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ANALYSIS OF LARGE DEFORMATION OF A HEAVY CANTILEVER*

SZE-BI HSUt AND SHIN-FENG HWANGt

Abstract. In this paper a mathematical model is discussed describing the deformation of a cantilever
by its own weight. We assume that a cantilever of uniform cross-section and density is held fixed at an angle
a at one end and is free at the other end. The shape of the cantilever depends heavily on a and a
nondimensional parameter K which represents the relative importance of density and length to that of
flexural rigidity. We analyze the bifurcation phenomena for the vertical case, a 7r. Several numerical results
are presented and discussed.
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1. Introduction. The deformation of a cantilever by its own weight is of interest
both practically due to its engineering significance and theoretically due to its inherent
nonlinearity. We assume that a cantilever of uniform cross-section and density is held
fixed at an angle a at one end and is free at the other end. If the cantilever is thin
enough then its deformed shape can be described by the elastica theory. Using this
approximation and small deflections, Euler first investigated the stability of a vertical
cantilever (column) under its own weight [3]. Euler’s stability problem was later
corrected by Greenhill [4] who obtained the minimum unstable height for a column
of given density and rigidity. The large deformation of a heavy elastica was first
numerically integrated by Bickeley [1] who found only one of the solutions of the
originally horizontal cantilever. Later, Wang [8] used the perturbation method on the
elastica equations for a small and large parameter K, where K is a nondimensional
parameter which represents the relative importance of density and length to that of
flexural rigidity. In [8] Wang also studied the bifurcation phenomena numerically as
the parameters K, a change.

In this paper we first give the uniqueness results for the solutions of the elastica
equation. We then give the complete bifurcation results for the vertical case, a r, in
the spirit of [6], [7]. From these analytic results we improve the numerical results in
[8] and give the reliable numerical computation results.

2. Formulation. We assume a cantilever of uniform density/9 and total length L,
is held fixed at an angle a at one end, say, the origin, and is free at the other end. Let
us consider a small segment of the cantilever. A moment balance gives (see Fig. 1)

(2.1) m p(L- s’) sin 0 ds’= rn + dm,

where m m(s’) is the local moment, s’ is the arc length from the origin, and 0 O(s’)
is the local angle of inclination. According to Euler, the local moment is proportional
to the curvature dO/ds’, i.e.,

dO
(2.2) m -EI

ds"
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where EI is the flexural rigidity of the material. From (2.1), (2.2), we obtain

d2O
(2.3) E1 p(L- s’) sin 0,

and the boundary conditions are

dO
(2.4) O(0) cz, ds---;(L)=O.
Let s s’/L and then (2.3), (2.4) become

d2O K3(1-s) sin 0, K >0, 0<=s<= 1,
ds

(2.5)
o(0) , o’(1) 0, - < < r.

The important parameter K (pL3/EI)/3 represents the relative importance of density
and length to that of flexural rigidity.

The main concern of this paper is to determine the multiplicities of solutions of
(2.5) provided that K > 0, -r -< a <= ,r are given.

First of all, we shall reformulate our problem (2.5). Let

(s)= O(1-s), 0-<_s-<_l.

Then (2.5) becomes

(P)
-K3ssintk, 0<s<l, K>0,

ds2

,’(0)=0, @(1) a, -zr <= a <=
Since (s), 0=<s-< 1, is a solution of (P),, if and only if -,(s) is a solution of (P)_.
Hence we only consider the problem with 0 -< a-< 7r. We may also reduce the problem
(P), 0_-< a -< 7r, by the following scaling:

Then (s) satisfies

(2.6)

W(s) l,(s/ K).

d2xI
s sin (s), O<-s<-K,

ds2

’(0) =0, W(K)= a, O< a <
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3. Uniqueness of solutions of (P), 0-< tz-<r. In this section, we present some
results concerning the uniqueness of solutions of boundary value problem

d:q
-K3ssinO, 0-<_s_-<1, K>0,

ds
(P)o

p’(0) =0, p(1) a, 0 -< a _-< zr.

LnMMA 3.1. The problem (P)o has a unique solution, namely,

(s)--0, 0_<-s_-<1 for any K >O.

