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ANALYSIS OF A MODEL OF TWO COMPETITORS IN A CHEMOSTAT 

WITH AN EXTERNAL INHIBITOR* 


S. B. HSUt  A N D  P. WALTMAN$ 

Abstract. A model of the chemostat with an external nutrient and an external inhibitor is considered. 
A preliminary analysis reduces the problem to a three-dimensional competitive system. The theory of 
monotone flows is applied to obtain several global results. Global results fail when questions of multiple 
limit cycles cannot be answered. An example of an attracting limit cycle is given. 

The chemostat with inhibitor can model competition between two populations of microorganisms, 
where one strain is resistant to an antibiotic or competition in detoxification, a system where one strain can 
take u p  the pollutant while the other is inhibited by it. 

Key words. chemostat, inhibitor, contaminant, monotone dynamical system 

AMS(M0S) subject classifications. 34C35, 92A17 

1. Introduction. In a recent paper, Lenski and Hattingh [LH] considered a model 
for competition for a limiting resource in a chemostat between two populations in the 
presence of an inhibitor for one of the populations. An example might be two types 
of microorganisms, one of which is resistant to an agent also being input into the 
chemostat. The agent diminishes the growth rate of one population but is taken up by 
the other without ill effect. An example of such an agent is the nalidixic acid used in 
the experiments of Hansen and Hubbell [HH] to alter the growth rate of a strain of 
E. coli. The relevance to antibiotic-resistant or pesticide-resistant organisms is obvious. 
It is important to know when the resistant strain can out-compete the susceptible strain. 
A similar problem results with the desirability of the outcome reversed in a waste 
treatment or a detoxification problem. One strain can "detoxify" the environment, 
making it habitable to both. 

The model (presented in § 2) is essentially that of [LH]. By numerical computation, 
a variety of possible outcomes were shown, seven in all. Their approach was to fix the 
basic parameters and vary the input concentrations of the limiting nutrient and the 
inhibitor. Stability considerations were all local. Our approach is more mathematical. 
We attempt to find relationships among the parameters that classify the behavior types 
in a standardized (chemostat) environment. In many cases, we are able to give global 
results-precise theorems and proofs-that classify the possible behavior in terms of 
the parameters. To do this, it is convenient to scale out the influx concentrations, 
creating a standard (or relative) environment and deal with a reduced parameter set. 
We use the mathematical tools from nonlinear differential equations, particularly the 
theory of monotone dynamical systems, to construct a rigorous analysis of the behavior 
of solutions of the relevant nonlinear differential equations. 

Finally, we note that we have found an interesting, additional outcome not listed 
in [LHI-the case of oscillatory coexistence. The system need not reach an equilibrium 
state for both competitors to survive. 

2. The model. The model is that of a standard chemostat with two competitors, 
with the added feature that an inhibitor (toxicant) is also input from an external source. 
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For basic results on the chemostat, see the survey articles [FS], [JM], [HET], [V], 
[WHH], and [W2]. One population is sensitive to the inhibitor, but the other takes it 
up without ill effect. The nutrient (and inhibitor) uptake and conversion (in the case 
of nutrient) is assumed to follow Michaelis-Menten dynamics. The results are probably 
valid for general monotone dynamics, but we were interested in providing explicit 
results, in terms of the measurable parameters, in hopes that such guidance might spur 
experimental effort, especially to demonstrate the oscillatory case. 

Let S ( t )  denote the nutrient concentration at time t in the culture vessel; x,(t), 
x,(t), the concentration of the competitors; and p( t ) ,  the concentration of the inhibitor 
(or toxicant or pollutant). The equations of the model take the form [LH] 

s'" is the input concentration of the nutrient, and p"' is the input concentration of 
the inhibitor, both of which are assumed to be constant. D is the dilution rate of the 
chemostat. s'", p"), and D are under the control of the experimenter. mi, ai, i = 1,2 
are the maximal growth rates of the competitors (without an inhibitor) and the 
Michaelis-Menten (or half saturation) constants, respectively. These parameters, inher- 
ent properties of the organism, are measurable in the laboratory. 6 and K play similar 
roles for the pollutant, 6 being the uptake by x2, and K being a half saturation 
parameter. The function f ( p )  represents the degree of inhibition of p on the growth 
rate (or uptake rate) of x,.  

