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STEADY STATES OF A SYSTEM OF PARTIAL DIFFERENTIAL
EQUATIONS MODELING MICROBIAL ECOLOGY*

SZE-BI HSU

Abstract. In this paper we discuss the existence and uniqueness of solutions for the boundary value
problem

u"(x)--F(u(x))v(x),
0_<x_< 1, X,x,O>O,

Xv"(x) -[F(u(x))-Olv(x),
u’(0)--0, u(l)- 1,

v’(0) =0, v’(1)-0,
which arises in microbial ecology. The growth rate F(u) of bacteria satisfies F(0)--0, F’(u) >0. We study this
problem by using Rabinowitz’s global bifurcation theorem and the maximum principle.

1. Introduction. In [1], D. Lauffenburger, R. Aris and K. Keller study the effects
of random motility on growth of bacterial populations. Consider a population of
bacterial cells confined to a finite region, with a diffusible chemical substrate present in
the medium. This substrate is assumed to be the nutrient that is rate limiting for
growth, and it is further assumed that it enters the region at a boundary. For simplicity,
we consider one-dimensional geometry, with uniform conditions in the transverse
dimensions, so that the cells are confined to the region 0_<x_<L. Substrate enters the
region at the boundary x=L, and is present there at a constant concentration de-
termined by ambient conditions. We assume Monod’s model for the growth of bacterial
populations along with exponential nonviability or death. Then the model equations
are

Oh 02b
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for 0_< x_< L. The boundary conditions are

(1.2) Ob
ox=O, s--so

0b 0s
0x

=0, 0- 0

at x-L,

at x-O.

Here:
f(s)--ms/(K+s),
b(x, ) bacterial cell density at position x and time (mass of viable cells per

volume of medium),
s(x,t)--substrate concentration at position x and time (mole of substrate per

volume of medium),
/ random motility coefficient of bacterial cells,
D substrate diffusion coefficient,
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ke- death rate of bacteria population,
Y--yield coefficient (mass of viable cells produced per mole of substrate),
s0- constant concentration of substrate present at boundary x--L,
m- maximal growth rate of bacterial cells,
K--the half-saturation constant.

Introducing new dimensionless parameters

s x Dt bmL2 L
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L
x----m, F(u)-1 u-f(s(O)u)

yields equations

K/s (o) + u

u 2u
(1.3) -=O-----F(u)v,

v v
0--- -+(xF(u)--O)v

with boundary conditions

(1.4) u(1,’)= 1,

0v

In [1] the authors assume F(u)= for u>u and 0 for u<_Uc, where F(uc)=O/x,
and compute the steady states of (1.3), (1.4). That is, they try to solve the nonlinear
problem (1.3), (1.4) by linear techniques. The main purpose of this paper is to show the
existence and uniqueness of steady states of (1.3), (1.4). Our technique is to apply the
global bifurcation theorem of Rabinowitz [5] and the maximum principle [6].

2. Statements of main results. Consider the steady state problems of (1.3), (1.4)

u"(x)=F(u(x))v(x),
v"(x) -(xF(u(x)) -O)v(x),

for 0 _< x <_ with boundary condition

(2.2) u(1)= 1, u’(0)-- 0,

v’(1)--0, v’(0)--0.

We may assume that F(u) satisfies

F(0)=0, F’(u)>0 for u>0.

Our main result is the following theorem.
THEOREM 2.1. (i) If xF(1)--0<0 then the trivial solution (Uo(X), Vo(X)) of (2.1),

(2.2) is the unique nonnegative solution where Uo(X ) =-- 1, Vo(X ) =-- O.
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(ii) If xF(1)--0>0, then there exists a unique solution (u(x), v(x)) of (2.1), (2.2)
with u(x)>0, v(x)>0 for O<_x<_ 1.

3. ProM. Our approach is very similar to that of Cushing [2] and Butler et al. [3].
Before we prove our main theorem, we note the following lemmas.

