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EXPLOITATIVE COMPETITION OF MICROORGANISMS FOR TWO 

COMPLEMENTARY NUTRIENTS IN CONTINUOUS CULTURES* 


SZE-BI HSUI, KUO-SHUNG CHENGt AND S. P. HUBBELLt 

Abstract. This paper concerns the exploitative competition of two microorganisms for two complemen- 
tary nutrients in the continuous culture. Consumption of the limiting resources follows the Holling Type I1 
functional response or, equivalently, Michaelis-Menten kinetics, generalized to the two-resource situation. 
The predicted biological conditions which should give rise to each of the possible competitive outcomes are 
presented in detail and analyzed globally. A major conclusion is that each of the four outcomes of classical 
Lotka-Volterra two-species competition theory has multiple mechanistic origins in terms of consumer-
resource interactions. It is also shown that all four classical outcomes, including the case in which winning 
depends on the initial abundances of the competitors, can arise for this purely exploitative competition. 
Moreover, the outcomes of this exploitative competition can be predicted, in advance of actual competition, 
from measurements made on each species grown by itself on the resources. 

1. Introduction. The classical theory of ecological competition between two or 
more species, attributed to Lotka [18] and Volterra [36], is an extension of the basic 
logistic model of single-species growth that dates from Verhulst [35]. The dynamical 
equations for this theory for two competitors, 1and 2, are often written as 

where Ni is the number of the ith competing species, ri and Ki are the intrinsic rate of 
increase and the carrying capacity of the ith competitor, respectively, and a and P are 
the interaction of "competition" coefficients, expressing the per capita competitive 
effect of species 2 on 1, and 1 on 2, respectively. In the absence of competition 
(a =/3 =0), each population grows to its respective carrying capacity. In the presence 
of competition, one or the other rival may survive while its competitor dies out, or else. 
the rivals may coexist. These three biological outcomes result from the four mathemati- 
cal cases that can occur provided that populations of both species are present initially. 
Competitive stability (coexistence) occurs when a <K1/K2 and /3 <K2/K1; competi- 
tive instability (initial numbers of the competitors determine the eventual winner) 
occurs when these inequalities are both reversed; and competitive dominance (one or 
the other species wins regardless of initial numbers) occurs when one but not both of 
these inequalities are reversed. 

The classical theory can perhaps be called a "phenomenological" theory insofar 
as it seeks to describe how the numbers of competing species change, and to predict 
the eventual outcome of such competition, without ever being specific about which 
limiting resources are the focus of competition, nor about how effectively the rival 
species forage for, and exploit, these resources. This classical theory has had an 
immense and lasting appeal because of its generality and simplicity, and it has been the 
subject of a very large number of theoretical studies (cf. Wangersky's review [38]). By 
the same token, however, this generality has also made it difficult for experimentalists 
to interpret and measure the theory's critical parameters. It has proven especially 
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difficult to estimate the competition coefficients independently of actually growing the 
potential competitors together, and to determine their values under field conditions, 
although considerable attention has been devoted to these problems. Usually, competi- 
tion coefficients have been estimated in laboratory competition studies by fitting the 
dynamical equations (1.1) to the growth curves of the species in competition (e.g., 
Vandermeer [34]). The attempts to estimate competition coefficients have usually 
focused on various measures of overlap in resource utilization (Schoener [28]), 
although information about whether the resources are limiting is usually lacking. 
Unfortunately, whenever these coefficients can only be estimated from the dynamics 
of populations already in competition, the value of the theory for prediction is thereby 
diminished. Thus, the classical theory has been attacked as a tautological exercise in 
curvefitting at best (Peters [23]). At worst the fit of (1.1) to data is poor (Wilbur [39], 
Neil1 [22], Richmond et al. [26]) because of a variety of nonlinearities in per capita 
rates of growth as a function of competitor densities. 

Over the past 25 years the elements of a more mechanistic, resource-based theory 
of ecological competition have been under experimental and theoretical development 
by a diverse field of workers. A list of all significant contributions to this effort would 
be quite long, but some of the milestones have been papers by Herbert et al. [6], Powell 
[24], Holling [7], [8], [9], Miller [21], Dugdale [2], Eppley and Coatsworth [3], Epply 
and Thomas [4], Kilham [14], MacArthur [19], Stewart and Levin [30], Droop [I], 
Koch [IS], Leon and Tumpson [17], Smith et al. [29], Taylor and Williams [31], Tilman 
and Kilham [32], Tilman [33], Real [25], and Hsu et al. [lo], [12]. This theory considers 
the dynamics of the resources explicitly in addition to the population dynamics of the 
competing species. Moreover, it pays particular attention to the functional responses 
of the competitors to changes in resource density. 

In comparison with the classical approach to competition, some things are gained 
and some are lost by adopting this approach. The disadvantages are that resource-based 
competition theory is usually less general, but also more difficult to analyze mathemati- 
cally, than classical theory. However, the advantages are that the experimentalist has a 
specific set of somewhat more mechanistic questions to ask about limiting resources 
and the manner in which the consumers respond functionally and numerically to these 
resources. Thus, resource-based theory directs more explicit attention to resources and 
consumer-resource interactions than Lotka-Volterra theory which, classically at least, 
focused primarily if not exclusively on the phenomenological changes in competitor 
numbers. We believe that this approach will spur renewed interest in experimental 
studies of competition, and we also hope that it hastens the development of more 
predictive theory. 

