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ABSTRACT 

In this paper we analyze a mathematical model for a two-competing-prey, one-predator 

system and discuss the effect of predation on the two competing prey. Our basic assump- 

tion is that the predator can survive on either of the two competing prey in a one-predator, 

one-prey subcommunity. Conditions for the coexistence of the two competing prey and the 

extinction of either prey are completely determined and discussed. The conclusion is that 

the outcomes depend critically on the prey species’ capability of invading the complemen- 

tary subcommunity formed by predator species and other prey. Our mathematical analysis 

is rigorous and global. 

1. INTRODUCTION 

In this paper the following system of ordinary differential equations is 
considered which models the predation effect on two competing species 

-q2N,-a,,P , 
I 

-aTIN,-a2,P , 1 (1.1) 

$=P[a,,N,+a,,N,-D], 

N,(O)>O, N,(O)>O, P(O)>O. 

This is Lotka-Volterra-type model for a predator species P and two 
competing prey species N, , N,. The model (1.1) was developed by Parrish 
and Saila [ 1 l] and was actually motivated by the experiments of Paine [lo] on 
some intertribal communities of marine invertebrates. Paine removed the 
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major predator from an intertribal community and observed its change from 
15 species to 8 species during a period of less than two years. Paine 
demonstrated clearly that a top predator could serve to increase diversity in 
this intertidal system. Porter [ 12, 131 showed that the diversity of coral reefs 
was increased by predation. Harper [7] discussed the role of an herbivore in 
increasing the diversity of grass species, and Cone11 [l] discussed the role of 
predators in preventing competitive exclusion in the rain forest and the 
intertidal zone. 

In [3] Cramer and May gave a numerical example for the case of “equal 
predation,” i.e., (~,s =a2sr a32 =(~~t, and demonstrated possible coexistence. 
Fujii [4] did some numerical analysis on (1.1) and showed that there exists a 
stable limit cycle in some range of parameters. Hallam [5] gave a more 
systematic local-stability analysis of this model. However, his biological 
interpretation is not clear, due to the complicated notation. Vance [14] also 
discusses this system, assuming the two competing prey identical in all 
respects except for the differences which evoke frequency-dependent preda- 
tion and the difference in the species against which the prey direct their 
principal defense mechanisms. None of them gave satisfactory results for the 
model. In this paper we intend to give complete results for an important 
case: we shall assume species P can survive on either prey in the subcommun- 
ity. 

In Sec. 2 we scale the system (1.1) into one easier to analyze. We briefly 
state the results on two-dimensional subcommunities in Sec. 3 and state our 
principal results in Sec. 4. Section 5 is the discussion section, and we give the 
proofs in Sec. 6. 

2. SCALING 

In this brief section we choose appropriate nondimensional variables. 
Hereafter we shall use bars over parameters and independent and dependent 
variables to signify that they appear in the original equations (1.1). Parame- 
ters and variables without bars will be used for the new nondimensional 
entities. Where no change is made in a parameter or variable, no bars will 
appear. Thus we let 

- 

t=iTi, iv,(t)=E$G,(r), N&)=yf#), P(t)=+(r), 

r2 
r2==, 

K = G_T32 

D ' D' 

- - 
a21 

a21=-_, 
a23 

a3l 
a2,= :. 

al3 
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With this change (1.1) becomes 
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(2.1) 

N,(O)>& N,(O)>O, P(O)>O. 

3. RESULTS ON TWO DIMENSIONAL SUBCOMMUNITIES OF (2.1) 

First, we state the well-known results on the classical Lotka-Volterra 
competition model: 

THEOREM .?.I 

(3.1) 

(i) If r,/a,* >K, and ‘>/a,, >K, (denoted by N, t, N2), then 
‘ 

lim (N,(t),N,(t))=(N:,N:) 
f-m 

( 1 1 -I 

= 

aI2 a21 1 aI2 1 a21 

K, . -- -- --- --- K2 1 ( K, r, ’ r, r, K, r, 1 . 