LEMMA 3.1. Let (u(x), v(x)) be a solution of (2.1) and (2.2) with u(x) > O, v(x) > O,
O<_x<_ 1. Then

(i) O<_u(x)<_ 1.
(ii) If (u,v)(Uo,V0) and xF(1)--0>0, then u(x) is a strictly convex and strictly

increasing function on 0 <_x <_ while v(x) is a strictly increasing function on 0 <_x <_ 1,
and there exists 0<xo< such that v(x) is strictly convex on (0,Xo) and strictly concave
on (Xo, 1).

Proof. From u’(0)=0, u(1)= and u"_>0 (i) follows easily. If (u,v)(Uo,Vo), then
obviously u(0)=/= 1; otherwise u------1 and v----0. From the uniqueness of solutions of
ODE’s and the first equation of (2.1), u(0)4=0. Hence u(x)>0 for 0_<x_< 1. We claim
v(x)>0 for 0_<x_<l. From the uniqueness of solutions of ODE’s and the second
equation of (2.1), v(0)> 0. Suppose the claim is not true. Then there exists 0< < such
that v() 0 and v’(/2) 0. Then v(x) 0, and this is the desired contradiction. Hence
u">0 on (0, 1) and u(x) is a strictly convex and strictly increasing function on
0_<x_< 1. Obviously it is impossible to have rF(u(x))-O>O for all 0_<x_< 1, since then
v"(x)<0 for 0 _<x _< 1, which contradicts to the boundary conditions v’(0) 0 v’(1).
Hence there exists a unique x0,0<Xo< 1, such that F(u(xo))-O=O and v"(x)>0 for
0<x<x0, v"(x)<0 for x0<x _< 1. Obviously v(x ) is strictly increasing on [0, ].

Proof of Theorem 2.1(i). Suppose (u(x), v(x)) is a nonnegative steady state,
(u,v)(Uo,V0). Then u(x)l and v(x)0. From the second equation of (2.1),
boundary conditions v’(0)= v’(1)= 0 and Lemma 3.1 (i), it follows that

f01 foO-- v(x)[tF(u(x))--O] dx> v(x)[xF(1)-O] dx>O.

This is a contradiction. Hence we complete the proof.
Before we prove the second part of Theorem 2.1, we need to state the local and

global bifurcation theorems, respectively, due to Krasnoselskii [4] and Rabinowitz [5].
LEMMA 3.2 [4]. Let Tx--A +D be a continuous one-parameter family of operators

from a Banach space X to itself, such that A is compact and linear and satisfies IIDx-Dyll
=o(llx-Yll). Then a bifurcation of the equation Txx-x (xX) can only occur at char-
acteristic value * (reciprocal of a nonzero eigenvalue) ofA, and will occur if* has odd
multiplicity. In this case, the bifurcation point corresponds to a continuous branch of
eigenvectors of Tx in a neighborhood of the zero of X.

LEMM 3.3 [5]. Let Tx, A, D, X be as above, and let S be the closure of the set of all
nontrivial solutions of Txx-x as , ranges over R. If ,* is a simple characteristic value of
A, then S contains two subcontinua C+, C whose only point in common for near * is

(*, 0), and each of which either
(a) is unbounded, or
(b) contains (, O) where 4 * is a characteristic value ofA.
LEMMA 3.4. For any positive solution ( u, v) of (2.1) we have

v(O)>X_[ 2((/x)v(1)+ l) ] 0
X e+e-

u(O) where a-
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Proof. From (2.1) we have the following inequality:

(3.1) u,,+X_v,, o (x) where

(u+-X v)’(0)-+’ )-v (1)-l+-v(1).

Comparing (3.1) with the equations

U" aU,

u’(o) =o, U(I) +X--v(1)
yields

U(x)-( (’/x)v(1)+l )(eX+e-X)<-u(x)+v(x)efd+ e-V
O_<x<O;

in particular,

>x__[ 2((x/,)v(1)+ l)- u(0)] >__xv(O)--h eC-d+ e-fd
2((h/r)v(1) + 1)_ 1]e4ff+ e-4ff

Proof of Theorem 2.1 (ii) (existence). Setting U- u u0, V=v v0 in (2.1), we have
for 0<_x<_ 1,

(3.2) U"=F(1)V+g,(U, V),
hV"=OV-F(1)V+g2(U, V),
U(1)-O, V’(O)=O, V’(O)--O, V’(1)--O

where gl(U, V)-- o(]l(U, V)ll), g(U, v)--o(ll(f, V)ll) as (U, V)--, (0,0). Consider the lin-
ear system

(3.3) U"=F(1)V,
,V" OV, O_<x_<l,
U(1)=O, U’(O)--O, V’(O)--O, V’(1)---O.