Proof. Obviously ,(s)- 0 is a solution of (P)o. Multiplying the equation in (P)o
by d/ds and integrating the resulting equation from 0 to 1, we obtain

zl K3[fo ]2(4,’(1))2 cos$(s) ds-1 >=0.

However,

cos $(s) 1 _-<0.ds-

Hence we have ’(1)=0. Since $(1)=0, $’(1)=0, the conclusion $(s)-=0 follows
directly from the uniqueness of solutions of ordinary differential equations, l-!

The existence of solution of problem (P), follows directly from the results in [2]
since the right-hand side of (P), K3s sin $, is a bounded function for 0=<s=< 1.

We now present a result concerning the uniqueness of solution of (P).
LEMMA 3.2. If K3</, then (P) has a unique solution for every a [0, 7r].
Proof Let q(s) be a solution of (P) then

,(s) g3 sin O()G(s, ) d,

where

G(s, :)= 1-max (s, :).
Let l(s), 2(s) be solutions of (P). Then

[,l(S)- 4,2(s)1 =< G(s, s)sl,(s)- ,u(s)l d:

<= K a2(s,) d 11 1-
or

since

O(s,)das =--.
45

If K6/45 < 1 or K <v/ then we must have
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4. The multiplicities of the solutions of (P), for a r. In this section we shall
present the analytic results for the vertical case, a 7r. The analytic results for this
special case will help us to understand the bifurcation phenomena for the general
problem (P). In the rest of this section, we shall restrict our attention to the vertical
case, c

d2 K3ssin, p’(0)=0, ,(1)=Tr.(4.1)
ds

Let s=x, v(x)=q,(x/K)-Tr. Then (4.1) takes the form

v"(x)+ x sin v =0, ’= d/dx,
(4.2)

v’(0) =0, v() =0.

We shall study the boundary value problem (4.2) by the shooting method and consider
the following initial value problem

v"(x)+x sin v=0,

(4.3) v’(0) =0,

v(O)=a, aR.

We denote the solution of (4.3) by v(x, a). From the uniqueness of solutions of ordinary
differential equations, it follows that

v(x, 2rr+ a) 27r+ v(x, a),

(4.4)
v(x, 27r- a) 27r- v(x, a),

v(x, a):-v(x,-a),

v(x, o)= o, v(x,

From (4.4), we shall consider v(x, a) only for 0< a <
LEMMA 4.1. Let 0 < a < 7r. Then
(i) -7r/2< v(x, a)< rr/2 for 0<a < 7r/2, x=>0.
(ii) -Tr < v(x, a) < 7r for 7r/2 <- a < m x >- O.
(iii) v(x, a) is oscillatory over [0, ) for all 0< a <
Proof Multiplying (4.3) by v’(x) and integrating the resulting equation from 0 to

x, we obtain

(4.5)
2
(v’(x)) x cos v(x) cos v() dsC_->0.

If 0 < a < 7r/2, then cos a cos v(0) > 0. We claim that cos v(x) > 0 for all x >- 0.
If not, then there exists Xo> 0 such that cos v(x) > 0 for all 0=< x < Xo and cos V(Xo) =0.
Then this contradicts (4.5) with x Xo and we complete the proof for (i).

If 7r/2_-< a < 7r, then cos a cos v(0) (-1, 0]. We claim that cos v(x) -1 for all
x->0. If not, then there exists Xo>0 such that cos V(Xo)=-I and cos v(x)> 1 for
0=<x <Xo. Again from (4.5) we obtain a contradiction. Hence -Tr< v(x, a)< 7r for all
x-> 0 and we established (ii).

We next show that v(x, a) is oscillatory over [0, c) for any 0< a < 7r. Let

1 (v’(x))
V(x) ( -cos v(x))+-

2 x
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It is easy to verify that

Then we have

V’(x)

1-cos v(x)<= V(x)-< V(0)= 1-cos a.

Since -r < v(x) < 7r, we then have Io(x)l_-< a for all x => 0. We rewrite the equation in
(4.3) as

(sin v(x)(4.6) v"(x) + x
\ i ] v(x) O.

