
http://www.aimspress.com/journal/MBE

Mathematical Biosciences and Engineering, 5(x): xxx–xxx

DOI:

Received:

Accepted:

Published:

In Memory of Professor Herbert I. Freedman

Mathematical modeling and analysis of harmful algal blooms in
flowing habitats

Sze-Bi Hsu1, Feng-Bin Wang2 and Xiao-Qiang Zhao 3,∗

1 Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan.
2 Department of Natural Science in the Center for General Education, Chang Gung

University, Guishan, Taoyuan 333, Taiwan; and Community Medicine Research
Center, Chang Gung Memorial Hospital, Keelung, Keelung 204, Taiwan.

3 Department of Mathematics and Statistics, Memorial University of Newfoundland,
St. John’s, NL A1C 5S7, Canada.

* Correspondence: zhao@mun.ca

Abstract: In this paper, we survey recent developments of mathematical modeling and
analysis of the dynamics of harmful algae in riverine reservoirs. To make the models
more realistic, a hydraulic storage zone is incorporated into a flow reactor model and
new mathematical challenges arise from the loss of compactness of the solution maps.
The key point in the study of the evolution dynamics is to prove the existence of global at-
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1. Introduction

In the past decades, harmful algal blooms (HAB) have become important water qual-
ity issues in both coastal and inland waters, and the frequency and intensity of HAB are
apparently increasing worldwide. Blooms of the haptophyte algae Prymnesium parvum
have become more and more common in the world, and it is referred to as golden al-
gae [40, 43], which were documented to cause large fish kills [38, 15]. Recent studies
suggest possible potential techniques for managing and mitigating harmful algal blooms
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through flow manipulations in some river systems [25, 30, 33, 39]. This motivates the
theoretical exploration of harmful algal dynamics in riverine reservoirs. To understand
longitudinal patterns arising along the axis of flow, advection-dispersion-reaction sys-
tems were employed to study the effects of spatial variations of harmful algae and its
toxin production and decay in riverine reservoirs [6, 11, 7, 12, 49]. The models are one-
dimensional systems with simple habitat geometry and transport processes. The flow
reactor model with transport of nutrient and organisms by both advection and diffusion
was first proposed in [19]. Recently, the flow reactor model in [19] has been further
incorporated with a hydraulic storage zone for persistence and coexistence of competing
populations [6]. Such systems with/without a hydraulic storage zone become more and
more attractive since they can be regarded as a surrogate model for riverine reservoirs
with strong advective flows [7].

It should be pointed out that the flow reactor system presented in [19] was used to
model the influences of bacterial motility, fluid advection and other spatial variations
on the competition between different strains of bacteria for the limiting nutrient in the
large intestine of animals. Differently, our main purpose here is to use the flow reac-
tor system to describe the dynamics/interactions of harmful algae and nutrient(s) in the
river/stream. In [46], the author extended the model in [19] by considering two species
competition for two essential/complementary nutrients, such as nitrogen and phospho-
rus. The complementary nutrient model is highly relevant since the limiting nutrient(s)
in many ecosystems should be multiple, and hence, the single-nutrient model can be
seen as a special case. Since the environment of the plug-flow reactor is the intestine or
a river, it is much more realistic to assume that the input nutrient concentration is time-
dependent. Thus, the periodically varying input nutrient concentration is incorporated
into the model of [19] and the model of [46] in [42] and [47], respectively.

There is a persistence paradox in the river ecology, namely, rapid advective flow
in such habitats can prevent persistence of one species for realistic parameters. This
motivates us to incorporate the factor of hydraulic storage zones in flowing water habitats
[6, 11] since it might resolve this persistence paradox [37]. Introducing a hydraulic
storage zone into the flow reactor model not only makes sense biologically but also
causes mathematical challenges. Some equations in the flow reactor with a hydraulic
storage zone have no diffusion terms, and hence, the associated solution maps are not
compact. In order to obtain the existence of global attractor, we show that solution maps
are asymptotically smooth by using the Kuratowski measure of noncompactness. Note
that the existence of global attractor is assumed in the theory of uniform persistence and
coexistence states (see, e.g., [52]).

Another problem is about the local stability of the trivial and semi-trivial solutions of
the model, which are usually determined by the sign of the principal eigenvalue(s) of the
associated linearized system at these states. Although the associated linearized system
is cooperative, the “compactness”is required when one uses the classical Krein–Rutman
theory to obtain the existence of the principal eigenvalue. Very recently, Wang and Zhao
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developed some sharp abstract results (see [50, Theorem 2.3] and [50, Remark 2.2]) on
the existence of principal eigenvalues for an elliptic eigenvalue problem with some zero
diffusion coefficients. Two closely related applications can be found in [12, Lemma 3.3]
and [10, Theorem 2.1]. The authors in [22] further studied the existence of the principal
eigenvalue for degenerate periodic reaction-diffusion systems (see [22, Theorem 2.16
and Remark 2.21]). An alternative approach is to directly utilize the generalized Krein–
Rutman Theorem developed by Nussbaum [35], see, e.g., [12, Lemma 4.4].

The rest of the paper is organized as follows. In section 2, a flow reactor model
proposed by Kung and Baltzis [19] and its extensions are briefly reviewed. Section 3 is
devoted to the survey of a model of a flowing water habitat with a hydraulic storage zone
in which no diffusive and advective flow occurs. The input nutrient concentration can be
a constant [6] or time-dependent [11]. In section 4, we review a model of interactions of
a single limiting nutrient, harmful algae, toxins, and zooplankton [7, 12]. Coexistence of
harmful algae and zooplankton was also investigated in [12]. We further discuss a model
of algal toxins and nutrient recycling (see [7] and [49]), which is based on the fact that
many cyanotoxins produced by cyanobacteria can get recycled back into the system as a
nutrient resource after they decompose. Finally, a brief discussion section completes the
paper.

2. The flow reactor model

We first review a model of microbial competition for a single limited nutrient in a
riverine reservoir occupying a simple channel of longitudinally invariant cross-section,
which was formulated by Kung and Baltzis in [19] and analyzed by the authors in [2, 41].
The channel is assumed to have constant cross-sectional area A and length L, yielding
volume V . A flow of water enters at the upstream end (x = 0), with discharge F (di-
mensions length3 / time). An equal flow exits at the downstream end (x = L), which
is assumed to be a dam. Based on this flow, a dilution rate D (dimensions time−1) is
defined as F/V . The advective flow within the channel is set to maintain water balance,
by transporting water with a net velocity ν = DL.

The reactor occupies the portion of the channel from x = 0 to x = L in which the
microbial populations Ni, i = 1, 2, compete for nutrient R. A flow of medium in the
channel with velocity ν in the direction of increasing x brings fresh nutrient at a constant
concentration R(0) into the reactor at x = 0 and carries medium, unutilized nutrient and
organisms out of the reactor at x = L. Nutrient and organisms are assumed to diffuse
throughout the vessel with the same diffusivity δ.

Both advective and diffusive transport occur at the upstream boundary (x = 0). The
inflow contains dissolved nutrient R(x, t) at a concentration R(0). The downstream bound-
ary is assumed to be a dam, over which there is advective flow but through which no
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diffusion can take place. These assumptions lead to boundary conditions for nutrient:

νR(0, t) − δ
∂R
∂x

(0, t) = νR(0),
∂R
∂x

(L, t) = 0. (2.1)

Boundary conditions for the nutrient are given by equations (2.1), while those for popu-
lation densities are

νNi(0, t) − δ
∂Ni

∂x
(0, t) =

∂Ni

∂x
(L, t) = 0, i = 1, 2.