It is easy to show that (3.3) has only the trivial solution U----0, V----0. Let B be the
Banach space of continuous function on 0_<x_< with the supremum norm. If h l,

h 2 B, let Ll(hl), L2(h2) respectively, be the unique solutions of

(3.4) U"=h,, U’(O) O, U(1) =0,
(3.5) XV"=OV+h2, V’(O)=O, V’(1)=O.

Obviously L, L2 B --, B are linear and compact operators.
Write (3.2) formally as the following operator equation:

(3.6) V V V
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where

V L2(-F(1)V )

G( U)- ( F(1)LI L2(g2(U’ V))+LI(gl(U’ V))
L2(g2(U,V))

and L* B B B B is compact and linear while G B B B B is compact and
G(U, g)-o(ll(g, V)II) as II(g, V)II-0. We now formally treat x in (3.5) as a real
parameter. Consider the eigenvalue problem

CLAIM. The characteristic values of L* are x* O/F(1) and

0+)t(nr)2

Kn-- F(1)
n=l,2,...

Let be a characteristic value of L*. Then there exists (v):/: (0) such that

-F(1)L, Lz(F(1)V ) )( (
or the system

U"=F(1)V,
XV"=OV-F(1)V,
U(1)-O, U’(O) O, V’(0) 0, V’(1) =0

has nontrivial solutions.
If F(1)-0<0 then U=0, V=0.
If F(1)--0=0 then the eigenspace belonging to (,)-i =(O/F(1))-i is generated

by (Ul, Vl), where U(x)=(F(1)/Z)(x2- 1) and Vl(X)= 1. If F(1)-0>0 then V"+
aV--0, a--(xr(1)--0)/)t>0, V’(0)=0-- V’(1).

In order to have V0, a must satisfy nr and V(x) Ccos n rx, U(x)
(--F(1)C/(n)Z)cosnrx where C is an arbitrary constant. Hence the eigenspace be-
longing to (,)-i =((O+X(nr)Z)/F(1))-i is generated by (U,,,V,,), U,,(x)=
--F(1)/(nr)2.cosnrx, V(x)=cosnrx.

By Lemma 3.2, bifurcation does indeed occur for --*, and we obtain a continu-
ous branch of solutions of (3.6) all of which are nontrivial except for the solution
(*,0,0). A Lyapunov-Schmidt series expansion of these solution (, U, V) near
(*, 0, 0) reveals that we have solutions of (3.6) that correspond to the positive solutions
of (2.1). In fact, let

(3.9) V(x ) ,O, ( x ) + O(x ) + O(x ) +
V(x ) #,(x ) +,(x ) +,(x ) +
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and we find that

UI (x)--F(1)#l(X),
#[’(x)-- l(X)--*F(1)#l(X),
0(1)--0, 0(0)--0, I{(0)--0, l’(1)--0.

Choose 0(x)- U(x), 17"l(X)- V(x) and obviously gl >0 by Theorem 2.1(i).
To complete the proof for the estence part, we need to show that such a solution

exists for all >*. Since * is a simple characteristic value of L*, it follows from
Lemma 3.3 that there is a continuum C of solutions of (3.6) all of wch are nontrivial
except for the solution (*, 0, 0) such that C either is unbounded or contains (, 0, 0)
for some n.

Our approach is first to elinate the latter possibility. Let D be the nontrivial+
solutions of (2.1) corresponding to C. We claim

(3.10) (,u,v)D u>0, v>0 and *.

Since u>0, v>0 near the bifurcation point (*, 1,0) and C is a continuum. If
(3.10) does not hold then by Lemma 3.1 there exists (0, u, v) D such that u(0) 0
or v(0)-0. If u(0)-0 then from u"-F(u), u’(0)-0 it follows that u--0, wch
contradicts u(1)-1. On the other hand, if (0)-0 then from v"---V(oF(u)--O),
v’(0)--0 it follows that v=0 and hence u--1 wch contradicts the fact D does not+
contain a trivial solution. It is obvious from Lemma 3.1 that *.