In this paper we present a resource-based competition model which describes how 
two microorganisms compete exploitatively for two complementary resources in the 
chemostat. A chemostat is a laboratory apparatus used for production and physiological 
study of microorganisms. In the chemostat model, the limiting nutrient is supplied at 
a constant rate. The input flow of medium contains all other factors for growth in excess. 
The output flow equals the input flow, and carries with it cells, waste product and 
unused nutrient. The model also approximates conditions for plankton growth in lakes, 
with the input of complementary limiting nutrients such as silica and phosphate from 
streams draining the surrounding watershed. 

2. Competition for one resource. Before considering two resources, it is useful to 
review briefly what happens in the one-resource case. We assume that the consumption 
of a single limiting resource follows the Holling Type I1 functional response or, 
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equivalently, Michaelis-Menten kinetics, which describes the chemical interaction 
between enzyme and substrate. When a species grows on a single limiting resource, 
there is some "break-even" concentration of that resource at which birth rate just 
balances death rate, which we will call the subsistence concentration. Now suppose that 
this limiting resource is supplied at a constant rate, corresponding to the constant 
carrying capacity environment of classical competition theory, and that two species (or 
more) are competing exploitatively for this resource. Then, provided that the resource 
is not being supplied at a rate below the subsistence concentration of all species, only 
a single species is predicted to survive: that species which has the smallest subsistence 
concentration of the resource (Stewart and Levin [30], Taylor and Williams [31], Hsu 
et al. [lo]). Recently Hansen and Hubbell [5] conducted a rigorous test of this 
prediction. This nicely intuitive result turns out, however, to be dependent on having 
a constant resource input. If the resource has a periodic input, for example, seasonally 
(Stewart and Levin [30], Hsu [13]), or if the resource is a prey species capable of 
self-reproduction (Koch [15], Hsu et al. [12]), then there are conditions when the 
species can coexist in a dynamic, periodic fashion on a single resource (McGehee and 
Armstrong [20]). For the remainder of this paper, we will be concerned with the case 
of a constant carrying capacity environment, corresponding to Lotka-Volterra theory, 
but in resource terms. 

The subsistence resource concentration is an important competition criterion, not 
only in one-resource situations, but in the two-resource theory discussed in this paper 
as well. For each species and limiting resource, there is such a concentration, potentially 
different in each case. It will be symbolized by J, following Rosenzweig [27]. 

In our previous work on this subject [lo], [ l l ] ,  we have used A for this parameter, 
but henceforth we will use J to avoid confusion with the finite rate of increase. The 
subsistence concentration can be calculated from three parameters that are measured 
on each species grown by itself on the particular resource. Thus, for resources S and 
species i, Jsican be found from: (a) the half-saturation constant for resource uptake, 
Ksi; (b) the intrinsic rate of increase, rsi; and (c) the death rate, Di.The half-saturation 
constant Ksi corresponds to K,,, in Michaelis-Menten theory, and represents that 
concentration of resource at which consumption occurs at half the maximal rate. The 
subsistence concentration for species i growth-limited by resource S is the product of 
the half-saturation constant and the ratio of the death rate to the intrinsic rate of 
increase : 

Jsi =~ s i ( ? )  

The units of Jsiare in resource concentration, since the units of Di  and rsi cancel. The 
parameter rsi is equivalent to r,,, for the ith species, rsi = (msi -Di), where msi is the 
maximal per capita birth rate on resource S. For the detailed biological meaning of Jsi 
we refer to [lo]. 

The equations for single-resource competition among n species for resource S are 

S is the concentration of resource, s"' is the constant input concentration of resource, 
D is the constant rate at which new nutrient is imported, as well as the rate at which 



EXPLOITATIVE COMPETITION FOR COMPLEMENTARY NUTRIENTS 425 

nutrient at current concentration is exported. For the ith organism, Ni is the population 
density, YSi is the yield of the ith organism produced per unit of resource S consumed, 
and Ksi, mSi, and Di are as defined above. It will be recognized that (2.2) is the system 
of equations for any continuous culture of several species, growth-limited by a single 
nutrient but supplied with all other required nutrients in nonlimiting amounts (Taylor 
and Williams [31], Hsu et al. [lo], Hsu [I l l) .  This is to be expected, since continuous 
cultures were specifically developed as idealized environments having a constant 
carrying capacity. Thus, it should be noted that a constant carrying capacity does not 
result from a fixed quantity of limiting resource, as in batch culture, but from a 
steady-state resource input-output situation. In (2.2), if no organisms are present, then 
the resource equilibrates at s"' at the point when resource input and output rates are 
balanced. 

The one-resource situation can be summed up as follows. With no loss of 
generality, number the competing species such that their J's are ordered, with J,1< 
Jsz<. . . <J,,. All species die out if the input concentration is less than the subsistence 
concentration for every species, i.e., if s"'<J,~.In this case, lirn,,, S(t)=s"' and 
lirn,,, Ni(t)=0, i = 1, ,n. On the other hand, if s(">J,~for any i, then species 1 
survives and outcompetes all rival species. In this case, lirn,,, S(t)=Jsl, lirn,,, Nl(t) = 
Ysl(~'O'-~ ~ 1 )and lirn,,, Ni(t)=0, i =2, . - . ,n. 

3. Competition for two resources. In situations involving two or more resources, 
i't becomes necessary for the first time to consider how the resources, once consumed, 
interact to promote growth. Leon and Tumpson [17] have distinguished two important 
c asses of resources: complementary and substitutable. Complementary resources are i
s urces of different essential substances which are metabolically independent require- 
m1nts for growth, such as a carbon source and a nitrogen source for a bacterium, or 
silica and phosphorus for a diatom. On the other hand, substitutable resources 
represent alternate sources of the same essential substance, and are metabolically 
interdependent requirements for growth, such as two carbon sources or two sources 
for phosphorous. In this paper we consider just the case of complementary resources. 