These boundary conditions mean that no inflow of the populations occurs, and there is
no dispersive transport over the dam at the downstream end. Under these assumptions,
we have the following reaction-diffusion system describing the densities R(x, t), N1(x, t)
and N2(x, t): 

∂R
∂t = δ∂

2R
∂x2 − ν

∂R
∂x − q1 f1(R)N1 − q2 f2(R)N2, x ∈ (0, L), t > 0,

∂N1
∂t = δ∂

2N1
∂x2 − ν

∂N1
∂x + f1(R)N1, x ∈ (0, L), t > 0,

∂N2
∂t = δ∂

2N2
∂x2 − ν

∂N2
∂x + f2(R)N2, x ∈ (0, L), t > 0,

(2.2)

with boundary conditionsνR(0, t) − δ∂R
∂x (0, t) = νR(0), ∂R

∂x (L, t) = 0,

νNi(0, t) − δ∂Ni
∂x (0, t) = ∂Ni

∂x (L, t) = 0, i = 1, 2,
(2.3)

and initial conditions

R(x, 0) = R0(x) ≥ 0, Ni(x, 0) = N0
i (x) ≥ 0, 0 < x < L, i = 1, 2, (2.4)

where qi is the constant nutrient quota for species i. The nonlinear functions fi(R) de-
scribes the nutrient uptake rate and the growth rate of the organisms Ni at nutrient con-
centration R. We assume that these functions satisfy

fi(0) = 0, f ′i (R) > 0 ∀R > 0, fi ∈ C2, i = 1, 2.

The usual example is the Monod function

fi(R) =
µmax,iR
Ki + R

,

where µmax,i (resp. Ki) represents the maximal growth rate (resp. the half saturation con-
stant) of species i. In [41, Chapter 8], the author showed that both species in (2.2)-(2.4)
can coexist under suitable conditions. The condition (2.3) is called as the Danckwerts’
boundary condition by Aris [1]. For a detailed derivation of it, we refer to a review paper
[3].
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The authors in [2] extended (2.2)-(2.4) to the following system


∂R
∂t = δ0

∂2R
∂x2 − ν

∂R
∂x − q1 f1(R)N1 − q2 f2(R)N2, x ∈ (0, L), t > 0,

∂N1
∂t = δ1

∂2N1
∂x2 − ν

∂N1
∂x + [ f1(R) − m1]N1, x ∈ (0, L), t > 0,

∂N2
∂t = δ2

∂2N2
∂x2 − ν

∂N2
∂x + [ f2(R) − m2]N2, x ∈ (0, L), t > 0,

(2.5)

with boundary conditions (2.3), and initial conditions (2.4). Here δ0 and δi stand for the
random motility coefficients of nutrient and species i, respectively; mi is the death rate of
species i. The effects of random motility on the extinction/persistence of a single popula-
tion model, and the influences of random motility on the competition outcomes between
two species were investigated in [2]. Note that if we assume δ0 = δ1 = δ2 = δ and
m1 = m2 = 0 in (2.5), then it becomes (2.2). The authors in [42] further incorporated a
periodically varying input nutrient concentration into system (2.5) with boundary condi-
tions (2.3) and initial conditions (2.4), where the input concentration R(0) is replaced by a
τ-periodic function R(0)(t). Then they used the theories of monotone dynamical systems
and uniform persistence to obtain some analytic results about the extinction/persistence
of a single population model and coexistence of two species system in terms of the prin-
cipal eigenvalue(s) of the associated periodic-parabolic eigenvalue problem(s).

To address the multiple nutrients in ecosystems, the author in [46] also generalized
model (2.2)-(2.4) to an evolution system of two species competition for two essential nu-
trients with constant input concentrations. Later on, a model of two species competition
for two essential nutrients with periodically varying input concentrations was studied in
[47].

3. Models with storage zones

This section is devoted to the survey of models with hydraulic storage zones, which
partition the cross-section of the channel into a flowing zone of area A, and a static zone
of area AS . Exchange of nutrient and populations between the flowing and storage zones
occurs by Fickian diffusion with rate α. Nutrient concentration and population densities
vary with location in both the flowing channel and the storage zone, however, we assume
that advective and diffusive transport occur only in the flowing zone, not the storage zone.
Nutrient concentration and population densities in the flowing channel (resp. the storage
zone) are denoted by R(x, t) and Ni(x, t) (resp. RS (x, t), NS ,i(x, t)). Then we generalize
system (2.2)-(2.4), by adding a hydraulic storage zone and including the seasonality of
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R(0), to the following form [6, 11]:

∂R
∂t = δ∂

2R
∂x2 − ν

∂R
∂x − q1 f1(R)N1 − q2 f2(R)N2 + α(RS − R),

∂N1
∂t = δ∂

2N1
∂x2 − ν

∂N1
∂x + α(NS ,1 − N1) + f1(R)N1,

∂N2
∂t = δ∂

2N2
∂x2 − ν

∂N2
∂x + α(NS ,2 − N2) + f2(R)N2,

∂RS
∂t = −α A

AS
(RS − R) − q1 f1(RS )NS ,1 − q2 f2(RS )NS ,2,

∂NS ,1

∂t = −α A
AS

(NS ,1 − N1) + f1(RS )NS ,1,
∂NS ,2

∂t = −α A
AS

(NS ,2 − N2) + f2(RS )NS ,2, 0 < x < L, t > 0

(3.1)

with boundary conditions
νR(0, t) − δ∂R

∂x (0, t) = νR(0)(t),

νNi(0, t) − δ∂Ni
∂x (0, t) = 0,

∂R
∂x (L, t) = ∂Ni

∂x (L, t) = 0, t > 0, i = 1, 2,

(3.2)

and initial conditionsR(x, 0) = R0(x) ≥ 0, Ni(x, 0) = N0
i (x) ≥ 0, 0 < x < L,

RS (x, 0) = R0
S (x) ≥ 0, NS ,i(x, 0) = N0

S ,i(x) ≥ 0, i = 1, 2.
(3.3)

Here R(0)(t) satisfiesR(0)(·) ∈ C2(R+,R),R(0)(t) ≥ 0 but R(0)(·) . 0 on R+ := [0,∞),

R(0)(t + τ) = R(0)(t), for some real number τ > 0.
(3.4)

We should point out that the authors in [6] considered system (3.1)-(3.3) under the as-
sumption that R(0)(t) ≡ R(0) is a positive constant.

By [31, Theorem 1 and Remark 1.1], we have the following results.

Lemma 3.1. ([11, Lemma 2.1]) System (3.1)-(3.3) has a unique noncontinuable solution
and solutions of (3.1)-(3.3) remain non-negative on their interval of existence if they are
non-negative initially.

In the following, we demonstrate that system (3.1)-(3.3) have a mass conservation in
the flow and storage zones. Let

W(x, t) = R(x, t) + q1N1(x, t) + q2N2(x, t) and

WS (x, t) = RS (x, t) + q1NS ,1(x, t) + q2NS ,2(x, t). (3.5)

Then W(x, t) and WS (x, t) satisfy the following system

∂W
∂t = δ∂

2W
∂x2 − ν

∂W
∂x + αWS − αW, 0 < x < L, t > 0,

∂WS
∂t = −α A

AS
WS + α A

AS
W, 0 < x < L, t > 0,

νW(0, t) − δ∂W
∂x (0, t) = νR(0)(t), ∂W

∂x (L, t) = 0, t > 0,

W(x, 0) = W0(x), WS (x, 0) = WS
0 (x), 0 < x < L.

(3.6)

The following result is concerned with the global dynamics of system (3.6).
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Lemma 3.2. ([11, Lemma 2.3]) System (3.6) admits a unique positive τ-periodic so-
lution (W∗(x, t),W∗

S (x, t)) and for any (W0,WS
0 ) ∈ C([0, L],R2), the unique mild so-

lution (W(x, t),WS (x, t)) of (3.6) with (W(x, 0),WS (x, 0)) = (W0(x),WS
0 (x)) satisfies

lim
t→∞

((W(x, t),WS (x, t)) − (W∗(x, t),W∗
S (x, t))) = (0, 0) uniformly for x ∈ [0, L].

We should point out that [11, Lemma 2.2] is based on the assumption that the asso-
ciated eigenvalue problem admits a principal eigenvalue, and there is a gap in the argu-
ments for the existence of the principal eigenvalue in the paragraph above [11, Lemma
2.2]. However, this gap can be easily filled by using [10, Theorem 2.1] or the arguments
similar to those in [12, Lemma 3.3] combined with [50, Theorem 2.3 and Remark 2.2].

By Lemma 3.1, the relation (3.5) and Lemma 3.2, we have the following results.

