t)− δ ∂C
∂x
(0, t) = νZ(0, t)− δ ∂Z

∂x
(0, t) = 0,

∂R
∂x
(L, t) = ∂N

∂x
(L, t) = ∂C

∂x
(L, t) = ∂Z

∂x
(L, t) = 0,

(4.2)

and initial conditions
R(x, 0) = R0(x) ≥ 0, N(x, 0) = N0(x) ≥ 0,

C(x, 0) = C0(x) ≥ 0, Z(x, 0) = Z0(x) ≥ 0,

RS(x, 0) = R0
S(x) ≥ 0, NS(x, 0) = N0

S(x) ≥ 0,

CS(x, 0) = C0
S(x) ≥ 0, ZS(x, 0) = Z0

S(x) ≥ 0,

(4.3)

in x ∈ (0, L). Here η > 0 is a constant and represents the effect of the inhibitor on

zooplankton, the term e−ηC represents the degree of inhibition of C on the growth

rate of zooplankton, and the function g(N) has the following form:

g(N) =
µ̂maxN

K̂ +N
. (4.4)

4.1 The well-posedness

Let X := C([0, L],R8) be the Banach space with the supremum norm ∥ · ∥X. Define
X+ := C([0, L],R8

+). Then (X,X+) is a strongly ordered space. By the arguments

similar to those in Lemma 3.1, we obtain the following basic properties of the set

X+.

Lemma 4.1. For every initial value functions ϕ ∈ X+, system (4.1)-(4.3) has

a unique mild solution u(x, t, ϕ) on (0, τϕ) with u(·, 0, ϕ) = ϕ, where τϕ ≤ ∞.

Furthermore, u(·, t, ϕ) ∈ X+, ∀ t ∈ (0, τϕ), and u(x, t, ϕ) is a classical solution of

(4.1)-(4.3) for t > 0.

We first show that solutions of system (4.1)-(4.3) exist globally on [0,∞), and

ultimately bounded and uniformly bounded in X+.

Lemma 4.2. For every initial value functions ϕ ∈ X+, system (4.1)-(4.3) has a

unique solution u(x, t, ϕ) on [0,∞) with u(·, 0, ϕ) = ϕ, and solutions of (4.1)-(4.3)

are ultimately bounded and uniformly bounded in X+.

Proof. Let

U(x, t) = R(x, t) + qNN(x, t) and US(x, t) = RS(x, t) + qNNS(x, t). (4.5)
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Then U(x, t) and US(x, t) satisfy the following coupled differential equations
∂U
∂t

= δ ∂
2U
∂x2

− ν ∂U
∂x

+ αUS − αU − qNqZg(N)e−ηCZ, 0 < x < L, t > 0,
∂US

∂t
= −α A

AS
US + α A

AS
U − qNqZg(NS)e

−ηCSZS, 0 < x < L, t > 0,

νU(0, t)− δ ∂U
∂x
(0, t) = νR(0), ∂U

∂x
(L, t) = 0, t > 0,

U(x, 0) = U0(x) ≥ 0, US(x, 0) = U0
S(x) ≥ 0.

(4.6)

In view of Lemma 4.1 and (4.6), it follows that
∂U
∂t

≤ δ ∂
2U
∂x2

− ν ∂U
∂x

+ αUS − αU, 0 < x < L, t > 0,
∂US

∂t
≤ −α A

AS
US + α A

AS
U, 0 < x < L, t > 0,

νU(0, t)− δ ∂U
∂x
(0, t) = νR(0), ∂U

∂x
(L, t) = 0, t > 0,

U(x, 0) = U0(x) ≥ 0, US(x, 0) = U0
S(x) ≥ 0.

(4.7)

The comparison principle implies that U(x, t) and US(x, t) are uniformly bounded,

and hence, so are R(x, t), RS(x, t), N(x, t) and NS(x, t). This, together with the

comparison arguments, implies that C(x, t), CS(x, t), Z(x, t) and ZS(x, t) are also

uniformly bounded.

Comparing (4.7) with (3.9), we see from Lemma 3.2 and the comparison prin-

ciple that

lim
t→∞

U(x, t) ≤ R(0) and lim
t→∞

US(x, t) ≤ R(0) uniformly for x ∈ [0, L]. (4.8)

More precisely, there is a t1 > 0 such that

U(·, t), US(·, t) ≤ 2R(0), ∀ t ≥ t1.

This implies that R(x, t), RS(x, t), N(x, t) and NS(x, t) are ultimately bounded

and

R(·, t), RS(·, t) ≤ 2R(0); N(·, t), NS(·, t) ≤
2R(0)

qN
, ∀ t ≥ t1.

It then follows from (2.2) and (2.3) that

ϵp(R(·, t), N(·, t)) ≤ 2ϵµmaxR
(0)

qN
, ∀ t ≥ t1. (4.9)

In view of (4.1) and (4.9), it follows that
∂C
∂t

≤ δ ∂
2C
∂x2

− ν ∂C
∂x

+ α(CS − C) + Q̃− kC, t > t1, 0 < x < L,
∂CS

∂t
≤ −α A

AS
(CS − C) + Q̃− kCS, t > t1, 0 < x < L,

νC(0, t)− δ ∂Z
∂x
(0, t) = ∂C

∂x
(L, t) = 0, t > t1,

(4.10)
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where Q̃ = 2ϵµmaxR(0)

qN
. We consider the following system:

∂C̃
∂t

= δ ∂
2C̃
∂x2

− ν ∂C̃
∂x

+ α(C̃S − C̃) + Q̃− kC̃, t > t1, 0 < x < L,
∂C̃S

∂t
= −α A

AS
(C̃S − C̃) + Q̃− kC̃S, t > t1, 0 < x < L,

νC̃(0, t)− δ ∂C̃
∂x
(0, t) = ∂C̃

∂x
(L, t) = 0, t > t1.

(4.11)

By the same arguments as in Lemma 3.9, we can show that system (4.11) admit

a positive steady state (C̃∗(x), C̃∗
S(x)) such that any solution (C̃(x, t), C̃S(x, t)) of

(4.11) with (C̃(·, 0), C̃S(·, 0)) ∈ C([0, L],R2) satisfies

lim
t→∞

(C̃(x, t), C̃S(x, t)) = (C̃∗(x), C̃∗
S(x)), uniformly for x ∈ [0, L].

It then follows that

lim
t→∞

C(x, t) ≤ C̃∗(x) and lim
t→∞

CS(x, t) ≤ C̃∗
S(x), uniformly for x ∈ [0, L]. (4.12)

Let

V (x, t) = N(x, t) + qZZ(x, t) and VS(x, t) = NS(x, t) + qZZS(x, t). (4.13)

Then V (x, t) and VS(x, t) satisfy the following coupled differential equations
∂V
∂t

= δ ∂
2V
∂x2

− ν ∂V
∂x

+ α(VS − V )−mZV + [f(R)−m+mZ ]N, 0 < x < L, t > 0,
∂VS
∂t

= −α A
AS

(VS − V )−mZVS + [f(RS)−m+mZ ]NS, 0 < x < L, t > 0,

νV (0, t)− δ ∂V
∂x
(0, t) = 0, ∂V

∂x
(L, t) = 0, t > 0.