Now consider two complementary resources, R and S. For each consumer species 
there are two J's, one for each resource. These J's are the subsistence concentration of 
each resource when the species is growth-limited by that one resource alone. For 
species i, call these concentrations Jriand Jsiof resources R and S, respectively. These 
J values determine the position of the zero-growth isocline for species i on the S-R 
resource plane. 

The zero isocline for complementary resources is a pair of half-lines meeting at 
right angles at the point (Jsi, Jri) in the S-R plane (Fig. 1). The lines are perpendicular 
because of the independence of the requirements for R and S. In this case, growth is 
limited at any given time either by R or by S, but not by both R and S simultaneously 
except at the corner). The curving dashed line passing through the corner in the isocline 
represents the equation, rnsiS/(Ksi +S)  = rnriR/(Kri-tR), where the parameters are as 
previously defined but subscripted for the appropriate resource. Above the dashed line 
in the the S-R plane, species i is S-limited, whereas below the dashed line, species i is 
R-limited (Fig. 1). Thus, for example, when species i is S-limited, no increase in 
resource R in the region above the dashed curve will have any effect on increasing the 
growth rate of species i ;  only an increase in resource S will have this effect. The 
converse is true in the region below the dashed curve. 

Before presenting the competition models for two species on two complementary 
resources, we should discuss how the functional responses of the consumer species 
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have been generalized from one to two resources. In the one-resource case, the per 
capita consumption rate, according to the Type I1 functional response, is given by 
(mri/yri)(R/(Kri+R)) if the resource is R, or is given by (msi/ysi)(S/Ksi +S)) if the 
resource is S. Now we generalize the functional response to two complementary 
resources. In this case, the per capita consumption rate of whichever resource is 
currently limiting growth is identical to the one-resource per capita consumption rate, 
as given above for the appropriate resource. The question then arises. At what rate is 
the nonlimiting resource consumed? This question can be answered when we consider 
the yield of consumer produced per unit of resource consumed. When the yield factors, 
yri and ysi are constants, then it follows that there must be a fixed ratio of the 
growth-essential substances provided by resources R and S in a unit of consumer. 
Moreover, this also implies that the per capita consumption rate of the nonlimiting 
resource must be proportional to the per capita consumption rate of the limiting 
resource. If it were not, then the ratio of essential growth substances in the consumer 
would be changing, and the yield factors would no longer be constant. The proportion- 
ality constant is the ratio of the yield constants for the two resources. For example, 
suppose species i is S-limited. Then the per capita consumption rate of S, call it fl(S), 
is 

whereas the concurrent per capita consumption rate of the nonlimiting resource R is 
given by 

Ysi m ~ i  S-. f1(S)=--
Yri Yri Ksi +S ' 

Note that the expression in (3.2) does not contain the concentration of the 
nonlimiting resource R. Thus, it should be noted that: For complementary resources R 
and S, when a species is S-limited, its per capita consumption rate of R is independent of 
the concentration of R, whereas, when the species is R-limited, its per capita consumption 
rate of S is independent of the concentration of S. The key to this statement is: "When 
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is a species S-limited?". The species is only S-limited above a certain concentration of 
resource R (above the dashed line in Fig. 1). Below this concentration of R, the per 
capita consumption rate of R does depend on the concentration of R ;  but this 
dependence is because the species is now R-limited and no longer S-limited. The 
converse argument applies when the species is R -limited. 

4. Statement of the model. Given the preceding development of the biological 
basis for the functional response of species exploiting pairs of complementary resour- 
ces, it is a straightforward matter to state the two-resource, two-species competition 
model in the continuous culture. 

For complementary resources, R and S, and species 1and 2 competing exploita- 
tively for them, the system of equations is 

where 

g2(S, R )  =min (2::Ss9-23. 
As noted previously, this model assumes constant carrying capacities (fixed rate 

of nutrient input), constant yield factors (unit of consumer produced per unit of 
resource consumed), and Type I1 functional responses, generalized to two complemen- 
tary resources. In addition, we have assumed Type I1 numerical responses in per capita 
birth rates, with a direct dependence on the external supply of resources. Finally, we 
have assumed the same dilution rate D for S, R, Nl, Nz. The parameters in (4.1 1) have 
all been previously defined at various points in the text, but it is convenient to relist 
them here in one place for ease of reference: 

s"', R"' =input concentrations of resource S and R, respectively. 
D = input flow rate of medium containing S, R and also the output flow rate 'of 

medium containing unused S, R and cells N1, N2. 
msi, mri =maximal per capita birth rate of species i on resource S or R alone. 
ysi, yri =yield of species i per unit of resource S or R consumed. 
Ksi, Kri =half-saturation constant for species i on resource S or R. 
We analyze the behavior of solutions of this system of ordinary differential 

equations in order to answer the biological question, under what conditions will neither, 
one, or both species survive or die out? We also seek to determine the limiting behavior 
of the surviving species and the resources. 