(9 If K2 >r,/a12 and r2/a,, > K, (denoted by N, >> N,), then 

lim (N,(t), N,(t))=(O, K,). 
1--t* 

(iii) lf K, >r2/oL2, and r, /cx,~ > K, (denoted by N, >> N,), then 

(5% (N,(t), N,(t))=(K,,Oh 

(iv) If Kl > rdaz, and K, >~,/LY,~ (denoted by N, +N2), then 

(K,,O),(O, K,) are loca@ stable, and there exists a one-dimensional stable 
manifold through the saddle point (NT, NT). 
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We note that we have adopted the notation N, > N2, N, > N, , N, H N2, 
‘ 

N, +N2 from [5]. These outcomes are represented in Fig. 1. 
Next, we consider the Lotka-Volterra predator-prey system 

f =P[pN-Dl. 

(i) If K> D/p, then 

(ii) lf K<D/p, then 

lim (N(t),f’(t))=(K,O) 
I-LX 

K, ‘2 
Nl 

case 3 
a21 

N2 

‘1 
a12 

K2 

case 2 N2 z-> N, 

K2 G.S. 

‘1 
Q12 

h_ 
K1 ‘2 

Nl 

a21 
case L 

N2J N&N2 

K2 

-!i- 
92 

NI 
‘2 KI 

Nl 
__ 
a21 

(3.2) 

FIG. I G.S. =globally stable. L.S. = locally stable. 
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4. STATEMENTS OF RESULTS 

In this section we state the principal results of this paper on the system 
(2.1). We shall reformulate these results in terms of the original parameters in 
the discussion section. The proofs and certain technical lemmas are deferred 
to Sec. 6. First we note the following lemma and omit the proof. 

LEMMA 4.1 

The solutions N,(t), N,(t), P(t) of (2.1) are positive and bounded. 

Our basic assumption on (2.1) is 

i.e., we assume the predator can survive on either prey in the predator-prey 
subcommunities. Under the assumption (H), we have two important equi- 
libria of (2. l), namely, 

(E,,)=(l,O,P,L 

The following lemma can be obtained directly from linear stability analysis 
of ( EIP) and (E,,), and we omit the proof. 

LEMMA 4.’ 

(i) ( E, p) is asymptotically stable if 

r2 -azl 
r,(l-l/K,) <(y23’ 

and unstable when the reversed inequality holds. 
(ii) ( E,,) is asymptotically stable if 

rl --al2 

rAI- I/K21 
<J-, 

a23 

(4.1) 

(4.2) 

and unstable when the reversed inequality hoI&. 
Now we state the main results of this paper. 
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THEOREM 4.3 

Let (H) hold. 

(i) If 

S. B. HSU 

r2 -a21 
<a2, and 

rl -al2 

rt(l-l/K,) r,(l- l/K,) 
>& 

a23 

then (E,,) is globally stable. 
(ii) If 

rl --a12 
<-!- and 

r2 -azI 

r2(1-1/K2) a23 rdl-l/K,) 
‘a23 9 

then (E,,) is globally stable. 

The next theorem states the results in which the outcomes will depend on 
the initial populations. 

THEOREM 4.4 

Let (H) hold. If 

r2 -a,] rl -aI2 1 

r,(l- l/K,) Ca23 and r2(l-l/K,) <a,,’ 

(i) (E,)=(N,,., N2(, P,) exists uniquely with N,, >O, i=1,2, P, >O if and 

only ifr,r2(1- l/K,)(l- l/K,)>(r, -a12)(r2 -a2,). 
(ii) If (E,.) exists, then (E,) is a saddle point with two-dimensional stable 

manifold through (E,). In this case, if (E,,)=( N:, N,* ,O) exists and N,&Nz, 
then ( E,2) is a saddle point with one-dimensional stable manifold through (E,,) 

in the N,-N, plane, while in the case N, ++ N2, (E,,) is a saddle point with 

two-dimensional stable manifold in the N, -k2 plane. 
(iii) If (E,) doesn’t exist, then (E,,) exists with N, + N, and is a saddle 

point with two-dimensional stable manifold through it. 