Lemma 3.3. ([11, Lemma 2.4]) Any solution of the system (3.1)-(3.3) exists globally on
[0,∞). Moreover, solutions are ultimately bounded and uniformly bounded.

3.1. Single species growth

This subsection is devoted to the investigation of the single population model. Math-
ematically, it means that we set (N1,NS ,1) = (0, 0) or (N2,NS ,2) = (0, 0) in the model
system (3.1)-(3.3). In order to simplify notation, we drop all subscripts in the remaining
equations and then consider

∂R
∂t = δ∂

2R
∂x2 − ν

∂R
∂x − q f (R)N + α(RS − R), 0 < x < L, t > 0,

∂N
∂t = δ∂

2N
∂x2 − ν

∂N
∂x + α(NS − N) + f (R)N, 0 < x < L, t > 0,

∂RS
∂t = −α A

AS
(RS − R) − q f (RS )NS , 0 < x < L, t > 0,

∂NS
∂t = −α A

AS
(NS − N) + f (RS )NS , 0 < x < L, t > 0,

(3.7)

with boundary conditionsνR(0, t) − δ∂R
∂x (0, t) = νR(0)(t), ∂R

∂x (L, t) = 0, t > 0,

νN(0, t) − δ∂N
∂x (0, t) = ∂N

∂x (L, t) = 0, t > 0,
(3.8)

and initial conditionsR(x, 0) = R0(x) ≥ 0, N(x, 0) = N0(x) ≥ 0, 0 < x < L,

RS (x, 0) = R0
S (x) ≥ 0, NS (x, 0) = N0

S (x) ≥ 0, 0 < x < L,
(3.9)

where R(0)(t) satisfies (3.4).
Let

W(x, t) = R(x, t) + qN(x, t) and

WS (x, t) = RS (x, t) + qNS (x, t).
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ThenW(x, t) andWS (x, t) satisfy (3.6). By Lemma 3.2, we see that the limiting system
of (3.7)-(3.9) takes the following form:∂N

∂t = δ∂
2N
∂x2 − ν

∂N
∂x + α(NS − N) + f (W∗(x, t) − qN)N, 0 < x < L, t > 0,

∂NS
∂t = −α A

AS
(NS − N) + f (W∗

S (x, t) − qNS )NS , 0 < x < L, t > 0,
(3.10)

with boundary conditions

νN(0, t) − δ
∂N
∂x

(0, t) = 0,
∂N
∂x

(L, t) = 0, t > 0, (3.11)

and initial conditions

N(x, 0) = N0(x) ≥ 0, NS (x, 0) = N0
S (x) ≥ 0, 0 < x < L. (3.12)

From the biological view of point, the feasible domain Λ(t) for (3.10)-(3.12) should
be

Λ(t) = {(N,NS ) ∈ C([0, L],R2
+) : qN(·) ≤ W∗(·, t), qNS (·) ≤ W∗

S (·, t)}.

We further have the following basic properties of the set Λ(t).

Lemma 3.4. ([11, Lemma 3.1]) For any φ := (φ1, φ2) ∈ Λ(0), system (3.10)-(3.12) has
a unique mild solution (N(·, t),NS (·, t)) with (N(·, 0),NS (·, 0)) = φ and (N(·, t),NS (·, t)) ∈
Λ(t), for all t ≥ 0.

By Lemma 3.4, we can define solution maps Ψt : Λ(0) → Λ(t) associated with
(3.10)-(3.12) by

Ψt(P) = (N(·, t, P),NS (·, t, P)), ∀P := (N0(·), N0
S (·)) ∈ Λ(0), t ≥ 0.

Note that Ψτ : Λ(0)→ Λ(τ) = Λ(0) is the Poincaré map associated with (3.10)-(3.12).
For convenience, we let

Y+ = Λ(0), Y0 = Y+\{(0, 0)}, ∂Y0 := Y+\Y0 = {(0, 0)}.

Since one equation in (3.10)-(3.12) has no diffusion term, its solution map Ψt is not
compact. Due to the lack of compactness, we need to impose the following condition:

α
A
AS

> f (W∗
S (x, t)), ∀ x ∈ [0, L], t ≥ 0. (3.13)

Recall that the Kuratowski measure of noncompactness (see, e.g., [5]), κ, is defined
by

κ(B) := inf{r : B has a finite cover of diameter < r}, (3.14)

for any bounded set B. We set κ(B) = ∞ whenever B is unbounded. Note that B is
precompact(i.e., B̄ is compact) if and only if κ(B) = 0.
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Lemma 3.5. ([11, Lemma 3.2]) Let (3.13) hold. Then Ψτ is κ-contracting in the sense
that limn→∞ κ(Ψn

τB) = 0 for any bounded set B ⊂ Y+.

By Lemma 3.3, Lemma 3.5 and [29, Theorem 2.6 ], we have the following result.

Theorem 3.1. ([11, Theorem 3.1]) Ψτ admits a global attractor on Y+ that attracts each
bounded set in Y+ provided that (3.13) holds.

Note that (0, 0) is the trivial solution of (3.10)-(3.12). Linearizing system (3.10)-
(3.12) at (0, 0), we have

∂N
∂t = δ∂

2N
∂x2 − ν

∂N
∂x + α(NS − N) + f (W∗(x, t))N,

∂NS
∂t = −α A

AS
(NS − N) + f (W∗

S (x, t))NS , 0 < x < L, t > 0,

νN(0, t) − δ∂N
∂x (0, t) = 0, ∂N

∂x (L, t) = 0, t > 0.

(3.15)

Substituting N(x, t) = e−µtφ1(x, t) and NS (x, t) = e−µtφ2(x, t), we obtain the associated
eigenvalue problem

∂φ1
∂t = δ∂

2φ1
∂x2 − ν

∂φ1
∂x + α(φ2 − φ1) + f (W∗(x, t))φ1 + µφ1, t > 0, x ∈ (0, L),

∂φ2
∂t = −α A

As
(φ2 − φ1) + f (W∗

S (x, t))φ2 + µφ2, t > 0, x ∈ (0, L),

νφ1(0, t) − δ∂φ1
∂x (0, t) =

∂φ1
∂x (L, t) = 0, t > 0,

φ1, φ2 are τ-periodic in t.

(3.16)

As in the proof of [11, Lemma 3.3], we let Πt : C([0, L],R2) → C([0, L],R2) be the
solution maps associated with (3.15). Then P := Πτ is the Poincaré map associated with
system (3.15). Let r(P) be the spectral radius of P. By the proof of [11, Lemma 3.3],
we further see that Πτ is an κ-contraction on C([0, L],R2) in the sense that

κ(ΠτB) ≤ e−r0τκ(B) (3.17)

for any bounded set B in C([0, L],R2), where r0 is a positive number such that

α
A
AS
− f (W∗

S (x, t)) ≥ r0, ∀ x ∈ [0, L], t ≥ 0.

By (3.17) and the arguments similar to those in [12, Lemma 4.4]) or [51, Lemma 3.1],
we can use the generalized Krein-Rutman Theorem [35] to obtain the following result,
which is a corrected version of [11, Lemma 3.3].

Lemma 3.6. Define µ∗ := −1
τ

ln r(P) and let (3.13) hold. If r(P) ≥ 1, then µ∗ is the prin-
cipal eigenvalue of the eigenvalue problem (3.16) with a strongly positive eigenfunction
φ∗ = (φ∗1, φ

∗
2) � 0.

The following result is concerned with the global dynamics of system (3.10)-(3.12).

Theorem 3.2. ([11, Theorem 3.2]) Assume that (3.13) holds. Let (N(x, t),NS (x, t)) be
the solution of (3.10)-(3.12) with initial data (N0(·), N0

S (·)) ∈ Y+. Then the following
statements are valid:
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(1) If µ∗ > 0, then lim
t→∞
|(N(x, t),NS (x, t))| = 0 uniformly for x ∈ [0, L];

(2) If µ∗ < 0, then (3.10)-(3.12) admit a unique positive τ-periodic solution
(N∗(x, t),N∗S (x, t)) and for any (N0(·), N0

S (·)) ∈ Y0, we have

lim
t→∞
|(N(x, t),NS (x, t)) − (N∗(x, t),N∗S (x, t))| = 0 uniformly for x ∈ [0, L].

