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1. Introduction. In this paper we study a mathematical model arising from crop raid-
ing of large-bodied mammals living in the biodiversity-rich tropics. The topic is important
because it involves highly threaten species that can cause significant economic damage and
be killed in retribution. There are several reports of crop raiding exist for chimpanzees Pan
troglodytes in Uganda and Guinea Republic; gorilla Gorilla beringei in Rwanda; orangutans
(Pongo abelii and Pango pygmaeus) in Indonesia and Malaysia. The reader can find the paper
Campbell-Smith et al. [19] and the references therein. Resolving human-wildlife conflict is
a conservation imperative because these species are among the most threaten on earth; there
large body size means that they can cause substantial economic loss to farmers through crop
raiding. It is important to find mitigation strategies to prevent this form of human-wildlife
conflict. It is our purpose to understand this problem by constructing mathematical models
and studying how the wildlife population behaves.

Let Ω be a nice bounded domain with Ω̄0 ⊂ Ω, the forest region; Ω \Ω0 representing the
region of farm or orchard. Let U(x, t) be the population density of the mammal at position
x and time t. We assume that forest is safe for the mammal species, but is of poor resource;
the farm is of rich resources, but is dangerous. The basic assumptions are that the mammals
cannot survive if they only stay in the forest and do not attempt to go out to search food; they
cannot produce offspring in the farm for it is not a safe place for reproduction; the per capital
birth rate is proportional to the total population in the farm. Based on these assumptions the
model takes the form

Ut = d∆U + γV (x)
(∫

Ω\Ω0
U(y, t) dy

)
U − Up in Ω, t > 0,

∂U
∂n = 0 on ∂Ω, t > 0,
U(·, 0) = U0 in Ω,

(1.1)
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where V (x) stands for the characteristic function of Ω0

V (x) :=

{
1, if x ∈ Ω0,
0, if x ∈ Ω \ Ω0,

(1.2)

γ > 0 is a parameter measuring the birth rate of the species in the forest, p ≥ 2 takes into
account the crowding effects of the population in Ω, d > 0 measures the diffusivity of the
species in Ω, and n stands for the outward unit normal to Ω along the territory edges ∂Ω.
As a previous step to ascertain the dynamics of (1.1) one has to study its non-negative steady
states, which are the non-negative solutions of the semi-linear non-local elliptic problem{

−d∆U = γV (x)
(∫

Ω\Ω0
U(y) dy

)
U − Up in Ω,

∂U
∂n = 0 on ∂Ω.

(1.3)

As the change of variable

u := d
−1
p−1U, λ := γ d−

p−2
p−1 , (1.4)

transforms (1.3) into{
−∆u = λV (x)

(∫
Ω\Ω0

u(y) dy
)
u− up in Ω,

∂u
∂n = 0 on ∂Ω,

(1.5)

we will focus our attention in problem (1.5), which exhibits two types of non-negative solu-
tions: the trivial solution u = 0 and the positive solutions u > 0, which, according to the
strong maximum principle, satisfy u≫ 0, in the sense that u(x) > 0 for all x ∈ Ω̄. The main
goal of this paper is characterizing the existence of positive solutions of (1.5) and computing
them in a simple symmetric one-dimensional prototype model in order to ascertain their local
attractive properties. As (1.1) is a non-local parabolic model, our analysis is fraught with a
number of technical difficulties inherent to the lack of the standard comparison techniques
available for local problems. So, even the problem of ascertaining the local stability of the
positive solutions seems very intricate to handle.

As the nonlinearity has a discontinuity along ∂Ω0, the weak solutions of (1.5) are not
classical solutions, but strong solutions, i.e. solutions in ∩q>1W

2,q(Ω). Consequently, they
must be of class C1+ν(Ω̄) for all ν < 1, are twice differentiable almost everywhere in Ω and
satisfy (1.5) a.e. in Ω (see, e.g., López-Gómez [15, Th. 4.1.8] and Stein [22, Th. VIII.1]).

Note that γ > 0 implies λ > 0 and that, actually, λ > 0 is necessary for the existence of
a positive solution of (1.5), because, if (λ, u) solves (1.5) with u > 0, then, u≫ 0 and hence,

λ

∫
Ω0

u

∫
Ω\Ω0

u =

∫
Ω

up > 0. (1.6)

The distribution of this paper is the following. Section 2 deals with a one-dimensional sym-
metric version of (1.5). Our main result there establishes that for every p ≥ 2 there exists
λc = λc(p) ≥ 0 such that (1.5) possesses at least a positive solution for each λ > λc(p),
and no positive solution for λ < λc(p) if λc(p) > 0. Section 3 combines a pseudo-spectral
method with collocation and a path-following solver to compute the bifurcation diagrams of
positive solutions for p = 2 and p = 3 in a case when |Ω0| > |Ω \ Ω0|. All computed
positive solutions have been locally stable, though we found an important difference between
the limiting case p = 2 and the general case when p > 2. Namely, though according to the
numerics λc(2) > 0, it seems that λc(p) = 0 for all p > 2. Section 4 determines rigorously
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all the admissible bifurcation points to positive solutions from (λ, 0) for p ≥ 2. Namely,
λ = 0 if p > 2 and λ = λ∗ := |Ω|/(|Ω0||Ω \ Ω0|) if p = 2. This change of behavior is
easily explained by the fact that, within the range 0 < λ < λ∗ and p = 2, the trivial solution
u = 0 perturbs into a positive solution when p separates away from 2. Section 5 studies the
general multidimensional problem (1.5). By introducing a secondary parameter of spectral
nature one can use some techniques from global bifurcation theory, based on the existence of
a priori bounds in the auxiliary parameter, to prove that in case p > 2 (1.5) admits a positive
solution if, and only if, λ > 0. Finally, in Section 6 we show that indeed (λ, u) = (λ∗, 0) is a
bifurcation point from u = 0 to a curve of positive solutions of (1.5) if p = 2, and prove that
the bifurcation is supercritical if |Ω0| > |Ω \Ω0| while it is subcritical if |Ω0| < |Ω \Ω0|. In
particular, for the one-dimensional symmetric prototype model, λc(2) < λ∗ if |Ω0| < |Ω\Ω0|
and hence, for every λ ∈ (λc(2), λ

∗), the model should have at least two positive solutions,
and three for p > 2, p ∼ 2, as zero perturbs into another positive solution of small amplitude,
but this particular issue will be dealt with in a forthcoming paper.

The latest multiplicity result is slightly paradoxical from the point of view of the appli-
cations, as it establishes that the smaller is the forest region, measured by |Ω0|, the larger is
the complexity of the dynamics of the model, measured by the number of steady states.

2. The one-dimensional problem. Throughout this section, we assume that

N = 1, a < b, 0 < L < (b− a)/2, Ω = (a, b), Ω0 = (a+ L, b− L), (2.1)

and search for positive solutions of{
−u′′ = 2λV (x)

(∫ a+L

a
u(y) dy

)
u− up in (a, (a+ b)/2),

u′(a) = u′((a+ b)/2) = 0.
(2.2)

By reflection about (a+b)/2, these solutions provide us with the symmetric positive solutions
of (1.5) for the special choice (2.1). The main result of this section can be stated as follows

THEOREM 2.1. For every p ≥ 2 there exists λc = λc(p) ≥ 0 such that (2.2) possesses
a positive solution for each λ > λ0(p), at least, and no positive solution for λ < λc(p) if
λc(p) > 0.