DEFINITION 

If no solution (N,(t), N2( t), P(t)) has a component which approaches zero 
as t approaches infinity, then the system (2.1) is said to be persistent. 

TFIEOREM 4.5 

r2 -azI 
>az3 and 

rl -aI2 1 

r,(l - l/K,) r,(l-l/K,) ‘<’ 

then (E,) exists and the system (2.1) is persistent. 
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We note that in this paper we only consider the solutions whose initial 
values lie in the interior of the positive octant. 

5. DISCUSSION 

We now return to original equations (1.1) and original parameters, vari- 
ables and independent variable. First of all, our basic assumption (H) 
becomes 

K,>$,=+ 
a31 

K2>N,=D 
(y32 ’ 

(5.1) 

i.e., we assume the predator P can survive in the N,-P and N,-P subcommun- 
ities. The inequalities in (4.1) and (4.2) and their reversed inequalities are 

reformulated as 

r2 --a2,N, 

r,( I -N,/K,) 
<(y23 

a13 ’ 

5 -a2, N, 
r,( 1 -N,/K,) 

>a,, 
a13 ’ 

(5.2) 

(5.3) 

rl -a,,& 

r2( 1 -F2/K2) 
(cy1.7 

a23 ’ 
(5.4) 

r, -a,,lV, 

r2( 1 -&/K,) 
>%. 

ff23 
(5.5) 

Next, we give the biological interpretations of (5.2), (5.3) (5.4), and (5.5). 
From Theorem 3.2 we assume predator species P and prey species N, are in 
the stable subcommunity with steady state (?, , Pr), and let the prey species 
N, invade the N,-P subcommunity. The specific growth rate of N, is 
r2 --a,,??,. If r2 -cr,,i, GO, th en obviously the prey species N, cannot even 
survive. On the other hand, if r, --a2,p, >O, then we may rewrite (5.2) as 

a13 a23 

r,( 1 -f,/K,) ( r2 -a2,F, ’ 
(5.6) 

In (5.6), the left- and right-hand sides are the intensities of predation exerted 
by the predator species P on a per capita basis relative to the per capita 
power of prey species N, , N,, respectively, to multiply at steady state 
(%,, Pr). Thus the inequality (5.6) says predator P exerts higher predation 
pressure on species N2 than on species N,. Hence (5.2) states that the prey 
species N, cannot invade the N,-P subcommunity successfully. Similarly (5.3) 
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states that the prey species N, is a stronger competitor and can invade the 
N,-P subcommunity successfully. The biological interpretation for (5.4), (5.5) 
follows similarly by interchanging the indices 1 and 2. 

With these biological interpretations in mind, we are now in a position to 
explain Theorem 4.3, 4.4 and 4.5 and use the original parameter to state the 
results. 

THEOREM 4.3 

(i) Lez (5.1), (5.2), and (5.5) hold. Then 

(ii) Let (5. I), (5.3), and (5.4) hold. Then 

Part (i) states that the species N, can invade the N,-P community, 
successfully and its rival N,, a weaker competitor, can’t invade the N,-P 
community. Hence N, is always the winner. A similar interpretation follows 
for (ii). 

TffEOREM 4.4 

Let (5.1), (5.2). (5.4) hold. Then the competition outcomes depend on the 

initial populations. 

In this case, neither species N, can invade the complementary subcommun- 
ity, so the result is expected. 

THEOREM 4.5 

Let (5. I), (5.3), (5.5) hold. Then the system (1.1) is persistent. 