By Theorem 3.2 and the theories of chain transitive sets (see, e.g., [9, 52]), one can
obtain a threshold type result on the global dynamics of the single population model
(3.7)-(3.9).

3.2. Two species competition

This subsection focuses on the investigation of the possibility of coexistence for sys-
tem (3.1)-(3.3). In view of the relation (3.5) and Lemma 3.2, we see that the limiting
systems of (3.1)-(3.3) take the forms:

∂N1
∂t = δ∂

2N1
∂x2 − ν

∂N1
∂x + α(NS ,1 − N1) + f1(W∗(x, t) − q1N1 − q2N2)N1,

∂NS ,1

∂t = −α A
AS

(NS ,1 − N1) + f1(W∗
S (x, t) − q1NS ,1 − q2NS ,2)NS ,1,

∂N2
∂t = δ∂

2N2
∂x2 − ν

∂N2
∂x + α(NS ,2 − N2) + f2(W∗(x, t) − q1N1 − q2N2)N2,

∂NS ,2

∂t = −α A
AS

(NS ,2 − N2) + f2(W∗
S (x, t) − q1NS ,1 − q2NS ,2)NS ,2,

(3.18)

in (0, L) × (0,∞), with boundary conditions

νNi(0, t) − δ
∂Ni

∂x
(0, t) = 0,

∂Ni

∂x
(L, t) = 0, t > 0, i = 1, 2, (3.19)

and initial conditions

Ni(x, 0) = N0
i (x) ≥ 0, NS ,i(x, 0) = N0

S ,i(x) ≥ 0, 0 < x < L, i = 1, 2. (3.20)

From the biological view of point, the feasible domain D(t) for (3.18)-(3.20) should
be

D(t) = {(N1,NS ,1,N2,NS ,2) ∈ C([0, L],R4
+) : q1N1(·) + q2N2(·) ≤ W∗(·, t),

q1NS ,1(·) + q2NS ,2(·) ≤ W∗
S (·, t)}.

The following result indicates that D(t) is positively invariant for the solution maps as-
sociated with (3.18)-(3.20).

Lemma 3.7. ([11, Lemma 2.5]) For any φ := (φ1, φ2, φ3, φ4) ∈ D(0), system (3.18)-(3.20)
has a unique mild solution (N1(·, t),NS ,1(·, t),N2(·, t),NS ,2(·, t)) ∈ D(t), for all t ≥ 0,
whenever (N1(·, 0),NS ,1(·, 0),N2(·, 0),NS ,2(·, 0)) = φ.

Since two equations in (3.18)-(3.20) have no diffusion terms, its solution maps are
not compact. So we require the following conditions in this subsection:

α
A
AS

> fi(W∗
S (x, t)), ∀x ∈ [0, L], t ≥ 0, i = 1, 2. (3.21)
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Fix i ∈ {1, 2}, we consider the following linear system
∂N
∂t = δ∂

2N
∂x2 − ν

∂N
∂x + α(NS − N) + fi(W∗(x, t))N,

∂NS
∂t = −α A

AS
(NS − N) + fi(W∗

S (x, t))NS , 0 < x < L, t > 0,

νN(0, t) − δ∂N
∂x (0, t) = 0, ∂N

∂x (L, t) = 0, t > 0.

(3.22)

Then the associated eigenvalue problem takes the form

∂ϕ

∂t = δ∂
2ϕ

∂x2 − ν
∂ϕ

∂x + α(ψ − ϕ) + fi(W∗(x, t))ϕ + µϕ, t > 0, x ∈ (0, L),
∂ψ

∂t = −α A
As

(ψ − ϕ) + fi(W∗
S (x, t))ψ + µψ, t > 0, x ∈ (0, L),

νϕ(0, t) − δ∂ϕ
∂x (0, t) =

∂ϕ

∂x (L, t) = 0, t > 0,

ϕ, ψ are τ-periodic in t.

(3.23)

Let Pi, i = 1, 2, be the Poincaré map associated with system (3.22), and r(Pi) be the
spectral radius of Pi. By the same arguments as in Lemma 3.6, we have the following
result.

Lemma 3.8. Define µ∗i := −1
τ

ln r(Pi) and let (3.21) hold. If r(Pi) ≥ 1, then µ∗i is the
principal eigenvalue of the eigenvalue problem (3.23) with a strongly positive eigenfunc-
tion.

Note that Then system (3.18)-(3.20) admits the following possible trivial/semi-trivial
solutions:

(i) Trivial solution 0̂ := (0, 0, 0, 0) always exists;
(ii) Semi-trivial solution (N∗1(x, t),N∗S ,1(x, t), 0, 0) exists provided that µ∗1 < 0;

(iii) Semi-trivial solution (0, 0,N∗2(x, t),N∗S ,2(x, t)) exists provided that µ∗2 < 0;
(iv) There may be additional τ-periodic solutions as well and these must be positive.

Here (N∗i (x, t),N∗S ,i(x, t)) denotes the unique positive τ-periodic solution of (3.10)-(3.12)
resulting from putting f = fi and q = qi. The two organisms can coexist if a positive
τ-periodic solution exists.

In view of Lemma 3.7, we let Φt : D(0) → D(t) be the solution map of system
(3.18)-(3.20). Let K = C([0, L],R2

+) × (−C([0, L],R2
+)) and denote its induced order by

≤K . Thus, the solution map Φt is monotone [41] with respect to the partial order ≤K .
Note that Φτ : D(0) → D(τ) = D(0) and for the Poincaré map S := Φτ, we have
S n(P) = Φnτ(P), for all n ∈ Z. Set Y+ = D(0),

Y0 := {(N1,NS ,1,N2,NS ,2) ∈ Y+ : (N1,NS ,1) , (0, 0) and (N2,NS ,2) , (0, 0)}

and ∂Y0 := Y+\Y0. For convenience, we further set

gi(t, x, u1, u2, v1, v2) = −α
A
AS

(vi − ui) + fi(W∗
S (x, t) − q1v1 − q2v2)vi, i = 1, 2,
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and

D = {(t, x,u, v) ∈ R6
+ : x ∈ [0, L], q1u1 + q2u2 ≤ W∗(x, t), q1v1 + q2v2 ≤ W∗

S (x, t)},

where u := (u1, u2) ∈ R2
+ and v := (v1, v2) ∈ R2

+. With the assumption (3.21), it follows
whenever α A

AS
is sufficiently large, there exists a constant r > 0 such that

zT

[
∂g(t, x,u, v)

∂v

]
z ≤ −rzT z, ∀ z ∈ R2, (t, x,u, v) ∈ D, (3.24)

where g(t, x,u, v) := (g1(t, x, u1, u2, v1, v2), g2(t, x, u1, u2, v1, v2)).

Lemma 3.9. ([11, Lemma 4.1]) Let (3.21) and (3.24) hold. Then the map Φτ is κ-
contracting in the sense that limn→∞ κ(Φn

τ(B)) = 0 for any bounded set B ⊂ Y+, where κ
is the Kuratowski measure of noncompactness as defined in (3.14).

By Lemma 3.3, Lemma 3.9, and [29, Theorem 2.6], we have the following result.

Theorem 3.3. ([11, Theorem 4.1]) Let (3.21) and (3.24) hold. Then Φτ admits a global
attractor on Y+ that attracts each bounded set in Y+.

Fix i ∈ {1, 2}, let P̂i be the Poincaré map associated with system (3.22) when
( fi(W∗(x, t)), fi(W∗

S (x, t))) in (3.22) is replaced by

( f3−i(W∗(x, t) − qiN∗i (x, t)), f3−i(W∗
S (x, t) − qiN∗S ,i(x, t))). (3.25)

Let r(P̂i) be the spectral radius of P̂i. By the same arguments as in Lemma 3.6, we have
the following observation.