The proof of this result will follow after a series of technical results, which have been
distributed in a number of subsections. Throughout this paper, given a second order linear
elliptic operator L in a nice bounded open set O and a mixed boundary operator B of the
general type considered in [2] and [15], we will denote by σ[L,O,B] the principal eigenvalue
of the linear eigenvalue problem{

Lφ = τφ in O,
Bφ = 0 on ∂O.

If Bφ = ∂nφ, we will set B = N, while we simply write B = D if Bφ = φ. The reader is
sent to Chapters 8 and 9 of [15] for the proof of the most important properties of σ[L,O,B].

2.1. An auxiliary uniqueness result. Subsequently, to shorten notations, we denote

m := (a+ b)/2. (2.3)

As
∫ a+L

a
u > 0 for any positive solution u of (2.2), the solutions of (2.2) must solve{

−u′′ = κV (x)u− up in (a,m),
u′(a) = u′(m) = 0,

(2.4)
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for some constant κ > 0. The next result holds.
LEMMA 2.2. The problem (2.4) admits, at most, one positive solution.
Proof. Suppose that u1 ̸= u2 are positive solutions of (2.4) and set

w := u1 − u2.

Then,

−w′′ = κV (x)w − (up1 − up2) in (a,m).

On the other hand, for every x ∈ (a,m), we have that

up1(x)− up2(x) = p

∫ 1

0

[tu1(x) + (1− t)u2(x)]
p−1 dt (u1(x)− u2(x))

and hence, (
−D2 + I(x)− κV (x)

)
w = 0 in (a,m), (2.5)

where we have denoted

D := d/dx, I(x) := p

∫ 1

0

[tu1(x) + (1− t)u2(x)]
p−1 dt, x ∈ (a,m).

As w′(0) = w′(m) = 0, by the dominance of the principal eigenvalue in (a,m) (e.g., see
[15, Th. 7.9]), we find from (2.5) that

σ[−D2 + I(x)− κV (x), (a,m),N] ≤ 0. (2.6)

On the other hand, as (1− t)u2(x) > 0 for all t ∈ (0, 1) and x ∈ [a,m], we have that

I(x) > p

∫ 1

0

tp−1 dt up−1
1 (x) = up−1

1 (x)

for all x ∈ [a,m]. Therefore, by the monotonicity of the principal eigenvalue with respect to
the potential, we obtain that

σ[−D2 + I(x)− κV (x), (a,m),N] > σ[−D2 + up−1
1 − κV (x), (a,m),N] = 0,

because u′1(0) = u′1(m) = 0 and

(−D2 + up−1
1 − κV )u1 = 0 in (a,m).

Naturally, according to (2.6), this is impossible. The proof is complete.
COROLLARY 2.3. If u1 ̸= u2 solve (2.2), then

∫ a+L

a
u1 ̸=

∫ a+L

a
u2.

Proof. In the contrary case, both solutions solve (2.4) with

κ = 2λ

∫ a+L

a

u1(x) dx = 2λ

∫ a+L

a

u2(x) dx,

which is impossible, by Lemma 2.2.



A nonlocal problem from conservation Biology 5

2.2. The profile of the solutions of (2.2) in (a, a+L). The solutions of (2.2) in (a, a+
L) satisfy the Cauchy problem

u′′ = up, u(a) = h, u′(a) = 0, (2.7)

for some h > 0 to be determined. These solutions are explosive for sufficiently large h.
Indeed, as soon as the solution u is defined in [a, x], one has that

u′(x) =

∫ x

a

up(y) dy > 0 (2.8)

and hence, u(x) > h and u′(x) > 0 for all x ∈ (a, Th), where Th ∈ (0,∞] stands for the
maximal existence time of the unique solution of (2.7). Thus, multiplying the differential
equation by u′(x) and integrating yields

u′(x) =

√
2

p+ 1
(up+1(x)− hp+1) (2.9)

for all x ∈ (a, Th), and therefore,

x = a+

∫ x

a

u′(y)√
2

p+1 (u
p+1(y)− hp+1)

dy = a+

√
p+ 1

2
h−

p−1
2

∫ u(x)/h

1

dθ√
θp+1 − 1

.

Thus, letting x→ Th in the previous identity, it becomes apparent that

Th = a+

√
p+ 1

2
h−

p−1
2

∫ ∞

1

dθ√
θp+1 − 1

< +∞. (2.10)

As

lim
h→∞

Th = a, lim
h→0

Th = ∞,

and Th is a decreasing function of h, there exists a unique hc > 0 such that

L = Thc
− a =

√
p+ 1

2
h
− p−1

2
c

∫ ∞

1

dθ√
θp+1 − 1

. (2.11)

Obviously, Th > a+ L if h < hc, whereas Th < a+ L if h > hc. Therefore, the solution of
(2.7) is defined in [a, a+L] if, and only if h < hc, while it blows up at Th < a+L if h > hc.
When h = hc, the solution blows up exactly at x = a + L. Consequently, any solution of
(2.2) must satisfy u(a) < hc. Subsequently, we denote by uh the unique solution of (2.7).
We claim that

uh1(x) < uh2(x) for all x ∈ [a, a+ L] if 0 < h1 < h2 < hc. (2.12)

If not, there exists x0 ∈ (a, a+ L) such that

u′h1
(x0) ≥ u′h2

(x0), uh1(x0) = uh2(x0), uh1(x) < uh2(x)

for all x ∈ (a, x0). Then, from (2.8) we find that

u′h1
(x0) =

∫ x0

a

uph1
(y)dy <

∫ x0

a

uph2
(y)dy = u′h2

(x0),
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a contradiction. Moreover, by continuous dependence,

lim
h↑hc

uh(x) = uhc(x) for all x ∈ [a, a+ L), (2.13)

with uniform convergence in compact subintervals of [a, a + L), by the Ascoli-Arzela theo-
rem. Naturally,

lim
h↑hc

u′h(a+ L) = ∞. (2.14)

Indeed, due to (2.8), (2.12) and (2.13), we find from the Lebesgue monotone convergence
theorem that

lim
h↑hc

u′h(a+ L) =

∫ a+L

a

uphc
(y) dy. (2.15)

On the other hand, by [14, Th. 1.1], there is a positive constant C > 0 such that

lim
x↑a+L

uhc(x)

C(a+ L− x)−2/(p−1)
= 1.

The fact that ∫ a+L

a

(a+ L− y)−2p/(p−1) dy = +∞

yields (2.14).

2.3. The profile of the symmetric solutions in (a+ L,m). The next result provide us
with the behavior of the symmetric solutions of (1.5) in (a+ L,m) for the choice (2.1).

PROPOSITION 2.4. For every h ∈ (0, hc) there exists a unique κ = κ(h) > up−1
h (a+L)

such that the unique solution of the problem{
−w′′ = κw − wp in (a+ L,m),
w(a+ L) = uh(a+ L), w′(m) = 0,

(2.16)

also satisfies w′(a + L) = u′h(a + L). Consequently, (2.4) possesses a solution, which is
unique, by Lemma 2.2. Moreover, κ(h) is a continuous function of h ∈ (0, hc).

Proof. For every h ∈ (0, hc) and κ ∈ R, (2.16) admits a positive solution, because
w := 0 is a subsolution and w := M is a supersolution for sufficiently large M > 0.
Moreover, by adapting the proof of Lemma 2.2, the solution must be unique.