5. Statement of results. In this section we state the principal results of the paper. 
The proofs and certain technical lemmas are deferred to O 6. The first lemma is a 
statement that the system given by (4.1) is as "well-behaved" as one intuits from the 
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biological problem. The proof of the lemma is similar to that in [lo], and we omit it. 
LEMMA 5.1. Solutions of (4.1) are positive and bounded. Furthermore, we have 

The next lemma provides conditions under which the organisms cannot survive 
given the fixed dilution rate and the fixed input rates of the nutrients. Before we state 
the lemma, we note the following twq pairs of equivalent statements, namely, 

mSis(O) KsiD
,,)<D if andonlyif mSiSDor->~(O),

Ksi+S msi-D 

mriR(O) KriD >R'o), 
Kri+R (,) <D if and only if mriS D or -

mri-D 

then lim,,,Ni (t) =0. 
Lemma 5.2 states the necessary conditions for species Ni to survive, i.e., 

K .D O<L<S(O) and 0<- KriD < (0). 

msi-D mri-D 

Since nutrients S and R are complementarily essential to the growth of species Ni, 
there are minimum input concentrations s'" and R'" both for S and R in order to 
support the species Ni. 

COROLLARY 1,2, then lirn,,, S (t) =s'", lirn,,, =5.3. If (5.3) holds for i = R ( t )  
R'" and lirn,,, Ni(t)=0, i = 1,2.  

We state the principal result in the case of inadequate input concentration of 
nutrients in four parts. We are able to determine the globally asymptotic behavior of 
the solutions in Theorem 5.4. The theorem may be summarized by noting that the 
unsuccessful competitor does not affect the eventual behavior of the survivor and its 
resources. 

Before we state Theorem 5.4, we introduce the following important parameters: 

c.=Y"' T.= R-(O) -Jri 
, i = l , 2 .' s ( O )  -JsiYri 

THEOREM5.4(i), (ii). Let (5.3) hold for i =2 and 0 <J,I <s"', 0 <J,I <R"). 
(i) If T1 <C1, then the trajectory of (4.1) approaches the equilibrium (Esl) as t +a ,  

where 



EXPLOITATIVE COMPETITION FOR COMPLEMENTARY NUTRIENTS 429 

(ii) If TI < CI, then the trajectory of (4.1) approaches the equilibrium (Erl) as t -,co, 
where 

THEOREM5.4(iii), (iv). Let (5.3) hold for i = 1 and 0 < JS2< s(", 0< J,Z < R"). 
(iii) If T2 > C2, then the trajectory of (4.1) approaches the equilibrium (Es2) as t + a ,  

where 

(iv) If T2 < C2, then the trajectory of (4.1) approaches the equilibrium (Er2) as t + co, 
where 

Theorem 5.4 states that when lim,,, Ni(t)= 0 the equation (4.1) is reduced to a 
system of three ordinary differential equations. In order to present the biological 
meaning of parameters Ti, Ci, we assume lirn,,, N2(t)= 0. We may rewrite TI, C1 as 

When only species 1 is present, TI represents the ratio of the steady-state nutrient 
regeneration rates at equilibrium under consumption by 1.Jrland Jslare the equilib- 
rium concentrations of resources R and S, respectively, under steady-state consump- 
tion by species 1.The parameter C1 represents the fixed yield ratio for species 1growing 
on resources R and S. The units of ( l /yrl)  are (units R consumed/unit species 1 
produced); thus C1 is the ratio, (units R consumed/units S consumed) per unit of 
species 1produced. 

By comparing T1 with C1, we can determine whether species 1 is S-limited or 
R-limited. This is because C1 represents the invariant ratio in which the essential 
nutrients R and S are consumed by species 1, whereas TI represents the ratio in which 
these same resources are being externally regenerated under steady-state consumption 
pressure from species 1.Therefore, if TI > C1, the growth rate of species 1is S-limited 
because S is regenerating at a steady-state rate slower than R with respect to the 
required consumption ratio for species 1.Similarly, if TI< C1, the growth rate of species 
1will be R -limited. The above considerations also apply to species 2 for appropriate 
values of T2 and C2. 

DEFINITION.If TI > C1 (or TI < C1), we say that species N1 is S-limited (or 
R-limited). Similarly, if T2> C2 (or T2< C2), we say that species N2 is S-limited (or 
R-limited). 

Remark. We may justify the concept of R-limited or S-limited. Consider system 
(4.1) with N2= 0. Suppose Nl is R-limited, then at equilibrium (ST%, Jrl, NR ) we have 
D = (mrlJr1)/(Kr1+ Jrl)< (mslSh)/(Ksl+ STl) and hence S h  > Jsl.Then 

and so TI < CI. Similarly, if Nl is S-limited then C1 < TI. 
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In order to discuss the interior equilibrium point, we may assume as a basic 
hypothesis 

Under the assumption (HI), the equations of (4.1) may be relabeled without loss of 
generality, so that we may assume either 

We note that most of the conditions on parameters for the various cases in 
Theorems, 5.5, 5.6 can also be established by the linearization method. 

Before we state our main results, Theorems 5.5 and 5.6, we introduce the following 
parameters: 

THEOREM5.5. Assume (HI) and (H2) hold (see Figs. 2a, 2b). Let C1# C2. Then 
the statements in Theorem 5.4(i) (ii) hold. 

I s -5 
JSI J s 2  Jsi J s 2  

a .  N1 is S-limited. b.  Nl is R-limited. 
FIG.2 

Theorem 5.5 states that, if one species has the lower J 's  for both nutrients S and 
R, then that species will survive and its rival will not. 

Now we consider the situation when each species has the lower subsistence 
concentration on one of the resources, say, Jrl<Jr2,J s 2  <Jsl.Then the parameters T * ,  
C1 and C2 become important in the competition outcomes. 

First we state the following results describing how one species can outcompete the 
other. 