Lemma 3.10. Define η∗i := −1
τ

ln r(P̂i) and let (3.21) hold. If r(P̂i) ≥ 1, then η∗i is
the principal eigenvalue of (3.23) with ( fi(W∗(x, t)), fi(W∗

S (x, t))) replaced by the one in
(3.25).

The following result is concerned with the coexistence of system (3.18)-(3.20),

Theorem 3.4. Let (3.21) and (3.24) hold, and assume that µ∗i < 0 and η∗i <

0, i = 1, 2. Then system (3.18)-(3.20) admits at least one (componentwise) positive
τ-periodic solution and there exists a positive constant ζ > 0 such that for any solution
(N1(x, t),NS ,1(x, t),N2(x, t),NS ,2(x, t)) of system (3.18)-(3.20) with the initial data in Y0

satisfies lim inft→∞minx∈[0,L] Ni(x, t) ≥ ζ and lim inft→∞minx∈[0,L] NS ,i(x, t) ≥ ζ, for all
i = 1, 2.

We remark that Theorem 3.4 follows from [11, Theorem 4.2], where the theory of
monotone dynamical systems have been used. Instead, we can also obtain Theorem 3.4
by using the theory of uniform persistence. In [11, Section 5], the authors further lifted
the dynamics of the limiting system (3.18)-(3.20) to the full system (3.1)-(3.3) by the
theory of chain transitive sets (see, e.g., [9, 52]).
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4. Interactions of harmful algae and zooplankton

In this section, we survey systems modeling the interactions of nutrient, harmful al-
gae, toxins, and zooplankton, in which the input concentration R(0) is always a constant.

4.1. A model of harmful algae and their toxins

This subsection is devoted to the study of the influences of spatial variations on the
growth of harmful algae and the production/decay of their toxins in riverine reservoirs.
Suppose R(x, t), N(x, t) and C(x, t) (resp. RS (x, t), NS (x, t) and CS (x, t)) denote dissolved
nutrient concentration, algal abundance and dissolved toxin concentration at location x
and time t in the flowing channel, respectively (resp. in the storage zone). The authors
in [7] propose the following advection-dispersion-reaction system:

∂R
∂t = δ∂

2R
∂x2 − ν

∂R
∂x − qN[ f (R) − m]N + α(RS − R),

∂N
∂t = δ∂

2N
∂x2 − ν

∂N
∂x + α(NS − N) + [ f (R) − m]N,

∂C
∂t = δ∂

2C
∂x2 − ν

∂C
∂x + α(CS −C) + εp(R,N) − kC,

∂RS
∂t = −α A

AS
(RS − R) − qN[ f (RS ) − m]NS ,

∂NS
∂t = −α A

AS
(NS − N) + [ f (RS ) − m]NS ,

∂CS
∂t = −α A

AS
(CS −C) + εp(RS ,NS ) − kCS ,

(4.1)

in (x, t) ∈ (0, L) × (0,∞) with boundary conditions
νR(0, t) − δ∂R

∂x (0, t) = νR(0),

νN(0, t) − δ∂N
∂x (0, t) = νC(0, t) − δ∂C

∂x (0, t) = 0,
∂R
∂x (L, t) = ∂N

∂x (L, t) = ∂C
∂x (L, t) = 0,

(4.2)

and initial conditionsR(x, 0) = R0(x) ≥ 0, N(x, 0) = N0(x) ≥ 0, C(x, 0) = C0(x) ≥ 0,

RS (x, 0) = R0
S (x) ≥ 0, NS (x, 0) = N0

S (x) ≥ 0, CS (x, 0) = C0
S (x) ≥ 0,

(4.3)

in x ∈ (0, L). Here the mortality of algae is assumed to be a constant rate m; qN represents
the constant quota of algae. For simplicity, we have assumed that toxin degradation
follows first order kinetics with a decay coefficient k. We point out that system (4.1)-
(4.3) applies to many flagellate toxins [34].

There are two types of productions for dissolved toxins [7]. The first assumes that the
algae produce toxin more rapidly when there is little nutrient in the system,

εp(R,N) = ε[µmax − f (R)]N = ε
µmaxK
K + R

N,

where ε is a constant coefficient and µmax represents the maximal growth rate. It has been
observed that toxins produced by Prymnesium parvum (toxic flagellates) are proportional

Mathematical Biosciences and Engineering Volume 5, Issue x, xxx–xxx



14

to the degree of algal nutrient limitation. The second type of toxin production assumes
that the toxin is produced proportional to the algal productivity,

εp(R,N) = ε f (R)N = ε
µmaxR
K + R

N.

This case assumes that toxin is produced in proportion to other cellular products and
released into the water at a constant rate. We refer to this as the case of cylindrosper-
mopsin, which is a cyanotoxin produced by a variety of freshwater cyanobacteria.

By [31, Theorem 1 and Remark 1.1], we have the following result.

Lemma 4.1. ([12, Lemma 3.1]) System (4.1)-(4.3) has a unique noncontinuable solution
and solutions of (4.1)-(4.3) remain non-negative on their interval of existence if they are
non-negative initially.

In the following, we will demonstrate that mass conservation is satisfied in the flow
and storage zones for the equations given by (4.1)-(4.3). Let

W(x, t) = R(x, t) + qN N(x, t) and WS (x, t) = RS (x, t) + qN NS (x, t).

Then W(x, t) and WS (x, t) satisfy the following system

∂W
∂t = δ∂

2W
∂x2 − ν

∂W
∂x + αWS − αW, 0 < x < L, t > 0,

∂WS
∂t = −α A

AS
WS + α A

AS
W, 0 < x < L, t > 0,

νW(0, t) − δ∂W
∂x (0, t) = νR(0), ∂W

∂x (L, t) = 0, t > 0,

W(x, 0) = W0(x) ≥ 0, WS (x, 0) = W0
S (x) ≥ 0.

(4.4)

Then one can show that (e.g., [6] and [11, Lemma 2.3]) system (4.4) admits a unique
positive steady-state solution (R(0),R(0)) and

lim
t→∞

(W(x, t),WS (x, t)) = (R(0),R(0)) uniformly for x ∈ [0, L].

It is not hard to see that (R(0), 0, 0,R(0), 0, 0) is the trivial steady-state solution of (4.1)-
(4.3). Linearizing system (4.1)-(4.3) around (R(0), 0, 0,R(0), 0, 0), we get the following
cooperative system for the algae population:

∂N
∂t = δ∂

2N
∂x2 − ν

∂N
∂x + α(NS − N) + [ f (R(0)) − m]N, 0 < x < L, t > 0,

∂NS
∂t = −α A

AS
(NS − N) + [ f (R(0)) − m]NS , 0 < x < L, t > 0,

νN(0, t) − δ∂N
∂x (0, t) = ∂N

∂x (L, t) = 0, t > 0,

N(x, 0) = N0(x) ≥ 0, NS (x, 0) = N0
S (x) ≥ 0, 0 < x < L.

(4.5)

Substituting N(x, t) = eλtφ(x) and NS (x, t) = eλtφS (x) into (4.5), we obtain the associated
eigenvalue problem

λφ(x) = δφ′′(x) − νφ′(x) + α(φS (x) − φ(x)) + [ f (R(0)) − m]φ(x), 0 < x < L,

λφS (x) = −α A
AS

(φS (x) − φ(x)) + [ f (R(0)) − m]φS (x), 0 < x < L,

νφ(0) − δφ′(0) = φ′(L) = 0.

(4.6)

Mathematical Biosciences and Engineering Volume 5, Issue x, xxx–xxx



15

Due to the noncompactness of the model system, we impose the following condition

α
A
AS

+ m > f (R(0)). (4.7)

By [50, Theorem 2.3] or [10, Theorem 2.1] (see also the arguments in [12, Lemma 3.3],
it follows that the eigenvalue problem (4.6) has a principal eigenvalue, denoted by λ0.

We are in a position to adopt the results developed in [50] to define the basic repro-
duction ratio for algae. Let S (t) : C([0, L],R2) → C([0, L],R2) be the C0-semigroup
generated by the following system

∂N
∂t = δ∂

2N
∂x2 − ν

∂N
∂x + α(NS − N) − mN, 0 < x < L, t > 0,

∂NS
∂t = −α A

AS
(NS − N) − mNS , 0 < x < L, t > 0,

νN(0, t) − δ∂N
∂x (0, t) = ∂N

∂x (L, t) = 0, t > 0.