Suppose κ = up−1
h (a + L). Then, the constant w := uh(a + L) itself provides us with

the unique solution of (2.16). As w′(a+ L) = 0 < u′h(a+ L), to complete the proof of the
existence it suffices to show that

lim
κ↑∞

w′(a+ L) = ∞. (2.17)

Indeed, as w′(a + L) varies continuously with κ, (2.17) guarantees the existence of κ =
κ(h) > up−1

h (a + L) such that w′(a + L) = u′h(a + L), which concludes the proof. To
prove (2.17) we perform the change of variable w = κ1/(p−1)ξ, which transforms (2.16) in
the problem {

− 1
κξ

′′ = ξ − ξp in (a+ L,m),
ξ(a+ L) = κ−1/(p−1)uh(a+ L), ξ′(m) = 0.

(2.18)
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For sufficiently large κ, the constant function ξ := 1 provides us with a strict supersolution
of (2.18), and ξ := vκ|[a+L,m], where vκ stands for the unique positive solution of{

− 1
κv

′′ = v − vp in (a+ L, b− L),
v(a+ L) = v(b− L) = 0,

(2.19)

provides us with a strict subsolution of (2.18). Thus, by comparison and uniqueness, we find
that vκ < ξ < 1 in [a+ L,m]. On the other hand, by [8, Th. 2.1], we already know that

lim
κ↑∞

vκ = 1 uniformly in (a+ L+ ϵ, b− L− ϵ)

for all sufficiently small ϵ > 0. Consequently,

lim
κ↑∞

ξ = 1 uniformly in (a+ L+ ϵ,m]

for all ϵ > 0, ϵ ∼ 0. As ξ(a + L) → 0 for κ → ∞, it becomes apparent that ξ develops
a boundary layer at a + L. Moreover, as ξ < 1 implies ξ′′ < 0, ξ′ must be decreasing.
Therefore, limk→∞ ξ′(a+L) = ∞, which implies (2.17) and ends the proof of the existence.

The uniqueness of κ(h) is an easy consequence from the fact that the mapping κ 7→
w′(a+ L) is increasing for κ > up−1

h (a+ L). Indeed, according to the theorem of differen-
tiation of Peano, this map is real analytic and the function ψ := ∂κw satisfies{ (

−D2 + pwp−1 − κ
)
ψ = w in (a+ L,m),

ψ(a+ L) = ψ′(m) = 0.
(2.20)

According to (2.16), we have that(
−D2 + pwp−1 − κ

)
w = (p− 1)wp > 0 in (a+ L,m).

Moreover, w(a + L) > 0 and w′(m) = 0. Thus, w > 0 provides us with a positive strict
supersolution of the differential operator −D2+pwp−1−κ in the interval (a+L,m) subject
to the boundary conditions Bw = 0, where B is defined by

Bu(a+ L) = u(a+ L), Bu(m) = u′(m).

Consequently, thanks to, e.g., [2, Th. 2.4], or [15, Th. 7.10], we find that −D2 + pwp−1 − κ
satisfies the strong maximum principle in (a + L,m) subject to the boundary operator B.
Hence, (2.20) implies ψ ≫ 0 and, consequently, ∂kw′(a + L) > 0. This shows the unique-
ness of κ(h). The continuity of κ(h) is a byproduct of the uniqueness and the continuous
dependence of the solutions of (2.16) with respect to κ and h. The proof is complete.

2.4. The proof of Theorem 2.1. According to Proposition 2.4, (2.2) admits a positive
solution if, and only if, for some h ∈ (0, hc), 2λ

∫ a+L

a
uh = κ(h). Therefore, the set of λ’s

for which (2.2), and hence (1.5) under assumptions (2.1), admits a positive solution is given
by the image of the map

Λ(h) :=
κ(h)

2
∫ a+L

a
uh

0 < h < hc. (2.21)

According to Proposition 2.4, by the continuous dependence of uh with respect to h, it be-
comes apparent that Λ(h) is a continuous function of h. Moreover, by construction,

κ(h) > up−1
h (a+ L) (2.22)
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and, owing to (2.8) and (2.9), we have that

u′h(a+ L) =

∫ a+L

a

uph(y) dy =

√
2

p+ 1

(
up+1
h (a+ L)− hp+1

)
. (2.23)

Thus, by Hölder inequality, we find from (2.23) that

∫ a+L

a

uh(y) dy ≤ L1/q

(∫ a+L

a

uph(y) dy

)1/p

= L1/q (u′h(a+ L))
1/p

= L1/q

[
2

p+ 1

(
up+1
h (a+ L)− hp+1

)] 1
2p

and consequently, for every h ∈ (0, hc), we have that

Λ(h) ≥
up−1
h (a+ L)

2L1/q
[

2
p+1

(
up+1
h (a+ L)− hp+1

)] 1
2p

. (2.24)

As p − 1 > p+1
2p if p ≥ 2 and limh↑hc uh(a + L) = +∞, we find from (2.24) that

limh↑hc Λ(h) = +∞. Since limh→0 Λ(h) = λc(p) ≥ 0 and Λ is continuous, Λ((0, hc)) =
(λc(p),+∞). Hence, there exists a h ∈ (0, hc) such that Λ(h) = λ. This ends the proof.

3. Some one-dimensional numerical experiments for Ω0 large. In this section we
make the special choice

Ω = (−1, 1), Ω0 = (−0.6, 0.6),

in (2.1) and couple a pseudo-spectral method with a path-following solver to compute the
bifurcation diagram of the positive solutions of (1.5) for p = 2 and p = 3. This method is
extremely efficient at a very low computational cost. The reader is sent to [16] and [17] for
the technical details concerning the numerics.
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FIG. 3.1. Global bifurcation diagram for p = 2 and profiles of a series of solutions along it.

Figure 3.1 shows a plot of the global bifurcation diagram for p = 2 on the left picture
together with a superimposed series of plots of positive solutions of (1.5) along the solution
curve on the left for an increasing series of values of λ on the right picture. The curve of
positive solutions bifurcates from u = 0 at the critical value of the parameter λ ∼ 2.083214
and it is defined for all further value of the parameter λ for which we have tried to compute it.
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Thus, using the notations of Theorem 2.1, it seems that λc(2) ∼ 2.083214. In the bifurcation
diagram we are plotting λ versus the ℓ2-norm of the computed solution u, which has been
represented by ∥u∥ in ordinates. All computed positive solutions along the bifurcated curve
are linearly stable as steady-states of the associated parabolic problem, and increase with λ.

Although the apparent global concavity exhibited by the first picture of Figure 3.1 sug-
gests that the curve of positive solutions emanates tangentially to the trivial state, with a
bifurcation direction very similar to the one of the λ-axis, the magnified diagrams around the
bifurcation point from the trivial state shown in Figures 3.2 and 3.4 show that actually the
curve loses its concavity after some value of λ, close to λc, and it becomes convex for all
further values of the parameter for which we computed it. Actually, as illustrated by the first
plot of Figure 3.4, the bifurcation of the curve from zero is almost vertical.
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FIG. 3.2. Magnified diagram for p = 2 and profiles of a series of solutions along it.

