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Abstract

We study a mathematical model of two species competing in a chemostat

for two internally stored essential nutrients, where the nutrients are added

to the culture vessel by way of periodic forcing functions. Persistence of a

single species happens if the nutrient supply is sufficient to allow it to acquire

a threshold of average stored nutrient quota required for growth to balance

dilution. More precisely, the population is washed out if a sub-threshold

criterion holds, while there is a globally stable positive periodic solution

if a super-threshold criterion holds. When there is mutual invasibility of

both semitrivial periodic solution of the two-species model, both uniform

persistence and the existence of periodic coexistence state are established.
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1 Introduction

Competition for resources is a fundamental interaction between species and there

has been a lot of experimental and theoretical works of nutrient-limited phyto-
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plankton growth and competition. Monod [21] proposed a now classical model of

microbial growth on a single limiting resource. In Monod’s model, the basic as-

sumption is that the nutrient uptake rate is proportional to the reproductive rate,

that is, growth is directly coupled to nutrient uptake. For this classical model with

a single growth-limiting resource, there is a simple outcome about competitive

dynamics: the species with the lowest break-even concentration for the nutrient

resource will win the competition [9, 13]. That is, the species with the lowest

break even nutrient concentration will exclude all other competitors, independent

of initial conditions.

There are some modifications of the above-mentioned Monod model. The first

accounts for the fact that phytoplankton can store nutrients within their cells, and

population growth increases monotonically with the nutrient quota stored within

individuals, that is, nutrient uptake and growth are decoupled. This led to the for-

mulation of the “variable-yield model” [4]. There is only one outcome when species

compete for one nutrient with internal storage: the superior nutrient competitor

will win the competition [12, 24, 25]. Outcomes such as coexistence of species, or

bistability where outcomes depend on initial conditions do not occur when species

compete for one nutrient with or without internal storage. The second modifica-

tion of the Monod model is to include multiple potentially limiting nutrients such

as nitrogen and phosphorus. In phytoplankton ecology, it has been generally ac-

cepted that growth stops when either resource falls below a certain level, known as

Liebigs law of the minimum [5]. This law reflects that two resources are essential

but non-substitutable.

The competition among these microbial species are usually studied in the well-

mixed chemostat [24], a simple model habitat. In this environment, the growth-

limiting nutrient is supplied at a constant concentration flowing in at a constant

dilution rate, with a balancing outflow that removes all constituents. The chemo-

stat (see, e.g., [25]) is a piece of laboratory apparatus, yet it plays an important

role in theoretical ecology. It serves as a simple system of natural habitats such as

lakes, and is also the basis for many models involving spatial or temporal inhomo-

geneity. In reality, nutrient levels in natural environments usually vary temporally

as a result of diurnal or seasonal variations. Thus, it is more reasonable to incorpo-

rate such complication and assume the environment varies periodically. Motivated

by the works in [19, 20, 23, 24, 27, 28], we will consider a variable-yield model with

two species of phytoplankton competing for two essential nutrients with nutrient

concentration inflow varying periodically in time.
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A chemostat with fluid volume V is supplied with two essential nutrients at

concentration S(0)(t) and R(0)(t), from an external reservoir at the volumetric rate

F . A matching out at rate F from the chemostat contains both medium and

phytoplankton cells. The dilution rate is the ratio D = F/V whose reciprocal

gives the residence time of a cell in the chemostat. We consider a model for two

species of phytoplankton with variable internal stores of two essential resources in

the chemostat. Competition occurs in the sense that each population consumes

nutrients, thereby making it unavailable for its competitor. Let S(t) and R(t)

denote the concentrations of the limiting resources in the chemostat at time t.

Assume that ui(t) stands for the concentrations of species i in the culture vessel, and

Qi(t) represents the average amount of stored nutrient per cell of i-th population

at time t, i=1,2. Then the model is governed by the following ordinary differential

system:

dS
dt

= (S(0)(t)− S)D − fS1(S,QS1)u1 − fS2(S,QS2)u2,
dR
dt

= (R(0)(t)−R)D − fR1(R,QR1)u1 − fR2(R,QR2)u2,
dQSi

dt
= fSi(S,QSi)−min{µSi(QSi), µRi(QRi)}QSi, i = 1, 2,

dQRi

dt
= fRi(R,QRi)−min{µSi(QSi), µRi(QRi)}QRi, i = 1, 2,

dui

dt
= [min{µSi(QSi), µRi(QRi)} −D]ui, i = 1, 2,

S(0) ≥ 0, R(0) ≥ 0, ui(0) ≥ 0, i = 1, 2,

QSi(0) ≥ Qmin,Si, QRi(0) ≥ Qmin,Ri, i = 1, 2.

(1.1)

Here fSi(S,QSi) (fRi(R,QRi)) is the per capita uptake rate of species i as a function

of resource concentration S (R) and cell quota QSi (QRi). “Liebigs Law of the

Minimum” is used to describe the dependence of species growth on cell quotas, that

is, growth rate of species i is determined by the minimum of two Droop functions,

µSi(QSi) and µRi(QRi). This law reflects that the two resources are complementary,

not substitutable. Qmin,Ni denotes threshold cell quota below which no growth of

species i occurs, where N = S, R. We assume that there exists a period τ > 0 such

that S(0)(t) and R(0)(t) satisfy S(0)(t+ τ) = S(0)(t) ≥ 0, R(0)(t+ τ) = R(0)(t) ≥ 0.

According to [3, 4, 5], for N = S, R and i = 1, 2, the growth rate µNi(QNi)

takes the forms :

µNi(QNi) = µ∞,Ni

(
1− Qmin,Ni

QNi

)
, or

µNi(QNi) = µ∞,Ni
(QNi −Qmin,Ni)+

ANi + (QNi −Qmin,Ni)+
,
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where Qmin,Ni is the minimum cell quota necessary to allow cell division and (QNi−
Qmin,Ni)+ is the positive part of (QNi −Qmin,Ni) and µ∞,Ni is the maximal growth

rate at infinite quotas (i.e., as QNi → ∞) of the species i. From these two examples,

we see that the specific growth rate of the species is an increasing and saturating

function of nutrient quota.

According to [1, 2, 8], for N = S, R, and i = 1, 2, the uptake rate fNi(N,QNi)

takes the form:

fNi(N,QNi) = ρNi(QNi)
N

KNi +N
,

where ρNi(QNi), Qmin,Ni ≤ QNi ≤ Qmax,Ni, is defined as follows:

ρNi(QNi) = ρhighmax,Ni − (ρhighmax,Ni − ρlowmax,Ni)
QNi −Qmin,Ni

Qmax,Ni −Qmin,Ni

, or

ρNi(QNi) = ρmax,Ni.

Thus, the nutrient uptake of the species is assumed to be a non-increasing func-

tion of internal nutrient stores and an increasing function of the external nutrient

concentration.

In view of the above classical examples, we assume that for each i = 1, 2 and

N = S, R, the functions µNi(QNi) and fNi(N,QNi) satisfy the following assump-

tions:

(H1) µNi(QNi) is continuously differentiable for QNi ≥ Qmin,Ni, µNi(Qmin,Ni) = 0,

µNi(QNi) ≥ 0 and µ′
Ni(QNi) > 0 for QNi ≥ Qmin,Ni.

(H2) fNi(N,QNi) is continuously differentiable for N > 0 and QNi ≥ Qmin,Ni,

fNi(0, QNi) = 0, ∂fNi(N,QNi)
∂N

> 0 and ∂fNi(N,QNi)
∂QNi

≤ 0.

In [20] (see also [19]), the authors considered the temporally homogeneous sys-

tem of (1.1), that is, they assumed S(0)(t) ≡ S(0) and R(0)(t) ≡ R(0) in (1.1). In

order to ensure that the temporally constant system of (1.1) is differentiable at the

equilibrium, it was assumed that

µSi(QSi) ̸= µRi(QRi) at equilibrium, ∀i = 1, 2. (1.2)

With the condition (1.2), a simple linearization argument become possible. For

the single population model of the temporally homogeneous system of (1.1), it
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is proved that if a nontrivial equilibrium exists, then it is unique and globally

stable [19, 20]. For the temporally homogeneous system of (1.1), it exhibits out-

comes of competitive exclusion, bistability, and globally stable coexistence [20],

depending on tradeoffs between abilities to compete for the nutrient and growth

requirements under the additional assumption (1.2). However, the techniques used

for the autonomous system [19, 20] may not apply to our non-autonomous model

(1.1). This is because it does not make sense to impose a similar condition to

assumption (1.2) for our periodic system (1.1). Thus, we cannot do local stabil-

ity analysis for our periodic system by the method of linearization. To overcome

this difficulty, we use the following strategy. We first determine the extinction

periodic solution (S∗(t), R∗(t), Q∗
S(t), Q

∗
R(t), 0) of the single species growth model

(2.1), where (S∗(t), R∗(t)) represents the available nutrient in a species-free chemo-

stat and (Q∗
S(t), Q

∗
R(t)) describes cell quota without the presence of species. The

proofs of the existence and uniqueness of (Q∗
S(t), Q

∗
R(t)) are given in Lemma 2.1,

whose mathematical arguments are nontrivial and quite different from those in [20,

Lemma 9]. By using a mass conservation constraint, we can reduce system (2.1) to

the limiting system (2.11), which is essentially equivalent to the monotone system

(2.12). To study the stability of (Q∗
S(t), Q

∗
R(t), 0) for system (2.11), we construct

a suitable upper solution (ŪS(t), ŪR(t), ū(t)) for system (2.12), and employ the

comparison principle to show (Q∗
S(t), Q

∗
R(t), 0) is actually globally asymptotically

stable for system (2.11) when a the sub-threshold criterion holds (see Lemma 2.3).