This case is the most important one. When either species N, has the 
capability to invade the complementary subcommunity, the species N,, Nz 
persist. They may persist either in stable equilibrium or in a stable limit cycle 
(3,4]. We note that the linear stability analysis about (E,) is too complicated 
to determine the local stability of (EC). In our numerical simulation, we chose 
r, =300, t-,=210, a,3=l=ar1 =a3*, D=l, a,2=a2,=60, K,=F!, Kz=y, 
and let al3 be a parameter. By Theorem 4.6, if Q <az3 -=I 2, the system (2.1) 
is persistent. Our numerical computation shows: 

(i) If a 23 ~0.830, then (&)=(0.232584X lo-‘,0.976738,0.237209X 103) 
is locally stable; 
if a ,,=0.845, then (&)=(0.898849X IO-‘,0.910119,0.229214X 103) is lo- 
cally stable; 
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II(N,,N2,P)II 

I 

I 
30144 1 5/4 “23 

FIG. 2. 

if (rz3 = 1.22, then (E,)=(O.963565,0.378924X lo-‘,0.124287X 103) is lo- 

cally stable. 
(ii) If (Y 23 = 1, then (E,) ~(3, 6,170) is unstable, and a limit cycle ap- 

pears. 

The bifurcation diagram is sketched in Fig. 2, where the lower branch 

corresponds to the steady state (E,) and the upper branch corresponds to the 
stable limit cycle. Obviously we have two Hopf bifurcations. 

Theorem 4.5 has some interesting implications. When two competitors can 
coexist without a predator, they can coexist with a predator provided that the 

ratio, az3/+, of the predator’s effect on Nz to its effect on N, lies in a 
certain range (i.e., is neither too small nor too large- the predator should be 
“even-handed”). However, there are communities of two competing prey and 
a single predator for which the elimination of the predator will result in the 
extinction of one of the prey. 

The competitive-exclusion principle [6] states that two competing species 

can coexist only if they exploit their environment differently. With the 
predation, Theorem 4.6 states that competing prey species can coexist even 
with exactly identical resource requirements if each prey species has invasion 
potential for the complementary predator-prey subcommunity. 

For the three other cases concerning the system (2.1) (namely, K, > 1, 
K,<l; K,<l, K,>l; K,tl, K,<l), it should be straightforward to 
classify and interpret the results. The rigorous mathematical proofs remain to 
be given. 

6. PROOFS 

Before we prove our main theorems, we state a theorem of Markus [9] and 
a theorem of Coppel [2] which will be used repeatedly. 

DEFIIVITION 

LetA:xj=f;(x,r)andA:xl=f,(x)(i=1,2,...,n)beafirst-ordersystem 
of ordinary differential equations. The real-valued functionsf,(x, t) and f,( x) 
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are continuous in (x, t) for xEG, where G is an open subset of R”, and for 

t=-t,, and they satisfy a local Lipschitz condition in x. A is said to be 
asymptotic to A, (A-t A,) in G if for each compact set KcG and for each 
F>O, there is a T=T(K,e)>t, such that If,(x,t)-fi(x)I<e for all i= 
I,2 ,..., n, all xEK, all t>T. 

DEFINITION 

The O-limit set for (x=f( x, t), x( to) = x0} is the set of w-limit points y, 

where y=lim,,_m x( t,,) for some sequence { tn), t,, - cc. 

THEOREM (MARKUS) 

Let A + A, in G, and let P be an asymptotically stable critical point of A,. 

Then there is a neighborhood N of P and time T such that the w-limit set for 
every solution x(t) of A which intersects N at a time later than T is equal to P. 

THEOREM (COPPEL [2, p. 1411) 

If a real-ualued function f(t) has a finite limit as t 3 00 and f (n)( t) (the nth 

derivative) is boundedfor tat,, then lim,,,f(“)(t)=O, O<k<n. 