Our numerical experimentes reveal that these general patterns change when p > 2. Ac-
tually, according to the numerics, the behavior of the small positive solutions of the model
change drastically when p > 2, as the curve always bifurcates from u = 0 at λ = 0. Con-
sequently, we conjecture that λc(p) = 0 for all p > 2 in Theorem 2.1. Figure 3.2 shows the
computed bifurcation diagram for p = 3. It bifurcates from u = 0 with a very high slope, as
illustrated by the second picture of Figure 3.4, at the critical value of the parameter λ = 0.
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FIG. 3.3. Global bifurcation diagram for p = 3 and a series of solutions along it.

As in the problem (1.5) the parameter λ lies in front of the first term of the nonlinearity,
the bifurcation of positive solutions from u = 0 cannot be expected to be based on the linear
part of the equation, as it occurs in most of the available literature on bifurcation problems,
where λ is a sort of spectral parameter, but, instead, on their nonlinear terms. Actually, u = 0
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is a linearly neutrally stable equilibrium of (1.1) for all λ ≥ 0, as zero is always an eigenvalue
of the linearized equation at u = 0. Consequently, the fact that bifurcation occurs as λ crosses
2.083214 in case p = 2, or λ = 0 in case p > 2, is based on the nonlinear terms of (1.5).

1.8 1.9 2 2.1 2.2 2.3 2.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

λ

||u
||

−0.2 −0.1 0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

λ

||u
||

FIG. 3.4. Magnifying the curves around the bifurcation points in cases p = 2 (left plot) and p = 3 (right plot).

Although all the positive solutions of (1.5) are point-wise increasing with λ, they grow
faster in Ω0 than in Ω \ Ω0, where, according to the maximum principle, they are bounded
above by the unique solution of (2.7) for the special choice h = hc (see (2.11) for the def-
inition of hc, if necessary). Actually, as illustrated by Figure 3.5, the solutions stabilize in
Ω \ Ω̄0 to the unique positive large solution of u′′ = u2 in (−1,−0.6) with u′(−1) = 0.
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FIG. 3.5. Stabilization of the solutions in (−1,−0.6) as λ grows.

Based on the numerics, we conjecture that for any sequence of positive solutions of (1.5),
say (λn, un), n ≥ 1, with limn→∞ λn = ∞, the following holds

lim
n→∞

un =

{
∞ in Ω̄0,
ℓ in Ω \ Ω̄0,

where ℓ stands for the minimal positive solution of the singular boundary value problem{
∆u = up in Ω \ Ω̄0,
∂nu|∂Ω = 0, u|∂Ω0 = +∞,

(3.1)

whose existence is guaranteed by [14, Prop. 3.4].
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4. Admissible bifurcation values from u = 0. The next result explains some of the
most significant differences observed in Section 3 between the cases p = 2 and p > 2.

THEOREM 4.1. Suppose p ≥ 2 and λ0 ∈ R is a bifurcation value to positive solutions
of (1.5) from (λ, u) = (λ, 0), i.e., there exists a sequence of positive solutions of (1.5), say
(λn, un), n ≥ 1, such that λn → λ0 and ∥un∥∞ → 0 as n → ∞. Then, λ0 = 0 if p > 2,
while λ0 = λ∗ if p = 2, where

λ∗ :=
|Ω|

|Ω0||Ω \ Ω0|
. (4.1)

When N = 1, Ω = (−1, 1) and Ω0 = (−0.6, 0.6), we have that

λ∗ =
|Ω|

|Ω0||Ω \ Ω0|
=

2

1.2× 0.8
= 2.083333 . . .

indeed approximates the value of λc(2) ∼ 2.083214 already computed in Section 3.
Proof. Integrating in Ω the differential equation yields

λn

∫
Ω0

un

∫
Ω\Ω0

un =

∫
Ω

upn, n ≥ 1. (4.2)

Moreover, dividing by ∥un∥∞ and setting

vn := un/∥un∥∞, n ≥ 1,

we find that

−∆vn =

(
λnV (x)

∫
Ω\Ω0

un − up−1
n

)
vn (4.3)

for all n ≥ 1. Since

∥vn∥∞ = 1 and lim
n→∞

∥λnV (x)

∫
Ω\Ω0

un − up−1
n ∥∞ = 0,

by elliptic regularity and the inherent associated compactness, one can extract a subsequence,
also labelled by n, such that limn→∞ vn = ψ in L∞(Ω) for some smooth ψ. As ψ > 0,
∥ψ∥∞ = 1, and letting n → ∞ in (4.3) we obtain that −∆ψ = 0, necessarily ψ = 1 and
therefore, limn→∞ vn = 1 in L∞(Ω). Consequently, it becomes apparent from (4.2) that

λ0 = lim
n→∞

λn = lim
n→∞

∫
Ω
up−2
n v2n∫

Ω0
vn
∫
Ω\Ω0

vn
= 0

if p > 2, while λ0 = λ∗ if p = 2.

5. The multidimensional problem with p > 2. In this section we will study the general
multidimensional problem (1.5) with N ≥ 1 and p > 2. Our main result is the following.

THEOREM 5.1. Suppose p > 2. Then, (1.5) has a positive solution if and only if λ > 0.
Proof. Suppose (1.5) possesses a positive solution. Then, we already know that λ > 0.

Subsequently, we fix λ > 0 and consider the auxiliary problem{
−∆u = µu+ λV (x)

(∫
Ω\Ω0

u(y) dy
)
u− up in Ω,

∂u
∂n = 0 on ∂Ω,

(5.1)
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where µ ∈ R is regarded as an auxiliary (primary) bifurcation parameter from the trivial
solution (µ, u) = (µ, 0).

Let E denote the closed subspace of the Banach space C1(Ω̄) formed by all functions
u ∈ C1(Ω̄) such that ∂nu = 0 on ∂Ω. Naturally, the solutions of (5.1) are the fixed points of
the compact operator K : R× E → E defined by

K(µ, u) := (−∆+ 1)−1

[
(µ+ 1)u+ λV (x)

(∫
Ω\Ω0

u(y)dy

)
u− up

]
(5.2)

for all µ ∈ R and u ∈ E, where (−∆+1)−1 is the resolvent of −∆+1 under homogeneous
Neumann boundary conditions on ∂Ω. Consequently, the solutions of (5.1) are the zeroes of

F(µ, u) := u− K(µ, u), (µ, u) ∈ R× E. (5.3)

The operator F is of class C2 and, since it is a compact perturbation of the identity of E, it is
Fredholm of index zero. Moreover, it can be expressed in the form

F(µ, u) = L(µ)u+N(u), (µ, u) ∈ R× E,

where

L(µ)u = DuF(µ, 0)u = u− (µ+ 1)(−∆+ 1)−1u, (µ, u) ∈ R× E,

and

N(u) = (−∆+ 1)−1

(
up − λV (x)

(∫
Ω\Ω0

u(y)dy

)
u

)

for all u ∈ E. Note that

F(µ, 0) = 0, N(0) = 0, DuN(0) = 0,

for all µ ∈ R. Moreover, setting

L0 := L(0), L1 :=
dL

dµ
(0) = −(−∆+ 1)−1,

we have that

kerL0 = span [1], L11 /∈ ImL0. (5.4)

The first identity of (5.4) is obvious. Suppose the second one does not hold. Then, there
exists u ∈ E such that

L0u = u− (−∆+ 1)−1u = L11 = −(−∆+ 1)−11.