Let 0< <mino__<v__<a (sin v/v). Using Sturm’s comparison theorem [5], we compare
(4.6) with

(4.7) v"+ v 0,

which is oscillatory over [0, c). Thus we complete the proof for (iii). [3

Next we introduce the following notation:

dv
A(x, a)=aa (x, a), b(x) A(x, 0).

Differentiating (4.3) with respect to a yields

(4.8) a"(x)+x(cos v(x, a))a(x)=0, a(0)= 1, a’(0)=0.
Setting a 0 in (4.8) yields

(4.9) "(x) + xck(x) O, (0) 1, ok’(O) O.

The equation in (4.9) is the well-known Airy equation which is oscillatory over [0, oo).
Let A,, 3’, be the nth zero of 4(x) and b’(x), respectively, for n 1, 2,- .. We note
that

h-1.98635, h23.82557, h35.29566,.
(4.10)

A4=6.58432, etc. (See Fig. 2.)
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From Lemma 4.1(iii), v(x, a) is oscillatory over [0, ) for any 0< a < r. Let y,(a),
z,,(a) be the nth zero of v(x, a) and v’(x, a), respectively, for n 1, 2,. ., 0< a <
(See Fig. 3.)

LEMMA 4.2.
(i) lim a-,o y, (a) h,, lim a-,O Zn (a) y, for n 1, 2,. .,
(ii) lima-,,- y,(a) +oo for n 1, 2,. ..
Proof The proof of (i) follows directly from the following identities [6]:

v(x,a) v(x,a)-v(x,O)
lim lim
a-.o a a_.o a

lim -7-(x, a),
aa

d/)
-(x,0)= 6(x),
da

and

v’(x,a) v’(x,a)-v’(x,O)
lim lim
a-,o a a-.0 a

d
lim --;-(v’(x,

aa O<ta<a

,ix
v(x, o) 4)’(x)

since v(x, "rr) "n" and v(x, a) are oscillatory over [0, o) for 0 < a < or. From continuous
dependence on initial values, we obtain lima-,- Yl (a) + and hence lima-,- y, (a)
+c for n 1, 2,- .. Thus we complete the proof for (ii). 1-1

In addition to the properties (i), (ii) in Lemma 4.2., we shall show that y,,(a) satisfies

(4.11) dY">O
da

1.6

1.2

for alln=l,2,...and0<a<Tr.

2 4 6 8 IO
FIG. 3
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Assume that (4.11) holds; then we may plot the following graphs for yn (a), n 1,2, .
(See Fig. 4.) Then we conclude from (4.2) and (4.4) that

If 0 < K < A] then (4.2) has the unique solution v(x) O.
If A] < K < A2 then (4.2) has three distinct solutions.
If An < K < hn+ then (4.2) has 2n + 1 distinct solutions.

Since

(4.12) v(yn(a), a) =0, 0< a <
differentiating (4.12) with respect to a yields

dyn dv
v’(yn(a), a)--a+a (yn(a), a)=0,

or

(4.13)

We now state our main result.
THEOREM 1. Let 0 < a <

dyn A(yn(a),a)
da y’(yn(a), a)"

(i) The solution v(x, a) of (4.3) has an infinite number of isolated zeros y,(a),
Yl < Y2 <" "< Yn andy o as n - o; likewise v’(x, a) has an infinite number ofisolated
zeros, z,(a), 0 z] < z2 <" < zn, interlacing the yn; furthermore

lim yn(a)=An, lim zn(a)=
a0 a0

and

lim yn(a) oo for n 1, 2,.

(ii) Yn (a) is a differentiable function of a and

dY">o for n= l,2,.
da

We have shown part (i) in the above lemmas. The proof of (ii) follows directly
from (4.13) and Lemma 4.3 below.