Proof of Theorem 4.3. First we prove (i). The proof for (ii) follows 
similarly and we omit it. Let 1) E R be selected below and consider 

=(r2 -a23r1 -q)+N, -a21 +9+ $a23 
( 1 

-$+~x9,~+1) 
2 

Since 

r2 _a21 

',(1--1/K,) 
>a23, 

i.e., r2 -a2, <r,a,,(l- l/K,), we have 

r2 -)1(x23 -=+! - ka23, 

and since 

rl -aI2 1 
r2(1-1/K2) ‘z’ 

(6.1) 

(6.2) 
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i.e., az3(r, -(Y,~)>T~(~ -l/K?), we have 
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‘2 
‘z-az3rl<K -a12a23. (6.3) 

From (6.2), (6.3) we can choose n ER such that r, -a23r, -qtO, -a2, +q+ 

(rl/Kda23 ~0, and -(r2/K2)+a2,+q<0. Integrating from 0 to t and 
taking exponentials on both sides of (6.1) yields 

where p=rz -a2,r,-qt0. If q<O, then lim,,,N,(t)=O. If q>O, then 
lim ,_,N2(t)[P(t)lR=0. We claim lim,,,N,(t)P(t)=O. Let u=max(l,q); 
then 

From Lemma 4.1, it follows that lim ,_ 1. N,( t)P( r) =O. In order to show that 
( E,,,) is globally stable, we have following possible cases. 

Case 1: lim ,_ m P(t) = 0. We intend to show this case is impossible by 
contradiction. 

Subcase A: lim [_ m N2( t) exists. 
Al: If lim ,,,N,(t)=O, then lim,_, N,(t)=K,. It follows that P(t) be- 
comes unbounded as t large. This is a contradiction to Lemma 4.1. 
AZ: If lim ,_,N,(t)=C>O, by Coppel’s theorem we have C=K, or C=N$ 
and lim ,_mN,(t)=OorN~,sinceK,>l, K,>l,andr,>a,,. FromFig. 1, 
cases 1, 4, it follows that NT + N,* > 1 and P(t) becomes unbounded for I 
large; again this is a contradiction. 

Subcase B: lim ,_ m N,(r) doesn’t exist. 
BI: N,>>N,. There exists .s>O and {t,,} (t,, + 00 as n+ cc) such that 
N2(t,,)=0 and N,(t,,)>e is a relative minimum. Choose a subsequence (t,?,) 
of (t,,) such that lim,, --rm N,(t,,,) = N,, Z= e. Since P&(t,,) = 0, then 
lim ,I _,N,(t,,,)=N,,>O. ‘Hence (N,,, N,,,O)EQ, the w-limit set of the 
solution (N,(t), N2( t), P(t)). We note that (N,, , N,,) is on the line r2( l- 
N,/K,)-a,, N, =O. By the invariance property of the w-limit set, it follows 
that (0, K,,O) EG. Compare the following asymptotic autonomous system 
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and its limiting equations: 

S. B. HSU 

and 

From Markus’s theorem, it follows that limr_m N,(t)=0 and lim,_, N2(1) 
= K,. This contradicts the assumption that lim,, 33 N2( t) doesn’t exist. 
B2: N, >N,. Since N,(t) is bounded by K, for large t and lim,,, N,(t)# 
K,, there exists E>O and sequence {t,,} such that N,(t,,)<K, --e is a relative 
maximum. Using the arguments in Bl yields ( N,,, Nzw,O) E Q for some 
N,, GK, -E, N,, >O. Hence we have (K,,0,0)~3. Applying Markus’s 
theorem yields lim,,, N,( t)= K, and lim,_% NJ t)=O. Again this is a 
contradiction. 

B3: N, t-;, N1. Case (a): There exists to 30 such that N2(t)>N$ for aif 

t> t,,. In’this case, applying the arguments in B2 yields (N,, , N,,,O) EO for 
some N,,, Nzw satisfying NT GN,,GKK,-~ and N,,>O and with(N,W, N,,) 
on the line r2(1-N,/K,)-acu,,N,=O. Then (NF, N,*,O)EQ, Applying 
Markus’s theorem yields lim,, o3 N,(t) = NT and lim,_ m N2( t) = N;. Hence 
this is a contradiction. Case (h): There exists t, 20 such that NJ t)< NT for 