By elliptic regularity, u must be a strong solution of ∆u = 1 and, integrating in Ω, yields 0 =∫
Ω
1 = |Ω|, which is impossible. Therefore, (5.4) is satisfied and hence, the transversality

condition of Crandall and Rabinowitz [3] holds.
Let Y denote the closed subspace of E defined by

Y :=

{
u ∈ E :

∫
Ω

u = 0

}
.
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Due to (5.4),

kerL0 ⊕ Y = E

and consequently, by the main theorem of [3], there exist ϵ > 0, ρ > 0, and two (unique)
maps of class C1, µ : (−ϵ, ϵ) → R and y : (−ϵ, ϵ) → Y , such that

µ(0) = 0, y(0) = 0, F(µ(s), s(1 + y(s))) = 0 ∀ s ∈ (−ϵ, ϵ),

and

F−1(0) ∩Bρ = {(µ, 0) : µ ∼ 0} ∪ {(µ(s), s(1 + y(s))) : s ∼ 0},

whereBρ is the ball of R×E with radius ρ centered at zero. By elliptic regularity, (µ(s), s(1+
y(s))) is a strong solution of (5.1) for all s ∈ (−ϵ, ϵ). Thus, dividing by s and setting

y1 := y′(0), µ1 := µ′(0),

we find that

−∆(1 + y1s+ o(s)) = [µ1s+ o(s) + λV (x)

∫
Ω\Ω0

s(1 + sy1 + o(s))

− sp−1(1 + y(s))p−1](1 + sy1 + o(s))

for all s ∈ (−ϵ, ϵ). Hence, identifying the coefficients of s, yields

−∆y1 = µ1 + λ|Ω \ Ω0|V (x)

and, therefore, integrating in Ω, we obtain that

µ1 = −λ |Ω \ Ω0||Ω0|
|Ω|

< 0. (5.5)

Consequently, the bifurcation to positive solutions is subcritical in µ for all λ > 0.
The second relation of (5.4) can be equivalently expressed as

L1 (kerL0)⊕ ImL0 = E

and hence, the concept of algebraic multiplicity χ[L; ·] introduced by Esquinas and López-
Gómez [7] and later refined in [13] and in López-Gómez and Mora-Corral [18], satisfies
χ[L(µ); 0] = 1. Consequently, thanks to Theorems 6.0.1, 8.1.1 and Proposition 12.3.1 of
[18], the local topological index Ind(L(µ), 0) changes as µ crosses 0. Therefore, by The-
orems 6.2.1 and 6.3.1 of [13], there is a component C0 of the set of non-trivial solutions of
(5.1) with (µ, u) = (0, 0) ∈ C̄0 satisfying the global alternative of Rabinowitz [21]. Accord-
ing to the main theorem of Crandall and Rabinowitz [3], C0 must be a curve of class C1 in
a neighborhood of (µ, u) = (0, 0). It should be noted that the change of the local index of
L(µ) cannot be inferred directly from [3], but from [7], [13] and [18].

According to the unilateral theory of Rabinowitz [21], in a neighborhood of (0, 0), the
component C0 consists of two subcomponents: C+

0 , formed by positive solutions, and C−
0 ,

filled in by negative ones. As explained in [13, Chapter 6], Dancer [5], and López-Gómez
and Molina-Meyer [16], C+

0 does not necessarily satisfies the global alternative of Rabinowitz
[21], as it does the whole component C0. However, due to [16, Th. 1.1], there exists an
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unbounded subcomponent C+ of the set of positive solutions of (5.1) such that (µ, 0) ∈ C̄+

if, and only if, µ = 0.
Subsequently, we will show that there exist µ0 < 0 and C > 0 such that (5.1) cannot

admit a positive solution if µ ≤ µ0 and

∥u∥∞ ≤ C (5.6)

for any positive solution (µ, u) of (5.1) with µ ≤ 0. This shows that C+ must be bounded in
[µ0, 0]× E and, therefore, (1.5) must have a positive solution.

Suppose (µ, u) is a positive solution of (5.1) with µ ≤ 0. Then, for every x ∈ Ω \ Ω0,
we find from (5.1) that

−∆u(x) = µu(x)− up(x) ≤ −up(x) < 0.

Thus, setting v := −u < 0, we have that −∆v > 0 in Ω \ Ω0. Hence, according to the
minimum principle,

inf
Ω\Ω0

v = min
∂Ω∪∂Ω0

v < 0

cannot be reached in Ω \Ω0. Indeed, in the contrary case, v, and hence u, should be constant
and so, up−1 = µ ≤ 0, which is imposible. Moreover, by the Hopf boundary lemma, we
must have ∂v

∂n (x) < 0 for all x ∈ ∂Ω ∪ ∂Ω0 such that

u(x) = sup
Ω\Ω0

u (5.7)

(see, e.g., Protter and Weinberger [20], or López-Gómez [15, Chapter 1]). As ∂u
∂n = 0 on ∂Ω,

(5.7) implies that x ∈ ∂Ω0 and ∂u
∂n (x) > 0. Consequently, there exists x0 ∈ Ω0 such that

u(x0) = ∥u∥∞.

As u ∈ C2(Ω0), we find that ∆u(x0) ≤ 0 and hence,

up−1(x0) = ∥u∥p−1
∞ ≤ µ+ λ

∫
Ω\Ω0

u ≤ λu(x0)|Ω \ Ω0|, (5.8)

which implies

∥u∥∞ ≤ (λ|Ω \ Ω0|)
1

p−2 (5.9)

and provides us with the estimate (5.6). Finally, we will show the existence of µ0. Integrating
the differential equation of (5.1) in Ω yields

µ

∫
Ω

u = −λ
∫
Ω0

u

∫
Ω\Ω0

u+

∫
Ω

up > −λ
∫
Ω0

u

∫
Ω\Ω0

u > −λ
(∫

Ω

u

)
∥u∥∞|Ω \ Ω0|

because λ > 0 and u≫ 0 in Ω. Thus, dividing by
∫
Ω
u and using (5.9), we find that

µ > −λ∥u∥∞|Ω \ Ω0| ≥ − (λ|Ω \ Ω0|)1+
1

p−2 .

Consequently, we can take µ0 = − (λ|Ω \ Ω0|)
p−1
p−2 . This ends the proof.

It the final part of the previous proof, it should be noted that the estimate

µ > −λ∥u∥∞|Ω \ Ω0| (5.10)

is also valid for p = 2.
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6. The multidimensional case p = 2. Adapting the proof of Theorem 5.1 yields
THEOREM 6.1. Suppose p = 2 and (1.5) admits a positive solution. Then,

λ ≥ 2√
|Ω0||Ω \ Ω0|

. (6.1)

Moreover, for every λ > 0, there exists a component C+ of the set of positive solutions of
(5.1) emanating from u = 0 at µ = 0. Actually, in a neighborhood of (µ, u) = (0, 0), the
component C+ consists of a differentiable curve (µ(s), s(1 + y(s))), s > 0, s ∼ 0, such that

µ(s) =

(
1− λ

|Ω0||Ω \ Ω0|
|Ω|

)
s+ o(s) s ↓ 0. (6.2)

In addition, if λ = λ∗, where λ∗ is given by (4.1), then µ′(0) = 0 and

µ′′(0) = 2

(
1

|Ω0|
− 1

|Ω \ Ω0|

)∫
Ω\Ω0

y1, (6.3)

where ′ := d/ds and y1 stands for the unique solution of

−∆y1 =
|Ω|
|Ω0|

V (x)− 1,

∫
Ω

y1 = 0,
∂y1
∂n

∣∣∣∣
∂Ω

= 0. (6.4)