In Lemma 2.4, when the super-threshold criterion holds, we first prove that system

(2.11) is uniformly persistent, and hence, system (2.11) admits at least one posi-

tive periodic solution by appealing to the theory of uniform persistence for periodic

semiflows (see, e.g., [30]). Then the uniqueness and global attractivity of positive

periodic solution can be obtained since we can further prove that the solution

semiflow generated by system (2.12) is monotone and strongly subhomogeneous

(see Lemma 2.2). Finally, we use the theory of chain transitive sets (see [14] or [30,

Section 1.2]) to establish the global dynamics for system (2.1) (see Theorem 2.1).

Note that returning to the autonomous system studied in [19, 20], our methods and

results are still true for the single population model without technical assumption

(1.2).

The remaining part of the paper is organized as follows. Section 2 is devoted to

the establishment of a threshold type result on the global dynamics of the single

species growth model by appealing to the theories of monotone dynamical systems

and chain transitive sets. Under appropriate conditions, it is shown in section 3
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that two competing species are uniformly persistent and the model system (1.1)

admits at least one positive periodic solution. A brief discussion section completes

the paper.

2 Single species growth

In this section, we first consider the single species growth model. Mathematically,

it simply means that we set u1 = 0 or u2 = 0 in model (1.1). In order to simplify

notation, we dropped all subscripts in the remaining equations and consider

dS
dt

= (S(0)(t)− S)D − fS(S,QS)u,
dR
dt

= (R(0)(t)−R)D − fR(R,QR)u,
dQS

dt
= fS(S,QS)−min{µS(QS), µR(QR)}QS,

dQR

dt
= fR(R,QR)−min{µS(QS), µR(QR)}QR,

du
dt

= [min{µS(QS), µR(QR)} −D]u,

(2.1)

with initial values in the domainX := {(S,R,QS, QR, u) ∈ R5
+ : QS ≥ Qmin,S, QR ≥

Qmin,R}.
It is easy to see that X is positively invariant for system (2.1). Putting u = 0

in the first two equations of (2.1) results in

dS

dt
= (S(0)(t)− S)D, (2.2)

and
dR

dt
= (R(0)(t)−R)D. (2.3)

The linear equations (2.2) and (2.3) have globally attractive positive τ−periodic

solutions S = S∗(t) = S∗(t + τ) and R = R∗(t) = R∗(t + τ), respectively, which

describe the available nutrient in a phytoplankton-free chemostat.

Now putting S = S∗(t) and R = R∗(t) in system (2.1), we obtain{
dQS

dt
= fS(S

∗(t), QS)−min{µS(QS), µR(QR)}QS,
dQR

dt
= fR(R

∗(t), QR)−min{µS(QS), µR(QR)}QR,
(2.4)

with initial values in the domain Γ := {(QS, QR) ∈ R2
+ : QN ≥ Qmin,N , N = S,R}.

It is easy to see that Γ is positively invariant for system (2.4).
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Lemma 2.1. System (2.4) has a unique τ -periodic solution (Q∗
S(t), Q

∗
R(t)) to which

all solutions are attracted.

Proof. We first show that every solution of system (2.4) exists for all t ≥ 0. Let

[0, σ) be the maximal interval of existence. We need to prove that σ = +∞. By

the continuation theorem, it suffices to prove that the solution is bounded on [0, σ).

Motivated by the proofs in [19, Proposition 3], we consider the dynamics of the

variable V (t) = 1
2
[(QS(t))

2 + (QR(t))
2]. By the monotonicity of fN , the inequality

x ≤ 1
2
(1 + x2) and the fact that QN ≥ Qmin,N , for N = S,R, it follows that V (t)

satisfies

dV (t)

dt
=

dQS(t)

dt
QS +

dQR(t)

dt
QR

≤ fS(S
∗(t), QS)QS + fR(R

∗(t), QR)QR

≤ 1

2
fS(S

∗
max, Qmin,S)[1 +Q2

S] +
1

2
fR(R

∗
max, Qmin,R)[1 +Q2

R] (2.5)

≤ 1

2
fS(S

∗
max, Qmin,S) +

1

2
fR(R

∗
max, Qmin,R)

+max{fS(S∗
max, Qmin,S), fR(R

∗
max, Qmin,R)}V (t),

where S∗
max := maxt∈[0,τ ] S

∗(t) and R∗
max := maxt∈[0,τ ]R

∗(t). The resulting inequal-

ity implies that V (t) are bounded in finite time intervals, and so are QS(t) and

QR(t).

Next, we show that solutions of system (2.4) are ultimately bounded. By the

first equation of (2.4), it follows that dQS

dt
≥ fS(S

∗
min, QS) − µS(QS)QS, where

S∗
min := mint∈[0,τ ] S

∗(t). The resulting inequality and the global existence of so-

lutions of (2.4) imply that lim inft→∞ QS(t) ≥ Q0
S, where Q0

S is the unique root

of fS(S
∗
min, QS) − µS(QS)QS = 0, and hence, Q0

S > Qmin,S. Similarly, it follows

from the second equation of (2.4) that there exists a unique constant Q0
R > Qmin,R

such that lim inft→∞ QR(t) ≥ Q0
R > Qmin,R. By the above discussions and (H1), it

follows that there exists δ0 > 0 and T > 0 such that min{µS(QS(t)), µR(QR(t))} ≥
δ0, ∀ t ≥ T . In view of (2.4), we have{

dQS

dt
≤ fS(S

∗
max, QS)− δ0QS, ∀ t ≥ T,

dQR

dt
≤ fR(R

∗
max, QR)− δ0QR, ∀ t ≥ T,

where S∗
max and R∗

max were defined in the previous discussion. This implies that

solutions of system (2.4) are ultimately bounded.
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Note that system (2.4) is a planar, competitive, periodic system of differen-

tial equations. A well-known result for such a system is that every bounded

solution is asymptotic to a periodic solution (see, e.g., [25, Section 7.4]). Let

(Q∗
S(t), Q

∗
R(t)) be a periodic solution of system (2.4). Then (H1) and (H2) imply

that Q∗
S(t) ≥ Qmin,S and Q∗

R ≥ Qmin,R for all t ≥ 0, and hence, (Q∗
S(t), Q

∗
R(t))

is a positive periodic solution of system (2.4). If we can prove that the positive

periodic solution (Q∗
S(t), Q

∗
R(t)) of system (2.4) is unique, then the proof is done.

Suppose, by contradiction, that (Q1∗
S (t), Q1∗

R (t)) and (Q2∗
S (t), Q2∗

R (t)) are two differ-

ent positive τ−periodic solutions of system (2.4). Then we have (Q1∗
S (0), Q1∗

R (0)) ̸=
(Q2∗

S (0), Q2∗
R (0)). Note that any two points in R2 are order related either in ≤

or ≤K . Without loss of generality, we can assume that either (Q2∗
S (0), Q2∗

R (0)) <

(Q1∗
S (0), Q1∗

R (0)), or (Q2∗
S (0), Q2∗

R (0)) <K (Q1∗
S (0), Q1∗

R (0)).

In the case where (Q2∗
S (0), Q2∗

R (0)) < (Q1∗
S (0), Q1∗

R (0)), we have

(Q2∗
S (τ), Q2∗

R (τ)) = (Q2∗
S (0), Q2∗

R (0)) < (Q1∗
S (0), Q1∗

R (0)) = (Q1∗
S (τ), Q1∗

R (τ)).

By the backward comparison theorem (see, e.g., [15, Lemma 2.2] and [25, Lemma

7.4.1] ), it follows that (Q2∗
S (t), Q2∗

R (t)) ≤ (Q1∗
S (t), Q1∗

R (t)) for all t ∈ [0, τ ]. Without

loss of generality, we assume that Q2∗
S (0) < Q1∗

S (0) and define g(t) := Q1∗
S (t) −

Q2∗
S (t). Otherwise, we have Q2∗

R (0) < Q1∗
R (0) and then choose g(t) := Q1∗

R (t) −
Q2∗

R (t). Then it follows from the first equation of (2.4) that

g′(t) =
[
fS(S

∗(t), Q1∗
S (t))−min{µS(Q

1∗
S (t)), µR(Q

1∗
R (t))}Q1∗

S (t)
]

−
[
fS(S

∗(t), Q2∗
S (t))−min{µS(Q

2∗
S (t)), µR(Q

2∗
R (t))}Q2∗

S (t)
]
.