all t> t,,. In this case, applying the arguments in Bl yields (N,,, N2w,0) EO 
with F< N,, G N? , N,,>O, and (N,,, Nzw) on the line r2(1 -N,/K,)- 

a,,N, =O. The arguments in case (a) yield a contradiction. Case (c): N2(t) 
oscillates around N> = NT. In this case there exists { t,z) such that hi,( t,,) (0, 
N,(t,,)=N,*. Then (N,,, NT,O)EQ for some N,,>O. The arguments in case 
(a) yield a contradiction. 
B4: N, +Nz. In this case, we again have three cases as we did in B3. In 
these three cases, there exists E>O and a sequence (t,,} ( t,z + co as n+ co) 
such that either N,( t,,) > N; + E is a relative maximum for all n or NJ t,)< 
N,* -E is a relative minimum for all n. If N2( t,,) > N: + E is a relative 
maximum, then ( N, w, Nzw,O)EG with N,,>O, Nzw>NT +E, and(N,,, N,,) 
on the line r2(1 -N2/KZ)-al, N, =O. It follows that (0, K,,O)ED. Applying 
Markus’s theorem yields a contradiction. Similarly, if N,( t,,)< N,* -E is a 
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relative maximum, then (N,,, Nzw,O)EG with N,,>O, N,, <NT -F, and 
(N,,,N,,)ontheliner,(l-N,/K,)- (Y~,N,=O. It follows that (K,,O,O)EQ. 
Then Markus’s theorem yields a contradiction. 

Cuse 2. If lim sup, _ 3. P(r)>O, then there exist E>O and a sequence (tn} 
such that P( t,,)>& and P( t,,)=O. Since lim ,_,P(t)N,(t)=O, it follows that 
lim ,,_,N*(t,,)=O. From the third equation of (2.1) we have lim,_, N,(t,,) 
= 1. Hence there exists P, >O such that (l,O, P,)E&?. By the invariance 
property of w-limit set and the asymptotic stability of (E,,), we have that 
( E, ,,) is globally stable. 

Proof of Theorem 4.4. (i) Existence of E,.: From (2.1), we solve 

N,+N2=l, 

-a,,N,. 

Then 

We need to show 0~ N,, < 1 and PC >O. From (6.2) (6.3) we have 

(+2)+&( +) 

Hence N,,. >O. We still need to show that N,, < 1, i.e., 

1 
-r2 I-$ -(r,-a,2)< r, 
a23 t 1 2 ii I) 

I-f -&(r2-a2,) 1 
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or 
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It follows that N,, < 1, and hence N2‘ = 1 -N,,. >O. From (2. I), we have 

hence 

We wish to show Pc>O, i.e., 

or 

[ 
(a21 -r,)+r, 1-t 

( iI 2 

(r,-a,2)+r2 1-k 

( 1 2 

X (a,,-r,)+r, I-f 

i ( iI S-0, 
2 

or 

(a,, -r2)(rI -a,2)+r1r2 (1-g l-+. 

or 

Hence we complete the proof for (i). 
(ii): The characteristic polynomial of variation matrix at (E,.) is 

f( A)=P +a,P +a,X+a,, 
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where 

a,=~N,,i-$-Nzc, 
I 2 

a2= K, K, ( 

rl '2 
---(Ya I2 21 

) 
N,~N~~+P~(oL~~Nz~~N,~), 

a3= 
( 

rl '2 
Fa23 + K -a12a23--a2, N,cN2$'c. 

2 1 

We note that 

I 

;"3+~~~~:I::~(~_.;r 

;i~r~-~~2~-rl(~-~)]~23+[~~2-~2~~-~2(~-+-)] 

=[(r2-.21)-r~(l-+-)~23]+[trl-~i2b23-r2(l-&)] 

>o if ( EIP),( E,,) both are unstable, 

CO if ( EIP),( E,,) both are stable, 

since a, >O and a3 to. From the Routhe-Hurwitz criterion, (EC) is unstable. 
Furthermore f( h) =O has two roots with negative real parts and one positive 
root; hence (EC) is a saddle point and there exists a 2dimensional stable 
manifold through (EC). 

