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An important consideration in the nonlinear predator-prey problem of Lotka- 
Volterra type is the determination of the period. This paper gives a general 
expression for the period in terms of the given parameters in the Lotka-Volterra 
system. We also discuss the qualitative behavior of the period related to the energy 
level of the Lotka-Volterra system. 

1. INTRODUCTION 

In this paper we shall give a general expression for the period of the 
periodic solutions of the following Lotka-Volterra predator-prey system: 

dx 
- = x(a -By). 
dt 

dv dt = y(6x - Y). 

x(0) = x0 > 0, Y(O) =yo > 0. 

The Lotka-Volterra equations have been at the root of almost every 
investigation into population dynamics for the last few decades. They predict 
the existence of population cycles in which the period is an important 
parameter. It is well known that (1.1) has a one-parameter family of periodic 
solutions with the equilibrium (y/S, a//3) as center point. Volterra 131 
computed that for small disturbance of the equilibrium the period of such a 
solution is T=: 271/G., Grasman and Veling [2] gave an asymptotic 
formula for the period which holds for large disturbances. Frame [ 11 
expressed the period T as power series. In this paper, we express the period T 

* Work partially supported by the National Science Council of the Republic of China. 

428 
0022-247X/83 $3.00 
Copyright 0 1983 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



PERIODIC SOLUTION INTHE LOTKA-VOLTERRA SYSTEM 429 

as the sum of two integrals and the practical computation of these integrals 
must be aided by a numerical integration scheme. From the expression of 
period T we determine the qualitative behavior of the period T related to the 
energy level C, for the periodic orbit. The conclusion is that as a function of 
C T(C,) is a strictly increasing function on (0. co) with 
lit&p + ,x T(C,) = +co. 

2.. SCALING 

In this brief section we choose appropriate nondimensional variables. 
Hereafter we will use bars over parameters and independent and dependent 
variables to signify that they appeared in the original equations (1. I). 
Parameters and independent and dependent variables without bars will be 
used for the new nondimensional entities. Where no change is made in a 
parameter or variable, no bars will appear. Thus we let 

With this change (1.1) becomes 

$ = x(a - y). 
(2.1) 

- = y(x - 1 ), 
dt 

x(0) = xg > 0, y(0) =?‘,, > 0. 

3. MAIN RESULT 

In this section we state and prove our main result. First we reduce (2.1) to 
an equation of Van der Pol type. We denote . = d/dt. From (2.1) we have 

(i) * 
?=.?(a-)I)-x$=i(a-y)-xy(x- I)=---- 

.K 
x(x- 1) U-” 

i 1 x ’ 
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i.e., 

*. (4’ x---i(x- l)+ax(x- l)=O. 
X 

Next we simplify Eq. (3.2) by a transform x = ez or z = In X. Then we 
have .? = ie’, f = i’e’ + (i)’ er and 

f-i(e’- l)+a(e’- l)=O. (3.3) 

Let w  = i. Then we rewrite (3.3) into the following system of ordinary 
differential equations: 

i = w, 
(3.4) I ti = (w - a)(& - 1). 

We may solve (3.4) by separation of variables, i.e., 

--&dw=(eZ- 1)dz. (3.5) 

With these transforms we are in a position to compute the period T of the 
periodic solution of (2.1). First we note that the periodic orbit of (2.1) is 
determined by the first integral 

where 

or 

where 

x-1-lnx+):-a-aln$=C,. 

CO=xg- 1 -lnx,+y,-a-alIn?. 

Let X,in, xmaw 7 with X,in < X,,, , be the two roots of x - 1 - In x = C,, i.e., 
the points (Xmin ) a) and (x,,, , a) are the two extreme points of the periodic 
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orbit of (2.1) on the left and the right, respectively. Now we compute the 
“time” T, spent by the trajectory of (2.1) travelling from (x,,,~“, a) to 

(x maxi a). Suppose at t=O, x=xmin, y=a. Since z=lnx, w=i=.</x= 
a -y and 0 < ~7 < a, it follows that z = ln(x,,,), w = 0 as t = 0 and 
CI > w > 0 on 0 < t < 7’,. From (3.5) it follows that 

Set F(w) = lr (</(< - a)) dr. Then F(w) = w + a ln(l a - w I/a). It is easy 
to see that F(0) = 0, F(w) is negative on (-co, 0) and (0, a), strictly 
decreasing on (0, a), strictly increasing on (-co, 0) and lim,., ir F(w) = 
lim u,-ra F(w) = -co. Set G(z) = ji;l(X,i,) (e’ - 1) dq. Then G(z) = (e’ - z) - 
(x,in - ln(x,i,)) or G(Z) = (e’ -z) - (C, + 1). It is easy to see that 
G(z) < 0 on [ln(x,,,), ln(x,,,)] with its minimal value G(0) = -C,, < 0 and 
maximal values G(ln(xmin)) = G(ln(x,,,)) = 0. 