(4.14)

Thus, we have
∂V
∂t

≤ δ ∂
2V
∂x2

− ν ∂V
∂x

+ α(VS − V ) + Q̂−mZV, 0 < x < L, t > t1,
∂VS
∂t

≤ −α A
AS

(VS − V ) + Q̂−mZVS, 0 < x < L, t > t1,

νV (0, t)− δ ∂V
∂x
(0, t) = 0, ∂V

∂x
(L, t) = 0, t > t1,

(4.15)

where Q̂ = 2R(0)(µmax+mZ)
qN

. Similarly, we can show that

lim
t→∞

V (x, t) ≤ V̂ ∗(x) and lim
t→∞

VS(x, t) ≤ V̂ ∗
S (x) uniformly for x ∈ [0, L], (4.16)

where (V̂ ∗(x), V̂ ∗
S (x)) is the unique positive steady-state solution of

∂V̂
∂t

= δ ∂
2V̂
∂x2

− ν ∂V̂
∂x

+ α(V̂S − V̂ ) + Q̂−mZ V̂ , 0 < x < L, t > 0,
∂V̂S
∂t

= −α A
AS

(V̂S − V̂ ) + Q̂−mZ V̂S, 0 < x < L, t > 0,

νV̂ (0, t)− δ ∂V̂
∂x
(0, t) = 0, ∂V̂

∂x
(L, t) = 0, t > 0.

(4.17)

By the above discussions, it follows that C(x, t), CS(x, t), Z(x, t) and ZS(x, t) are

also ultimately bounded.
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From the proof of Lemma 4.2, we see that there exist t2 ≥ t1 such that

R(·, t), RS(·, t) ≤ 2R(0); N(·, t), NS(·, t) ≤
2R(0)

qN
, ∀ t ≥ t2

and

C(·, t) ≤ 2C̃∗(·), CS(·, t) ≤ 2C̃∗
S(·);Z(·, t) ≤

2V̂ ∗(·)
qZ

, ZS(·, t) ≤
2V̂ ∗

S (·)
qZ

, ∀ t ≥ t2,

where (C̃∗(x), C̃∗
S(x)) and (V̂ ∗(x), V̂ ∗

S (x)) are the positive steady-state solution of

the system (4.11) and (4.17), respectively.

Let

D =

{
(R,N,C, Z,RS, NS, CS, ZS) ∈ X+ : R(·), RS(·) ≤ 2R(0);N(·), NS(·) ≤

2R(0)

qN
;

C(·) ≤ 2C̃∗(·); CS(·) ≤ 2C̃∗
S(·); Z(·) ≤

2V̂ ∗(·)
qZ

; ZS(·) ≤
2V̂ ∗

S (·)
qZ

}
.

Define the solution semiflow Ψ(t) : X+ → X+ of (4.1)-(4.3) by

Ψ(t)ϕ = u(·, t, ϕ), ∀t ≥ 0, ϕ ∈ X+,

where u(x, t, ϕ) is the solution of (4.1)-(4.3) with u(·, 0, ϕ) = ϕ ∈ X+. Then

Ψ(t)(ϕ) ∈ D, ∀ t ≥ t2, ϕ ∈ X+.

Moreover, it is easy to see that (2R(0), 2R(0)), (2C̃∗(x), 2C̃∗
S(x)) and (2V̂ ∗(x), 2V̂ ∗

S (x))

are upper solutions of systems (3.9), (4.11) and (4.17), respectively. Those facts,

together with the comparison arguments, imply that D is positively invariant for

Ψ(t) in the sense that

Ψ(t)(ϕ) ∈ D, ∀ t ≥ 0, ϕ ∈ D.

With the assumption (3.17), it is easy to see that whenever α A
AS

is sufficiently large,

there exists a constant r > 0 such that

vTM(ϕ(x))v ≤ −rvTv, ∀ϕ ∈ D, x ∈ [0, L], v ∈ R4, (4.18)

where M(R,N,C, Z,RS, NS, CS, ZS) =
m11 m12 0 0

f ′(RS)NS m22 m23 m24

ϵ∂p(RS ,NS)
∂RS

ϵ∂p(RS ,NS)
∂NS

−α A
AS

− k 0

0 m42 m43 m44

 ,
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and

m11 = −α A

AS
− qNf

′(RS)NS, m12 = −qN [f(RS)−m],

m22 = −α A

AS
+ [f(RS)−m]− qZg

′(NS)e
−ηCSZS,

m23 = ηqZg(NS)e
−ηCSZS, m42 = g′(NS)e

−ηCSZS,

m43 = −ηg(NS)e
−ηCSZS, m24 = −qZg(NS)e

−ηCS ,

m44 = −α A

AS
+ g(NS)e

−ηCS −mZ .

Since the last four equations in system (4.1)-(4.3) have no diffusion terms, its

solution map Ψ(t) is not compact. In order to overcome this problem, we use the

Kuratowski measure of noncompactness (see [5]), κ, which is defined by

κ(B) := inf{r : B has a finite cover of diameter < r}, (4.19)

for any bounded set B. We set κ(B) = ∞ whenever B is unbounded. It is easy to

see that B is precompact(i.e., B̄ is compact) if and only if κ(B) = 0. By similar

arguments to those in [11, Lemma 4.1], we have the following result.

Lemma 4.3. Let (3.17) and (4.18) hold. Then the solution semiflow Ψ(t) is κ-

contracting in the sense that limt→∞ κ(Ψ(t)(B)) = 0 for any bounded set B ⊂ X+.

Theorem 4.1. Let (3.17) and (4.18) hold. Then Ψ(t) admits a global attractor on

X+.

Proof. By Lemma 4.3, it follows that Ψ(t) is κ-contracting on X+. By Lemma 4.2, it

follows that Ψ(t) is point dissipative on X+, and forward orbits of bounded subsets

of X+ for Ψ(t) are bounded. By [22, Theorem 2.6], Ψ(t) has a global attractor that

attracts each bounded set in X+.

4.2 The basic reproduction ratio for zooplankton

It is easy to see that the system (4.1)-(4.3) has the following possible equilibrium

points: E0 := (R(0), 0, 0, 0, R(0), 0, 0, 0) and

E1 := (R∗(x), N∗(x), C∗(x), 0, R∗
S(x), N

∗
S(x), C

∗
S(x), 0) provided that λ0 > 0,

where λ0 is the principal eigenvalue of the eigenvalue problem (3.16) and

(R∗(x), N∗(x), C∗(x), R∗
S(x), N

∗
S(x), C

∗
S(x))

is the unique positive steady-state solution of (3.1)-(3.3).
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Linearizing system (4.1)-(4.3) at the equilibrium E1, we get the following system

for the zooplankton compartments (Z,ZS):

∂Z
∂t

= δ ∂
2Z
∂x2

− ν ∂Z
∂x

+ α(ZS − Z)

+[g(N∗)e−ηC
∗ −mZ ]Z, 0 < x < L, t > 0,

∂ZS

∂t
= −α A

AS
(ZS − Z) + [g(N∗

S)e
−ηC∗

S −mZ ]ZS, 0 < x < L, t > 0,

νZ(0, t)− δ ∂Z
∂x
(0, t) = 0, ∂Z

∂x
(L, t) = 0, t > 0,

Z(x, 0) = Z0(x) ≥ 0, ZS(x, 0) = Z0
S(x) ≥ 0, 0 < x < L.