THEOREM5.6(i). Assume (HI) and (H3) hold. Let C1# C2.If T *  <C1, C2, then 
the statements in Theorem 5.4(i), (ii) hold (see Figs. 3a, 3b). 

THEOREM 5.6(ii). Under the assumptions of part (i), if T *  >CI, C2, then the 
statements in Theorem 5.4(iii), (iv) hold (see Figs. 4a, 4b). 
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I 

Jr 2  .. 
Jr I *. 

U: Unstable 

J r 2  ., 
Jrt  

(Er2)  

GS U 

( E r l )  
S -s 

J s 2  JSI Js2  Js i  
a b 

FIG. 3 

J s 2  JSI J s 2  Js t  
a b 

FIG.4 

In order to explain the biological meaning of Theorem 5.6(i), (ii), we rewrite 
T* = (R'O'- J,~)D/(S'O'- Jsl)D, which represents the ratio of the steady-state regener- 
ation rate of R when N2 is alone and that of S when Nl is alone. We note that under 
the assumption (H3) we have T* < TI and T* > T2. First we consider Theorem 5.6(i). 
The assumption T* < Cl, C2 implies T2 < C2; i.e., species N2 is always R-limited. But, 
since species Nl has the lower subsistence concentration for resource R, species NI 
always wins. Note, however, that at the one-species equilibrium, species Nl may again 
be either S-limited or R-limited. Similarily, we can explain Theorem 5.6(ii). Species 
N2 outcompetes species Nl for the reason that species Ni is S-limited and N2 has the 
lower subsistence concentration for resource S. 

Secondly, we describe how two species can coexist. 
THEOREM 5.6(iii). Under the assumptions of part (i). If CI < T* < C2, then the 

"positive" equilibrium (E,)= (Jsl, Jr2, NLN;,) exists and is globally asymptotically 
stable in the first orthant (see Fig. 5). 

In this case, we note that C1 < TI, and T2< C2; i.e., N1 is S-limited and N2 is 
R-limited. But, species Nl, N2 has lower subsistence concentration for R and S 
respectively. Coexistence occurs because each species has the lower subsistence con- 
centration for that resource which, at the two-species equilibrium mixture of resources, 
most limits the growth of its rival. 
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Finally, we state a result describing the outcome of competition depends on initial 
populations. There are two cases. The first one ((a), (d)) is the case when both species 
are limited by the same resource. The second one ((b), (d)) is the case when the species 
are limited by different resources. 

THEOREM 5.6(iv). Under the assumptions of part (i), i f  C2 <T*<C1, then (E,) 
exists and unstable. Furthermore, we have four possible outcomes : 

(a) If Nl is S-limited and N2 is S-limited, then (Esl)and (Es2) are asymptotically 
stable. (see Fig. 6a). 

9 AS: Asymptotically Stable A S 8I 
Ec) 

T--I' 
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(b) If N1 is R-limited and N2 is S-limited, then (Erl) and (Es2) are asymptotically 
stable (see Fig. 6b). 

(c) If Nl is S-limited and N2 is R-limited, then (Esl) and (Er2) are asymptotically 
stable (see Fig. 6c). 

(d) If Nl is R-limited and NZ is R-limited, then (Erl) and (Er2) are asymptotically 
stable (see Fig. 6d). 

This case arises because each species has the lower subsistence concentration for 
that resource which, at the two-species equilibrium mixture of resources, least limits 
the growth of its rival. This makes the two-species equilibrium unstable. The outcomes 
depend on whether species Nl and species N2 are individually S-limited or R-limited 
at the one-species equilibrium. 

6. The proofs. 

Proof of Lemma 5.2. From (4.1), it follows that 


Let E >0 be chosen such that 

and from (5.1), (5.2) choose to>O such that S(t) 5s"'+E, R(t)  5R"'+ E, t 2 to. Then, 
for an appropriate constant C, it follows that 

msi (s"' +E ) mri (R 'O' +E )
Ni(t)sCNi(O)eXP ( [ m i n ( K s i + ( ~ ( ~ ) + E )  - D , ~ r i + ( ~ ( ~ ) + E )-D)] (t - to)]. 

Hence lim,,, Nl (t) =0. Q.E.D. 
Before we prove Theorem 5.4(i), (ii), (iii), (iv), Theorem 5.5 and Theorem 5.6, we 

present the following idea which reduces the problem of the four-dimensional system 
of differential equations (4.1) to a problem of a two-dimensional system of differential 
equations. 

Consider the Lyapunov function 

for (4.1). It follows that 

Hence 
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Then the w-limit set R of the trajectory of (4.1) lies in E [16], and it is sufficient to 
study the behavior of solutions of the following two-dimensional system: 

where 

Proof of Theorem 5.4. First we prove (i) and (ii). Since (5.3) holds for i =2,  
from Lemma 5.2 we have lirn,,, N2(t)= 0. Then the trajectory of (4.1) approaches 
E fl{(S, R, Nl, N2): N2 = 01, and it suffices to consider the equation dNl/dt = 
NlGl(Nl,O), N1(0) 2 0, or, equivalently, 

If Tl > C1, i.e., (R"'- J ~ ~ ) ~ then N1 ~0 and N1 = ( s ' ~ ' - J ~ ~ ) ~ ~ ~> ( s ' ~ ' - J ~ ~ ) ~ ~ ~ ,~ = are the 
only two possible equilibria of (6.2). And lirn,,, Nl(t) = N ~ I= ysl (s"'- JS1), pro- 
vided Nl(0) > 0 in (6.2). Since 0 < Jsl< s"', 0 < J,I< R"', from the third equation of 
(ft.1)it is impossible that lirn,,, Nl(t) = 0. Then there exists (3,I?, Nl, 0) E R with 
Nl > 0. Then part (i) follows directly from the invariance property of w -limit set and 
the fact (Esl) is asymptotically stable. 