Using (H1) and (H2), we see that g(t) satisfies g′(t) ≤ 0, for all t ∈ [0, τ ], and

g′(t) < 0 when t ∈ [0, τ ] is sufficiently close to 0 or τ . This implies that g(τ) < g(0),

which contradicts the fact that g(t) is a τ−periodic function.

In the case where (Q2∗
S (0), Q2∗

R (0)) <K (Q1∗
S (0), Q1∗

R (0)), by the forward compar-

ison theorem (see, e.g., [25, Theorem B.4]), we have

(Q2∗
S (t), Q2∗

R (t)) ≤K (Q1∗
S (t), Q1∗

R (t)), ∀ t ∈ [0, τ ].

Dividing the first (second) equation of (2.4) by QS(t) (QR(t)) and integrating the

resulting equation in t ∈ [0, τ ], we have

0 =

∫ τ

0

1

Q1∗
S (t)

d(Q1∗
S (t)) =

∫ τ

0

fS(S
∗(t), Q1∗

S (t))

Q1∗
S (t)

dt−
∫ τ

0

min{µS(Q
1∗
S (t)), µR(Q

1∗
R (t))}dt,
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and

0 =

∫ τ

0

1

Q1∗
R (t)

d(Q1∗
R (t)) =

∫ τ

0

fR(R
∗(t), Q1∗

R (t))

Q1∗
R (t)

dt−
∫ τ

0

min{µS(Q
1∗
S (t)), µR(Q

1∗
R (t))}dt.

Therefore, ∫ τ

0

fS(S
∗(t), Q1∗

S (t))

Q1∗
S (t)

dt =

∫ τ

0

fR(R
∗(t), Q1∗

R (t))

Q1∗
R (t)

dt. (2.6)

Similarly, we can prove that∫ τ

0

fS(S
∗(t), Q2∗

S (t))

Q2∗
S (t)

dt =

∫ τ

0

fR(R
∗(t), Q2∗

R (t))

Q2∗
R (t)

dt. (2.7)

By virtue of (H2), we have ∂fN (N,QN )
∂QN

≤ 0, for each N = S, R. This and the fact

(Q2∗
S (0), Q2∗

R (0)) <K (Q1∗
S (0), Q1∗

R (0)) imply that∫ τ

0

fS(S
∗(t), Q1∗

S (t))

Q1∗
S (t)

dt ≤
∫ τ

0

fS(S
∗(t), Q2∗

S (t))

Q2∗
S (t)

dt, (2.8)

and ∫ τ

0

fR(R
∗(t), Q1∗

R (t))

Q1∗
R (t)

dt ≥
∫ τ

0

fR(R
∗(t), Q2∗

R (t))

Q2∗
R (t)

dt. (2.9)

Note that when t ∈ [0, τ ] is sufficiently close to zero or τ , we have (Q2∗
S (t), Q2∗

R (t)) <K

(Q1∗
S (t), Q1∗

R (t)), and hence, at least one of two inequalities in (2.8) and (2.9) is

strict. This, together with (2.6) and (2.7), leads to a contradiction.

Now we show that every solution (S(t), R(t), QS(t), QR(t), u(t)) of system (2.1)

exists for all t ≥ 0. By the continuation theorem, it suffices to prove that the

solution of system (2.1) is bounded on finite time intervals. To this end, we let

TS(t) = S(t) + QS(t)u(t) and TR(t) = R(t) + QR(t)u(t). Then TS(t) and TR(t)

satisfy the linear systems (2.2) and (2.3), respectively. Hence, TS(t) and TR(t) are

bounded on finite time intervals, and so are S(t), R(t), QS(t)u(t) and QR(t)u(t).

Since QS(t) ≥ Qmin,S and QR(t) ≥ Qmin,R, it follows that u(t) is bounded on finite

time intervals. It remains to show that QS(t) and QR(t) are bounded on finite time

intervals. Let Ṽ (t) = 1
2
[(QS(t))

2 + (QR(t))
2]. Since S(t) and R(t) in system (2.1)

are bounded on finite time intervals, we can use the same arguments as in (2.5) to

prove that Ṽ (t) is bounded in finite time intervals, and so are QS(t) and QR(t).

Thus, every solution of system (2.1) exists globally.
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Let ZS = S∗(t)− S −QSu and ZR = R∗(t)−R−QRu. Then (2.1) becomes

dQS

dt
= fS(S

∗(t)−QSu− ZS, QS)−min{µS(QS), µR(QR)}QS,
dQR

dt
= fR(R

∗(t)−QRu− ZR, QR)−min{µS(QS), µR(QR)}QR,
du
dt

= [min{µS(QS), µR(QR)} −D]u,
dZS

dt
= −DZS,

dZR

dt
= −DZR,

(2.10)

with initial values in the domain

X := {(QS, QR, u, ZS, ZR) ∈ R5
+ : QN ≥ Qmin,N , QNu+ ZN ≤ N∗(0), N = S,R}.

Biologically, S(t) = S∗(t) − QSu − ZS and R(t) = R∗(t) − QRu − ZR should be

nonnegative. Indeed, if there exists a t0 such that S∗(t0)−QS(t0)u(t0)−ZS(t0) = 0

then

S ′(t0) = (S∗(t)−QSu− ZS)
′(t0)

= D(S(0) − S∗(t) +QSu+ ZS)(t0) = DS(0)(t0) ≥ 0,

which implies that S(t) ≥ 0 for all t ≥ 0. Similarly, we can show that R(t) ≥ 0 for

all t ≥ 0.

From the equations for u, QS and QR, together with (H1) and (H2), we see

that u(t) ≥ 0, QS(t) ≥ Qmin,S and QR(t) ≥ Qmin,R for all t ≥ 0. Obviously,

ZS(t), ZR(t) → 0 as t → ∞. Therefore, solutions of (2.1) are ultimately bounded

on X. By putting ZS = 0 and ZR = 0 in (2.10), we obtain the following periodic

limiting system:
dQS

dt
= fS(S

∗(t)−QSu,QS)−min{µS(QS), µR(QR)}QS,
dQR

dt
= fR(R

∗(t)−QRu,QR)−min{µS(QS), µR(QR)}QR,
du
dt

= [min{µS(QS), µR(QR)} −D]u,

(2.11)

with initial values in the domain

Y := {(QS, QR, u) ∈ R3
+ : QN ≥ Qmin,N , QNu ≤ N∗(0), N = S,R}.

Let P : Y → Y be the Poincaré map associated with system (2.11), that is,

P (QS(0), QR(0), u(0)) = (QS(τ), QR(τ), u(τ)), ∀ (QS(0), QR(0), u(0)) ∈ Y,
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where (QS(t), QR(t), u(t)) is the unique solution of system (2.11). It is easy to see

that

P n(QS(0), QR(0), u(0)) = (QS(nτ), QR(nτ), u(nτ)), ∀ n ≥ 0.

By Lemma 2.1, (Q∗
S(t), Q

∗
R(t), 0) is the trivial τ -periodic solution of (2.11). We

may not study the local stability of (Q∗
S(t), Q

∗
R(t), 0) via the linearization method

since the reaction functions in (2.11) are not differentiable. However, we are able to

obtain the global stability of (Q∗
S(t), Q

∗
R(t), 0) by appealing to theories of monotone

dynamics and chain transitive sets(see, e.g., [22, 30]). In the following, we first

convert (2.11) to a cooperative system. Let US = QSu and UR = QRu. Then

(2.11) becomes 
dUS

dt
= −DUS + fS(S

∗(t)− US,
US

u
)u,

dUR

dt
= −DUR + fR(R

∗(t)− UR,
UR

u
)u,

du
dt

= [min{µS(
US

u
), µR(

UR

u
)} −D]u,

(2.12)

with initial values in the domain

Y := {(US, UR, u) ∈ R3
+ : u > 0, Qmin,Nu ≤ UN ≤ N∗(0) ∀ N = S,R}.

Lemma 2.2. Let Φt(u0) be the solution of system (2.12) with initial data u0 ∈ Y.

Then the following statements are valid:

(i) For each t ≥ 0, the map Φt is monotone in the sense that Φt(u) ≥ Φt(v)

whenever u ≥ v in Y.

(ii) For each t > 0, the map Φt is strongly subhomogeneous in the sense that

Φt(θu0) ≫ θΦt(u0) for all u0 ≫ 0 in Y and θ ∈ (0, 1).

Proof. For convenience, we let (u1, u2, u3) := (US, UR, u) and rewrite (2.12) as

follows: 
du1

dt
= −Du1 + fS(S

∗(t)− u1,
u1

u3
)u3 := H1(t, u1, u2, u3),

du2

dt
= −Du2 + fR(R

∗(t)− u2,
u2

u3
)u3 := H2(t, u1, u2, u3),

du3

dt
= [min{µS(

u1

u3
), µR(

u2

u3
)} −D]u3 := H3(t, u1, u2, u3).