Let F,(w) be the restriction of F(w) on [0, a). Then F, is 1 - 1 on 10, a). 
We rewrite (3.6) as 

w = F; ‘(G(z)). (3.7) 

Since w = dz/dt, it follows that 

I 
In(xma,) 

T, = 
dz 

~n(x,,,i,) F;‘(W)) ’ 
(3.8) 

We note that the integral in (3.8) is an improper Riemann-integral on 

M%d W,,,>>. S ince w is closed to 0, F,(w) = F,(O) + F{(O)w + 
F”(0) w* + ... is closed to w’/-a and hence F;‘(u) is close to 6. 

Similarly, we can compute the “time” T, spent by the trajectory of (2.1) 
travelling from (x,,, , a) to (xmin, a). Suppose at t = 0, x = xmax, 4’ = a. 
Since w = a - y, y > a, it follows that z = ln(x,,,), w = 0 as t = 0 and w < 0 
on 0 < t < T,. Let F,(w) be the restriction of F(w) on (---co, 01. Then Fzis 
l-l on (-co, O]. We rewrite (3.6) as w = F;‘(G(z)) and it follows that 

! 
In(x,i”) 

T2 = 
dz 

In(xnl,,) K ‘(G(z)) ’ 
(3.9) 

Similarly, the integral in (3.9) is an improper Riemann-integral. From (3.8). 
(3.9) we have the following, our main result. 

409’95’2 IO 
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THEOREM 1. The period T of the periodic solution of (2.1) can be 
expressed as 

T= 
1 1 

F;‘(G(z)) - F,‘(G(z)) dz’ I 
(3.10) 

where x,,, , x,,,~” are the two roots o/x-1-lnx=C,, C,=x,-l- 
lnx,+y,-a-aln(y,/a), G(z)=e’-z-(C,+ l)<O, on [ln(x,,,), 
ln(x,,,)], and F,(w) and F2(w) are the restrictions of P(w) on [O, a), 
(-00, 0), respectively, F(w) = w + a ln((a - w)/a). 

Remark. In the practical computation of the period T in Theorem 1, first 
we have to evaluate xmax, x,,,~“, the roots off(x)=x- 1 -Inx-C,=O. 
Since the functionf(x) is strictly increasing on [ 1, 03) and strictly decreasing 
on (0, 11, we can solve x,,, and x,,,~” simply by an iteration procedure. Then 
the next step is to evaluate the improper integrals 

I 
In(x,,x) 1 

.r 

Ill(X,,,) -1 

F; ‘(G(z)) dz 
and 

In(xnd In(Xmin) F, ‘(G(z)) dz* 

We note that Fi(w) is strictly decreasing on [0, a) and F,(w) is strictly 
increasing on (-co, 01. For each z, ln(x,,,) < z < In(x,,,), we set g(z) = 
F;‘(G(z)). Then we have F,(g(z)) = G(z). We can find g(z) by solving 
F,(w) - G(z) = 0. Since F,(w) is strictly decreasing, by an iteration process 
we can easily evaluate g(z). Hence by a numerical integration scheme we 
obtain an approximation of 

I 
In(x,,x) 1 

dz. 
. In(xmin) FF ‘(G(Z)) 

Similarly, we apply the same process to 

i 

In(x,,x) -1 

In(x,i,) F;‘(G(z)) dz’ 

As we see in the remark, the numerical computation of the period based 
on (3.10) is possible, but not practical. However, we may apply (3.10) to 
obtain the qualitative behavior of T related to the energy level C, which is 
determined by initial values x0, yO. 

First we observe that that function G: [In(x&, ln(x,,,)] -+ [O, -C,] is 
strictly decreasing on [In(x,J, 0] and is strictly increasing on [0, ln(x,,X)]. 

We denote Gl = G IIln(x,in),oI and G, = G ]lo,,n(x,,,j,. Since x,,,~” and xmax are 
functions of C,, from (3.10) T is obviously a function of C,,. We denote 
T = T(C,). 
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THEOREM 2. T(C,) is a strictly increasing function of C, satisfj~ing 

‘in-++ + ,I T(C,) = sm. 

Proof. From (3.10) we write 

VC”) = .I;~,,,,,,,., F- ,; (z)) + [‘“‘-- dz I I . 0 F, ‘(G,(z)) 

+I 
.Inw,“,“) 
.O F; ‘PC’&,, + il:,,.?,,, F, ‘t&z,) 

= f,(Co) + I*(Co) + IJCo> + J,(Co). 