If TI < C1, then using the above arguments yields the proof of (ii). The proof for 
part (iii), (iv) respectively is similar to that of part (i) and (ii). Q.E.D. 

Before we prove Theorem 5.5 and Theorem 5.6, we state a theorem of Markus 
[40] which will be used repeatedly. 

DEFINITION.Let A :  X I  = fi(x, t) and A,: xi = fi(x) (i = 1.2, . . . , n) be afirst-order 
system of ordinary differential equations. The real-valued functions fi(x, t) and fi(x) for 
continuous in (x, t) for x E G, where G is an open subset of Rn ,  and for t > to: they 
satisfy a local Lipschitz condition in x. A is said to be asymptotic to A,(A +A,) in G 
if, for each compact set K G G and for each E > 0, there is a T = T(K, E )  > to such that 
Ifi(& t)-fi(x)l<& for all i = 1 , 2 , .  n, a l l x ~ K ,  all t>T .  a , 

DEFINITION. The R-limit set for x' = f(x, t), x(to) = xo is the set of w-limit points 
y, where y = limn,, x(tn) for some sequence {t,), t, + a. 

THEOREM(Markus). LetA +A, in G and let Pbe an asymptotically stable critical 
point of A,. Then there is a neighborhood N of P and time T such that the R limit set 
for every solution x(t) of A which intersects N at  a time later than T is equal to P. 

Next, we need to describe the isoclines dNl/dt = 0, dNz/dt = 0 of (6.1) for various 
cases. The proofs will be based on these geometric figures. First we note that the 
transformation 

is 1-1 from the S-R plane into the Nl-N2 plane provided Cl # C2. The equations in 
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(6.1) can be rewritten as 

( I  - D ) ( s ~ -  J -rmin( y ~ l  YSZ
dt N N2 9 9 

K~~+ s ( O ) - 1-- K r l + R(0) N1 N2 
Ysl Ys2 Y r l  Yr2 

m 2 - D )  
3-

dt 

N2 
(0) Nl N2 , 

(0) Nl N2Ks2+S Kr2+R ----
Ysl Ys2 yr1 yr2 

The isocline dNi/dt =0, i = 1,2,  in the N1-N2 plane can be classified into four cases 
by mapping the isocline in the S-R plane (see Fig. 1) under the transformation (6.3). 

Case 1.Ti IC1, C2, i = 1 , 2  (see Fig. 7a). 
Case 2. Ti Z C1, C2, i = 1 , 2  (see Fig. 7b). 
Case 3. C1 Z F Z C2,i = 1 , 2  (see Fig. 7c). 
Case 4. C2 5 Ti 5C1, i = 1 , 2  (see Fig. 7d). 

We note that the isoclines of (6.1) or (6.4) are similar to those in the Lotka-Volterra 
competition model (1.1), and hence we can study the behavior of solutions of (6.1) by 
isocline analysis or by pushing trajectory. 

Proof of Theorem 5.5. Assume Tl >C1. Since C1 # C2, the nonsingular transforma- 
tion (6.3) maps two disjoint isoclines of (4.1) in Fig. 2a or 2b into two disjoint isoclines 
of (6.1) in the Nl-N2 plane. 

Combining the two isoclines dNl/dt =0, dN2/dt =0 of (6.1) yields seven various 
figures. The isocline dNl/dt =0 of (6.2) is of the type in Fig. 7a or Fig. 7c. On the other 
hand, the isocline dN2/dt =0 has four various forms. These forms are similar in our 
discussion, and we only need to pick one of them in this proof. For example, Fig. 8 
is the combination of Fig. 7a, Fig. 7d respectively for isoclines dNl/dt =0, dN2/dt =0 

N2 

9 
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(see Fig. 8). If Nl(0)>O, Nz(0)LO then, from isocline analysis, the trajectory 
of (6.2) approaches (ys l (~ 'O ' -  J~ I ) ,  0). 

Consider the trajectory (S(t), R(t),  Nl(t), N2(t)) of (4.1). First we claim 
lirn,,, Nl(t) # 0. Suppose lirn,,, Nl(t) =0; then from (HI) and Lemma 5.1 we have 
lirn,,, N2(t)# 0. Hence there exists a point (S, I?, 0, N2) E fl for some SL 0, I? >0, 
N2>0 where fl is the w-limit set of the trajectory (S(t), R(t),  Nl(t), Nz(t)). By the 
invariance property of the w -limit set, we have (Es2) E fl (if T2 >C2) or (Er2) E fl (if 
Tz< Cz). Compare the following two systems of differential equations: 

dS 1 1 
-= (s"'-s)D --gl(s, R)NI --g z ( ~ ,R ) N ~ ,dt YSI YS2 

Obviously, under the assumption lim,,, Ni(t) = 0 we have that (6.5) is :symptotic to 
(6.6). Since (Es2) E fl (if T2 >C2) or (Er2)$ fl (if Tz< CZ) and (R2) or (Esz) is asymp- 
totically stable for system (6.6), where (Er2) = (STz, Jrz, NT2 ), (&) = (Js2, R:2, ~ : 2), 
Markus' theorem yields that lirn,,, S(t)= SF^, lirn,,, R( t )  =Jr2, lirn,,, N2(t) = 

N ? ~or lirn,,, S(t)=Js2, lirn,,, R (t) =~:2,lim,,, Nz(t)=N:~. Either case implies the 
unboundedness of Nl(t). (see Fig. 2a, Fig. 2b). This is the desired contradiction. Hence 
lirn,,, Nl(t) # 0. 
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Since lim,:, Nl(t) # 0, it follows that there exists a point (3,&, f i l ,  f iz)  Ea with 
$ L0, & 2 0, Nl >0, f i 2  2 0. The trajectory (Nl(t), Nz(t)) with initial values Nl(0) = 
f i l ,  N2(0) =fi2approaches (N,*I, 0). This and the invariance property of the o-limit 
set, EE, imply (Esl) Ea.But (ES1) is asymptotically stable. Hence lim,,, (S(t),R (t), 
Ni(t), Nz(t)) = (ESi). 