(4.20)

Let T(t) be the solution semigroup generated by (4.20) on C([0, L],R2). It is

easy to see that T(t) is a positive C0-semigroup on C([0, L],R2), and its generator

B can be written as

B =

(
δ ∂2

∂x2
− ν ∂

∂x
− α + β1(x) α

α A
AS

−α A
AS

+ β2(x)

)
with β1(x) := g(N∗(x))e−ηC

∗(x)−mZ and β2(x) := g(N∗
S(x))e

−ηC∗
S(x)−mZ . Further,

B is a closed and resolvent positive operator (see, e.g., [33, Theorem 3.12]). The

following eigenvalue problem is associated with (4.20):
µψ(x) = δψ′′ − νψ′ + α(ψS − ψ)

+[g(N∗)e−ηC
∗ −mZ ]ψ(x), 0 < x < L,

µψS(x) = −α A
AS

(ψS − ψ) + [g(N∗
S)e

−ηC∗
S −mZ ]ψS, 0 < x < L,

νψ(0)− δψ′(0) = 0, ψ′(L) = 0.

(4.21)

Let

α
A

AS
+mZ > g(N∗

S(x))e
−ηC∗

S(x), ∀ x ∈ [0, L]. (4.22)

By a generalized Krein-Rutman Theorem (see, e.g., [23]), we have the following

result.

Lemma 4.4. Let µ∗ := s(B) be the spectral bound of B and the condition (4.22)

be true. If µ∗ ≥ 0, then µ∗ is the principal eigenvalue of the eigenvalue problem

(4.21) with a strongly positive eigenfunction.

Proof. By (4.22), it follows that

α
A

AS
+mZ − g(N∗

S(x))e
−ηC∗

S(x) ≥ a, ∀ x ∈ [0, L], and a is a positive number.

By similar arguments to those in [11, Lemma 3.3], we can show that T(t) is an κ-

contraction on C([0, L],R2) with a contracting function e−at in the following sense:

κ(T(t)C) ≤ e−atκ(C), for any bounded set C in C([0, L],R2) with κ(C) > 0, ∀ t > 0.
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This implies that the essential spectral radius re(T(t)) of T(t) satisfies

re(T(t)) ≤ e−at < 1, ∀ t > 0.

On the other hand, the spectral radius r(T(t)) of T(t) satisfies

r(T(t)) = es(B)t ≥ 1, ∀ t > 0.

This implies that re(T(t)) < r(T(t)), ∀ t > 0. Since T(t) is a strongly positive

and bounded operator on C([0, L],R2), our conclusion follows from a generalized

Krein-Rutman Theorem (see, e.g., [23]).

We also consider the following perturbed system of (4.20):

∂Z
∂t

= δ ∂
2Z
∂x2

− ν ∂Z
∂x

+ α(ZS − Z)

+[g(N∗)e−ηC
∗ −mZ − ϱ]Z, 0 < x < L, t > 0,

∂ZS

∂t
= −α A

AS
(ZS − Z) + [g(N∗

S)e
−ηC∗

S −mZ − ϱ]ZS, 0 < x < L, t > 0,

νZ(0, t)− δ ∂Z
∂x
(0, t) = 0, ∂Z

∂x
(L, t) = 0, t > 0,

Z(x, 0) = Z0(x) ≥ 0, ZS(x, 0) = Z0
S(x) ≥ 0, 0 < x < L,

(4.23)

and its associated eigenvalue problem:
µψ(x) = δψ′′ − νψ′ + α(ψS − ψ)

+[g(N∗)e−ηC
∗ −mZ − ϱ]ψ(x), 0 < x < L,

µψS(x) = −α A
AS

(ψS − ψ) + [g(N∗
S)e

−ηC∗
S −mZ − ϱ]ψS, 0 < x < L,

νψ(0)− δψ′(0) = 0, ψ′(L) = 0.

(4.24)

Lemma 4.5. Let µ∗ := s(B) be the spectral bound of B and the condition (4.22)

be true. If µ∗ > 0, then there is a small ϱ̃ > 0 such that the eigenvalue problem

(4.24) has the principal eigenvalue µ∗
ϱ > 0 with a strongly positive eigenfunction for

all 0 < ϱ < ϱ̃.

Proof. Let Tϱ(t) be the strongly positive C0-semigroup generated by (4.23) on

C([0, L],R2). Fix t0 > 0 and then it is easy to see that there is a ϱ̃1 > 0 such that

Tϱ(t0) is an κ-contraction on C([0, L],R2), ∀ 0 < ϱ < ϱ̃1. This implies that the

essential spectral radius re(Tϱ(t0)) of Tϱ(t0) satisfies

re(Tϱ(t0)) < 1, ∀ 0 < ϱ < ϱ̃1.

On the other hand, it follows from the assumption µ∗ > 0 and the proof in

Lemma 4.4 that the spectral radius r(T(t0)) of T(t0) satisfies

r(T(t0)) > 1.
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Thus, there is a ϱ̃2 > 0 such that r(Tϱ(t0)) > 1 ∀ 0 < ϱ < ϱ̃2, that is, the spectral

radius of Tϱ(t0) is still greater than one under small perturbations (see, e.g., [14]).

Let ϱ̃ := min{ϱ̃1, ϱ̃2}. Then

re(Tϱ(t0)) < 1 < r(Tϱ(t0)), ∀ 0 < ϱ < ϱ̃.

It then follows from a generalized Krein-Rutman Theorem (see, e.g., [23]) that

the perturbed eigenvalue problem (4.24) has a positive principal eigenvalue with

positive eigenfunction.

In the following, we shall adopt the ideas in [34, 35] to define the basic re-

production ratio for zooplankton. Let S(t) : C([0, L],R2) → C([0, L],R2) be the

C0-semigroup generated by the following system
∂Z
∂t

= δ ∂
2Z
∂x2

− ν ∂Z
∂x

+ α(ZS − Z)−mZZ, 0 < x < L, t > 0,
∂ZS

∂t
= −α A

AS
(ZS − Z)−mZZS, 0 < x < L, t > 0,

νZ(0, t)− δ ∂Z
∂x
(0, t) = 0, ∂Z

∂x
(L, t) = 0, t > 0.

(4.25)

It is easy to see S(t) is a positive C0-semigroup on C([0, L],R2).

In order to define the basic reproduction ratio for zooplankton, we assume

that both zooplankton individuals in the flow and storage zones are near the trivial

steady-state solution (0, 0) for (4.20), and introduce fertile individuals at time t = 0,

where the distribution of initial zooplankton individuals in the flow and storage

zones is described by φ := (φ4, φ8) ∈ C([0, L],R2). Thus, it is easy to see that

S(t)φ represents the distribution of fertile zooplankton individuals at time t ≥ 0.