To reduce the number of parameters and to provide a standard environment so 
that comparisons can be made in terms of the parameters of the competing populations, 
the equations will be scaled. First, scale the units of concentration of S, x , ,  x2 by the 
input concentration s'". This includes the parameters a t ,  i = l ,2 .  (We have already 
tacitly scaled out the yield parameters that scale the conversion of nutrient to organism.) 
Then scale time by the dilution rate (it has units l/time). This reduces D to 1 and 
replaces mi by mi/D, i = l ,2 ,  and 6 by 6/D. Finally, scale p by p"', which has the 
effect of scaling p"' to 1. In [LH], f (p)= e p A p ;so this would be written as 
exp ( - A ~ ' ~ ' ~ / ~ ' ~ '  exp (-A'p). If we make these changes and then, returning to the = 

"old" names (for eample, using m, as the new "maximal growth rate," the "old 
m,/D"), system (2.1) takes the form 
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It is system (2.2) that will be investigated here. The reader is cautioned that the 
parameters have changed their meaning. They are to be viewed relative to the "standard 
environment" of s"' = 1, p'O'= 1, .r = D t (the new nondimensional "time"). They are 
to be computed from the measured parameters and the operating parameters of the 
chemostat. 

Concerning the function f (p), we assume that (i) f ( p )2 0,  f (0) = 1, and 
(ii) f ( p )< 0, p > 0. The function used in [LH] has these properties. 

3. Preliminary analysis. In this section, model (2.2) is further simplified by noting 
that all trajectories of (2.2) are asymptotic to a particular set in R ~ .This will make it 
sufficient to investigate a reduced set of equations. Moreover, certain cases are uninter- 
esting in the current setting. These are identified, the behavior of trajectories analyzed, 
and the parameters restricted to exclude them in the remainder of the analysis. These 
results are global. 

LetX=1-S-xl-x2.ThenX'=-S'-x~-x;=-1+S+xl+x2=-X.System(2.2) 

may then be replaced by 

Clearly, lim,,, X(t) = 0. Hence the solutions in the omega limit set of (3.1) must satisfy 

More directly, we could also apply the theory of asymptotically autonomous systems. 
See [HI, [MI, and, for a detailed application, [HHW]. System (3.2) is competitive 
[Hill ,  [Sl], and we will make use of that theory when the need arises. Let 

These are the usual parameters for the chemostat and would determine the outcome 
if the inhibitor p were not present. The form of (3.2) guarantees that if x,(O) > 0, i = 1,2, 
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then x i ( t )>0 for t > 0. Moreover, p'l,=, = 1> 0 ;  so, if p(0)  2 0 ,  p ( t )  > 0 for t > 0. x l ( t )  
and x , ( t )  satisfy 

so that an application of Kamke's theorem, [C, p. 291 and the knowledge of the behavior 
of trajectories in the chemostat equations [HHW], [HSU], [Wl] establishes the follow- 
ing proposition. 

PROPOSITION3.1. I f  mi 5 1 or if hi  2 1 ,  lim,,, x i ( t )= 0 ,  i = 1 or 2. 
This simply states the biologically intuitive fact that if one of the competitors 

could not survive in the simple chemostat, that competitor will not survive in the 
chemostat with an inhibitor. Thus we may assume that mi > 1 and 0 < Ai < 1 ,  i = 1,2. 

LEMMA3.2. There exists a number y > 0 such that p ( t )  2 y for t suficiently large. 
ProoJ: Suppose liminf,,, p ( t )  = 0. If p ( t )  decreased to zero monotonically, then 

there would be a point to such that for t > to ,  p ( t ) +  G p ( t ) / ( K  + p ( t ) )  < 1 .  For such 
values, p l ( t )> 0,  which contradicts p ( t )  decreasing. Hence there exists a set of points 
t,, t, -+ a,such that pl(t ,)  = 0 and p(t ,)  -+ 0 as t, -+ a. For such values of t,, 

for n large. This establishes the lemma. 
THEOREM3.3. I f  0 < A, 5 A1< 1 ,  then 

where pT is the positive root of the quadratic 

ProoJ: (The reason for labeling it pT will become clear in § 4 ) .  p,* < 1 follows from 
the fact that p ( t )  satisfies 

and the basic comparison theorem for differential inequalities. In view of Lemma 3.2, 
inequalities (3.4) can be replaced by 

for t sufficiently large. This system of inequalities can be compared to the equations 
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for the chemostat with A 2  and A, as parameters, where 

so that the first component of the comparison system tends to zero as t tends to infinity. 
Hence so does x,(t). 

Thus, for the remainder of this paper, we may assume that 

(3.7) m i > l ,  i=1 ,2 ;  O<A,<A2<1 

to make the problem interesting. Note also that this provides the boundedness of 
solutions. The results in this section provide conditions for one or both of the com- 
petitors to wash out of the chemostat. To avoid "unlikely" cases, we tacitly assume 
that all rest points and periodic orbits are hyperbolic, i.e., that their stability is 
determined by their linearization. 