Furthermore, this function satisfies ∫
Ω\Ω0

y1 < 0. (6.5)

Proof. Suppose (1.5) possesses a positive solution u. Then, (1.6) holds with p = 2. Thus,
by Hölder inequality,

∫
Ω

u2 = λ

∫
Ω0

u

∫
Ω\Ω0

u ≤ λ
√
|Ω0||Ω \ Ω0|

(∫
Ω0

u2
) 1

2

(∫
Ω\Ω0

u2

) 1
2

and setting x :=
(∫

Ω0
u2
)1/2

> 0 and y :=
(∫

Ω\Ω0
u2
)1/2

we can express the previous
inequality in the form

x2 + y2 ≤ λxy
√
|Ω0||Ω \ Ω0| ⇐⇒ x

y
+
y

x
≤ λ

√
|Ω0||Ω \ Ω0|

and therefore,

2 = inf
t>0

(
t+ t−1

)
≤ λ

√
|Ω0||Ω \ Ω0|,

which concludes the proof that (6.1) is necessary for the existence.
The existence of C+, as well as its local structure near (µ, u) = (0, 0), follows by adapt-

ing the proof of Theorem 5.1. Actually, using the same notations as therein, we find that

−∆(1 + y(s)) = [µ(s) + λV (x)

∫
Ω\Ω0

s(1 + y(s))− s(1 + y(s))](1 + y(s))

for all s ∈ (−ϵ, ϵ). Thus, setting

y(s) = sy1 + s2y2 + o(s2), µ(s) = sµ1 + s2µ2 + o(s2), as s→ 0,
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and identifying the terms of order one in s, we find that

−∆y1 = µ1 − 1 + λ|Ω \ Ω0|V (x).

Therefore, integrating in Ω yields

µ1 = 1− λ
|Ω \ Ω0||Ω0|

|Ω|
= 1− λ

λ∗
(6.6)

which ends the proof of (6.2). It should be noted that, since Y is a closed subspace of E, we
have that y1, y2 ∈ Y and, consequently, ∂yj

∂n = 0 on ∂Ω and
∫
Ω
yj = 0 for each j ∈ {1, 2}.

In particular, µ1 = 0 if λ = λ∗, and y1 is the unique solution of (6.4). To conclude the proof,
it remains to find out the value of µ2. Identifying terms of order two in s, we find that

−∆y2 =

(
|Ω|
|Ω0|

V (x)− 1

)
y1 + µ2 + λ∗V (x)

∫
Ω\Ω0

y1 − y1

and, therefore, integrating in Ω yields

|Ω|
|Ω0|

∫
Ω0

y1 −
∫
Ω

y1 + µ2|Ω|+
|Ω|

|Ω \ Ω0|

∫
Ω\Ω0

y1 −
∫
Ω

y1 = 0.

Consequently, since 0 =
∫
Ω
y1 =

∫
Ω0
y1 +

∫
Ω\Ω0

y1 = 0, we find that

µ2 =

(
1

|Ω0|
− 1

|Ω \ Ω0|

)∫
Ω\Ω0

y1, (6.7)

which shows (6.3). Finally, multiplying the differential equation of (6.4) by y1 and integrating
by parts in Ω yields

0 <

∫
Ω

|∇y1|2 =
|Ω|
|Ω0|

∫
Ω0

y1 −
∫
Ω

y1 =
|Ω|
|Ω0|

∫
Ω0

y1.

Therefore,
∫
Ω\Ω0

y1 = −
∫
Ω0
y1 < 0, which shows (6.5) and ends the proof.

According to (6.6), we have that µ1 > 0 if, and only if, λ < λ∗ and that µ1 < 0 if, and
only if, λ > λ∗. Thus, C+ bifurcates from the trivial solution u = 0 sub-critically if λ > λ∗,
while it bifurcates super-critically if λ < λ∗. This supports the validity of the next result.

THEOREM 6.2. Suppose p = 2. Then, (1.5) has a positive solution for each λ > λ∗.
Proof. As the proof of Theorem 5.1, the proof of this result is also based on the existence

of a priori bounds for the positive solutions of (5.1) with µ ≤ 0, and in the fact µ1 < 0 and
µ > µ0, for some constant µ0 < 0, if λ > λ∗ and (5.1) admits a positive solution. On the
contrary, suppose that there is a sequence of positive solutions, say (µn, un), n ≥ 1, with
µn ≤ 0, such that ∥un∥∞ → ∞ as n→ ∞. Then, setting

ũn := un/∥u∥∞, n ≥ 1,

it follows from (5.1) that
− 1

∥un∥∞
∆ũn = µn

∥un∥∞
ũn + λV (x)

(∫
Ω\Ω0

ũn

)
ũn − ũ2n in Ω,

∂ũn

∂n

∣∣
∂Ω

= 0.

(6.8)
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Let K be an arbitrary compact subset of Ω \ Ω̄0, and consider xn,K ∈ K such that

un(xn,K) = max
K

un, n ≥ 1.

As K ⊂ Ω \ Ω̄0, there exists a constant r > 0 such that Br(xn,K) ⊂ Ω \ Ω̄0 for all n ≥ 1.
Subsequently, we set

ϵn := ∥un∥−1/2
∞ , y := (x− xn,K)/ϵn, vn(y) := un(x)/∥un∥∞, n ≥ 1. (6.9)

As K is compact, we can assume, without loss of generality, that there exists x∞,K ∈ K
such that xn,K → x∞,K as n→ ∞. According to (1.2), (6.8) and (6.9), we find that

−∆vn =
µn

∥un∥∞
vn − v2n in Br/ϵn(0) for all n ≥ 1. (6.10)

Moreover, thanks to (5.10), it is apparent that

−λ|Ω \ Ω0| <
µn

∥un∥∞
≤ 0, n ≥ 1.

Thus, we can asume, without loss of generality, that the next limit exists

η = lim
n→∞

µn

∥un∥∞
∈ [−λ|Ω \ Ω0|, 0] . (6.11)

Since r/ϵn → ∞ as n → ∞, and 0 < vn ≤ 1 for all n ≥ 1, by elliptic regularity and a
standard compactness argument, there exists a strong solution of

−∆v = ηv − v2 in RN , 0 ≤ v ≤ 1,

denoted by v, such that, along some subsequence, labeled again by n, we have that vn → v
in C1

loc(RN ) as n → ∞. We claim that v = 0. Although this is a direct consequence of Du
and Ma [6, Th. 1.1], by the sake of completeness, we will provide a very short self-contained
proof of this fact. On the contrary, suppose v > 0 and let w denote the maximal solution of

−∆w = ηw − w2 in RN , 0 ≤ w ≤ 1. (6.12)

As w̄ := 1 is a radially symmetric strict supersolution of (6.12), w must be radially symmet-
ric. The function ψ(r) = w(x), r = |x|, satisfies

ψ(r) > 0 and ψ′(r) = −
∫ r

0

(s
r

)N−1

[ηψ(s)− ψp(s)] ds > 0.

Thus, ψ is increasing and, hence, the next limit is well defined

0 < ℓ := lim
r→∞

ψ(r) ≤ 1.