For the case TI<CZ, similar arguments yield that (Erl) is globally asymptotically 
stable. Q.E.D. 

Proof of Theorem 5.6(i), (ii). First we prove part (i). The proof of part (ii) is similar 
to that of part (i) and we omit it. Since Jrl<Jr2, J s 2  <Jsl, it follows that 

From the assurnption T* <C1, CZ, we have TZ < C1, CZ. Applying the assumptions 
(H3) and T* < CI, CZ yields four possible cases for the forms of the isoclines 
dNl/dt = 0, dNz/dt = 0 of (6.2). 

Case 1. Tl 2 C1, CZ (see Fig. 9a which corresponds to Fig. 3a). 
Case 2. TI 5C1, CZ (see Fig. 9b which corresponds to Fig. 3b). 
Case 3. C1 5TI 5Cz(see Fig. 9c which corresponds to Fig. 3a). 
Case 4. C2% TI 5C1 (see Fig. 9d which corresponds to Fig. 3b). Using the 

argument of Theorem 5.5 yields the proof of part (i). Q.E.D. 

N2 

1 



EXPLOITATIVE COMPETITION FOR COMPLEMENTARY NUTRIENTS 439 

Proof of Theorem 5.6 (iii). We note that under assumption (H3) we have T*<  
TI, T* >T2.Since C1 <T* <C2we have four possible cases which all corespond to 
Fig. 5: 

Case 1.C1P Tl P C2, C1 P T2 P C2 (see Fig. 10a). 
Case 2. C1P T25 C2, TI L CI, C2 (see Fig. lob). 
Case 3. C I S  Tl 5C2, T2 P C1, C2(see Fig. 10c). 
Case 4. T2 5 C1, C2, TI 2 C1, C2 (see Fig. 10d). 
First we note that from linear stability analysis (E,)is asymptotically stable. Using 

the similar arguments in the proof of Theorem 5.5 yields that lirn,,, Nl(t) # 0, 
lirn,,, N2(t)# 0. By the same arguments as in the proof of Theorem 5.5 it suffices to 
show that there exists a point (3,I?, Nl, N2) E Cl with N >0, N2>0. We have the 
following three possible cases. 

Case a. Nl(t) BN:, for all t 2 to for some to. Since lirn,,, N2(t)# 0, there exists a 
point (S,E ,  Nl, N2) E C! with Nl 2N:,, N22 E for some E >0. 

Case b. Nl(t) PN:, for all t 2 to for some to. In this case we have two subcases: 
Subcase 1. lirn,,, Nl(t) =c >0 for some c. Since lirn,,, N2(t) # 0, there exists a 

point (S, I?, c, N2) E fi with N1=c >0, N2r E for some E >0. 
Subcase 2. lirn,,, Nl(t) does not exist. Then there exist E >0 and a sequence {t,} 

with Nl(t,) >E and (dNl/dt)(tn) =0. We may choose a subsequence {tni) such that 
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either S(tni)=Jsl for all tni or R(tni)=Jrl for all tni.If S(tni)=Jsl for all tni,then 
from (5.1)we have 

+

N2(tni)= y s 2 [ ( ~ ' 0 ' - ~ s l ) -
Nl(tni)] o ( l )  

Y s l  

Let tni-+ co and choose an appropriate subsequence of tni; there exists a point (Js1,I?, 
Nl ,  N2) E fl with N12 E and N22N;,. If R(tni)=Jrl for all tni,then from (5.2)we have 

-
Hence there exists a point (S,Jrl,Nl ,N2)E fl with N l 2  E and N2 2N$,. 

Casec.Nl(t)oscillates around Nl =N:,. Then there exists {t ,)~ith(dNl/dt)(t,)C 0 
and Nl(tn)=N:,. In this case we may choose a subsequence itni)such that either 
S(tni)SJsl for all tnior R(tni)SJrl for all tni.Then from (5.1)or (5.2)we still have 
inequalities (6.7)and (6.8).Hence we complete the proof of Theorem 5.6(iii). Q.E.D. 

Proof of Theorem 5.6(iv). From the assumption that C2< T* < C1,the "positive" ' 
equilibrium (E,) exists. That (E,) is unstable follows directly from the assumption 
C2C T* C C1,and the linear stability analysis about (E,) .The results are obvious from 
Figs. 6a, 6b, 6c, 6d .  Q.E.D. 

Remark. In describing Theorems 5.5 and 5.6 we take C1# C2 as an essential 
assumption. What can happen when C1= C2?The meaning for C1= C2is that the fixed 
yield ratio for species 1 growing on resources S and R is equal to the fixed yield ratio 
for species 2growing on resources S and R. In this case, the isoclines in (6.4)are parallel 
lines in the N1-N2 plane. Since the proofs are the same as or even more simple than 
the proofs for the case C1# C2,we merely state the results here and omit the proofs. 
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Let us define for convenience 

and without loss of generality assume that Jsl<Js2. 