4. The rest point set. As noted above, system (3.2) is competitive in the sense of 
Hirsch [Hi2]. This has a number of implications for the analysis. Foremost among 
these is that a type of PoincarC-Bendixson theory holds [S2], and the structure of 
attractors is severely limited [Sl], [S2], [SW]. The only possible omega limit sets are 
those of a two-dimensional system, specifically a rest point, a periodic orbit, or a finite 
set of rest points connected by trajectories. Moreover, if there is a periodic orbit, it 
must have a rest point "inside," where "inside" is defined in terms of an order; see 
[S2] or [SW]. This has the consequence that when there is no interior rest point, there 
cannot be a periodic orbit in the open positive octant, and hence the limit is on the 
boundary. Thus the existence of an interior rest point is crucial for coexistence. These 
matters are discussed in more detail in § 5, where some global results are presented. 
In this section, we concentrate on the existence and local stability of the rest ~ o i n t  
set. The following result will be helpful in the analysis below. 

LEMMA4.1 (Butler-McGehee lemma [FW, Lemma Al l ) .  Ifp is a hyperbolic rest 
point of (3.2) and is in the omega limit set w of a trajectory y, then either w = {p} or 
there exist points q, ,  9, in w, different from p, with q, E M t ( p ) ,  E M - ( p )  ( M + and 
M- denote the stable and unstable manifolds of p.) 

See [BW], [BFW], and [DRS] for generalizations of this lemma. 
There are three potential rest points on the boundary, which we label E, = (0,0, I) ,  

E l  = (x?,  0, I) ,  and E ,=  (0, x f , p f ) .  These correspond to one or both competitors 
becoming extinct. 

Eo always exists. E, exists with xf = 1- A 2  and p; the root of (3.5) if O< A,< 1, 
which is contained in our basic assumption (3.7). The existence of E l  is a bit more 
delicate. In keeping with the definitions in (3.3), define A, = a l / (mlf (1) - 1). The 
inequality O< A o <  1 corresponds to the survivability of the first population in a 
chemostat under maximal levels of the inhibitor. Easy computations show that E l  = 

(1-Ao, 0, 1) will exist if A, >0 and will have positive coordinates and be asymptotically 
stable in the x, - p  plane if 0 <A, < 1. If 1 - A o  is negative, E l  is not meaningful, nor 
is it accessible from the given initial conditions since the x,-p plane is an invariant 
set. The stability of either E l  or E, will depend on comparisons between the subscripted 
A's. The local stability of each rest point depends on the eigenvalues of the linearization 
around those points. The Jacobian matrix for the linearization of (3.2) takes the form 

(4.1) 
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The eigenvalues are the diagonal elements. One eigenvalue is -1, and the eigenvector 
lies along the p axis. This corresponds to the growth of the inhibitor to its limiting 
value in the absence of a consumer. The set ((0, 0, p)l,,,) is invariant and is part of 
the stable manifold of E,. m,, = (m,/(l +a,)) -1 is positive since A 2  < 1. Similarly, the 
remaining diagonal term mll is positive if O< A,< 1, and negative otherwise. When 
this eigenvalue is negative, the stable manifold of E, is the entire (x, -p)  plane. 

Remark 4.2. When A,> 0, no trajectory of (3.2) has E,, as an omega limit point. 
At E l ,  m,, = 0; since m23 = m3,= 0, the eigenvalues are just the diagonal elements 

of J. Thus 

If 0 <A,< A, < 1, then E l  is asymptotically stable. This reflects the fact that x, ,  in the 
presence of the maximal inhibitor concentration, is still a better competition than x,. 
If A,)> A,, E l  is unstable and, of course, if A,> 1, E l  does not exist. 

LEMMA 4.3. If A,> A2, then any solution of (3.2) satis$es liminf,,, x2(t)> 0. 
ProoJ: Suppose that Lemma 4.3 is not true. Then some trajectory F has an omega 

limit point in the (x, -p )  plane. Moreover, the initial conditions preclude that r is on 
the stable manifold of E l .  Thus, by the Butler-McGehee lemma (Lemma 4.1), the 
omega limit set of r must contain a point of the stable manifold of E, and hence the 
entire trajectory through that point. To remain bounded, such a trajectory must connect 
to E,. We have already noted in Remark 4.2 that this is not possible. 