(2.13)

For any (u1, u2, u3) ≥ (v1, v2, v3) with ui = vi, it is easy to see thatHi(t, u1, u2, u3) ≥
Hi(t, v1, v2, v3), that is, system (2.13) satisfies the Kamke condition. By [22, Propo-

sition 3.1.1] or [26, Theorem 2], it follows that the map Φt is monotone. This proves

statement (i).
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Given u0 ≫ 0 in Y and θ ∈ (0, 1), we set V (t) := (V1(t), V2(t), V3(t)) = Φt(θu0),

and Y (t) := (Y1(t), Y2(t), Y3(t)) = θΦt(u0). Clearly, we have
dV1

dt
= −DV1 + fS(S

∗(t)− V1,
V1

V3
)V3,

dV2

dt
= −DV2 + fR(R

∗(t)− V2,
V2

V3
)V3,

dV3

dt
= [min{µS(

V1

V3
), µR(

V2

V3
)} −D]V3,

V (0) = θu0.

(2.14)

By assumption (H2), we further obtain
dY1

dt
< −DY1 + fS(S

∗(t)− Y1,
Y1

Y3
)Y3,

dY2

dt
< −DY2 + fR(R

∗(t)− Y2,
Y2

Y3
)Y3,

dY3

dt
= [min{µS(

Y1

Y3
), µR(

Y2

Y3
)} −D]Y3,

Y (0) = θu0.

(2.15)

It follows from (2.14), (2.15), and the comparison theorem that

Vi(t) ≥ Yi(t), ∀t ≥ 0, i = 1, 2, 3. (2.16)

Let s > 0 be given. We first show that V1(s) > Y1(s) and V2(s) > Y2(s).

Assume, by contrdiaction, that V1(s) = Y1(s). It follows from (2.16) that V ′
1(s) =

Y ′
1(s), and hence,

−DV1(s) + fS

(
S∗(s)− V1(s),

V1(s)

V3(s)

)
V3(s)

< −DY1(s) + fS

(
S∗(s)− Y1(s),

Y1(s)

Y3(s)

)
Y3(s).

This, together with V1(s) = Y1(s), gives rise to

fS

(
S∗(s)− V1(s),

V1(s)

V3(s)

)
V3(s) < fS

(
S∗(s)− V1(s),

V1(s)

Y3(s)

)
Y3(s). (2.17)

In view of (H2), we have

fS

(
S∗(t)− u1,

u1

u3

)
> 0,

∂

∂u3

[
fS

(
S∗(t)− u1,

u1

u3

)
u3

]
> 0
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for all u3 > 0, Qmin,Su3 ≤ u1 < S∗(t). It then follows from (2.17) that V3(s) < Y3(s),

which contradicts (2.16). Thus, we have V1(s) > Y1(s). Similarly, we can prove

that V2(s) > Y2(s).

Next we show that V3(s) > Y3(s). Assume that V3(s) = Y3(s). It follows from

(2.16) that V ′
3(s) = Y ′

3(s), which implies that

min

{
µS(

V1(s)

V3(s)
), µR(

V2(s)

V3(s)
)

}
= min

{
µS(

Y1(s)

Y3(s)
), µR(

Y2(s)

Y3(s)
)

}
. (2.18)

In the case where µS(
V1(s)
V3(s)

) ≤ µR(
V2(s)
V3(s)

), we see from (2.18) that

µS(
V1(s)

V3(s)
) ≤ µS(

Y1(s)

Y3(s)
) = µS(

Y1(s)

V3(s)
).

It then follows from (H1) that V1(s) ≤ Y1(s), which contradicts the fact that

V1(s) > Y1(s). In the case where µS(
V1(s)
V3(s)

) > µR(
V2(s)
V3(s)

), we see from (2.18) that

µR(
V2(s)

V3(s)
) ≤ µR(

Y2(s)

Y3(s)
) = µR(

Y2(s)

V3(s)
)

Using (H1) again, we obtain V2(s) ≤ Y2(s), which contradicts the fact that V2(s) >

Y2(s). Consequently, we have Φs(θu0) ≫ θΦs(u0). This proves statement (ii).

Let P : Y → Y be the Poincaré map associated with system (2.12), that is,

P(US(0), UR(0), u(0)) = (US(τ), UR(τ), u(τ)), ∀ x̃ := (US(0), UR(0), u(0)) ∈ Y,

where (US(t), UR(t), u(t)) is the unique solution of system (2.12).

For convenience, we define the time-average of a τ -periodic function f(t) as

⟨f(t)⟩ := 1
τ

∫ τ

0
f(t)dt. The following result is concerned with the extinction of

species for system (2.11).

Lemma 2.3. Let (QS(t), QR(t), u(t)) be the unique solution of system (2.11) with

the initial data in Y. If ⟨min{µS(Q
∗
S(t)), µR(Q

∗
R(t))} −D⟩ < 0, then

lim
t→∞

|(QS(t), QR(t), u(t))− (Q∗
S(t), Q

∗
R(t), 0)| = 0,

where (Q∗
S(t), Q

∗
R(t)) is the unique periodic solution of system (2.4).
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Proof. We first show that every solution of system (2.11) in Y satisfies limt→∞ u(t) =

0. Note that if u(0) = 0, then u(t) ≡ 0. Thus, we assume that u(0) > 0. Since

systems (2.11) and (2.12) are essentially equivalent, it suffices to show that every

solution of system (2.12) in Y satisfies limt→∞ u(t) = 0. Let us extend fN(N,QN),

N = S,R, to the the domain R× [Qmin,N ,∞) by defining

FN(N,QN) =

{
fN(N,QN) for N ≥ 0, QN ≥ Qmin,N ,

0 for N < 0, QN ≥ Qmin,N .

Then we consider the extended system corresponding to system (2.12):
dUS

dt
= −DUS + FS(S

∗(t)− US,
US

u
)u,

dUR

dt
= −DUR + FR(R

∗(t)− UR,
UR

u
)u,

du
dt

= [min{µS(
US

u
), µR(

UR

u
)} −D]u.

(2.19)

Note that if (US(0), UR(0), u(0)) ∈ Y and (US(t), UR(t), u(t)) is a solution of system

(2.12), then (US(t), UR(t), u(t)) satisfies

u(t) > 0, Qmin,Nu(t) ≤ UN(t) ≤ N∗(t), ∀ N = S,R, t ≥ 0. (2.20)

This implies that (US(t), UR(t), u(t)) is also a solution of system (2.19).

For any given δ > 0, let ū(t) = ū(t, δ) be the unique solution of{
dū
dt

= [min{µS(Q
∗
S(t)), µR(Q

∗
S(t))} −D]ū,

ū(0) = δ,
(2.21)

and set

ŪS(t) = Q∗
S(t)ū(t) and ŪR(t) = Q∗

R(t)ū(t). (2.22)

It is easy to see that

ŪN(t)

ū(t)
= Q∗

N(t) ≥ Qmin,N , for all N = S,R and t ≥ 0.

However, we cannot guarantee that S∗(t) − ŪS(t) ≥ 0 and R∗(t) − ŪR(t) ≥ 0 for

all t ≥ 0. This is the reason why we consider the extended system (2.19) instead

of (2.12).
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Based on (2.4), (2.21) and (2.22), we are ready to show the following inequalities:
dŪS

dt
≥ −DŪS + FS(S

∗(t)− ŪS,
ŪS

ū
)ū,

dŪR

dt
≥ −DŪR + FR(R

∗(t)− ŪR,
ŪR

ū
)ū,

dū
dt

= [min{µS(
ŪS

ū
), µR(

ŪR

ū
)} −D]ū.

(2.23)

The third equation in (2.23) is obvious. Since the establishments of the first two in-

equalities in (2.23) are similar, we only verify the first one. By direct computations,

it follows that

dŪS

dt
=

dQ∗
S(t)

dt
ū(t) +

dū(t)

dt
Q∗

S(t)

= [fS(S
∗(t), Q∗

S(t))−min{µS(Q
∗
S(t)), µR(Q

∗
R(t))}Q∗

S(t)] ū(t)

+ [min{µS(Q
∗
S(t)), µR(Q

∗
S(t))} −D] ū(t)Q∗

S(t)

= −DQ∗
S(t)ū(t) + fS(S

∗(t), Q∗
S(t))ū(t) = −DŪS + fS(S

∗(t),
ŪS

ū
)ū

≥ −DŪS + FS(S
∗(t)− ŪS,

ŪS

ū
)ū.