0,0

A-AXIS
FtG. 4
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LEMMA 4.3. Let 0 < a < 7r. Then A(x, a) has an infinite number of isolated zeros
a), 0 < a <. < a,. A’(x, a) satisfies the following:
(i) If 0<a< 7r/2, then A’(x, a) has an infinite number of isolated zeros ft,(a),

fll < fiE <" "< ft,. Furthermore fl Zl 0 < Yl < 1 < z2 < fl_ < y < a: <. < y, <
z,+ < fl,+ < y,+. (See Fig. 5.)
(ii) If 7r/2<-a< Tr then A’(x, a) has an infinite number of isolated zeros ft,(a),

flo < fll <" "< ft,. Furthermore flo z 0 < fll < Yl < tl < z2 < fl <.y: <" < y, <
z,+ </3,+1 < y,+. (See Fig. 6.)
Before we prove Lemma 4.3 we consider (4.3) and (4.8). Let

(A) v"+ x sin v 0, v(0) a, v’(0) 0,

(B) A"+ x(cos v)A 0, A(0) 1, A’(0) 0.

7r/2

1.0

A

Z --B--0

FIG. 5

rrL V(X; A)

--n-12

FIG. 6
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In addition to (A) and (B), we form the following equations satisfied by A’ and
(x 3y,)v’, respectively"

(C) (A’)"+ x cos vA’= A(xv’ sin v--cos v),

(D) 3"+ x cos v -3(x y,) sin v.

Multiplying (A) by A and multiplying (B) by v, subtracting the resulting equations
from each other and integrating the final expression from a to/3, we obtain

I (sinv)(a) (v’a- va’)l xAv cos v- ax.

Multiplying (A) by A’ and multiplying (C) by v, subtracting the resulting equations
from each other and integrating the final expression from a to/3, we obtain

(b) (v’A’-vA")I {-xA’ sin v+ xA’v cos v+ Av(cos v- xv’ sin v)} dx.

Multiplying (D) by A and multiplying (B) by v, subtracting the resulting equation from
each other and integrating the final expression from c to t, we obtain

(c) (’A- A’)I 3(x -y)A sin v dx.

Finally we observe that, since v’(0) 0, v(0) a, A(0) 1, A’(0)

sg v (-1)" fory,<x<y+l,

sg v’ (- 1)" for

sg A= (-1)" for

sgA’=(-1)" for/3,<x<fl+l.

ProofofLemma 4.3. We shall prove the lemma by induction. We assume the truth
of the statement up to a,,, for m 1.

If r/2 -< a < 7r, then we claim that fl <Yl. If not,/31 => y, then A’(x)>0 for all
O<=x<=y. We specialize (a, fl) in (b) to (0, yl). Then we obtain

v’A’- vA"I, (vA’x cos v xA’ sin v + Av cos v) dx

(4.14)
+ xAv(-v’ sin v) dx.

Since

xAv(-v’ sin v) dx=xAvcos vl’- cos v(xA’v+xAv’+Av) dx

and v’(0) 0, A"(0) 0, v(y,) 0. Then (4.14) becomes

)’(yl)A’(yl) --X’ sin v &- xv’ cos v &

(4.15)
sin v dx.

This is a desired contradiction for V’(yl) < 0, ’(y) > 0 and (x) > 0, sin v(x) > 0 for
0NX<yl.
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We shall now show that al > Yl for 0< a < 7r. If not, then there exists
such that A(a*) =0, A’(a*)<0 and A(x)>0 for 0_-<x<a *. We specialize (a,/3) in
(a) to (0, a*). Then we have

(4.16) -V(*)A’(*) xAv cos v- dx.

Since cos v-<sin v/v for -r<v< r and A(x)>0, v(x)>0 for 0=<x<a*, it follows
that the right-hand side of (4.16) is negative. However, the left-hand side of (4.16) is
positive. This leads to a contradiction.

We now want to complete the induction. For 0< a < 7r, we want to show the
following:

(i) y" < Ol < Zm+ By induction hypothesis Ym < Olm" We want to show that
a,, < Zm+l. For a =0, it is obvious that a"(0)= h". From Lemma 4.2, we have

lim z"+l(a)= 7,,+1 >
a0

By continuous dependence on parameter a, we have that am(a < z"+l(a) for a > 0
sufficiently small. We claim that a" (a) < z"/l(a) for all 0 < a < 7r. If not, there exists
a*(0, Tr) such that a"(a*)=z"/l(a*). We now specialize (a,/3) in (c) to
(z"(a*), z"/l(a*)) and n m. Then we obtain

Zm+l
(4.17) 3’A- A’lZz:/= 3(x-y")(-sin v(x))A(x) dx

since 3(z"+1) 3(Zm)=0, z"+l=a,,, ’(z")=(z"-3y")v"(z"). Then (4.17) becomes

Zm+l
(4.18) O=(z"-3y,,)v"(z")A(z")+ 3(x-y")(-sin v(x))A(x) dx.