At E,, ml, = m13= m,, =0, so again the eigenvalues are just the following diagonal 
elements: 

m2a2(l- A21 
/ A 2 = -

(a, + A,), ' 

Clearly, /A, and /A,are negative, so E, always has a two-dimensional stable manifold. 
/A, <0 is equivalent to 

The local behavior of the rest point set on the boundary is summarized in Table 4.1, 
where 0 <A ,  < A, < 1 is assumed. 
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Exists Stability 

always 1- or 2-dimensional stable manifold 

1 1E l  O < A o <  1 asymptotically stable if O <  A , <  A ,  

/ E ,  1 A , <  1 1 asymptotically stable if O <  A , < A *  1 

The more interesting case is that of an interior rest point. As noted above, the 
competitiveness of the system and a type of PoincarC-Bendixson theorem require its 
existence for coexistence to be possible. Let E, = (x? , ,  x f c ,  p:)  denote the coordinates 
of a possible interior rest point. First, it must be the case that 

( 4 . 2 )  1 -x l c-x~~= A2 

for this is the only nontrivial zero of the derivative of x 2 .Using this, we set the derivative 
of x ,  equal to zero to find that 

or that we need ( a , + A 2 ) / m l A 2to be in the range o f f  ( p ) . It it is, then 

Since f is monotone, this number is unique. Given p : ,  then x f c  can be determined 
from setting p r ( t ) equal to zero, yielding 

This number is unique since p: is unique. If x,*,< 1 -A,, then xrc is uniquely determined 
from ( 4 . 2 ) as 

( 4 . 5 )  x r C = 1 - X *2 c  - A  2 .  

Since 1 - A 2  = x f  , it follows that if x f ,  exists, then xfc< xf . This is the biologically 
expected statement that x2 will do less well in the coexistent steady state than in the 
steady state where it is the sole survivor. This is true if and only if 

and hence, in view of the monotonicity of the expression in p, if and only if p; < p : .  
From (4 .3 ) we have that this is equivalent to 

or to the instability of ( E , ) . See Table 4.1, where the value of A* has been substituted 
to obtain ( 4 . 6 ) .Thus we have the following result. 
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PROPOSITION4.4. If ( a ,+A,)/m,A, is in the range o f f  ( p ) ,  then a necessary 
condition for the existence of an interior equilibrium for (3.2) is that E, exist and be 
unstable. 

We see below that the interior equilibrium may exist even if El does not. Before 
considering the stability of E,, it remains to investigate whether (4.3) is feasible, to 
investigate whether ( a ,+A,)/mlA2 is in the range o f f  ( p ) .  

If 0 <A. <A,, then x ,  is a better competitor than x ,  even at the maximal level of 
the inhibitor. A simple consequence of the definition of A, is that f ( 1 )  > ( a ,+A2) /mlA ,  
in this case or that there is no value of p:, O S p :  S 1 ,  which satisfies (4.3). Hence 
A, 2 A, is a necessary condition for ( a ,+A,)/mlA2 to be in the range off ( p ) ,  O S p  S 1 .  
It is also sufficient since f ( 0 )  = 1. Hence that Proposition 4.4 can be improved to 
A, 2 A, > A* is necessary and suficient for the existence of Ec. 

There remains the question of the stability of E,. The matrix J in (4.1) takes the 
form 

( ( a ,+A,), ( a ,+A , ) ~  
V I .  

By expanding the determinant of J in the last row, we see that it is negative or that 
the dimension of the stable manifold is one or three. 

If 6 < 1, the Gersgorin theory [LT, pp. 371, 3761 immediately gives two roots with 
negative real parts-and hence three such roots-so we easily have that E, is asymptoti- 
cally stable if 6 < 1. 

The characteristic roots of J satisfy 

alxT, a2xfc 
p3 +p2(l + 6K x  f ,  + + 

( K  +P:), (a1+A2)A, ( a ,+A,)A, 

Since f ( p )  <0 , the constant term is positive, so the Routh-Hurwitz criterion [C, p. 1581 
states that E, will be asymptotically stable if and only if 

5. Dynamics without an interior rest point. If E, is not to exist, the inequality 

(5.1) A o 2  A,> A* 

must be violated. Recall that we are assuming that 0 <A, <A, < 1 and, moreover, that 
A,> A* holds by definition of these quantities and the monotonicity o f f  ( p ) .  There 
are two possible outcomes depending on the way inequality (5.1) is violated. 

Since system (3.2) is competitive, the possible dynamics are limited. Two results 
are of interest here [Hill ,  [Hi2], [S2]. 
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THEOREM 5.1 (See [S2, Thm. 2.21). Let L be a compact omega limit set of an 
irreducible competitive system in R3. If L contains no equilibria, then L is a closed orbit. 

THEOREM5.2 (See [S2, Thm. 2.41). If y is aperiodic orbit of an irreducible competitive 
system, then there exists a t  least one equilibrium in the "interior" of y. 