Let L : C([0, L],R2) → C([0, L],R2) be defined by

L(φ)(·) =
∫ ∞

0

(
g(N∗

S(·))e−ηC
∗
S(·) 0

0 g(N∗
S(·))e−ηC

∗
S(·)

)
(S(t)φ)(·)dt. (4.26)

It then follows that L(φ)(·) represents the distribution of the total new population

generated by initial fertile zooplankton individuals φ := (φ4, φ8), and hence, L
is the next generation operator. We define the spectral radius of L the basic

reproduction ratio of zooplankton compartments for system (4.1)-(4.3), that is,

Rz
0 := r(L). (4.27)

By [35, Theorem 3.1 (i) and Remark 3.1], we have the following observation.

Lemma 4.6. Rz
0 − 1 and µ∗ have the same sign.
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4.3 The global dynamics

The following result will play an important role in establishing the uniform persis-

tence of solutions of (4.1)-(4.3).

Lemma 4.7. Suppose u(x, t, ϕ) is the solution of system (4.1)-(4.3) with u(·, 0, ϕ) =
ϕ ∈ X+.

(i) If there exists some t0 ≥ 0 such that N(x, t0, ϕ) ̸≡ 0 and NS(x, t0, ϕ) ≥ 0,

then N(x, t, ϕ) > 0, NS(x, t, ϕ) > 0, ∀ x ∈ [0, L], t > t0;

(ii) If there exists some t0 ≥ 0 such that C(x, t0, ϕ) ̸≡ 0 and CS(x, t0, ϕ) ≥ 0, then

C(x, t, ϕ) > 0, CS(x, t, ϕ) > 0, ∀ x ∈ [0, L], t > t0;

(iii) If there exists some t0 ≥ 0 such that Z(x, t0, ϕ) ̸≡ 0 and ZS(x, t0, ϕ) ≥ 0, then

Z(x, t, ϕ) > 0, ZS(x, t, ϕ) > 0, ∀ x ∈ [0, L], t > t0;

(iv) For any ϕ ∈ X+, we have R(x, t, ϕ) > 0, RS(x, t, ϕ) > 0, ∀ x ∈ [0, L], t > 0.

Proof. It is easy to see that N satisfies the following inequalities:
∂N
∂t

≥ δ ∂
2N
∂x2

− ν ∂N
∂x

−[α +m+ qZe
−ηCZ

∫ 1

0
g′(θN)dθ]N, 0 < x < L, t > 0,

νN(0, t)− δ ∂N
∂x

(0, t) = 0, ∂N
∂x

(L, t) = 0, t > 0.

(4.28)

By the standard comparison arguments, it follows that N(·, t, ϕ) > 0, ∀ t > t0.

From the NS equation of (4.1), we see that

∂NS

∂t
= −a(·, t)NS + b(·, t),

where a(·, t) := α A
AS

+m+qZe
−ηCSZS

∫ 1

0
g′(θNS)dθ; b(·, t) := α A

AS
N(·, t)+f(RS)NS(·, t).

This implies that

NS(·, t) = e
−

∫ t
t0
a(·,s1)ds1

[∫ t

t0

e
∫ s2
t0

a(·,s1)ds1b(·, s2)ds2 +NS(·, t0)
]
, ∀ t ≥ t0.

Since N(·, t, ϕ) > 0, NS(·, t, ϕ) ≥ 0, ∀ t > t0, it follows that b(·, t) > 0, ∀ t > t0,

and hence, NS(·, t) > 0, ∀ t > t0. This proves Part(i). Similarly, Part (ii)-(iii) can

be proved.

It is easy to see that R satisfies the following inequalities:{
∂R
∂t

≥ δ ∂
2R
∂x2

− ν ∂R
∂x

− [α + qNN
∫ 1

0
f ′(θR)dθ]R, 0 < x < L, t > 0,

νR(0, t)− δ ∂R
∂x
(0, t) = νR(0), ∂R

∂x
(L, t) = 0, t > 0.

(4.29)
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The standard comparison arguments implies that R(x, t) > 0, ∀ 0 ≤ x ≤ L, t > 0.

Suppose that RS(x̃, t̃) = 0, for some (x̃, t̃) ∈ [0, L] × (0,∞), that is, RS(x̃, t)

attains its minimum at a point t = t̃ ∈ (0,∞). This implies that

0 =
∂RS

∂t
(x̃, t̃) = −α A

AS
(RS(x̃, t̃)−R(x̃, t̃))− qN [f(RS(x̃, t̃))−m]NS(x̃, t̃),

and hence,

0 =
∂RS

∂t
(x̃, t̃) = α

A

AS
R(x̃, t̃) + qNmNS(x̃, t̃) > 0,

which is a contradiction. Thus, RS(x, t) > 0 for all 0 ≤ x ≤ L and t > 0.

Now we are in a position to state the main result of this section, whose proof

is given in the Appendix.

Theorem 4.2. Assume (3.17), (4.18) and (4.22) are true. Let

X0 := {(R,N,C, Z,RS, NS, CS, ZS) ∈ X+ : Z(·) ̸≡ 0 and ZS(·) ̸≡ 0}

and

∂X0 := X+\X0.

Then the following statements hold:

(i) If R0 < 1, then the trivial solution E0 is globally attractive in X+ for (4.1)-

(4.3).

(ii) If R0 > 1 and Rz
0 > 1, then system (4.1)-(4.3) admits at least one (compo-

nentwise) positive equilibrium

(R̂(·), N̂(·), Ĉ(·), Ẑ(·), R̂S(·), N̂S(·), ĈS(·), ẐS(·)),

and there is a positive constant ζ > 0 such that every solution

(R(·, t), N(·, t), C(·, t), Z(·, t), RS(·, t), NS(·, t), CS(·, t), ZS(·, t))

of (4.1)-(4.3) with

(R(·, 0), N(·, 0), C(·, 0), Z(·, 0), RS(·, 0), NS(·, 0), CS(·, 0), ZS(·, 0)) ∈ X0

satisfies lim inft→∞ Z(·, t) ≥ ζ and lim inft→∞ ZS(·, t) ≥ ζ.

To finish this section, we remark that it remains an open problem whether E1

is globally attractive in X+ for system (4.1)-(4.3) in the case where R0 > 1 and

Rz
0 < 1.
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5 Discussion

In this paper, we first analyze a model that describes the longitudinal distribution

of algal abundance and toxicity produced by algae, that contains little limiting

nutrient in flowing-water habitats. In such a habitat, a main channel with advective

transport and dispersion was coupled to a hydraulic storage zone, representing an

ensemble of fringing coves on the shoreline. We then further examined a model with

zooplankton that eat the algae and are inhibited by the toxin. Due to the lack of

diffusion terms in the equations for hydraulic storage zone, the solution maps are

not compact. So we need to address the existence of the principal eigenvalue for

the associated eigenvalue problem and the existence of global attractors for full

systems. Therefore, the results of models presented in this paper are based on the

assumptions (3.17), (4.18) and (4.22). Those assumptions hold if the exchange rate

between the main channel and the storage zone is large (i.e., α is large) or if the

cross section of the main channel is large compared to that of the storage zone (i.e.,

the ratio A
AS

is large). Such biological parameters can be found in [8].