Assume (E,,) exists and N, + N2; then we have (r,/K,)(r2/K2)<LY,2a21. 
The characteristic polynomial for the variation matrix at (E,,) is 

f(x)=A3+( 2 K, 
N;-ZN,*+N;+N$-l 

+ [( 5 A- -a]2a2, 

K, K2 
N;N,*-(N;+N;-1) h 

-(N;+N;-~)(~+Y,,~,,)N;N; 

=[A-(N;+N;-I)] A~+( ~N;+~N;)X 

( rl r2 
+ K,K, --a12azl 
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where 

N;+N;-1= 
a,2 a21 1 1 -- 
r, r2 K, K, 

a2,rl -a12a21 
- Lr, + La,2 

K 

2 K2 
- IZa,2 +a,2r2 - -$r2 + ?IL rl 

K2 I K2 K, 
XI 

r, r2 
a12a21 

--- 

K, K2 

( a2,mkj(r,-a,2)+r2( l-&)[a,2-+$j 
ZZ 

rl r, 
(0, 

a12a2, 
-__ K K 

I 2 

or 

Hence if (E,) exists, then (E,,) is unstable with l-dimensional manifold 
through (E,,) in the N,-N2 plane. The case N, t) N2 follows similarly. 

(iii): r,r2(l - l/K,)(l- l/K,)<(r, -alz)(rzc-az,) if and only if (E,) 

doesn’t exist, since r2 -a2, <a,,r,(l- l/K,) and (r, -a,2)<(l/a23)r2(l - 
I/K,). Under the assumption K, > 1, K, > 1, the only possible case is 
r, <a,2 and r2 <a,,. That is the case N, + N2, since NT +N,* - I<0 if and 
only if r,r,(l- I/K2)(l - l/K,)<( r, -a,2)(r2 -a2,). By linear stability 

analysis about (E,2), it follows that (E,,) is a saddle point with a 2- 
dimensional stable manifold through it. 

Proof of Theorem 4.5. From the reversed inequalities of (6.2), (6.3), we 
have r2-a2,>a23r,(l-l/K,)>0, (r,-a,2)~(1/a23)r2(1-l/K2)>0. By 
previous computation, we have 0 <N,, < 1, and Pc > 0. Hence (E,) exists. If 
lim t--t m P( t)=O, from Theorem 4.3, case 1, we have a contradiction. If 
lim r,,N2(t)=0, thenlim,,,P(t)=C>O or lim,,,P(t) doesn’t exist. 

Case I. If lim t,,P(t)=C>O, by Coppel’s theorem, thenlim,_,N,(t) 
= 1 and C=r,(l- l/K,). Then the identity 



PREDATOR-MEDIATED COEXISTENCE 247 

and the instability of ( EIP) imply that N2( t) becomes unbounded as t gets 
large. This is a contradiction. 

Cfr~e 2. If lim ,_,,P( 1) doesn’t exist, then there exist E>O and a se- 
quence {t,} such that P(t,)=O, P(t,)>e. Choose a subsequence {tn,} of 
{t,} such that limn,+m P(t,,)=P, 2~. Since j(t,,)=O, then lim,,,mN,(t,,) 
= 1. Hence (l,O, P,)EG and (I,O, r,(l- l/K,))~n. Compare the asymptotic 
autonomous system and its limiting equations, i.e., 

and 

ti,=Njr,( q-p]. 
P=P[N,-11. 

Then 

lim N,(t)= 1, lim N,( t)=O, 
f-+rn “-CC t--rm 

Again we have a contradiction. If lim,,, N,(t)=O, since (E,,) is unstable, 
the same arguments as above yields a contradiction, Hence (2.1) is persistent. 

The azrthor wishes to acknowledge with thanks the comments of the referee. 
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