The term interior needs to be interpreted. It is the bounded component of the set 

K = ( y  +R:)' n -R:)', 
where R: is the positive cone in R3, and the superscript c denotes complement. See 
[S2] for more details. Since mi3, m,,, m3, are nonzero in the interior of R:, (4.1) is 
an irreducible matrix, so these results apply to system (3.2) there. We only make use 
of the following consequence in this section. 

Remark 5.3. If E, does not exist, all omega limit sets lie on the boundary of R:. 
Since two-dimensional competitive dynamical systems have no periodic orbits, all 

omega limit sets contain equilibria. Moreover, there is at most one rest point in the 
interior of the p -x, and the p -x, (planar) faces. These observations will make the 
previously determined local stability results global. 

THEOREM5.4. If 0 < A ,  < A, <A*, then 

lirn,,, x,(t)  =0, lirn,,, x2(t)= x?, lim,,, p ( t )  = p ?  . 
ProoJ: A,> 0 is implied by A* >0. If A,> 1, then the only viable rest point is E2 

(Remark 4.2, Table 4.1), and it is locally asymptotically stable. If A,< 1, then E l  exists 
but is unstable and is not an omega limit point of a trajectory of (3.2). In either case, 
Remark 5.3 completes the proof. 

THEOREM5.5. If 0 <A, < A, and A* <A,, then 

lim,,, x l ( t )=xT, lim,,, x2(t)= 0, lirn,,, p ( t )  = 1. 
ProoJ: E l  is locally asymptotically stable and E, is unstable. Remarks 4.2 and 5.3 

complete the proof. 
Since A*> A, always holds, the above two theorems complete the asymptotic 

description of the dynamics under the basic hypothesis 0 < A ,  <A, < 1 when there is 
no interior rest point. Note that § 3 describes the cases where these inequalities do not 
hold. 

6. Dynamics with an interior rest point. It was shown in 9 4 that a necessary 
condition for the existence of the interior equilibrium point E, was that E, be unstable. 
Ostensibly, there are three cases depending on El  : 

(i) E l  exists and is asymptotically stable, 
(ii) E l  exists and is unstable, 

(iii) E l  does not exist. 
Case (i) does not occur, however, since (see Table 4.1) E l  being asymptotically stable 
requires that A, <A,, and E, being unstable requires A , S  A*. However, from (4.3), 

since 0 < p f  <p: < 1 and f is decreasing. This contradicts A,>  A,. Hence, we need to 
only consider cases (ii) and (iii). 

The n-dimensional system x' =f (x)  is said to be uniformlypersistent if there exists 
a y >0 such that 

liminf,,, x i ( t )2 y 
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for i = l ,2 ,  . . . ,n. This subject has been extensively investigated in generality in the 
literature [FW], [BW], [BFW], [HW]; see [W3] for a brief survey or [HS] for a more 
complete exposition. The basic requirements are a dissipative semidynamical system, 
which leaves the boundary of the space invariant. Conditions are then imposed on the 
invariant sets on the boundary. In the simple case of (3.2), the sufficient conditions 
would be that the stable manifolds of the rest points on the boundary do not intersect 
the interior of the positive cone and that there is no cycle on the boundary, that is, a 
set of rest points and connecting orbits in the boundary that start and terminate at the 
same rest point. 

THEOREM6.1. If case (ii) or (iii) holds, then there exists a y >  0 such that every 
solution of (3.2) satisfies 

l m n f  x  ) 2 y, liminf,,, x,(t) 2 y. 

Proof: To use the above-mentioned theorems on persistence, first, it is necessary to 
have a system of equations defined on an open region with a boundary. We use, instead 
of (3.2), 

where 

u > l ,  

Since the only initial conditions of interest are with p(0) 2 0 ,  x,(O) >0, xl(0)+ 
~ ~ ( 0 )<1, solutions of these initial conditions are, for t 2 0, solutions of (6.1). The open 
region is the wedge x, >0, i = 1,2  whose boundaries are the x, - p  and x,-p planes 
in R ~ ,given by x, =0, x, 2 0 and x, =0, x2 2 0. The system is dissipative since in the 
extended region x, +x2> 1, (xl( t )  +x2(t)) '  = -(xl(t)  +x2(t)) and in the extended region 
p <0, p f ( t )  2 1. In cases (ii) or (iii), no portion of the stable manifolds of E,, E,, and 
E2 intersect the interior of the wedge. 

Moreover, since there is only one rest point interior to each of the x, - p  and 
x2-p faces and an unstable rest point on the p axis whose stable manifold is the p 
axis, there are no connecting orbits to form a cycle. Hence, by Theorem 4.1 of [HW], 
(6.1) is uniformly persistent, and the theorem is established. (We could also use [BW], 
since the flow is on a locally compact space; using [HW], however, avoids the 
unpleasantness of trying to show the existence of backward orbits.) 