Note that ŪS(0) = Q∗
S(0)ū(0) = Q∗

S(0) · δ, ŪR(0) = Q∗
R(0)ū(0) = Q∗

R(0) · δ,
where δ is defined as in (2.21). Since (US(0), UR(0), u(0)) ∈ Y, it follows that

(US(t), UR(t), u(t)) satisfies (2.20), and hence, we can fix a suitable δ > 0 such that

(ŪS(0), ŪR(0), ū(0)) ≥ (US(0)), UR(0), u(0)). (2.24)

Since (2.19) is a monotone system (see Lemma 2.2(i)), it follows from the compar-

ison theorem, together with (2.23) and (2.24), that

(ŪS(t), ŪR(t), ū(t)) ≥ (US(t)), UR(t), u(t)), ∀t ≥ 0,

and hence, ū(t) ≥ u(t), ∀t ≥ 0. By the assumption ⟨min{µS(Q
∗
S(t)), µR(Q

∗
R(t))} −

D⟩ < 0, we have limt→∞ ū(t) = 0. This implies that limt→∞ u(t) = 0.

Recall that P : Y → Y is the Poincaré map associated with system (2.11).

Given x0 = (QS(0), QR(0), u(0)) ∈ Y0, let ω(x0) be the omega limit set of x0 for

the period map P associated with (2.11), that is,

ω = ω(x0) := {x∗ : ∃{mk} → ∞ such that lim
k→∞

Pmk(x0) = x∗}.
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Since limt→∞ u(t) = 0, it follows that there exists a set C ⊂ R2
+ such that ω =

C × {0}. For any given (Q0
S, Q

0
R) ∈ C, we have (Q0

S, Q
0
R, 0) ∈ ω ⊂ Y. By the

definition of Y, it follows that (Q0
S, Q

0
R) ∈ Γ, and hence, C ⊂ Γ. In view of the

property of the set Γ, we see that C ̸= {(0, 0)}.
Assume that P̂ : Γ → Γ is the Poincaré map associated with system (2.4) and

we define

W s(Q∗
S(0), Q

∗
R(0)) := {(Q0

S, Q
0
R) : P̂

m(Q0
S, Q

0
R) → (Q∗

S(0), Q
∗
R(0)) as m → ∞}.

By [30, Lemma 1.2.1], ω is a compact, invariant and internal chain transitive

set for P . Moreover, if (Q0
S, Q

0
R) ∈ R2

+ with (Q0
S, Q

0
R, 0) ∈ ω, there holds P |ω

(Q0
S, Q

0
R, 0) = (P̂ (Q0

S, Q
0
R), 0). It then follows that C is a compact, invariant and in-

ternal chain transitive set for P̂ : Γ → Γ. Since C ̸= {(0, 0)} and {(Q∗
S(0), Q

∗
R(0))} is

globally attractive for P̂ in Γ, we have C∩W s(Q∗
S(0), Q

∗
R(0)) ̸= ϕ. By [30, Theorem

1.2.1], it follows that C = {(Q∗
S(0), Q

∗
R(0))}, and hence, ω = {(Q∗

S(0), Q
∗
R(0), 0)}.

This complete the proof.

Now we turn to the existence and the global stability of positive periodic solu-

tions for the limiting system (2.11). Let Y0 := {(QS, QR, u) ∈ Y : u > 0}, ∂Y0 :=

Y\Y0.

Lemma 2.4. If ⟨min{µS(Q
∗
S(t)), µR(Q

∗
R(t))}−D⟩ > 0, then system (2.11) admits

a globally attractive positive τ -periodic solution (Q̃S(t), Q̃R(t), ũ(t)) in Y0, that is,

limt→∞ |(QS(t), QR(t), u(t))−(Q̃S(t), Q̃R(t), ũ(t))| = 0 for any (QS(0), QR(0), u(0)) ∈
Y0.

Proof. We proceed with two steps. First, we show that system (2.11) is uniformly

persistent, and hence, system (2.11) admits at least one positive periodic solution.

Secondly, we prove the uniqueness and global attractivity of positive periodic solu-

tion by applying the theory of monotone and subhomogeneous systems (see, e.g.,

[30]) to (2.12). Note that systems (2.11) and (2.12) are essentially equivalent.

Claim 1. System (2.11) is uniformly persistent with respect to (Y0, ∂Y0) in

the sense that there is an η > 0 such that for any (QS(0), QR(0), u(0)) ∈ Y0,

the solution (QS(t), QR(t), u(t)) of (2.11) satisfies lim inft→∞ u(t) ≥ η, and system

(2.11) admits at least one positive periodic solution.

To prove this claim, we appeal to the theory of uniform persistence for discrete-

time dynamical systems. Recall that P : Y → Y is the Poincaré map associated
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with system (2.11). It is easy to see that P (Y0) ⊂ Y0. Further, P is point dissi-

pative and compact since solutions of system (2.11) are ultimately bounded. Let

E0 := {(Q∗
S(0), Q

∗
R(0), 0)}. Then E0 is a fixed point of P and is a compact and

isolated invariant set for P in ∂Y0.

In the case where u(0) = 0, we have u(t) = 0 for any t ≥ 0. Thus, (QS, QR)

satisfies system (2.4) and it follows from Lemma 2.1 that limt→∞ |(QS(t), QR(t))−
(Q∗

S(t), Q
∗
R(t))| = 0. Consequently, P : Y → Y has the property that

ω(QS(0), QR(0), u(0)) = {(Q∗
S(0), Q

∗
R(0), 0)}, ∀ (QS(0), QR(0), u(0)) ∈ ∂Y0,

where ω(x0) is the omega-limit set of the orbit of P with initial values x0. It is

obvious that there is no cycle in ∂Y0 from E0 to E0.

Note that ⟨min{µS(Q
∗
S(t)), µR(Q

∗
R(t))}−D⟩ > 0 and the third component of E0

is identically zero. By the same arguments as in [30, Lemma 5.1.1], it follows that

there exists a δ0 > 0 such that E0 is a uniform weak repeller for Y0 in the sense that

lim supn→∞ ∥P n(QS(0), QR(0), u(0))−E0∥ ≥ δ0, for any (QS(0), QR(0), u(0)) ∈ Y0.

Therefore, E0 is isolated in Y and W s(E0) ∩ Y0 = ∅, where W s(E0) is the stable

set of E0 (see [30]).

Since P : Y → Y is point dissipative and compact, we conclude from [30,

Theorem 1.1.3] that there exists a global attractor A for P in Y. By [30, Theorem

1.3.1] on strong repellers, P : Y → Y is uniformly persistent with respect to

(Y0, ∂Y0). It follows from [30, Theorem 1.3.6] that there exists a global attractor A0

for P in Y0 and P has a fixed point (Q̃S, Q̃R, ũ) ∈ Y0. Thus, there exists a positive

periodic solution for (2.11) corresponding to the fixed point of the period map. By

[30, Theorem 3.1.1], it follows that the periodic semiflow T (t) : Y → Y, t ≥ 0,

associated with (2.11) is uniformly persistent with respect to (Y0, ∂Y0).

Next we will show that the positive periodic solution is unique and globally

asymptotically stable. Recall that P : Y → Y is the Poincaré map associated with

system (2.12). By Lemma 2.2, it follows that P : Y → Y is monotone, and strongly

subhomogeneous in the sense that P(θx̃) ≫ θP(x̃), ∀ x̃ ∈ Y, θ ∈ (0, 1) (see [30,

section 2.3]). Thus, [30, Theorem 2.3.2] implies that the following observation.

Claim 2. If P : Y → Y admits a nonempty compact invariant setK ⊂Int(R3
+),

then P has a fixed point e ≫ 0 such that every nonempty compact invariant set of

P in Int(R3
+) consists of e.

For any given x̃ := (US(0), UR(0), u(0)) ∈ Y, let (US(t), UR(t), u(t)) be the

unique solution of (2.12). It follows that (US(0)
u(0)

, UR(0)
u(0)

, u(0)) ∈ Y0, and (US(t)
u(t)

, UR(t)
u(t)

, u(t))

is a solution of system (2.11). By Claim 1, there is an η > 0 such that lim inft→∞ u(t) ≥
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η. It then follows that that ω̃(x̃) ⊂Int(R3
+), where ω̃(x̃) is the omega-limit set of the

orbit through x̃ ∈ Y for P. By Claim 2, there is an e ≫ 0 such that ω̃(x̃) = {e} for

all x̃ ∈ Y. This implies that e is globally attractive for P in Y. Corresponding to

the fixed point of the period map P, system (2.12) has a globally attractive positive

τ -periodic solution (ŨS(t), ŨR(t), ũ(t)) in Y. Let Q̃S(t) =
ŨS(t)
ũ(t)

and Q̃R(t) =
ŨR(t)
ũ(t)

.

Then (2.11) has a globally attractive positive τ -periodic solution (Q̃S, Q̃R, ũ) in

Y0.

Let X0 := {(S,R,QS, QR, u) ∈ X : u > 0} and ∂X0 := X\X0. Then we have

the following result on the global dynamics of the model system (2.1).