The basic reproduction number, which is defined as the expected number of

secondary infections generated by a single infected individual introduced into a

completely susceptible population, is one of the important quantities in epidemi-

ology. It can be used to predict persistence or extinction of a disease. With the

next generation operator approach, Mckenzie et al. [19] introduced the net repro-

ductive rate for an advection-diffusion-reaction model of a stream population. The

net reproductive rate is defined as the number of offspring produced by a single

individual over its lifetime, assuming that the individual is subject to a particu-

lar spatial configuration in the river. This spatial configuration is associated with

the principal eigenfunction of a next generation operator. It can be interpreted as

the spatial configuration associated with the maximum long-term intergenerational

growth of the population [19].

In this work, we use the theory of R0 developed in [35, section 3] to show that the

single algae growth system (3.1)-(3.3) admits a net reproductive rate R0, and this

R0 is a threshold value for the persistence and extinction of the algal population.

More precisely, the algae will grow if R0 > 1, while the algae will become extinct

if R0 < 1 (Theorem 3.2). We also define the net reproductive rate Rz
0 for the

zooplankton-algae food chain system (4.1)-(4.3) and prove that if R0 < 1, then

the algae and zooplankton will become extinct (Theorem 4.2 (i)); if R0 > 1 and

Rz
0 > 1, then the algae and zooplankton will persist (Theorem 4.2 (ii)). For the

case where R0 > 1 and Rz
0 < 1, we conjecture that the algae will persist and

zooplankton will become extinct.

In [8], the development of longitudinal patterns at steady-state generally depend
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on flow conditions, as summarized by the dimensionless Péclet number

Pe = Lν/δ.

The algal populations were predicted to be extinct by higher values of Pe (i.e.

rapid flow). Thus, conditions for persistence of the algal population depend on the

flow characteristics (advection and diffusivity). It is worth pointing out that one

can use the same arguments as in [9, Section 3] to show that the algal population

will be washed out as ν → ∞, while the algal population will always persist as

ν → 0 for the system (3.1)-(3.3). This is consistent with the above prediction.

As mentioned in [8], the model (3.1)-(3.3) ignores vertical variations and light

limitation. In reality, flow interacts with stratification to affect dynamics of algal

blooms in deeper riverine systems. On the other hand, to incorporate the influence

of seasonal temperature variations on non-steady dynamics, the algal maximal

growth rate should be a time-periodic function (see equations (9)-(10) in [8]). We

leave these interesting problems for future investigation.

Appendix

In this appendix, we provide the proofs of Theorems 3.1 and 4.2.

Proof of Theorem 3.1: Since system (3.25)-(3.27) and (3.28)-(3.30) are equiva-

lent, it suffices to study the system (3.28)-(3.30). Let Φ̃1(t) : Σ → Σ be the solution

semiflow associated with (3.28)-(3.30), and ω̃1(W
0,W 0

S , N
0, N0

S) be the omega-limit

set of the orbit of Φ̃1(t) with initial values (W 0,W 0
S , N

0, N0
S) ∈ Σ. From the first

two equations of (3.28), it follows that

lim
t→∞

(W (x, t),WS(x, t)) = (R(0), R(0)) uniformly for x ∈ [0, L].

Thus, there exists a set I1 ⊂ C([0, L],R2
+) such that

ω̃1(W
0,W 0

S , N
0, N0

S) = {(R(0), R(0))} × I1.

For any given (N0, N0
S) ∈ I1, we have

(R(0), R(0), N0, N0
S) ∈ ω̃1(W

0,W 0
S , N

0, N0
S) ⊂ Σ.

By the definition of Σ, it follows that (N0, N0
S) ∈ Y +. Thus, I1 ⊂ Y +, where Y +

is defined in (3.3).

By [36, Lemma 1.2.1′], it follows that ω̃1(W
0,W 0

S , N
0, N0

S) is a compact, invari-

ant and internal chain transitive set for Φ̃1(t). Moreover, if (N0, N0
S) ∈ C([0, L],R2

+)

with (R(0), R(0), N0, N0
S) ∈ ω̃1(W

0,W 0
S , N

0, N0
S), there holds

Φ̃1(t) |ω̃1(W 0,W 0
S ,N

0,N0
S)

(R(0), R(0), N0, N0
S) = (R(0), R(0),Φ1(t)(N

0, N0
S)),
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where Φ1(t) : Y
+ → Y + is the solution semiflow associated with (3.21)-(3.23). It

then follows that I1 is a compact, invariant and internal chain transitive set for

Φ1(t) : Y
+ → Y +.

In the case where R0 ≤ 1, we have λ0 ≤ 0 by Lemma 3.4. It then follows

from Lemma 3.6 (i) that (3.21)-(3.23) has a globally attractive solution (0, 0) in

Y +. This implies that the unique solution (0, 0) is an isolated invariant set in Y +

and no cycle connecting (0, 0) to itself in Y +. Since I1 is a compact, invariant and

internal chain transitive set for Φ1(t) : Y + → Y +, it follows from a convergence

theorem (see, e.g., [36, Theorem 1.2.2]) that I1 is a steady-state solution of Φ1(t).

That is, I1 = {(0, 0)}, and hence,

ω̃1(W
0,W 0

S , N
0, N0

S) = {(R(0), R(0))} × I1 = {(R(0), R(0), 0, 0)}.

This implies that (R(0), R(0), 0, 0) is globally attractive for Φ̃1(t) in Σ. In view of

(3.8), statement (i) holds true.

In the case where R0 > 1, we have λ0 > 0 by Lemma 3.4. It then follows from

Lemma 3.6 (ii) that (3.21)-(3.23) has a globally attractive solution (N∗(·), N∗
S(·))

in Y +
0 . Note that (0, 0) is also a steady-state solution of (3.21)-(3.23). This implies

that the possible fixed points (0, 0) and (N∗(·), N∗
S(·)) are isolated invariant sets

in Y + and no subset of {(0, 0)} ∪ {(N∗(·), N∗
S(·))} forms a cycle in Y +. Since I1

is a compact, invariant and internal chain transitive set for Φ1(t) : Y + → Y +,

it follows from a convergence theorem (see, e.g., [36, Theorem 1.2.2]) that either

I1 = {(0, 0)} or I1 = {(N∗(·), N∗
S(·))}.

Suppose, by contradiction, that I1 = {(0, 0)}. This implies that

ω̃1(W
0,W 0

S , N
0, N0

S) = {(R(0), R(0), 0, 0)}.

Thus, we have

lim
t→∞

Φ̃1(t)(W
0,W 0

S , N
0, N0

S) = (R(0), R(0), 0, 0).

Since λ0 > 0 and (3.17), it follows that there is a σ0 > 0 such that

α
A

AS
+m+ σ0 > f(R(0)) and λ0σ0 > 0,

where λ0σ0 is the principal eigenvalue with the eigenvector (ϕσ0(·), ϕσ0S (·)) ≫ 0 of

the following eigenvalue problem
λϕ(x) = δϕ′′(x)− νϕ′(x) + α(ϕS(x)− ϕ(x)) + [f(R(0))−m− σ0]ϕ(x), 0 < x < L,

λϕS(x) = −α A
AS

(ϕS(x)− ϕ(x)) + [f(R(0))−m− σ0]ϕS(x), 0 < x < L,

νϕ(0)− δϕ′(0) = ϕ′(L) = 0.