For a three-dimensional competitive, uniformly persistent system with one interior 
rest point and with the positive cone invariant, a complete analysis of the possible 
limit sets was given in [SW]. However, system (3.2) does not fall directly within the 
scope of those results because it does not have an invariant positive cone and has 
difficulties for negative p. While negative p is biologically unmeaningful, (3.2) makes 
sense for negative p but is not a competitive system there. Rather than try to re-do 
[SW] for this particular case, we proceed to gather what information we can and refer 
the reader to [SW], especially Fig. 4.1, for intuitive purposes. Since system (3.2) is not 
competitive for p <0, the "cone" depicted in this figure extends "into" the noncompeti- 
tive region and does not terminate at a rest point as shown. 

Theorem 6.1 guarantees the coexistence of both the x, and x2 populations. 
However, it does not give the global asymptotic behavior. The further analysis of the 
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system is complicated by the possibility of multiple limit cycles. Since this is a common 
difficulty in general two-dimension systems, it is not surprising that this presents 
difficulties in the analysis of three-dimension competitive systems. 

THEOREM6.2. Suppose that system (3.2) has no limit cycles. Then E, is globally 
asymptotically stable. 

Concentration 


F I G .  6.1 Plot of 100 timesteps in the case of oscillatory coexistence. Parameters are a ,  = .5,  a ,  =3.5, 
m , = 5 . 0 , m 2 = 6 . 0 ,  8 = 5 0 . , K = . l ,  17=5.0. 

Proof: In view of Theorem 6.1, the omega limit set of any trajectory cannot be 
on the boundary x, =0 or x2 =0. Away from the boundary, the system is irreducible. 
Since there are no limit cycles, all trajectories must tend to E, by Theorem 5.1. 

CONJECTURE.In case (ii), system (3.2) has no limit cycles. 
We note that since we are assuming hyperbolicity, there must be at least two limit 

cycles for the conjecture to fail. Because of the assumed stability of E,, there must be 
an unstable limit cycle with E, in its "interior " However, since the system is dissipative, 
there must be an asymptotically stable limit cycle as well. 

THEOREM6.3. Let f (p )  = e-"P in (3.2) and let case (iii) hold. Then for r ]  suficiently 
large, there exists a 60 >0 and a KO, such that for 6 >6, and K <KO, (3.2) has an 
attracting limit cycle. 

Note that this behavior is not among those catalogued in [LH]. Figure 6.1 shows 
the time course for an example of this type of behavior. Figure 6.2 shows the limit 
cycle plotted in phase space. 

Proof: The theorem follows if E, is unstable. To show this, we must show that 
(4.8) is violated. In the case under consideration, -f'(p)/ 	 f ( p )  = r].  

Define c by c = In (mlA2/(al +A2)), and note that c = r]pT. It follows that 

Note that when r ]  is fixed, pT is fixed. From the definition of x:, (see (4.4)), it follows 
that 

for any choice of r ]  and the corresponding p:. Fix r ]  satisfying 
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FIG.  6.2. Plot in E 3  of the limit cycle given in Fig. 6.1 

and ( m , / ( a ,+ 1 ) )  e-"< 1 .  Let KObe so small that the expression in (6.2) is less than 
1. To show that (4.8) is violated, we estimate both sides. Note that, since xTc= 

1 - A 2  - x f , ,  lim,,, x,*, =0 and lim,,, x?, = 1 - A 2 .  Hence, for 6 sufficiently large, 
a 2 x f c / ( a 2 +A2)A2< 1 and 1 - A 2  > x:, > ( 1-A2)/2. The right-hand side of (4.8) is 
bounded below by 

The left-hand side of (4.8)has three factors, which we denote by F, ,F2, F,, respectively. 
By the discussion above, for 6 sufficiently large, 

It follows that 

which contradicts (4.8). Hence E, is unstable (with a two-dimensional unstable mani- 
fold). Choose a trajectory not on the stable manifold of E,. By Theorem 5.1, its omega 
limit set must be a periodic orbit. By hyperbolicity, there must be an attracting orbit. 

7. Discussion. This paper has considered competition for a single limiting nutrient 
in a simple chemostat with an inhibitor input in the feed bottle. The asymptotic behavior 
of this multidimensional model has been determined as a function of the basic 
parameters of the system. The results obtained are global in nature, except for the 
possibility of multiple limit cycles. The theory of dynamical systems played an important 
role in the analysis. Such classification theorems eliminate the need for exhaustive 
computer studies to determine the operating region of the chemostat. 