Theorem 2.1. Let (Q∗
S(t), Q

∗
R(t)) be the unique periodic solution of system (2.4),

and S∗(t) and R∗(t) be the globally attractive positive τ -periodic solutions of the

linear equations (2.2) and (2.3), respectively. Let (S(t), R(t), QS(t), QR(t), u(t)) be

the solution of system (2.1). Then the following statements are valid:

(i) If ⟨min{µS(Q
∗
S(t)), µR(Q

∗
R(t))} −D⟩ < 0, then

lim
t→∞

|(S(t), R(t), QS(t), QR(t), u(t))− (S∗(t), R∗(t), Q∗
S(t), Q

∗
R(t), 0)| = 0

for any (S(0), R(0), QS(0), QR(0), u(0)) ∈ X.

(ii) If ⟨min{µS(Q
∗
S(t)), µR(Q

∗
R(t))}−D⟩ > 0, then system (2.1) admits a globally

attractive positive τ -periodic solution (S̃(t), R̃(t), Q̃S(t), Q̃R(t), ũ(t)) in X0,

that is, for any

(S(0), R(0), QS(0), QR(0), u(0)) ∈ X0,

we have

lim
t→∞

|(S(t), R(t), QS(t), QR(t), u(t))− (S̃(t), R̃(t), Q̃S(t), Q̃R(t), ũ(t))| = 0,

where S̃(t) = S∗(t)− Q̃S(t)ũ(t) and R̃(t) = R∗(t)− Q̃R(t)ũ(t).

Proof. Since system (2.1) and (2.10) are equivalent, it suffices to analyze system

(2.10). Set

X0 := {(QS, QR, u, ZS, ZR) ∈ X : u > 0}, ∂X0 := X\X0.
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Let P1 : X → X be the Poincaré map associated with system (2.10) and ω1(x
1) be

the omega-limit set of the orbit of P1 with initial values x1 ∈ X.
From the last two equations of (2.10), it follows that limt→∞ ZS(t) = 0 and

limt→∞ ZR(t) = 0. Thus, there exists a set I ⊂ R3
+ such that ω1(x

1) = I ×{(0, 0)}.
For any given (Q0

S, Q
0
R, u

0) ∈ I, we have (Q0
S, Q

0
R, u

0, 0, 0) ∈ ω1(x
1) ⊂ X. By the

definition of X, we have (Q0
S, Q

0
R, u

0) ∈ Y, and hence, I ⊂ Y.
By [30, Lemma 1.2.1], ω1(x

1) is a compact, invariant and internal chain tran-

sitive set for P1. Moreover, if x0 ∈ R3
+ with (x0, 0, 0) ∈ ω1(x

1), there holds

P1 |ω1(x1) (x0, 0, 0) = (P (x0), 0, 0), where P : Y → Y is the Poincaré map as-

sociated with system (2.11). It then follows that I is a compact, invariant and

internal chain transitive set for P : Y → Y.
In the case where ⟨min{µS(Q

∗
S(t)), µR(Q

∗
R(t))}−D⟩ < 0, by Lemma 2.3, (2.11)

has a globally attractive positive τ -periodic solution (Q∗
S(t), Q

∗
R(t), 0) in Y. Since

I is a compact, invariant and internal chain transitive set for P : Y → Y, it

follows from [30, Theorem 1.2.1] that I is a fixed point of P . That is, I =

{(Q∗
S(0), Q

∗
R(0), 0)}, and hence, ω1(x

1) = I × {(0, 0)} = {(Q∗
S(0), Q

∗
R(0), 0, 0, 0)}.

This implies that (Q∗
S(0), Q

∗
R(0), 0, 0, 0)} is globally attractive for P1 in X. Cor-

responding to the fixed point of the period map P1, system (2.10) has a globally

attractive positive τ -periodic solution (Q∗
S(t), Q

∗
R(t), 0, 0, 0)} in X. This implies

that statement (i) holds true.

In the case where ⟨min{µS(Q
∗
S(t)), µR(Q

∗
R(t))}−D⟩ > 0, it follows from Lemma 2.4

that system (2.11) has a globally attractive positive τ -periodic solution (Q̃S(t), Q̃R(t), ũ(t))

in Y0. Note that (Q∗
S(t), Q

∗
R(t), 0) is also a τ -periodic solution of (2.11). This im-

plies that the possible fixed points (Q∗
S(0), Q

∗
R(0), 0) and (Q̃S(0), Q̃R(0), ũ(0)) are

isolated invariant sets in Y and no subset of (Q∗
S(0), Q

∗
R(0), 0) and (Q̃S(0), Q̃R(0), ũ(0))

forms a cycle in Y. Since I is a compact, invariant and internal chain transi-

tive set for P : Y → Y, it follows from [30, Theorem 1.2.2] that either I =

{(Q∗
S(0), Q

∗
R(0), 0)} or I = {(Q̃S(0), Q̃R(0), ũ(0))}.

Suppose, by contradiction, that I = {(Q∗
S(0), Q

∗
R(0), 0)}. This implies that

P n
1 (QS(0), QR(0), u(0), ZS(0), ZR(0)) = (QS(nτ), QR(nτ), u(nτ), ZS(nτ), ZR(nτ))

converges to (Q∗
S(0), Q

∗
R(0), 0, 0, 0) as n → ∞. Equivalently,

lim
t→∞

|(QS(t), QR(t), u(t), ZS(t), ZR(t))− (Q∗
S(t), Q

∗
R(t), 0, 0, 0)| = 0,
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and hence, limt→∞ |(QS(t), QR(t))− (Q∗
S(t), Q

∗
R(t))| = 0. Let

ϵ0 :=
1

2
⟨min{µS(Q

∗
S(t)), µR(Q

∗
R(t))} −D⟩ > 0.

Then there is a T > 0 such that

min{µS(QS(t)), µR(QR(t))} −D ≥ min{µS(Q
∗
S(t)), µR(Q

∗
R(t))} −D − ϵ0

for all t ≥ T . By the third equation of (2.10), we have

du(t)

dt
≥ [min{µS(Q

∗
S(t)), µR(Q

∗
R(t))} −D − ϵ0]u, ∀ t ≥ T.

Without loss of generality, letting T = n1τ and t = n2τ for some natural number

n1 and n2 with n2 > n1, we then obtain

u(n2τ) ≥ u(n1τ)exp

[∫ n2τ

n1τ

[min{µS(Q
∗
S(t)), µR(Q

∗
R(t))} −D − ϵ0]dt

]
.

Since Q∗
S(t) and Q∗

R(t) are τ -periodic functions, it follows that

u(n2τ) ≥ u(n1τ)exp [(n2 − n1)τ(⟨min{µS(Q
∗
S(t)), µR(Q

∗
R(t))} −D⟩ − ϵ0)] ,

that is,

u(n2τ) ≥ u(n1τ)exp

[
(n2 − n1)τ

2
⟨min{µS(Q

∗
S(t)), µR(Q

∗
R(t))} −D⟩

]
.

Since ⟨min{µS(Q
∗
S(t)), µR(Q

∗
R(t))} − D⟩ > 0, we see that u(n2τ) → ∞ as n2 →

∞, which is a contradiction. Thus, we have I = {(Q̃S(0), Q̃R(0), ũ(0))}, and

hence, ω1(x
1) = I × {(0, 0)} = {(Q̃S(0), Q̃R(0), ũ(0), 0, 0)}. This implies that

(Q̃S(0), Q̃R(0), ũ(0), 0, 0) is globally attractive for P1 in X. Corresponding to the

fixed point of the period map P1, system (2.10) has a globally attractive positive

τ -periodic solution (Q̃S(t), Q̃R(t), ũ(t), 0, 0)} in X. It then follows that statement

(ii) is valid.

3 Two species competition

In this section, we study the coexistence periodic solutions and uniform persistence

for two species phytoplankton model (1.1). Note that the region of interest for

system (1.1) is

Ω = {(S,R,QS1, QR1, u1, QS2, QR2, u2) ∈ R8
+ : QSi ≥ Qmin,Si, QRi ≥ Qmin,Ri, i = 1, 2}.
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It is easy to show that Ω is positively invariant for (1.1). We further claim that

any solution (S(t), R(t), QS1(t), QR1(t), u1(t), QS2(t), QR2(t), u2(t)) of (1.1) with ini-

tial value in Ω exists globally on [0,∞). Indeed, by the continuation theorem, it

suffices to prove that the solution of system (1.1) is bounded on finite time inter-

vals. To this end, we let TS(t) = S(t) + QS1(t)u1(t) + QS2(t)u2(t) and TR(t) =

R(t) +QR1(t)u1(t) +QR2(t)u2(t). Then TS(t) and TR(t) satisfy the linear systems

(2.2) and (2.3), respectively. Thus, TS(t) and TR(t) are bounded on finite time

intervals, and hence, so are S(t), R(t), QSi(t)ui(t) and QRi(t)ui(t), i = 1, 2. Since

QSi ≥ Qmin,Si and QRi ≥ Qmin,Ri, it follows that ui(t) is bounded on finite time

intervals, i = 1, 2. We are ready to prove QSi(t) and QRi(t) are bounded on finite

time intervals, i = 1, 2. Let Vi(t) =
1
2
[(QSi(t))

2 + (QRi(t))
2], i = 1, 2. We can use

the same arguments as in (2.5) to show that for each i = 1, 2,

dVi(t)

dt
≤ 1

2
fSi(S(t), Qmin,Si) +

1

2
fRi(R(t), Qmin,Ri)

+max{fSi(S(t), Qmin,Si), fRi(R(t), Qmin,Ri)}Vi(t). (3.1)

Since S(t) and R(t) in (3.1) are bounded on finite time intervals, we see that Vi(t)

is bounded in finite time intervals, and hence, so are QSi(t) and QRi(t), i = 1, 2.