(i) If Jrl<Jr2, then Nl1> N21 and 

lim (S(t), R(t), Nl(t), N2(t)) = (s'o'- Nl1-,~ ' 0 '  N11 
,NII, 0). 

t++m Ysl Y r l  

(ii) If J r 2  <Jrland N11> N21, then 

N11 N11lim (S(t), R (t), Nl(t), N2(t)) =(s'o'--,R(')--, Yt.1 ,,I,,).Y S ~  
t++m 

(iii) If J r 2  <Jrland N11 <N21, then 

N22 N22lim ($(t), R ( f ) , Nl(t), N2(t)) =(s")--,R"- -, 0, ~ 2 2 ) .  
t++m YSZ Yr2 

(iv) If Jr2<Jrland N11 =N21, then 

lim (S(t>, R(t), Nl(t), Nz(t)) = (Js2, Jrl, NT, N z  1,
t++m 

which depends on initial conditions. NT and N z  satisfy the following equation 

NT-+-=S Nz (0)-J , ~or -+-=R(o)-
Jr1.

NT N; 
Ysl Ys2 Yr1 Yr2 

This means that all points on the line N l l y , ~  +N2/ys2 =s'"-J,Z on the Nl-NZ 
plane (on the nonnegative octant) are equilibrium points. 

7. Discussion. In this paper, we have explored the behavior of an exploitative 
competition model which describes how two species compete for two complementary 
resources. The analysis has revealed that each of the classical outcomes of two-species 
Lotka-Volterra competition theory can arise in two or three different ways when 
resource dynamics and consumer-resource interaction are explicitly considered. 

Leon and Tumpson [17] discuss the competition between two species for two 
complementary or substitutable resources. Interested readers may find the mathemati- 
cal analysis and biological discussion for substitutable resources in a paper of Waltman, 
Hubbell and Hsu [37]. 

The equations in (4.1) describes how two species compete for two complementary 
nutrients in the chemostat. Tilman and Kilham [32] and Tilman [33] have performed 
interesting competition studies in semicontinuous cultures between two freshwater 
diatoms, Asterionella formosa Hass., and Cyclotella meneghiniana Kutz for the com- 
plementary resources phosphate and silicate. They did ~ io t  report any cases in which 
the outcomes were dependent on initial numbers. However, they did find a broad region 
of coexistence over a range of ratios of silicate/phosphate in the influent supply to 
semicontinuous cultures of the two diatom species. 

We have taken the data provided in Tilman [33] to see if there is any possibility 
of a case in which the initial number of Asterionella or Cyclotella would determine the 
outcome of competition. Let JpAamd JSA be the J criteria for Asterionella on phosphate 
and silicate, respectively, and let JPCand Jscbe the corresponding J criteria for 
Cyclotella. If we assume that all cell death was due to washout from the culture in the 
effluent, then the maximum death rate they studied experimentally was O.S/day, i.e., 
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D =O.S/day. Then the values of the J criteria are JPA=0.025 p M  (micromole), Js, = 
3.28 pM, J p c  =0.417 pM and JSC0.90 pM. Thus J ~ A= <JPC,SO that Asterionella has 
a lower subsistence concentration on phosphate than Cyclotella by more than an order 
of magnitude, but Jcs<JAS,SO that Cyclotella has a lower subsistence concentration 
on silicate than Asterionella. 

Next, it is necessary to compute T*, CA, and Cc, where CA and Cc are the C 
criteria for Asterionella and Cyclotella, respectively, 

where P"' and s"' are the input phosphate and silicate concentrations, respectively, 
and the point (JsA, JPc) is the intersection of the Asterionella and Cyclotella isoclines 
on the silicate-phosphate resource plane. Of the range of values of P"' and s"' tested 
by Tilman, we chose P"' = 10 pM, and s"' = 100 pM. This gives a value for T* = 

9.9 x 
Finally, it is necessary to compute the C criteria for the two diatoms. The yield 

constants for Asterionella are reported by Tilman [33] to be: YpA= 
2.18 x 10' cells/pM on phosphate, and YSA=2.51 x lo6cells/pM on silicate. There- 
fore, CA= (l/ypA)/(l/ySA) = 1.15 x The yield constants for Cyclotella are ypc= 
2.59 X lo7 cells/pM on phosphate, YSC=4.20 X lo6 cells/pM on silicate. Thus, 
Cc= (l/Ypc)/(l/Ysc) = 1.62x lo-'. 

With this information, we can answer the question of whether there can exist a 
case in which the winning diatom species (Asterionella or Cyclotella) is determined by 
the initial cell density of each diatom. We note that JpA<JPCand JSA>JSA.Next, we 
note that CA <T* <Cc. This corresponds to a case of coexistence, Theorem. 5.6(iii), 
a fact that Tilman [33] confirmed experimentally. In order for there to be a case in 
which the initial diatom density determines the outcome in this competitive system for 
these J's, it would be necessary that the inequalities among CA, T*, and Cc be totally 
reversed: CA >T* >Cc. This, in turn, would require substantial changes in the yield 
constants for phosphate and silicate in these two diatom species. Since only the criterion 
variable T* involves parameters under experimental control, there is no possiblity of 
a case in which initial cell densities affect the competitive outcome between Asterionella 
and Cyclotella. We note that it is possible for T*<CA, CC or T* >CA, Cc such that 
T* is an experimental parameter. In either of these cases, only one species survives 
and coexistence does not result. 
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