The most unanticipated result was the presence of a stable limit cycle. Figures 6.1 
and 6.2 illustrate this case. Figure 6.1 gives the time course, while Fig. 6.2 shows the 
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limit cycle in the three-dimensional phase space. The theorem shows the possibility 
of limit cycles, but it is not known whether the parameters fall within the range of 
interest to biologists. Are there organisms that can coexist in this way? This result 
suggests a laboratory experiment that would be particularly important in the case of 
strains of competing bacteria where one is resistant to an antibiotic. 

REFERENCES 

G. BUTLERA N D  P. WALTMAN, Persistence in dynamical systems, J.  Differential Equations, 63 
(1986), pp. 255-263. 

G.  BUTLER, H. I. FREEDMAN, A N D  P. WALTMAN, Uniformly persistent systems, in Proc. Amer. 
Math. Soc., 96 (1986), pp. 425-430. 

W. A. COPPEL, Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, 1965. 
S. R. DUNBAR, K. P. RYBAKOWSKI, A N D  K. SCHMITT,Persistence in models of predator-prey 

populations with diffusion, J .  Differential Equations, 65 (1986), pp. 117-138. 
A. G. FREDERICKSON 	 Microbial competition, Science, 213 (1981), A N D  G. STEPHANOPOULOS 


pp. 972-979. 

H. I. FREEDMAN A N D  P. WALTMAN Persistence in models of three predator-prey populations, 

Math. Biosci., 68 (1984) pp. 213-231. 
J. K. HALE,Asymptotic Behavior ofDissipatiue Systems, Amer. Math. Soc., Providence, RI, 1988. 
J. K. HALEA N D  P. WALTMAN Persistence in infinite-dimensional systems, SIAM J .  Math. Anal., 

20 (1989), pp. 388-395. 
S. R. HANSEN A N D  S. P. HUBBELL, Single nutrient microbial competition; Agreement between 

experimental and theoretical forecast outcomes, Science, 20 (1980), pp. 1491-1493. 
D. HERBERT,R. ELSWORTH,A N D  R. C. TELLING, The continuous cultureofbacteria: A theoretical 

and experimental study, J.  Gen. Microbiol., 14 (1956), pp. 601-622. 
M. HIRSCH,Systems of differential equations which are competitive or cooperative 1: Limit sets, 

SIAM J. Appl. Math., 13 (1982), pp. 167-179. 
-, 	 The dynamical systems approach to differential equations, Bull. Amer. Math. Soc., 11 (1984), 

pp. 1-64. 
V. HUTSONA N D  K. SCHMITT, Permanence in dynamical systems, Math. Biosci., to appear. 
S. B. H s u ,  S. P. HUBBELL, A N D  P. WALTMAN, A mathematical theoryforsinglenutrientcompetition 

in continuous cultures of microorganisms, SIAM J. Appl. Math., 32 (1977), pp. 366-383. 
S. B. H s u ,  Limiting behaviorfor competing species, SIAM J. Appl. Math., 34 (1978), pp. 760-763. 
H. W. JANNASH A N D  R. T. MATELES, Experimental bacterial ecology studies in continuous culture, 

Adv. Microbial Physiol., 11 (1974), pp. 165-212. 
R. E. LENSKI A N D  S. HATTINGH, Coexistence of two competitors on one resource and one inhibitor: 

A chemostat model based on bacteria and antibiotics, J. Theoret. Bio., 122 (1986), pp. 83-93. 
P. LANCASTERA N D  M. TISMENETSKY, The Theory ofMatrices, Academic Press, Orlando, 1985. 
L. MARKUS,Asymptotically autonomous differential systems, Contributions to the Theory of Non- 

linear Oscillation, Vol. 3, Princeton University Press, Princeton, NJ, 1956, pp. 17-29. 
H. SMITH,Systems of ordinary differential equations which generate an order preservingjlow: A 

survey ofresults, SIAM Rev., 30 (1988), pp. 87-113. 
-, 	 Periodic orbits of competitive and cooperative systems, J .  Differential Equations, 65 (1986), 

pp. 362-373. 
H. SMITHA N D  P. WALTMAN, A classijication theorem for three dimensional competitive systems, 

J.  Differential Equations, 70 (1987) pp. 325-332. 
H. VELDCAMP,Ecological studies with the chemostat, Adv. Microbial Ecol., 1 (1977) pp. 59-95. 
P. WALTMAN, S. P. HUBBELL, A N D  S. P. HSU, Theoretical and experimental investigations of 

microbial competition in continuous culture, in Modeling and Differential Equations in Biology, 
Marcel Dekker, New York, 1980. 

P. WALTMAN,T. BURTON, ED., Competition Models in Population Biology Society for Industrial 
and Applied Mathematics, Philadelphia, PA, 1983. 