Note that S (t) is a positive C0-semigroup on C([0, L],R2). We further assume that both
algae individuals in the flow and storage zones are near the trivial steady-state solution
of (4.5), and introduce fertile individuals at time t = 0, where the distribution of initial
algae individuals in the flow and storage zones is described by ϕ := (ϕ2, ϕ5) ∈ C(Ω̄,R2).
Thus, S (t)ϕ represents the distribution of fertile algae individuals at time t ≥ 0.

Let L : C([0, L],R2)→ C([0, L],R2) be defined by

L(ϕ)(·) =

∫ ∞

0

(
f (R(0)) 0

0 f (R(0))

)
(S (t)ϕ)(·)dt.

It then follows that L(ϕ)(·) represents the distribution of the total new population gener-
ated by initial fertile algae individuals ϕ := (ϕ2, ϕ5), and hence, L is the next generation
operator. We define the spectral radius of L as the basic reproduction ratio for algae, that
is,

R0 := r(L).

By [45] or [50, Theorem 3.1 (i) and Remark 3.1], we have the following observation.

Lemma 4.2. R0 − 1 and λ0 have the same sign.

We first consider the following auxiliary system:∂N
∂t = δ∂

2N
∂x2 − ν

∂N
∂x + α(NS − N) + [ f (R(0) − qN N) − m]N,

∂NS
∂t = −α A

AS
(NS − N) + [ f (R(0) − qN NS ) − m]NS ,

(4.8)

in (x, t) ∈ (0, L) × (0,∞) with boundary conditions

νN(0, t) − δ
∂N
∂x

(0, t) =
∂N
∂x

(L, t) = 0, t > 0, (4.9)

and initial conditions

N(x, 0) = N0(x) ≥ 0, NS (x, 0) = N0
S (x) ≥ 0, 0 < x < L. (4.10)
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The biologically relevant domain for the system (4.8)-(4.10) is given by

Y+ =

{
(N0,N0

S ) ∈ C([0, L],R2
+) : 0 ≤ N0(·) ≤

R(0)

qN
, 0 ≤ N0

S (·) ≤
R(0)

qN

}
.

For convenience, we let Y0 = Y+\{(0, 0)}, ∂Y0 := Y+\Y0 = {(0, 0)}. By Lemma 4.2
and the arguments similar to those in [11, Lemma 3.2, Theorems 3.1 and 3.2], we have
the following result.

Lemma 4.3. ([12, Lemma 3.6]) Assume that (4.7) holds. For any (N0(·), N0
S (·)) ∈ Y+, let

(N(·, t),NS (·, t)) be the solution of (4.8)-(4.10). Then the following statements are valid:

(i) If R0 ≤ 1, then lim
t→∞

(N(x, t),NS (x, t)) = (0, 0) uniformly for x ∈ [0, L];
(ii) If R0 > 1, then (4.8)-(4.10) admit a unique positive steady-state solution

(N∗(x),N∗S (x)) and for any (N0(·), N0
S (·)) ∈ Y0, we have

lim
t→∞

(N(x, t),NS (x, t)) = (N∗(x),N∗S (x)), uniformly for x ∈ [0, L].

Recall that X+ = C([0, L],R6
+) is the biologically relevant domain for the system

(4.1)-(4.3). For convenience, we set X0 := X+\{(R(0), 0, 0,R(0), 0, 0)}, ∂X0 := X+\X0 =

{(R(0), 0, 0,R(0), 0, 0)}. By Lemma 4.3 and the theory of chain transitive sets (see, e.g.,
[9, 52]), one can lift the threshold type result of (4.8)-(4.10) to the full system (4.1)-
(4.3).

Theorem 4.1. ([12, Theorem 3.2]) Assume that (4.7) holds. Let

(R(x, t),N(x, t),C(x, t),RS (x, t),NS (x, t),CS (x, t))

be the solution of (4.1)-(4.3) with initial data in X+. Then the following statements are
valid:

(i) If R0 ≤ 1, then

lim
t→∞

(R(x, t),N(x, t),C(x, t),RS (x, t),NS (x, t),CS (x, t)) = (R(0), 0, 0,R(0), 0, 0),

uniformly for x ∈ [0, L].
(ii) If R0 > 1, then (4.1)-(4.3) admit a unique positive steady-state solution

(R∗(x),N∗(x),C∗(x),R∗S (x),N∗S (x),C∗S (x)), and for any

(R0(·),N0(·),C0(·),R0
S (·),N0

S (·),C0
S (·)) ∈ X0,

we have

lim
t→∞

(R(x, t),N(x, t),C(x, t),RS (x, t),NS (x, t),CS (x, t))

= (R∗(x),N∗(x),C∗(x),R∗S (x),N∗S (x),C∗S (x)), uniformly for x ∈ [0, L].
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Next, we consider a model incorporating nutrient recycling. Cyanobacteria excrete
some toxins that contain nitrogen, a potential limiting nutrient for algae. Hence, chem-
ical decomposition of the toxin results in nutrient recycling [7]. We assume that ε rep-
resents a dimensionless coefficient that specifies the allocation to toxin production [7].
Accordingly, the authors in [7] proposed another reaction-diffusion-advection system:

∂R
∂t = δ∂

2R
∂x2 − ν

∂R
∂x − qN[ f (R) − m]N + α(RS − R) + kqCC,

∂N
∂t = δ∂

2N
∂x2 − ν

∂N
∂x + α(NS − N) + [(1 − ε) f (R) − m]N,

∂C
∂t = δ∂

2C
∂x2 − ν

∂C
∂x + α(CS −C) + ε f (R)qN

qC
N − kC,

∂RS
∂t = −α A

AS
(RS − R) − qN[ f (RS ) − m]NS + kqCCS ,

∂NS
∂t = −α A

AS
(NS − N) + [(1 − ε) f (RS ) − m]NS ,

∂CS
∂t = −α A

AS
(CS −C) + ε f (RS ) qN

qC
NS − kCS ,

(4.11)

for (x, t) ∈ (0, L) × (0,∞) with boundary conditions
νR(0, t) − δ∂R

∂x (0, t) = νR(0),

νN(0, t) − δ∂N
∂x (0, t) = νC(0, t) − δ∂C

∂x (0, t) = 0,
∂R
∂x (L, t) = ∂N

∂x (L, t) = ∂C
∂x (L, t) = 0,

(4.12)

and initial conditionsR(x, 0) = R0(x) ≥ 0, N(x, 0) = N0(x) ≥ 0, C(x, 0) = C0(x) ≥ 0,

RS (x, 0) = R0
S (x) ≥ 0, NS (x, 0) = N0

S (x) ≥ 0, CS (x, 0) = C0
S (x) ≥ 0,

(4.13)

for x ∈ (0, L), where qN (qC) represents the nutrient quota of algae (toxin). The terms
kqCC and kqCCS in (4.11) reflect that the toxin can get recycled back into the system as
available nutrient. From the second and fifth equations of (4.11), we realize that only a
part, (1 − ε), of the nutrient consumed is used for algal growth, which is discounted by
the cost of toxin production.

In [49], the extinction/persistence of system (4.11)-(4.13) is investigated in terms of
a reproduction number by the comparison arguments and the theory of uniform persis-
tence. Due to the introduction of nutrient recycling, the mathematics becomes more
challenging. For example, the uniqueness and global attractivity of the positive steady
state of system (4.11)-(4.13) are unclear in general. With an additional assumption, we
can establish the uniqueness and global attractivity of the positive steady state, see [49,
Section 4].