Necessarily, ψ′(r) → 0 as r → ∞ and ψ′′(r) ≤ 0 for sufficiently large r, which contradicts

−ψ′′(r)− N − 1

r
ψ′(r) = ηψ(r)− ψp(r) < 0 ∀ r ≥ 0.

Therefore, v = 0 and hence, ũn(xn,K) = vn(0) → 0 as n→ ∞, which entails maxK ũn →
0 as n→ ∞. Consequently,

lim
n→∞

∫
Ω\Ω0

ũn = 0. (6.13)
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For each n ≥ 1, let xn ∈ Ω̄ be such that un(xn) = ∥un∥∞. By the proof of Theorem 5.1, we
already know that xn ∈ Ω0 for all n ≥ 1. Thus, there exists some subsequence, relabeled by
n, and x∞ ∈ Ω̄0 such that limn→∞ xn = x∞. As we are assuming that Ω̄0 ⊂ Ω, there exists
r > 0 such that B̄r(xn) ⊂ Ω for all n ≥ 1. Setting

z := (x− xn)/ϵn, wn(z) := ũn(x), n ≥ 1,

we find from (6.8) that

−∆wn =
µn

∥un∥∞
wn + λV (x)

(∫
Ω\Ω0

ũn

)
wn − w2

n in Br/ϵn(0) (6.14)

for all n ≥ 1. Invoking to (6.11) and (6.13), by elliptic regularity and compactness, there
exists a strong solution of

−∆w = ηw − w2 in RN ,

say w, such that, along some subsequence, labeled again by n, we have that wn → w in
C1
loc(RN ) as n → ∞. Necessarily, w = 0, because η ≤ 0 and 0 ≤ w ≤ 1. Thus, 1 =
ũn(xn) = wn(0) → 0 as n → ∞, which is impossible. This contradiction together with
Theorem 6.1 complete the proof of the theorem.

Note that

2√
|Ω0||Ω \ Ω0|

≤ λ∗ =
|Ω|

|Ω0||Ω \ Ω0|

and that this inequality is always strict, unless |Ω0| = |Ω \ Ω0|. Consequently, combining
Theorem 2.1 with Theorem 6.2, it is apparent that, for the one-dimensional model,

2√
|Ω0||Ω \ Ω0|

≤ λc(2) ≤ λ∗ =
|Ω|

|Ω0||Ω \ Ω0|
.

Figure 6.1 shows a plot of C+ for λ ∼ 4.9223 > λ∗ ∼ 2.0833 when Ω = (−1, 1) and
Ω0 = (−0.6, 0.6). According to Theorem 6.1, it bifurcates sub-critically from u = 0.
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FIG. 6.1. C+ for λ ∼ 4.922323718 > λ∗ and N = 1 and plots of a series of positive solutions along it.

In the bifurcation diagram of Figure 6.1, as well as in all subsequent ones, stable solutions
are represented with continuous lines, while unstable solutions are plotted with dash ones.
The zero solution is stable for µ < 0 and it becomes unstable as µ crosses 0 for any µ > 0.
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By the exchange stability principle of [4], the solutions bifurcating sub-critically from u = 0
must be unstable, with one-dimensional unstable manifold, until they reach the subcritical
turning point on C+, where they become stable for all further values of µ. Figure 6.2 shows
the computed C+ for λ = 1.9 < λ∗. By Theorem 6.1, it bifurcates super-critically from
u = 0. These numerical experiments confirm that λc(2) = λ∗ for the choice of Section 3.

Combining the identity (6.3), or equivalently (6.7), with (6.5), reveals a new feature of a
great significance. Namely,

µ2

{
> 0 if |Ω0| > |Ω \ Ω0|,
< 0 if |Ω0| < |Ω \ Ω0|.

(6.15)

Consequently, the next local bifurcation result holds.
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FIG. 6.2. The component C+ for λ ∼ 1.9 < λ∗ in case N = 1 and plots of a series of positive solutions along it.

THEOREM 6.3. Suppose |Ω0| > |Ω \Ω0|. Then, there exist ϵ > 0 and a continuous map
u : J+ := [λ∗, λ∗+ ϵ) → E such that u(λ∗) = 0 and (λ, u(λ)) is a positive solution of (1.5)
for each λ ∈ J+.

Similarly, under condition |Ω0| < |Ω \ Ω0|, there exist ϵ > 0 and a continuous map
u : J− := (λ∗− ϵ, λ∗] → E such that u(λ∗) = 0 and (λ, u(λ)) is a positive solution of (1.5)
for each λ ∈ J−.

Proof. Suppose |Ω0| > |Ω \ Ω0|. Then, µ2 > 0. Consequently, by Theorem 6.1,
the set of non-trivial solutions (µ, u) of (5.1) at λ = λ∗ in a neighbourhood of (µ, u) =
(0, 0) consists of a quadratic supercritical turning point. Subsequently, it is convenient to
emphasize the dependence on the parameter λ of the operator F defined in (5.3), by setting
F(λ, µ, u), rather than F(µ, u). Then, according to the proof of the main theorem of Crandall
and Rabinowitz [3], for every (λ, µ, y, s) in a neighbourhood of (λ∗, 0, 0, 0) in the product
space R× R× Y × R, we can define

G(λ, µ, y, s) :=

{
s−1F(λ, µ, s(1 + y)), s ̸= 0,
DuF(λ, µ, 0)(1 + y), s = 0.

(6.16)

As F is real analytic, G also is real analytic. Moreover,

G(λ, µ, y, 0) = DuF(λ, µ, 0)(1 + y) = 1 + y − (µ+ 1)(−∆+ 1)−1(1 + y)

for all y ∈ Y and (λ, µ) ∼ (λ∗, 0) in R2. Thus,

G(λ, 0, 0, 0) = 1− (−∆+ 1)−11 = 1− 1 = 0
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and

D(µ,y)G(λ, 0, 0, 0)(µ, y) = y − (−∆+ 1)−1y − µ

for all λ ∈ R and (µ, y) ∈ R× Y . Since 1 /∈ R[−∆], it is easy to realize that

D(µ,y)G(λ, 0, 0, 0) ∈ Iso(R× Y ;E). (6.17)

Thus, due to the implicit function theorem, there exist ϵ > 0 and a real analytic map

(µ, y) : (−ϵ, ϵ)× (λ∗ − ϵ, λ∗ + ϵ) → R× Y

such that (µ(0, λ∗), y(0, λ∗)) = (0, 0) and G(λ, µ(s, λ), y(s, λ), s) = 0 for all (s, λ) ∈
(−ϵ, ϵ)× (λ∗ − ϵ, λ∗ + ϵ), which implies

F(λ, µ(s, λ), s(1 + y(s, λ))) = 0.

Actually, these are the unique zeros of G in a neighborhood of (λ, µ, y, s) = (λ∗, 0, 0, 0).
As for λ ∼ λ∗ the set G−1(0) is a supercritical turning point in the parameter µ and,

owing to (6.17), the linearization of G along G−1(0) has maximal rank, applying the main
theorem of [12, Section 6.10], also G−1(0) must be a supercritical quadratic turning point
for λ ∼ λ∗. As µ1 < 0 for λ > λ∗, necessarily for this range of values of λ, G must have
a non-trivial zero at µ = 0, say u(λ), such that u(λ∗) = 0. The continuity of this map is an
easy consequence of the local structure of the solution set. This ends the proof of the first
part, which can be easily adapted to cover the case |Ω0| < |Ω \ Ω0|.