It is easy to verify that the right-hand side of (4.18) is positive. Then this is a desired
contradiction. Hence, we have a,, (a) < z"+ (a) for all 0 < a <

(ii) z"+l < fl,,+l < y"+ < a,,+. First we show that z,,+l </3,,+1. If not, then a" <
/3,,+1-< z"+l. We specialize (a, fl) in (a) to (a,,,/3,,+1). Then we obtain

fm+, ( sin )(4.19) V’(flm+l)A(flm+l)+ V(am)A’(am) xAo cos v -----v dx.

It is easy to verify that the left-hand side of (4.19) is positive while the right-hand side
is negative. This is a contradiction.

Next we show that/3,,+1 < Ym+l. If not, then fl"+l => Y"+I. We specialize (c,/3) in
(b) to (Zm+l, Ym+l)- Following similar arguments in the case fll < Yl, we deduce that

Ym+l
v’(y"+l)A’(ym+l)=Zm+lA(Zm+l)sin V(Zm+I)+ Asin vdx.

Zm+

It is easy to verify v’(y"+l)A’(y"+)<--O, z"+lA(z"+l) sin v(z"+l)O, and
JYm/ A sin v dx O. Thus wc obtain a contradiction.

Finally, we want to show that Y"+I a"+l. If not, then Y"+I --> a"+l. Wc specialize
(t, fl) in (a) to (fl"+l, a"+l). Then we have

(4.20) -[Vt(m+l)m(m+l)""l)(Olm+l)mt(ogm+l)] xml.) COS/)- dx.
a/3,,,+

It is easy to verify that the left-hand side of (4.20) is positive while the right-hand side
is negative. This is a contradiction.
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5. Numerical studies for a # r and discussions. In this section, we present our
numerical studies for the multiplicities of the solutions of the problem (P),, 0 <
The analytic results in 4 shall confirm that our numerical results are reliable.

Consider our bifurcation problem

K2s sin , K > 0,
ds

and its scaled form

,’(0)--0, ,(1) ce, 0< ce < 7r

(2.6)
d2
ds2 s sin , ’(0)=0, (K)=c.

Let (s, a) be the solution of the following initial value problem"

d2xis,
(5.1)

ds2 s sin xI,, xI*’(O) =0, xI*(O) a.

It is easy to verify the following relations:

(5.2) (s, a + 27r) (s, a) + 27r,

(5.3) (s, 27r- a) 2r-(s, a).

For any K > 0, we consider the map

a-->(K,a), 0=< a =<27r.

Since 0 < a < 7r, from (5.3) we only need to compute numerically for 0 < a < 7r. In the
following, we used the ODE Solver DGEAR of the IMSL Library to compute the
function, a xp (K, a), 0 < a < 7r, for various K.

In Fig. 7, the parameter K satisfies 0 < K 1.0 < A1 1.98635 and the graph a

(K, a) intersects a 7r at only one point. We conjecture thatfor 0 < K < At the problem
(P), has a unique solution for every c E (0, 7r). In Fig. 8, the parameter K satisfies

6-

5-

4-

2

0
0 2

FIG. 7
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0 2 7r 4 5 27r 7

FIG. 8

hi < K 3.0< h2 3.82557 and the graph a (K, a) intersects a zr at three distinct
points. It shows that if hi < K < h2, then the problem (P), has at most three distinct
solutions. In Fig. 9, the parameter K satisfies A2 < K 4.5 < A3 5.29566 and the graph
a (K, a) intersects a zr at five distinct points. It shows that if h: < K < h3, then
the problem (P), has at most five distinct solutions. We conjecture thatfor h, < K < h,+
the problem (P), has 1, 3, , 2n + 1 solutions for various a.
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