4.2. A model of harmful algae and zooplankton

In [12, Section 4], the zooplankton is further incorporated into system (4.1)-(4.3).
Suppose Z and ZS represent the densities of zooplankton in the flow and storage zones,
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respectively; qZ is the constant nutrient quota for zooplankton; mZ is the mortality of
zooplankton. Then the governing equations take the following form:

∂R
∂t = δ∂

2R
∂x2 − ν

∂R
∂x − qN[ f (R) − m]N + α(RS − R),

∂N
∂t = δ∂

2N
∂x2 − ν

∂N
∂x + α(NS − N) + [ f (R) − m]N − qZg(N)e−ηCZ,

∂C
∂t = δ∂

2C
∂x2 − ν

∂C
∂x + α(CS −C) + εp(R,N) − kC,

∂Z
∂t = δ∂

2Z
∂x2 − ν

∂Z
∂x + α(ZS − Z) + [g(N)e−ηC − mZ]Z,

∂RS
∂t = −α A

AS
(RS − R) − qN[ f (RS ) − m]NS ,

∂NS
∂t = −α A

AS
(NS − N) + [ f (RS ) − m]NS − qZg(NS )e−ηCS ZS ,

∂CS
∂t = −α A

AS
(CS −C) + εp(RS ,NS ) − kCS ,

∂ZS
∂t = −α A

AS
(ZS − Z) + [g(NS )e−ηCS − mZ]ZS ,

(4.14)

in (x, t) ∈ (0, L) × (0,∞) with boundary conditions
νR(0, t) − δ∂R

∂x (0, t) = νR(0),

νN(0, t) − δ∂N
∂x (0, t) = νC(0, t) − δ∂C

∂x (0, t) = νZ(0, t) − δ∂Z
∂x (0, t) = 0,

∂R
∂x (L, t) = ∂N

∂x (L, t) = ∂C
∂x (L, t) = ∂Z

∂x (L, t) = 0,

(4.15)

and initial conditions
R(x, 0) = R0(x) ≥ 0, N(x, 0) = N0(x) ≥ 0,

C(x, 0) = C0(x) ≥ 0, Z(x, 0) = Z0(x) ≥ 0,

RS (x, 0) = R0
S (x) ≥ 0, NS (x, 0) = N0

S (x) ≥ 0,

CS (x, 0) = C0
S (x) ≥ 0, ZS (x, 0) = Z0

S (x) ≥ 0,

(4.16)

in x ∈ (0, L). Here η > 0 is a constant and represents the effect of the inhibitor on
zooplankton, the term e−ηC represents the degree of inhibition of C on the growth rate of
zooplankton, and the function g(N) has the following form:

g(N) =
µ̂maxN
K̂ + N

.

Let X+ := C([0, L],R8
+). By comparison arguments, one can show that solutions

of system (4.14)-(4.16) exist globally on [0,∞), and ultimately bounded and uniformly
bounded in X+ (see Lemma 4.1 and Lemma 4.2 in [12]). Then we define the solution
semiflow Θ(t) : X+ → X+ of (4.14)-(4.16) by

Θ(t)(φ) = u(·, t, φ), ∀ t ≥ 0, φ ∈ X+,

where u(x, t, φ) is the solution of (4.14)-(4.16) with u(·, 0, φ) = φ ∈ X+. We can further
find a bounded set D in X+ and a t0 > 0 such that

Θ(t)(φ) ∈ D, ∀ t ≥ t0, φ ∈ X
+,
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and D is positively invariant for Θ(t) in the sense that

Θ(t)(φ) ∈ D, ∀ t ≥ 0, φ ∈ D.

In view of the assumption (4.7), it follows whenever α A
AS

is sufficiently large, there exists
a constant r > 0 such that

vTM(φ(x))v ≤ −rvT v, ∀φ ∈ D, x ∈ [0, L], v ∈ R4, (4.17)

whereM(R,N,C,Z,RS ,NS ,CS ,ZS ) =
m11 m12 0 0

f ′(RS )NS m22 m23 m24

ε ∂p(RS ,NS )
∂RS

ε ∂p(RS ,NS )
∂NS

−α A
AS
− k 0

0 m42 m43 m44

 ,
and

m11 = −α
A
AS
− qN f ′(RS )NS , m12 = −qN[ f (RS ) − m],

m22 = −α
A
AS

+ [ f (RS ) − m] − qZg′(NS )e−ηCS ZS ,

m23 = ηqZg(NS )e−ηCS ZS , m42 = g′(NS )e−ηCS ZS ,

m43 = −ηg(NS )e−ηCS ZS , m24 = −qZg(NS )e−ηCS ,

m44 = −α
A
AS

+ g(NS )e−ηCS − mZ.

We note that the last four equations in system (4.14)-(4.16) have no diffusion terms,
and hence, its solution map Θ(t) is not compact. By arguments similar to those in [11,
Lemma 4.1], we have the following result.

Lemma 4.4. ([12, Lemma 4.3]) Let (4.7) and (4.17) hold. Then the solution semiflow
Θ(t) is κ-contracting in the sense that limt→∞ κ(Θ(t)(B)) = 0 for any bounded set B ⊂ X+,
where κ is the Kuratowski measure of noncompactness.

By [29, Theorem 2.6], we have the following result.

Theorem 4.2. ([12, Theorem 4.1]) Let (4.7) and (4.17) hold. Then Θ(t) admits a global
attractor on X+ that attracts each bounded set in X+.

We note that the system (4.14)-(4.16) admits the following trivial/semitrivial steady
states: E0 := (R(0), 0, 0, 0,R(0), 0, 0, 0) and

E1 := (R∗(x),N∗(x),C∗(x), 0,R∗S (x),N∗S (x),C∗S (x), 0) provided that R0 > 1,

where R0 is the algal reproduction ratio for system (4.1)-(4.3), and

(R∗(x),N∗(x),C∗(x),R∗S (x),N∗S (x),C∗S (x))
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is the unique positive steady-state solution of (4.1)-(4.3). Linearizing system (4.14)-
(4.16) around the state E1, we get the following system for the zooplankton compart-
ments (Z,ZS ):

∂Z
∂t = δ∂

2Z
∂x2 − ν

∂Z
∂x + α(ZS − Z)

+[g(N∗)e−ηC∗ − mZ]Z, 0 < x < L, t > 0,
∂ZS
∂t = −α A

AS
(ZS − Z) + [g(N∗S )e−ηC∗S − mZ]ZS , 0 < x < L, t > 0,

νZ(0, t) − δ∂Z
∂x (0, t) = 0, ∂Z

∂x (L, t) = 0, t > 0,

Z(x, 0) = Z0(x) ≥ 0, ZS (x, 0) = Z0
S (x) ≥ 0, 0 < x < L.

(4.18)

The eigenvalue problem associated with (4.18) takes the form:
Λψ(x) = δψ′′ − νψ′ + α(ψS − ψ)

+[g(N∗)e−ηC∗ − mZ]ψ(x), 0 < x < L,

ΛψS (x) = −α A
AS

(ψS − ψ) + [g(N∗S )e−ηC∗S − mZ]ψS , 0 < x < L,

νψ(0) − δψ′(0) = 0, ψ′(L) = 0.

(4.19)

Due to the loss of compactness, we need to impose the following condition:

α
A
AS

+ mZ > g(N∗S (x))e−ηC∗S (x), ∀ x ∈ [0, L]. (4.20)

The following result is a straightforward consequence of [10, Theorem 2.1].

Lemma 4.5. Assume that condition (4.20) holds. Then the eigenvalue problem (4.19)
admits the principal eigenvalue, denoted by Λ∗.

We remark that in [12, Lemma 4.4], the authors used a generalized Krein-Rutman
Theorem (see, e.g., [35]) to show that (4.19) admits the principal eigenvalue if (4.20)
holds and one additional condition is satisfied. Combining [10, Lemmas 2.1-2.3] with
[50, Theorem 2.3], one can obtain [10, Theorem 2.1] and hence Lemma 4.5. Thus,
Lemma 4.5 is an improved version of [12, Lemma 4.4] since that additional condition
is removed. Here we emphasize that Lemmas 2.1-2.3 in [10] hold true only for the au-
tonomous system. So the arguments in [12, Lemma 4.4] are still useful for us to establish
the existence of the principal eigenvalue for degenerate periodic reaction-diffusion sys-
tems.