-, Competition in chemostat-like models, Rocky Mountain J .  Math., 20 (1990), pp. 777-807. 
-, A brief survey of persistence, in Delay Differential Equations and Dynamical Systems, S. 

Busenberg and M. Martelli, eds., Springer-Verlag, Berlin, New York, 1991, pp. 31-40. 



You have printed the following article:

Analysis of a Model of Two Competitors in a Chemostat with an External Inhibitor
S. B. Hsu; P. Waltman
SIAM Journal on Applied Mathematics, Vol. 52, No. 2. (Apr., 1992), pp. 528-540.
Stable URL:

http://links.jstor.org/sici?sici=0036-1399%28199204%2952%3A2%3C528%3AAOAMOT%3E2.0.CO%3B2-B

This article references the following linked citations. If you are trying to access articles from an
off-campus location, you may be required to first logon via your library web site to access JSTOR. Please
visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

References

BFW Uniformly Persistent Systems
Geoffrey Butler; H. I. Freedman; Paul Waltman
Proceedings of the American Mathematical Society, Vol. 96, No. 3. (Mar., 1986), pp. 425-430.
Stable URL:

http://links.jstor.org/sici?sici=0002-9939%28198603%2996%3A3%3C425%3AUPS%3E2.0.CO%3B2-I

FS Metkephamid, a Systemically Active analog of Methionine Enkephalin with Potent Opioid
#-Receptor Activity
Robert C. A. Frederickson; Edward L. Smithwick; Robert Shuman; Kerry G. Bemis
Science, New Series, Vol. 211, No. 4482. (Feb. 6, 1981), pp. 603-605.
Stable URL:

http://links.jstor.org/sici?sici=0036-8075%2819810206%293%3A211%3A4482%3C603%3AMASAAO%3E2.0.CO%3B2-2

HH Single-Nutrient Microbial Competition: Qualitative Agreement between Experimental and
Theoretically Forecast Outcomes
Stephen R. Hansen; Stephen P. Hubbell
Science, New Series, Vol. 207, No. 4438. (Mar. 28, 1980), pp. 1491-1493.
Stable URL:

http://links.jstor.org/sici?sici=0036-8075%2819800328%293%3A207%3A4438%3C1491%3ASMCQAB%3E2.0.CO%3B2-O

http://www.jstor.org

LINKED CITATIONS
- Page 1 of 2 -

NOTE: The reference numbering from the original has been maintained in this citation list.

http://links.jstor.org/sici?sici=0036-1399%28199204%2952%3A2%3C528%3AAOAMOT%3E2.0.CO%3B2-B&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0002-9939%28198603%2996%3A3%3C425%3AUPS%3E2.0.CO%3B2-I&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0036-8075%2819810206%293%3A211%3A4482%3C603%3AMASAAO%3E2.0.CO%3B2-2&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0036-8075%2819800328%293%3A207%3A4438%3C1491%3ASMCQAB%3E2.0.CO%3B2-O&origin=JSTOR-pdf


HHW A Mathematical Theory for Single-Nutrient Competition in Continuous Cultures of
Micro-Organisms
S. B. Hsu; S. Hubbell; P. Waltman
SIAM Journal on Applied Mathematics, Vol. 32, No. 2. (Mar., 1977), pp. 366-383.
Stable URL:

http://links.jstor.org/sici?sici=0036-1399%28197703%2932%3A2%3C366%3AAMTFSC%3E2.0.CO%3B2-H

HSU Limiting Behavior for Competing Species
S. B. Hsu
SIAM Journal on Applied Mathematics, Vol. 34, No. 4. (Jun., 1978), pp. 760-763.
Stable URL:

http://links.jstor.org/sici?sici=0036-1399%28197806%2934%3A4%3C760%3ALBFCS%3E2.0.CO%3B2-I

S1 Systems of Ordinary Differential Equations Which Generate an Order Preserving Flow. A
Survey of Results
Hal L. Smith
SIAM Review, Vol. 30, No. 1. (Mar., 1988), pp. 87-113.
Stable URL:

http://links.jstor.org/sici?sici=0036-1445%28198803%2930%3A1%3C87%3ASOODEW%3E2.0.CO%3B2-U

http://www.jstor.org

LINKED CITATIONS
- Page 2 of 2 -

NOTE: The reference numbering from the original has been maintained in this citation list.

http://links.jstor.org/sici?sici=0036-1399%28197703%2932%3A2%3C366%3AAMTFSC%3E2.0.CO%3B2-H&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0036-1399%28197806%2934%3A4%3C760%3ALBFCS%3E2.0.CO%3B2-I&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0036-1445%28198803%2930%3A1%3C87%3ASOODEW%3E2.0.CO%3B2-U&origin=JSTOR-pdf