Thus, every solution of system (1.1) exists globally.

Let

WS(t) = S∗(t)−S−QS1u1−QS2u2 and WR(t) = R∗(t)−R−QR1u1−QR2u2, (3.2)

where S∗(t) and R∗(t) are the globally attractive positive τ -periodic solutions of

(2.2) and (2.3), respectively. Then WS and WR satisfy dWS

dt
= −DWS and dWR

dt
=

−DWR, respectively. Obviously,

lim
t→∞

WS(t) = 0 and lim
t→∞

WR(t) = 0. (3.3)

Therefore, solutions of (1.1) are ultimately bounded on Ω.

From Lemma 2.1, we see that (Q∗
Si(t), Q

∗
Ri(t)) is the globally attractive positive

τ -periodic solution for the system (2.4) with fS = fSi, fR = fRi, µS = µSi and

µR = µRi, i= 1, 2, respectively. This implies that

(S∗(t), R∗(t), Q∗
S1(t), Q

∗
R1(t), 0, Q

∗
S2(t), Q

∗
R2(t), 0)

is the trivial τ -periodic solution for (1.1).
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Assume that

⟨min{µSi(Q
∗
Si(t)), µRi(Q

∗
Ri(t))} −D⟩ > 0, i = 1, 2. (3.4)

It then follows from Theorem 2.1 that (S̄(t), R̄(t), Q̄S1(t), Q̄R1(t), ū1(t)) is the glob-

ally attractive positive τ -periodic solution of the system (2.1) in its feasible domain

with fS = fS1, fR = fR1, µS = µS1 and µR = µR1, that is,

dS
dt

= (S(0)(t)− S)D − fS1(S,QS1)u1,
dR
dt

= (R(0)(t)−R)D − fR1(R,QR1)u1,
dQS1

dt
= fS1(S,QS1)−min{µS1(QS1), µR1(QR1)}QS1,

dQR1

dt
= fR1(R,QR1)−min{µS1(QS1), µR1(QR1)}QR1,

du1

dt
= [min{µS1(QS1), µR1(QR1)} −D]u1.

(3.5)

By the arguments similar to those in Lemma 2.1, we see that (Q̄S2(t), Q̄R2(t)) is

the globally attractive positive τ -periodic solution for the following system:{
dQS2

dt
= fS2(S̄(t), QS2)−min{µS2(QS2), µR2(QR2)}QS2,

dQR2

dt
= fR2(R̄(t), QR2)−min{µS2(QS2), µR2(QR2)}QR2.

(3.6)

This implies that (S̄(t), R̄(t), Q̄S1(t), Q̄R1(t), ū1(t), Q̄S2(t), Q̄R2(t), 0) is the semi-

trivial τ -periodic solution for (1.1). Similarly,

(Ŝ(t), R̂(t), Q̂S1(t), Q̂R1(t), 0, Q̂S2(t), Q̂R2(t), û2(t))

is the semi-trivial τ -periodic solution for (1.1), where (Ŝ(t), R̂(t), Q̂S2(t), Q̂R2(t), û2(t))

is the globally attractive positive τ -periodic solution of the system (2.1) in its feasi-

ble domain with fS = fS2, fR = fR2, µS = µS2 and µR = µR2, and (Q̂S1(t), Q̂R1(t))

is the globally attractive positive τ -periodic solution for the following system:{
dQS1

dt
= fS1(Ŝ(t), QS1)−min{µS1(QS1), µR1(QR1)}QS1,

dQR1

dt
= fR1(R̂(t), QR1)−min{µS1(QS1), µR1(QR1)}QR1.

We further assume that

⟨min{µS1(Q̂S1(t), µR1(Q̂R1(t))} −D⟩ > 0, (3.7)

and

⟨min{µS2(Q̄S2(t), µR2(Q̄R2(t))} −D⟩ > 0. (3.8)
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Let Ω0 := {(S,R,QS1, QR1, u1, QS2, QR2, u2) ∈ Ω : u1 > 0, u2 > 0}, ∂Ω0 :=

Ω\Ω0. Then we have the following result on the global dynamics of the model

system (1.1).

Theorem 3.1. Let (3.4), (3.7) and (3.8) hold. Then system (1.1) is uniformly

persistent with respect to (Ω0, ∂Ω0) in the sense that there is an η > 0 such that for

any

(S(0), R(0), QS1(0), QR1(0), u1(0), QS2(0), QR2(0), u2(0)) ∈ Ω0,

the solution (S(t), R(t), QS1(t), QR1(t), u1(t), QS2(t), QR2(t), u2(t)) of (1.1) satisfies

lim inf
t→∞

ui(t) ≥ η, i = 1, 2.

Further, system (1.1) admits at least one positive periodic solution.

Proof. Let P2 : Ω → Ω be the Poincaré map associated with system (1.1), that is,

P2(S(0), R(0), QS1(0), QR1(0), u1(0), QS2(0), QR2(0), u2(0))

= ((S(τ), R(τ), QS1(τ), QR1(τ), u1(τ), QS2(τ), QR2(τ), u2(τ)),

where (S(0), R(0), QS1(0), QR1(0), u1(0), QS2(0), QR2(0), u2(0)) ∈ Ω. Let ω2(x) be

the omega-limit set of the orbit of P2 through x ∈ Ω. It is easy to see that

P2(Ω0) ⊂ Ω0. Since solutions of system (1.1) are ultimately bounded, it follows

that P2 is point dissipative and compact.

Let

M0 = (S∗(0), R∗(0), Q∗
S1(0), Q

∗
R1(0), 0, Q

∗
S2(0), Q

∗
R2(0), 0),

M1 = (S̄(0), R̄(0), Q̄S1(0), Q̄R1(0), ū1(0), Q̄S2(0), Q̄R2(0), 0),

and

M2 = (Ŝ(0), R̂(0), Q̂S1(0), Q̂R1(0), 0, Q̂S2(0), Q̂R2(0), û2(0)).

Then M0, M1 and M2 are fixed points of P2 and are pairwise disjoint, compact and

isolated invariant sets for P2 in ∂Ω0. We are going to show that∪
x∈∂Ω0

ω2(x) ⊂ M0 ∪M1 ∪M2. (3.9)

In the case where u1(0) > 0 and u2(0) = 0, we have u1(t) > 0 and u2(t) = 0,

∀ t ≥ 0. Then (S(t), R(t), QS1(t), QR1(t), u1(t)) satisfies the system (3.5). Since

⟨µS1(Q
∗
S1(t))µR1(Q

∗
R1(t))−D⟩ > 0, it follows from Theorem 2.1 that

lim
t→∞

|(S(t), R(t), QS1(t), QR1(t), u1(t))− (S̄(t), R̄(t), Q̄S1(t), Q̄R1(t), ū1(t))| = 0.
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Thus, the equations for QS2(t) and QR2(t) in (1.1) are asymptotic to the system

(3.6). By the theory of asymptotically periodic semiflows (see, e.g., [29] or [30,

Section 3.2]) and the arguments similar to those in Lemma 2.1, it follows that

limt→∞ |(QS2(t), QR2(t))− (Q̄S2(t), Q̄R2(t))| = 0. Since

P n
2 (S(0), R(0), QS1(0), QR1(0), u1(0), QS2(0), QR2(0), 0)

= ((S(nτ), R(nτ), QS1(nτ), QR1(nτ), u1(nτ), QS2(nτ), QR2(nτ), 0),

it follows that limn→∞ P n
2 (S(0), R(0), QS1(0), QR1(0), u1(0), QS2(0), QR2(0), 0) =

M1. In the case where u1(0) = 0 and u2(0) > 0, we can use the similar argu-

ments to show that

lim
n→∞

P n
2 (S(0), R(0), QS1(0), QR1(0), 0, QS2(0), QR2(0), u2(0)) = M2.

In the case where u1(0) = 0 and u2(0) = 0, we can show that

lim
n→∞

P n
2 (S(0), R(0), QS1(0), QR1(0), 0, QS2(0), QR2(0), 0) = M0.

Consequently, P2 : Ω → Ω satisfies the property (3.9). It is easy to see that no

subset of {M0,M1,M2} forms a cycle in ∂Ω0.

Each Mj corresponds to a periodic solution with at least one component that

is identically zero. By (3.4), (3.7), (3.8) and the same arguments as in [30, Lemma

5.1.1], there exists a δ > 0 such that each Mj is a uniform weak repeller for Ω0 in

the sense that lim supn→∞ ∥P n
2 (x) −Mj∥ ≥ δ for any x ∈ Ω0. Therefore, each Mj

is isolated in Ω and Ws(Mj) ∩ Ω0 = ∅, where Ws(Mj) is the stable set of Mj (see

[30]).