In the following, we shall adopt the theory developed in [50] to define the basic
reproduction ratio for zooplankton. Let S(t) : C([0, L],R2) → C([0, L],R2) be the C0-
semigroup generated by the following system

∂Z
∂t = δ∂

2Z
∂x2 − ν

∂Z
∂x + α(ZS − Z) − mZZ, 0 < x < L, t > 0,

∂ZS
∂t = −α A

AS
(ZS − Z) − mZZS , 0 < x < L, t > 0,

νZ(0, t) − δ∂Z
∂x (0, t) = 0, ∂Z

∂x (L, t) = 0, t > 0.
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Note that S(t) is a positive C0-semigroup on C([0, L],R2). Assume that both zooplankton
individuals in the flow and storage zones are near the trivial steady-state solution (0, 0)
for (4.18), and introduce fertile individuals at time t = 0, where the distribution of initial
zooplankton individuals in the flow and storage zones is described by ϕ := (ϕ4, ϕ8) ∈
C([0, L],R2). Thus, S(t)ϕ represents the distribution of fertile zooplankton individuals at
time t ≥ 0.

Let L : C([0, L],R2)→ C([0, L],R2) be defined by

L(ϕ)(·) =

∫ ∞

0

(
g(N∗S (·))e−ηC∗S (·) 0

0 g(N∗S (·))e−ηC∗S (·)

)
(S(t)ϕ)(·)dt.

It then follows that L(ϕ)(·) represents the distribution of the total new population gen-
erated by initial fertile zooplankton individuals ϕ := (ϕ4, ϕ8), and hence, L is the next
generation operator. We define the spectral radius of L the basic reproduction ratio of
zooplankton compartments for system (4.14)-(4.16), that is,

Rz
0 := r(L).

By [45] or [50, Theorem 3.1 (i) and Remark 3.1], we have the following observation.

Lemma 4.6. Rz
0 − 1 and Λ∗ have the same sign.

Recall that X+ := C([0, L],R8
+). Let

X0 = {(R,N,C,Z,RS ,NS ,CS ,ZS ) ∈ X+ : Z(·) . 0 and ZS (·) . 0,

and (R,N,C,RS ,NS ,CS ) , (R(0), 0, 0,R(0), 0, 0)},

and
∂X0 := X+\X0.

Now we are in a position to state the main result of this subsection.

Theorem 4.3. ([12, Theorem 4.2]) Assume (4.7), (4.17) and (4.20) hold. Then the fol-
lowing statements are valid:

(i) If R0 < 1, then the trivial solution E0 is globally attractive in X+ for (4.14)-(4.16).
(ii) If R0 > 1 and Rz

0 > 1, then system (4.14)-(4.16) admits at least one (component-
wise) positive equilibrium

(R̂(·), N̂(·), Ĉ(·), Ẑ(·), R̂S (·), N̂S (·), ĈS (·), ẐS (·)),

and there is a positive constant ζ > 0 such that every solution

(R(·, t),N(·, t),C(·, t),Z(·, t),RS (·, t),NS (·, t),CS (·, t),ZS (·, t))

of (4.14)-(4.16) with

(R(·, 0),N(·, 0),C(·, 0),Z(·, 0),RS (·, 0),NS (·, 0),CS (·, 0),ZS (·, 0)) ∈ X0

satisfies lim inft→∞minx∈[0,L] Z(x, t) ≥ ζ and lim inft→∞minx∈[0,L] ZS (x, t) ≥ ζ.

It is still an open problem whether E1 is globally attractive in X+ for system (4.14)-
(4.16) in the case where R0 > 1 and Rz

0 < 1.
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5. Discussion

This paper surveys mathematical models describing the spatial variation of population
dynamics of harmful algae and toxin production and decay in flowing-water habitats
[19, 6, 7]. Previous mathematical models have been somewhat simplified, and raise
many paradoxes [19, 37]. One of the paradoxes is the persistence of harmful algae in
the river/stream. Intuitively, phytoplankton populations in riverine reservoirs should be
washed out by the strong flow, however, we did observe the occurrences of harmful algal
blooms. This persistence paradox may be resolved by the complexity of the channel. In
fact, the shoreline features and the bed of the channel can retard flow, producing slow-
flowing regions. These slow-flowing regions constitute a hydraulic storage zone that
may promote algal persistence [6, 7]. The authors in [6] proposed and analyzed system
(3.1)-(3.3) under the case where R(0)(t) ≡ R(0) is a positive constant. The analytical
and numerical results in [6] confirm that the system with a storage zone can enhance
the persistence of phytoplankton populations. More precisely, numerical work in [6]
shows that persistence is possible at higher advective flows for biologically reasonable
parameters in the system with a storage zone. The authors in [7] also proposed two-
vessel gradostat models of algal dynamics, in which one compartment is a small cove
connected to a larger lake. Incorporating seasonal temperature variations into two-vessel
gradostat models, rigorous analysis of the time-periodic two-vessel gradostat models are
given in [48], and their numerical simulations on the basic reproduction number also
indicate that seasonality can play a central role in the extinction/persistence of harmful
algae.

Some previous mathematical models closely related to this survey paper, using ordi-
nary or partial differential equations and integro-differential or integro-difference equa-
tions, can be found in [17, 18, 28, 32, 36, 44, 4]. Those works focus on the investigations
of spatial spread and persistence of populations in the river/stream. Recently, the authors
in [32, 14] also studied reaction-diffusion-advection systems describing the growth of a
single species where the species lives in both flowing water and river benthos, respec-
tively. The next generation operator mapping the population from one generation to its
next generation offsprings was also used to define three different measures that can deter-
mine the extinction/persistence of population in a river. The global dynamics and spread-
ing properties were also investigated in [51, 22] for time-periodic benthic-drift popula-
tion models. In [16], the authors further studied a reaction-diffusion-advection system of
two species competing in a river environment where the populations grow and compete
in the benthic zone and disperse in the drifting water zone. The influences of advection
rates, diffusion rates, river length, competition rates, transfer rates, and spatial hetero-
geneity on the persistence/coexistence of species were also numerically investigated.
Comparing with the models reviewed in this paper, those in [26, 32, 36, 14, 16] neglect
the classes of nutrient(s) and toxin(s). Mathematically, these models are similar to our
limiting systems (3.10) and (3.18). Recently, the authors in [27, 23, 20, 21, 53, 54, 24]
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(and the related references therein) also considered two-species competition models in a
one-dimensional advective environment, where the governing equations are restricted to
Lotka-Volterra type reaction-diffusion-advection systems. Assuming that the two species
share the same resources, these authors focused on the study of different evolution strate-
gies reflected by their different random dispersal rates and/or advection rates.

In a real ecosystem, the interactions of nutrients, harmful algae, toxins and zooplank-
ton can be very complex. For example, in a real reservoir, P. parvum competes for nitro-
gen and phosphorus with cyanobacteria, which also excrete allelopathic cyanotoxins that
inhibit the growth of P. parvum. A small-bodied zooplankton population consume both
types of algae for growth, but the dissolved toxins produced by P. parvum also inhibits
zooplankton ingestion, growth and reproduction. In order to understand such complex
interactions and reactions in an ecosystem, the authors in [8] proposed a well-mixed
chemostat system to explore the dynamics of nutrients, P. parvum, toxin(s) produced by
P. parvum, cyanobacteria, cyanotoxin(s) produced by cyanobacteria, and zooplankton.

In [13], the authors further modify the model in [8] to an unstirred chemostat model of
the dynamics of P. parvum, cyanobacteria, and a zooplankton population, in which spa-
tial variations are included, but the compartments of algal toxins produced by P. parvum
and cyanobacteria are neglected. The strength of inhibition/allelopathy is directly deter-
mined by the densities of P. parvum and cyanobacteria, respectively, which reduces the
numbers of the modeling equations. It turns out that this model system admits a coex-
istence steady state and is uniformly persistent provided that the trivial steady state, two
semi-trivial steady states and a global attractor on the boundary are all weak repellers.

The factors of seasonal temperature, salinity and vertical variations (due to light lim-
itation in deeper riverine systems) also have been known to have crucial influences on
the evolution dynamics of harmful algae. It will be challenging and interesting projects
if the aforementioned mechanisms are added into the models reviewed in this paper.
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