(5.1)
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There also exists t0 = t0(σ0) > 0 such that

f(W (x, t)−qNN(x, t)) > f(R(0))−σ0 and f(WS(x, t)−qNNS(x, t)) > f(R(0))−σ0,

for all x ∈ [0, L] and t ≥ t0.

From the last two equations of (3.28), we see that{
∂N
∂t

≥ δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N) + [f(R(0))−m− σ0]N, t ≥ t0
∂NS

∂t
≥ −α A

AS
(NS −N) + [f(R(0))−m− σ0]NS, t ≥ t0.

Since (W 0,W 0
S , N

0, N0
S) ∈ Σ0, it follows that (N

0, N0
S) ̸= (0, 0), and hence,

(N(·, t), NS(·, t)) ≫ 0, ∀t > 0.

In particular, N(·, t0) ≫ 0 and NS(·, t0) ≫ 0 in Σ. Thus, there exists ξ := ξ(σ0) > 0

such that N(·, t0) ≥ ξϕσ0(·) and NS,2(·, t0) ≥ ξϕσ0S (·). By the comparison theorem,

it follows that

N(·, t) ≥ ξeλ
0
σ0

(t−t0)ϕσ0(·) and NS(·, t) ≥ ξeλ
0
σ0

(t−t0)ϕσ0S (·), ∀ t ≥ t0.

Since λ0σ0 > 0, it follows that

N(·, t), NS(·, t) → ∞ as t→ ∞,

which is a contradiction. Thus, we have I1 = {(N∗(·), N∗
S(·))}, and hence,

ω̃1(W
0,W 0

S , N
0, N0

S) = {(R(0), R(0))} × I1 = {(R(0), R(0), N∗(·), N∗
S(·))}.

This implies that (R(0), R(0), N∗(·), N∗
S(·)) is globally attractive for Φ̃1(t) in Σ0. By

(3.8), letting R∗(·) = R(0) − qNN
∗(·), R∗

S(·) = R(0) − qNN
∗
S(·), we then complete

the proof of statement (ii).

Proof of Theorem 4.2: Assume R0 < 1. It then follows from Lemma 3.4 that

λ0 < 0. Since λ0 < 0, there exists a sufficiently small positive number ρ0 such that

α A
AS

+m − ρ0 > f(R(0)) and λ0ρ0 < 0, where λ0ρ0 is the principal eigenvalue of the

following eigenvalue problem

λ0ρ0ϕ̂(x) = δϕ̂′′(x)− νϕ̂′(x) + α(ϕ̂S(x)− ϕ̂(x))

+[f(R(0))−m+ ρ0]ϕ̂(x), 0 < x < L,

λ0ρ0ϕ̂S(x) = −α A
As
(ϕ̂S(x)− ϕ̂(x))

+[f(R(0))−m+ ρ0]ϕ̂S(x), 0 < x < L,

νϕ̂(0)− δϕ̂′(0) = ϕ̂′(L) = 0,

(5.2)
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with a strongly positive eigenfunction (ϕ̂(·), ϕ̂S(·)). It is easy to see that

lim
R→R(0)

f(R) = f(R(0)) and lim
RS→R(0)

f(R) = f(R(0)).

Thus, we can choose δ̃0 > 0 such that

f(R) < f(R(0)) + ρ0, ∀ 0 <| R−R(0) |< δ̃0,

and

f(RS) < f(R(0)) + ρ0, ∀ 0 <| RS −R(0) |< δ̃0.

From (4.8), it follows that lim
t→∞

R(·, t) ≤ R(0), lim
t→∞

RS(·, t) ≤ R(0), and hence there

is a t̃0 > 0 such that R(·, t) ≤ R(0)+ 1
2
δ̃0, RS(·, t) ≤ R(0)+ 1

2
δ̃0, ∀ t ≥ t̃0. Therefore,

f(R(·, t)) ≤ f(R(0) +
1

2
δ̃0) < f(R(0)) + ρ0, for any t ≥ t̃0,

and

f(RS(·, t)) ≤ f(R(0) +
1

2
δ̃0) < f(R(0)) + ρ0, for any t ≥ t̃0.

By the N and NS equations of (4.1), it follows that
∂N
∂t

≤ δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N) + [f(R(0)) + ρ0 −m]N, t ≥ t̃0,
∂NS

∂t
≤ −α A

AS
(NS −N) + [f(R(0)) + ρ0 −m]NS, t ≥ t̃0,

νN(0, t)− δ ∂N
∂x

(0, t) = 0, ∂N
∂x

(L, t) = 0.

(5.3)

For any given ϕ ∈ X+, there exists some a > 0 such that

(N(x, t̃0, ϕ), NS(x, t̃0, ϕ)) ≤ a(ϕ̂(x), ϕ̂S(x)), ∀ x ∈ [0, L].

Note that the following linear system
∂N
∂t

= δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N) + [f(R(0)) + ρ0 −m]N, t ≥ t̃0,
∂NS

∂t
= −α A

AS
(NS −N) + [f(R(0)) + ρ0 −m]NS, t ≥ t̃0,

νN(0, t)− δ ∂N
∂x

(0, t) = 0, ∂N
∂x

(L, t) = 0,

(5.4)

admits a solution aeλ
0
ρ0

(t−t̃0)(ϕ̂(x), ϕ̂S(x)), ∀ t ≥ t̃0. Then the comparison principle

implies that

(N(x, t, ϕ), NS(x, t, ϕ)) ≤ aeλ
0
ρ0

(t−t̃0)(ϕ̂(x), ϕ̂S(x)), ∀ t ≥ t̃0,

and hence, limt→∞(N(x, t, ϕ), NS(x, t, ϕ)) = (0, 0), uniformly for x ∈ [0, L]. Thus,

the equation for (C,CS) is asymptotic to system (3.10). By the theory for asymp-

totically autonomous semiflows (see, e.g., [32, Corollary 4.3]), it follows that

lim
t→∞

(C(x, t), CS(x, t)) = (0, 0)
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uniformly for x ∈ [0, L]. Similarly, (Z,ZS) is asymptotic to the following system:
∂Z
∂t

= δ ∂
2Z
∂x2

− ν ∂Z
∂x

+ α(ZS − Z)−mZZ,
∂ZS

∂t
= −α A

AS
(ZS − Z)−mZZS,

νZ(0, t)− δ ∂Z
∂x
(0, t) = 0, ∂Z

∂x
(L, t) = 0.

(5.5)

Therefore, we have

lim
t→∞

(Z(x, t), ZS(x, t)) = (0, 0)

uniformly for x ∈ [0, L]. This implies that the equation for (R,RS) is asymptotic

to system (3.9), and hence,

lim
t→∞

(R(x, t), RS(x, t)) = (R(0), R(0)) uniformly for x ∈ [0, L].

This proves statement (i).

Assume R0 > 1 and Rz
0 > 1. It then follows from Lemmas 3.4 and 4.6 that

λ0 > 0 and µ∗ > 0. Suppose Ψ(t)P is the solution maps generated by (4.1)-(4.3)

with initial value P . Set M∂ := {P ∈ ∂X0 : Ψ(t)P ∈ ∂X0, ∀ t ≥ 0} and let ω(P )

be the omega limit set of the forward orbit γ+(P ) := {Ψ(t)P : t ≥ 0}.
Claim 1.