Now we suppose C contains (, 0, 0) for some n. A Lyapunov-Schmidt expan-
sion about (, 0, 0) as in (3.9) reveals

U(x ) Vn(x ) + E2 0n,2(X ) +’’’,
v(x ) ) + ( z ) +...,
r--Kn+n_le+ ’’’,

where U(x)-(-F(1)/(n)2)cosnx, (x)-cosnx, r-(O+X(n)2)/F(1). It ob-
viously contradicts (3.10) in a neighborhood of (r,0,0). Hence C must be un-
bounded.

Now let A, Y be the projections of D onto the real as and B B respectively.
To complete the proof of the efistence part we show that

(3.11) A- [*, ).

Suppose (3.11) does not hold. Then we may assume A-[r*,] and Y is un-
bounded. Then there exists a sequence of points ((, u, %))=1 in D+ such that
0Aand ]](u,%)]] as n. Since ]u(x)] for all 0x 1, by Lemma 3.1
and 3.4 it follows that o(1) + and %(0) + as n . From Lemma 3.4, there
exist N00, C>0 (C is independent of n) such that %(0)>Cry(I) for all nNo. Now
we choose e>0 sufficiently small that F(e) <0 and let

C(F(1)-O)x= C(ffF(1)-O)-(F(e)-O)
then 0<xo< 1. We claim:

(3.12) There exists n>No such that Un(XO)<E.
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If (3.12) does not hold, then u,(xo)>e for all n>No and hence u,(x)>_e for all
Xo <_X<--1, n>_No. Then u,(x)>_F(u,(x))v,(x)>_F(e)vn(x)>_F(e)v,(O) for all Xo <_X<_
and minx0_<<_< u’,’(x)--+ + o0 as n-+ oo. But

U,(1)--Un(XO)--U’n(XO)’(1--Xo)+ uZ( )
2 (1 -x)2

>( min u,’(x)}.(1-Xo2)-+
Xo<_x<_

as n--+ oo,

and this contradicts the fact that O<u(1)-u(xo)< 1. Hence we establish (3.12).
Consider n as in (3.12). By the second equation in (2.1) we have

(3.13) foiV,(X)[ic,F( u(x)) -O] dx-O.
Let

x
L.H.S. of (3.13)- v,,(x)[x,,F(u,(x))-O]dx+ )[,,F(u,,(x))-O]dx.

Then

X0

< v,,(0) (ffF(e)--/7 )xo+ (1 xo ) v,,,(1) (ffF(1) -/7)
< v,,(0)(F(e) --/7)xo + C(I xo)(F(1) -/7) v,,(0)

v,, (0)[C(S(1) -/7) -Xo(C(F(1)-) -(iF(e)--0 ))]

Hence we obtain the desired contradiction and (3.11) holds. Q.E.D.
Our next step is to show the uniqueness of the nonnegative solution of (2.1), (2.2).

Before we prove it, we present the following lemmas.
LEMMA 3.5. Let (Ul,Vl) (U2,V2) be nonnegative solutions of (2.1) and (2.2) with

U U2. Then u =--u2, v I)2.

Proof. Suppose ui->u2 and uu2. Let O=VE/V. Then from (2.1), (2.2) we have

(3.14) 0" + 2( viV’l)’+t[x(F(u2)-F(ui))]-0’
o’(0)- O, w’(1)-0.

Since F(u2)--F(Ul)O from the maximum principle [6] it follows that 0---- constant>0.
But from (3.14) and u u2, we have a contradiction. Hence u ------u 2 and v --=v2.

LiMMA 3.6. Let (Ul,Vl), (U2,V) be nonnegative solutions of (2.1), (2.2) with u u2.
Then the curve y-- ul(x ) crosses the curve y-- u2(x ) a finite number of times on O<_x<_ 1.