Since P2 : Ω → Ω is point dissipative and compact, we conclude from [30,

Theorem 1.1.3] that there exists a global attractor A for P2 in Ω. By [30, Theorem

1.3.1] on strong repellers, P2 : Ω → Ω is uniformly persistent with respect to

(Ω0, ∂Ω0). It follows from [30, Theorem 1.3.6] that there exists a global attractorA0

for P2 in Ω0 and P2 has at least one fixed point x ∈ Ω0. Thus, there exists a positive

periodic solution for (1.1) corresponding to the fixed point x of the period map.

By [30, Theorem 3.1.1], it follows that the periodic semiflow T (t) : Ω → Ω, t ≥ 0,

associated with (1.1) is uniformly persistent with respect to (Ω0, ∂Ω0).

To finish this section, we remark that by a change of variables

USi = QSiui and URi = QRiui, i = 1, 2,
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together with (3.2), we can rewrite (1.1) as the following system:

dUSi

dt
= −DUSi + fSi(S

∗(t)− US1 − US2 −WS,
USi

ui
)ui,

dURi

dt
= −DURi + fRi(R

∗(t)− UR1 − UR2 −WR,
URi

ui
)ui,

dui

dt
= [min{µSi(

USi

ui
), µRi(

URi

ui
)} −D]ui, i = 1, 2,

dWS

dt
= −DWS,

dWR

dt
= −DWR,

(3.10)

with initial values in its feasible domain. In view of (3.3), we see that (3.10) has a

limiting system:
dUSi

dt
= −DUSi + fSi(S

∗(t)− US1 − US2,
USi

ui
)ui,

dURi

dt
= −DURi + fRi(R

∗(t)− UR1 − UR2,
URi

ui
)ui,

dui

dt
= [min{µSi(

USi

ui
), µRi(

URi

ui
)} −D]ui, i = 1, 2.

(3.11)

It is easy to see that the Poincaré map associated with system (3.11) is monotone

with respect to the partial order ≤K (see, e.g., [22]), which is induced by the

positive cone K := R3
+ × R3

− in R6. Consequently, if system (1.1) admits at most

one positive periodic solution, then we can conclude that the positive periodic

solution obtained in Theorem 3.1 is globally attractive in Ω0 by appealing to the

theory of monotone systems. Note that the uniqueness of positive periodic solution

of the high dimensional periodic system (1.1) remains a challenging problem, and

we leave it for future investigation.

4 Discussion

In this paper, we have studied a chemostat model of competition for two comple-

mentary (essential) nutrients that can be stored within individuals in a temporally

varying environment. These resources are supplied from an external reservoir at

concentrations that could vary periodically with time. In contrast to the classical

Monod models, nutrient uptake and species growth are assumed to be decoupled.

Our model system assumes that species growth is related to not only the external

concentrations of limiting nutrients but also the internal nutrients concentrations.

To reflect the reality in nature, it is more reasonable to include multiple potentially

limiting resources in the system. When both resources are essential for growth, the
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Figure 4.1: Species 1 is a superior competitor when S(0)(t) ≡ 20 (µmol liter−1) and

R(0)(t) ≡ 3 (µmol liter−1).
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resource in least supply usually limits growth, known as Liebig’s law of the mini-

mum [5].

For the population growth model (2.1), persistence of a single species depends

on a threshold criterion that is related to the dilution rate and the characteristics

of nutrient uptake and growth kinetics required for survival. More precisely, the

population is washed out if the sub-threshold criterion holds. It is also proved that

there is a globally stable positive periodic solution if the super-threshold criterion

holds (see Theorem 2.1). The full system (1.1) represents competition between

two species. It was shown in [20] that the temporally homogeneous system of

(1.1) exhibits outcomes of competitive exclusion independent of initial conditions,

competitive exclusion that depends on initial conditions (bistability), and globally

stable coexistence, depending on tradeoffs between abilities to compete for the nu-

trient and growth requirements under the additional assumption (1.2). For the

full system (1.1), Theorem 2.1 implies that at least three unique τ -periodic solu-

tions occur, a trivial τ -periodic solution with neither competitor present, and two

semitrivial τ -periodic solutions with just one of the competitors persistent. Bio-

logically, the condition (3.4) indicates that both species have sufficient resources to

meet their breakeven requirements (super-threshold criterions), which guarantee

that either species can invade an empty habitat and establish a persistent pop-

ulation that approaches a single species, and hence, each semitrivial τ -periodic

solution exists. Invasibility depends on whether the missing competitor obtains

sufficient quotas to exceed its average threshold under the nutrient conditions es-

tablished by the resident species, permitting a growth rate exceeding the loss rate

to outflow. The conditions (3.7) and (3.8) ensure that there is mutual invasibility

of both semitrivial τ -periodic solutions, and the full system (1.1) admits at least

one positive τ -periodic solution representing coexistence of the competitors (see

Theorem 3.1). It doesn’t make sense to impose a similar condition to (1.2) for

our periodic system (1.1), so we are unable to linearize system (1.1) at the trivial,

semi-trivial τ -periodic solutions. However, we still give predictions on the other

possibilities when the condition (3.4) is met: competitive exclusion occurs if one of

the inequalities in (3.7) and (3.8) is reversed; bistability, in which both semitriv-

ial τ -periodic solutions are stable and the outcome depends on initial conditions,

occurs if both of the inequalities in (3.7) and (3.8) are reversed.

It was understood that temporal variations can alter competitive outcomes,

perhaps promoting coexistence of species and diversity in competitor communities

(see, e.g., [6, 10, 17]). As mentioned in [10], non-steady state dynamics may ex-
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Figure 4.2: Coexistence occurs when S(0)(t) = 20 + 19.9sin(π
5
t) (µmol liter−1) and

R(0)(t) = 3 + 0.7sin(π
5
t) (µmol liter−1).
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plain the coexistence of many species of phytoplankton in a seemingly temporally

constant environment. This was confirmed in [11], where the Monod kinetics is

used as the growth rate of two species to show that seasonally varying nutrient

can allow coexistence. In nature, phytoplankton can store nutrients from pulses

within their cells, which affects competitive dynamics in variable environments.

Ecologists have understood that competitive exclusion proceeds more slowly in the

presence of resource pulses [7]. It was shown in [27] that coexistence occurs in the

competition for one nutrient with internal storage and a periodic input. In order to

investigate the effects of temporal heterogeneity in the two-nutrients system (1.1),

we perform numerical computations. For simplicity, we make the following choices

for the growth rate and uptake rate in the model system (1.1). For N = S, R and

i = 1, 2,

µNi(QNi) = µ∞,Ni

(
1− Qmin,Ni

QNi

)
,

and

fNi(N,QNi) = ρmax,Ni
N

KNi +N
,

so that the uptake function of species i for resource N is independent of quota

and has a constant maximal uptake rate [1]. We fix ρmax,S1 = 341 (10−9µmol

cell−1day−1), ρmax,R1 = 12.3 (10−9µmol cell−1day−1), KS1 = 5.6 (µmol liter−1),

KR1 = 0.2 (µmol liter−1), µ∞,S1 = 1.35 (day−1), µ∞,R1 = 1.35 (day−1), Qmin,S1 =

45.4 (10−9µmol cell−1), Qmin,R1 = 1.64 (10−9µmol cell−1); ρmax,S2 = 380 (10−9µmol

cell−1day−1), ρmax,R2 = 24 (10−9µmol cell−1day−1), KS2 = 7.2 (µmol liter−1),

KR2 = 0.4 (µmol liter−1), µ∞,S2 = 1.3 (day−1), µ∞,R2 = 1.3 (day−1), Qmin,S2 = 15

(10−9µmol cell−1), Qmin,R2 = 7 (10−9µmol cell−1). These parameter values were

used in [20] to do the numerical simulations of the constant case of (1.1). Next,

we let D = 0.875 (day−1), S(0)(t) = 20 + bssin(
π
5
t) (µmol liter−1) and R(0)(t) =

3+ brsin(
π
5
t) (µmol liter−1), where bs and br vary. When we choose bs = br = 0, we

find that species 1 is a superior competitor for nutrient, excluding species 2 in the

temporally homogeneous environment (see Fig. 4.1). When we choose bs = 19.9

and br = 0.7, we find that there exists a positive (coexistence) periodic solution (see

Fig. 4.2). It has been predicted that the fluctuation of nutrients may reverse the

outcomes of the competition [16, 17, 18], and our numerical simulations on system

(1.1) confirm this prediction. In Fig. 4.1, there is no fluctuation of the nutrients,

and species 1 win the competition. However, in Fig. 4.2, with the fluctuation of

the nutrients the species may coexist, even reverse the outcome of the competition
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(i.e. species 2 win the competition).
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