As a byproduct from Theorem 6.3, λc(2) < λ∗ for the one-dimensional symmetric prob-
lem if L > (b−a)/4. Thus, by the existence of a priori bounds, the model admits at least two
positive solutions for each λ ∈ (λc(2), λ

∗) and at least one for λ = λc(2). By the invariance
of the degree and the exchange stability principle, due to the existence of a priori bounds and
thanks to Theorem 6.3, when N ≥ 2 and |Ω0| < |Ω \ Ω0|, there exists R > 0 such that (1.5)
possesses at least two solutions for each λ ∈ [λ∗−R, λ∗). However, this does not necessarily
entail the existence of λc(p,N) ≤ λ∗ − R for which (1.5) admits a positive solution if and
only if λ ≥ λc(p,N), unless N = 1 and the problem is radially symmetric. Actually, in the
general case when N ≥ 2 it is an open problem to ascertain whether or not the set of λ’s for
which (1.5) has a positive solution is an interval. As when p > 2 perturbs from p = 2, for
each λ ∈ (0, λ∗) the problem (1.5) admits a further positive solution perturbing from u = 0
(see [10]), there exists an interval of λ’s for which (1.5) has, at least, three positive solutions
provided |Ω0| < |Ω \ Ω0| and p > 2, p ∼ 2.

Figure 6.3 shows the λ–bifurcation diagram of the one-dimensional model studied in
Section 2 in the special case when Ω0 = (−0.1, 0.1), where |Ω0| = 0.2 < |Ω \ Ω0| = 1.8
(L = 0.9 > 0.5). As established by Theorem 6.3, the solutions emanate sub-critically from
u = 0 at λ∗ = |Ω|/(|Ω0||Ω \ Ω0|) = 5.55556; actually, the path-following solver gave
solutions of amplitude 10−6 from λ = 5.45194. All solutions along the bifurcated branch
are unstable with one-dimensional unstable manifold until λ = 3.73546, where the diagram
exhibits a supercritical turning point. For all further values of λ the solutions were stable.
According to the numerics, it seems that λc(2) ∼ 3.73546. Naturally, λc(2) < λ∗ and,
according to Theorem 6.1, indeed λc(2) ∼ 3.73546 ≥ 2(|Ω0||Ω \ Ω0|)−1/2 ∼ 3.33334.
Consequently, the estimates established by Theorem 6.1 seem very sharp. A rather striking
feature is the fact that the positive solutions of the model are always increasing as we run
along the bifurcation diagram. Hence, the solutions decrease with λ if they are unstable,
while they grow if they are stable. This paradoxical behavior has not a counterpart in the
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FIG. 6.3. Bifurcation diagram for p = 2 with Ω0 = (−0.1, 0.1) and plots of a series of positive solutions along it.
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FIG. 6.4. Global bifurcation diagram for p = 2.1 with Ω0 = (−0.1, 0.1) and a magnification.

context of superlinear indefinite parabolic equations, and might be utterly attributable to the
lack of the maximum principle for non-local problems.

As predicted before, when p increases from p = 2, the trivial solution perturbs into a
further positive solution. So, providing us with some interval of λ’s where the model admits
three solutions. Figure 6.4 shows two plots, at different scales, of the global bifurcation
diagram computed for p = 2.1 with Ω0 = (−0.1, 0.1). According to Theorem 4.1, the
unique bifurcation value to positive solutions from u = 0 is λ = 0 and we indeed detected
solutions of amplitude 10−6 from λ ∼ 0.01. As the bifurcation diagram exhibits two turning
points at λ ∼ 4.6426 and λ ∼ 4.4571, it is apparent that the problem possesses at least
three positive solutions for every λ ∈ (4.4571, 4.6426). Among them, two linearly stable
and one unstable with one-dimensional unstable manifold. Figure 6.5 shows the profiles of
a representative series of positive solutions along the bifurcation diagram of Figure 6.4. The
positive solution always increase as we run along the bifurcation diagram starting at λ = 0.
Consequently, they decay everywhere with λ if they are unstable, while they are increasing if
they are stable.

7. Discussion. In this paper we have studied a variant of a logistic equation in the form
of a nonlocal PDE which arises from crop raiding from large-bodied mammals living in the
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FIG. 6.5. A series of plots of positive solutions along the bifurcation diagram of Figure 6.4.

biodiversity-rich tropics. The well-known logistic equation can be written as

u′

u
= r − u

K
,

where u = u(t) is the population density, r is the intrinsic growth rate and K is the carrying
capacity. In 1973 Gilpin and Ayala [9] introduced the θ-logistic equation

u′

u
= r −

( u
K

)θ
.

When θ = 1, it is exactly the logistic equation, where the per capita growth rate is a linear
function of population density. If θ > 1, the increase in density from lower values has little
effect on the per capita growth rate. It is only when density is much larger that an increase
in density decreases substantially the per capita growth rate. This is the so called “crowding
effect”. When the environment is heterogeneous and the individual of the species are assumed
to disperse randomly with a constant rate d > 0, the θ-logistic equation can be expressed as

ut = d∆u+ ru− bup in Ω, t > 0,
∂u
∂n = 0 on ∂Ω, t > 0,
u(·, 0) = u0 in Ω,

(7.1)

where p ≡ θ + 1 ≥ 2 and b ≡ K−θ. The change of variable u = KU transforms (7.1) in
Ut = d∆U + rU − Up in Ω, t > 0,
∂U
∂n = 0 on ∂Ω, t > 0,
U(·, 0) = U0 ≡ u0/K in Ω.

(7.2)

According to Hutson et al. [11, Le. 2.2], for every r > 0 the constant U∗ ≡ r
1

p−1 > 0 is the
unique positive steady state of (7.2) and limt→∞ u(x, t) = U∗ in C(Ω̄).

In this paper, instead of (7.2), we consider (1.1), where the intrinsic growth rate is
γV (x)(

∫
Ω\Ω0

U(y, t) dy), which is positive only on the forest region Ω0 and is proportional
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to the “effort” to search for the food in the region of orchard or farm, Ω \ Ω0. The effort is
expressed as the total population in the region of orchard or farm. When p = 2, the per capita
growth rate is linear in U . Our analysis shows that there is a bifurcation value

γ∗ ≡ d
p−2
p−1λ∗ = d

p−2
p−1

|Ω|
|Ω0||Ω \ Ω0|

from U = 0 and that (7.2) possesses a positive steady state for all γ > γ∗. Moreover,

d

dt

∫
Ω

U = γ

(∫
Ω0

U

)(∫
Ω\Ω0

U

)
−
∫
Ω

U2

≤ λ
√
|Ω0|

(∫
Ω0

U2

) 1
2 √

|Ω \ Ω0|

(∫
Ω\Ω0

U2

) 1
2

−
∫
Ω0

U2 −
∫
Ω\Ω0

U2 ≤ 0

provided

γ ≤ 2√
|Ω0|

√
|Ω \ Ω0|

.

Hence, if the population density U(x, t) on Ω is small, then the species goes to extinct. On
the other hand, if γ is large then the species survives. When p > 2, we have crowding effect
when the population density is large; however when the population density is small, there is
little effect of crowding compared to the growth. Hence, the species survives for any intrinsic
growth rate γ.
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[12] J. López-Gómez, Estabilidad y bifurcación estática. Aplicaciones y métodos numéricos, Cuadernos de
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