∪
P∈M∂

ω(P ) ⊂ {E0} ∪ {E1}.
For any given P ∈ M∂, we have Ψ(t)P ∈ M∂, ∀ t ≥ 0. Then for each t ≥ 0,

we have Z(·, t, P ) ≡ 0 or ZS(·, t, P ) ≡ 0. In the case where Z(·, t, P ) ≡ 0, ∀ t ≥ 0.

From the fourth equation of (4.1), we see that ZS(·, t, P ) ≡ 0, ∀ t ≥ 0. Thus,

(R,N,C,RS, NS, CS) satisfy system (3.1)-(3.3). It follows from Theorem 3.2 that

either

lim
t→∞

(R(x, t), N(x, t), C(x, t), RS(x, t), NS(x, t), CS(x, t))

= (R∗(x), N∗(x), C∗(x), R∗
S(x), N

∗
S(x), C

∗
S(x)), uniformly for x ∈ [0, L],

or

lim
t→∞

(R(x, t), N(x, t), C(x, t), RS(x, t), NS(x, t), CS(x, t))

= (R(0), 0, 0, R(0), 0, 0), uniformly for x ∈ [0, L].

In the case where Z(·, t̃1, P ) ̸≡ 0, for some t̃1 ≥ 0. Then Lemma 4.7 implies that

Z(·, t, P ) > 0, ∀ t > t̃1. Thus, ZS(·, t, P ) ≡ 0, ∀ t > t̃1. It then follows from the

last equation of (4.1) that Z(·, t, P ) ≡ 0, ∀ t ≥ t̃1, which is a contradiction. Hence,

the claim is proved.

Since λ0 > 0 and µ∗ > 0, there exists a sufficiently small positive number ϱ0
such that λ0ϱ0 > 0 and µ∗

ϱ0
> 0, where λ0ϱ0 is the principal eigenvalue of the following
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eigenvalue problem

λ0ϱ0ϕ̃(x) = δϕ̃′′(x)− νϕ̃′(x) + α(ϕ̃S(x)− ϕ̃(x))

+[f(R(0))−m− ϱ0]ϕ̂(x), 0 < x < L,

λ0ϱ0ϕ̃S(x) = −α A
As
(ϕ̃S(x)− ϕ̃(x))

+[f(R(0))−m− ϱ0]ϕ̃S(x), 0 < x < L,

νϕ̃(0)− δϕ̃′(0) = ϕ̃′(L) = 0,

(5.6)

with a strongly positive eigenfunction (ϕ̃(·), ϕ̃S(·)), and µ∗
ϱ0

is the principal eigen-

value of the following eigenvalue problem (see Lemma 4.5):
µ∗
ϱ0
ψ̃(x) = δψ̃′′ − νψ̃′ + α(ψ̃S − ψ̃)

+[g(N∗)e−ηC
∗ −mZ − ϱ0]ψ̃(x), 0 < x < L,

µ∗
ϱ0
ψ̃S(x) = −α A

AS
(ψ̃S − ψ̃) + [g(N∗

S)e
−ηC∗

S −mZ − ϱ0]ψ̃S, 0 < x < L,

νψ̃(0)− δψ̃′(0) = 0, ψ̃′(L) = 0,

(5.7)

with a strongly positive eigenfunction (ψ̃(·), ψ̃S(·)).
It is easy to see that

lim
R→R(0)

f(R) = f(R(0)) and lim
(C,Z)→(0,0)

[e−ηCZ] = 0.

Thus, we can choose δ1 > 0 such that

f(R) > f(R(0))− ϱ0
2
, for any | R−R(0) |< δ1,

and

e−ηCZ <
ϱ0
2qZ

K̂

µ̂max

, for any ∥(C,Z)∥ < δ1,

where K̂ and µ̂max are defined in (4.4). From (4.4), it follows that

g(N) =
µ̂maxN

K̂ +N
≤ µ̂max

K̂
N, ∀ N ≥ 0. (5.8)

Claim 2. E0 is a uniform weak repeller in the sense that lim supt→∞ ∥Ψ(t)P−E0∥ ≥
δ1 for all P ∈ X0.

Suppose, by contradiction, there exists P0 ∈ X0 such that

lim sup
t→∞

∥Ψ(t)P0 − E0∥ < δ1.

Thus, there exists t1 > 0 such that

| R(·, t)−R(0) |< δ1 and | RS(·, t)−R(0) |< δ1, ∀ t ≥ t1,
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and

∥(C(·, t), Z(·, t))∥ < δ1 and ∥(CS(·, t), ZS(·, t))∥ < δ1, t ≥ t1.

Combining (5.8) and above relations, we obtain

f(R(·, t)) > f(R(0))− ϱ0
2
, f(RS(·, t)) > f(R(0))− ϱ0

2
, ∀ t ≥ t1,

and

g(N(·, t))e−ηC(·,t)Z(·, t) < ϱ0
2qZ

N(·, t), g(NS(·, t))e−ηCS(·,t)ZS(·, t) <
ϱ0
2qZ

NS(·, t),

for all t ≥ t1. It follows from the N and NS equations of system (4.1)-(4.3) that
∂N
∂t

≥ δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N)

+[f(R)−m− ϱ0]N, 0 < x < L, t ≥ t1,
∂NS

∂t
≥ −α A

AS
(NS −N) + [f(RS)−m− ϱ0]NS, 0 < x < L, t ≥ t1,

νN(0, t)− δ ∂N
∂x

(0, t) = 0, ∂N
∂x

(L, t) = 0, t ≥ t1.

(5.9)

Recall that (ϕ̃(·), ϕ̃S(·)) is the strongly positive eigenfunction corresponding to

λ0ϱ0 . Since N(·, t, ϕ0) > 0, NS(·, t, ϕ0) > 0, ∀ t > 0, there exists ϵ0 > 0 such that

(N(·, t1, ϕ0), NS(·, t1, ϕ0)) ≥ ϵ0(ϕ̃(·), ϕ̃S(·)). Note that ϵ0e
λ0ϱ0 (t−t1)(ϕ̃(·), ϕ̃S(·)) is a

solution of the following linear system:
∂N
∂t

= δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N)

+[f(R)−m− ϱ0]N, 0 < x < L, t ≥ t1,
∂NS

∂t
= −α A

AS
(NS −N) + [f(RS)−m− ϱ0]NS, 0 < x < L, t ≥ t1,

νN(0, t)− δ ∂N
∂x

(0, t) = 0, ∂N
∂x

(L, t) = 0, t ≥ t1.

(5.10)

Then the comparison principle implies that

(N(x, t, ϕ0), NS(x, t, ϕ0)) ≥ ϵ0e
λ0ϱ0 (t−t1)(ϕ̃(·), ϕ̃S(·)), ∀ t ≥ t1, x ∈ [0, L].

Since λ0ϱ0 > 0, it follows that N(x, t, ϕ0) and NS(x, t, ϕ0) are unbounded. This

contradiction proves the claim.