Proof. From Lemma 3.5, the curve Y=Ul(X) must cross the curve y--u2(x) on
0_<x_< 1. Suppose y-ul(x) crosses the curve y=u2(x) an infinite number of times on
0_<x_< 1. Then there exists {x,)= such that ul(x,)-u2(x,) and there exists aU[0, 1]
such that x,--+a as n--+ . Obviously ul(a)=u2(a ). Let U(x)=ul(x)-u(x), O<_x<_ 1.
Since for any neighborhood of a, the curve y=Ul(X) crosses y=u_(x) an infinite
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number of times, the Taylor expansion of U(x) at a yields U’(a)-0, U"(a)-0,
’"(a ’"(a a). From (2.1) we haveU’"(a)-O. Hence u )-u’2(a ), u (a) u2(a), u )-u2

v (a ) v2(a ), v’(a) v(a), v’’(a ) v’(a). However the uniqueness of the solution of
the ordinary differential equations (2.1) yields u u2, v----v2. Hence we complete the
proof of the lemma.

Proof of Theorem 2. l(ii) (uniqueness). Suppose we have two nonnegative solutions
of (2.1), (2.1), say (u,v), (U2,V2) with UIF-.U2 under the assumption xF(1)--0>0. By
Lemma 3.1(ii) u, u2, v, v2 are positive on 0_<x_< 1. From Lemmas 3.5, 3.6, the curve
y=u(x) crosses the curve y=u2(x) a finite number of times. Let x0=0, Xn+l and
Xl,...,x be the points where two curves cross each other. Without loss of generality,
we may assume u->u2 on [Xk,Xk+ 1], where O<_k<_n, k even, and u2>_u on [Xk,Xk+ 1]
where O<_k<_n, k odd. In order to obtain a contradiction, we discuss two cases.

Case 1. v (0) _< v2(0). Let ta v2/v on 0 _<x _<x 1. Then we have

(3.15) ta"+2(v’--)ta’+ta[r(F(u2)-F(ul))]-O,Vl
ta’(0) 0.

Then the maximum principle yields v2(x)>vl(x) for all O<x<_x. We claim y-v2(x)
must cross y-vl(x) at some point c (xl,x2). If not, then v2>_v , u2>_u on [Xl,X2].
Since u2(x2)-u(x2) and u’2(x)>-u(xl), u2(x)-u(x), it follows that

F(u (n))v (n)ana 
Xl

This is a contradiction. Similarly, let -v/v2 on c <_x<_x
2. Then

(3.16) " + 2( v’--2)’+[x(F(u)-F(u:))]-0,1)2 (Cl)- 1.

The maximum principle yields v>192 on (Cl, x2 ].
Repeating the arguments shows that there exist C2,’’’,Cn, Xi<Ci<Xi+ 1’ i= 1,’’’,n

such that Vl(Ci)=v2(ci), i= 1,...,n, Vl>_V2 on [ci,ci+l] where is odd, and v2>_v on
[ci, ci+l] where is even. If u>_u2 on [x=, 1] then v2>_v on [c, 1]. Consider (3.15) on
[c,, 1]; then the maximum of ta=v2/v occurs at x--1 but to’(1)=0 and we obtain a
contradiction. If u2>_u on [x, 1] then Vl>_V2 on [c,, 1]. Similarly, consider (3.16) on
[c,,1]; the maximum of =v/v2 occurs at x=l, but ’(1)=0 and we obtain a
contradiction.

Case 2. v2(0)<v 1(0). We claim that the curve y-- v l(x) must cross y v2(x) at
some point ?0 (0,x). If not, then u _>u2, v _>v

2 on [0,x]. Since Ul(0)_>u2(0), u(0)-
u(0)- 0, we have
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By the arguments in Case 1, there exist ,-..,, such that xi<Oi<xi+, i-1,..-,n
such that v(;)-v2() and v l, v2 cross each other at g. Applying the same arguments
as in Case we obtain a contradiction.

Hence we establish the uniqueness of solutions for (2.1), (2.2).

Discussion. We have established the existence and uniqueness of steady states for
the equations (1.3), (1.4). As for the questions about the global behavior of solutions for
this dynamical system, it is currently under investigation. From our numerical studies,
the steady state should be globally asymptotically stable. This paper is the first step in
discussing the effects of motility in the model studied in [1] which will provide a
reasonable explanation for the phenomena in microbial ecology.
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