For each i = 1, 2, 3,4, Ii > 0 and we shall show that each li(C,,) is a 
strictly increasing function on (0, co). Forst we consider I ,(C,,). Introduce a 
new variable 8, 0 < 0 < n/2, by 

F,‘(G,(z)) = F; ‘(-(I,,) sin 0. (3.1 I) 

Then G,(z) = F,(F; ‘(-CO) sin 19) and hence 

(e’ - 1) dz = F .~~~~~%,“~” a - F; I(-C,)) cos 0 do, 
1 0 

z = (G; ’ o F,)(F; ‘(-Co) sin e), (3.12) 

Wo)=,(‘* (-&I. (F;,,‘;,~~-s;;~~aj cos~d~ (3.13) 

= fq f(C,, 0) cos 0 d0. 
-0 

Since G; ’ o F, is strictly increasing on 10, F, ‘(-Co)\, from (3.12) we have 

%Z 
-----Z 
iiC, 

(Gr’ o F,)’ (F;‘(-Co) sin 0). sin 8. (F, I)‘(-C,,) . (-1) (3.14), 

>o on 0 < 0 < 7112. 

On the other hand, we have 

ij 1 -( ) 
z - 

- = 
ace e’ - 1 c,T 1)’ g < O, 

(3.151, 

(3.161, 
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m-co) 
F;‘(-Co) sin 8 - a 

< 0, (3*17), 

4F; ‘1’ (-Co> 
= (I;;‘(-C,) sin 19 - a)’ 

< 0, (3.18), 
a 

X0 

and hence 

$-SW09 8) > 0 on 0 < 0 < 7c/2. (3.19), 
0 

Let Co, > Co,. Then 

Z,(C,,) - Z,(C,,) = ,f=‘2 (Co, - Co,) + (t, 0) cos 8 de > 0 
0 

for some <, Co, < r < Co,. Hence II is a strictly increasing function. 
For the integral Z2(Co), we let F;‘(G,(z)) = F; ‘(-Co) sin 19 and have 

Z,(C,) = -j-y2 J- . 
K ‘(-Co> 

ez - 1 F; ‘(-Co) sin 8 - a 
cos e de, 

z = (G; ’ 0 F,)(F; ‘(-Co) sin 0), 

Similarly, we have that for 0 < 0 < 7c/2, 

(3.14)* 

(3. 16)2 

K’(-Co) 
F;‘(-Co) sin 0 - a < ” 

(3.1% 

a F; ‘(-Co> 

X0 F;‘(-Co) sin B-a (3.18), 

Hence Z,(C,) is strictly increasing on (0, 00). 
For the integral Z,(C,), we let F;‘(G,(z)) = F;‘(-Co) sin B and have 

Z,(C,) = -Jo=‘, J- K ‘(-Co> 
ez - 1 F; ‘(-Co) sin 8 - a 

cos e de, 

z = (G;’ 0 F2)(F;‘(-Co) sin 8). 
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We have that for 0 < 13 < rt/2, 

-g> 0, 
0 

p+. 

m c 1 - - 
( 1 X0 e’- 1 

< 0, 

F, ‘(-Co> 

F;‘(-Co) sin 8 - a > 0, 

a 

( 

F; ‘(-Co> 
X0 F; ‘(-Co) sin 0 - a 

> 0. 

Hence Z3(Co) is strictly increasing on (0, CD). 

435 

(3.141, 

(3.15), 

(3.16)x 

(3.17)1 

(3.18)., 

For the integral Z,(C,), we let F;‘(G2(z)) = F;‘(-Co) sin 19 and have 

Z,(C,) = jn;* -L F; ‘(-Co> cos 6 de. 
-0 ez- 1 F;‘(-Co) sin&a 

z = (G;’ o F,)(F; ‘(-Co) sin 19). 

Similarly, we have for 0 < B < 71/2, 

(3.14h 

(3.15), 

(3.16), 

K ‘(-Co) 
F;‘(-Co) sin 19 - a > ” 

(3.17), 

a F2 ‘(-Co> 
X0 F; ‘(-Co) sin 0 - a 

> 0. (3.181, 

Hence Z4(Co) is strictly increasing on (0, CO). 
To show T(C,)+ +co as Co+ +a~, we only need to show 
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lim Cp+m Z,(C,) = +w. Since l/F;‘(G,(z)) is a strictly increasing function 
on (0, In(x,,,)), we have 

AS C, -+ +a~, F’; ‘(-C,) + a and ln(x,,,) -+ +a. Hence lim,,) ++ W [AC,) 
= tw. 
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