It is easy to see that

lim
(N,C)→(N∗,C∗)

[g(N)e−ηC ] = g(N∗)e−ηC
∗

and

lim
(NS ,CS)→(N∗

S ,C
∗
S)
[g(NS)e

−ηCS ] = g(N∗
S)e

−ηC∗
S .
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Thus, we can choose δ2 > 0 such that

g(N)e−ηC > g(N∗)e−ηC
∗ − ϱ0, for any ∥(N,C)− (N∗, C∗)∥ < δ2,

and

g(NS)e
−ηCS > g(N∗

S)e
−ηC∗

S − ϱ0, for any ∥(NS, CS)− (N∗
S, C

∗
S)∥ < δ2.

Claim 3. E1 is a uniform weak repeller in the sense that lim supt→∞ ∥Ψ(t)P−E1∥ ≥
δ2 for all P ∈ X0.

Suppose, by contradiction, there exists P̂0 ∈ X0 such that

lim sup
t→∞

∥Ψ(t)P̂0 − E1∥ < δ2.

Thus, there exists t2 > 0 such that

∥(N(·, t), C(·, t))− (N∗(·), C∗(·))∥ < δ2, t ≥ t2,

and

∥(NS(·, t), CS(·, t))− (N∗
S(·), C∗

S(·))∥ < δ2, t ≥ t2.

Hence,

g(N(·, t))e−ηC(·,t) > g(N∗(·))e−ηC∗(·) − ϱ0, t ≥ t2,

and

g(NS(·, t))e−ηCS(·,t) > g(N∗
S(·))e−ηC

∗
S(·) − ϱ0, t ≥ t2.

It follows from the Z and ZS equations of system (4.1)-(4.3) that

∂Z
∂t

≥ δ ∂
2Z
∂x2

− ν ∂Z
∂x

+ α(ZS − Z)

+[g(N∗(·))e−ηC∗(·) − ϱ0 −mZ ]Z, 0 < x < L, t ≥ t2,
∂ZS

∂t
≥ −α A

AS
(ZS − Z)

+[g(N∗
S(·))e−ηC

∗
S(·) − ϱ0 −mZ ]ZS, 0 < x < L, t ≥ t2,

νZ(0, t)− δ ∂Z
∂x
(0, t) = 0, ∂Z

∂x
(L, t) = 0, t ≥ t2.

(5.11)

Recall that (ψ̃(·), ψ̃S(·)) is the strongly positive eigenfunction corresponding to

µ∗
ϱ0
. Since Z(·, t, ϕ0) > 0, ZS(·, t, ϕ0) > 0, ∀ t > 0, there exists ϵ1 > 0 such that

(Z(·, t2, ϕ0), ZS(·, t2, ϕ0)) ≥ ϵ1(ψ̃(·), ψ̃S(·)). Note that ϵ1e
µ∗ϱ0 (t−t2)(ψ̃(·), ψ̃S(·)) is a

solution of the following linear system:

∂Z
∂t

= δ ∂
2Z
∂x2

− ν ∂Z
∂x

+ α(ZS − Z)

+[g(N∗(·))e−ηC∗(·) − ϱ0 −mZ ]Z, 0 < x < L, t ≥ t2,
∂ZS

∂t
= −α A

AS
(ZS − Z)

+[g(N∗
S(·))e−ηC

∗
S(·) − ϱ0 −mZ ]ZS, 0 < x < L, t ≥ t2,

νZ(0, t)− δ ∂Z
∂x
(0, t) = 0, ∂Z

∂x
(L, t) = 0, t ≥ t2.

(5.12)
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The comparison principle implies that

(Z(x, t, ϕ0), ZS(x, t, ϕ0)) ≥ ϵ1e
µ∗ϱ0 (t−t2)(ψ̃(·), ψ̃S(·)), ∀ t ≥ t2, x ∈ [0, L].

Since µ∗
ϱ0
> 0, it follows that Z(x, t, ϕ0) and ZS(x, t, ϕ0) are unbounded. This

contradiction proves the claim.

Define a continuous function p : X+ → [0,∞) by

p(ϕ) := min{ min
x∈[0,L]

ϕ4(x), min
x∈[0,L]

ϕ8(x)}, ∀ ϕ ∈ X+.

By Lemma 4.7, it follows that p−1(0,∞) ⊆ X0 and p has the property that if

p(ϕ) > 0 or ϕ ∈ X0 with p(ϕ) = 0, then p(Ψ(t)ϕ) > 0, ∀ t > 0. That is, p is a

generalized distance function for the semiflow Ψ(t) : X+ → X+ (see, e.g., [31]). By

the above claims, it follows that any forward orbit of Ψ(t) inM∂ converges to either

{E0} or {E1}. Further, {E0} and {E1} are isolated in X+ and W s({Ei}) ∩ X0 =

∅, ∀ i = 0, 1, where W s({Ei}) is the stable set of {Ei}, i = 0, 1 (see [31]). It is

easy that no subsets of {{E0}, {E1}} forms a cycle in M∂. By Theorem 4.1 and

[31, Theorem 3], it follows that there exists an ζ > 0 such that

min
ψ∈ω(ϕ)

p(ψ) > ζ, ∀ ϕ ∈ X0.

This implies that

lim inf
t→∞

Z(·, t) ≥ ζ and lim inf
t→∞

ZS(·, t) ≥ ζ, ∀ ϕ ∈ X0. (5.13)

Hence, the uniform persistence stated in statement (ii) is valid.

By Lemma 4.3 and [22, Theorem 3.7 and Remark 3.10], it follows that Ψ(t) :

X0 → X0 has a global attractor A0. It then follows from [22, Theorem 4.7] that

Ψ(t) has an equilibrium

(R̂(·), N̂(·), Ĉ(·), Ẑ(·), R̂S(·), N̂S(·), ĈS(·), ẐS(·)) ∈ X0.

We have to prove that

(R̂(·), N̂(·), Ĉ(·), Ẑ(·), R̂S(·), N̂S(·), ĈS(·), ẐS(·))

is a positive steady state of (4.1)-(4.3). It is easy to see that R̂ satisfies the following

inequalities, {
δR̂′′ − νR̂′ − [α + qN

∫ 1

0
f ′(θR̂)dθ]R̂ ≤ 0, 0 < x < L,

νR̂(0)− δR̂′(0) = νR(0), R̂′(L, t) = 0.
(5.14)

Suppose R̂ attains a minimum R̂(x̂) ≤ 0 at some point x̂ ∈ [0, L]. If x̂ ∈ (0, L),

then by the strong maximum principle (see [26, p.64,Theorem 6]), one has that
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R̂ ≡ R̂(x̂), contradicting its boundary condition at x = 0. If x̂ = L, by the Hopf

boundary lemma (see [26]), one has R̂′(L) < 0, which is a contradiction. Similarly,

x̂ = 0 is impossible. Thus, R̂(x) > 0, ∀ 0 ≤ x ≤ L. Clearly, R̂S satisfies the

following equalitiy,

α
A

AS
R̂S(x) + qNf(R̂S(x))N̂S(x) = α

A

AS
R̂(x) + qNmN̂S(x), 0 ≤ x ≤ L,

which implies that R̂S(x) > 0, ∀ 0 ≤ x ≤ L. Similarly, we can prove that N̂(x) >

0, N̂S(x) > 0, Ĉ(x) > 0, ĈS(x) > 0 for all 0 ≤ x ≤ L. This completes the proof.
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