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1. Introduction

This paper is a continuation of Part I [Chen et al.,
2011]. Here, again we analyze the spectrum of a
time series comprised of the iterates of a determin-
istic chaotic map, but by using wavelets.

Wavelet transforms use a waveform (“small
wave”, the mother wavelet function ψ(t)) which is
scaled and translated to process, reconstruct and
match the input signal ([Dai, 2006; Daubechies,
1992; Meyer & Salinger, 1995]). Such transforms can

be classified into three types: the continuous wavelet
transform (CWT), the discretized wavelet trans-
form (DWT) and multiresolution-based wavelet
transform (MRA, for multiresolution analysis). In
comparison with the Fourier transform, in which
signals are represented as an integral or sum of
real or complex sinusoidals and the transform is
only localized in frequency, wavelets are localized
in both time and frequency. In a sense, CWT may
be likened to the continuous Fourier transform, and
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DWT may be to the Fourier series. But MRA adds
an extra auxiliary function, the father wavelet func-
tion φ(t), constituting the basis for the algorithm of
the fast wavelet transform. Computationally, for a
data set of size N , the complexity of the discrete
wavelet transform takes O(N) time as compared to
O(N logN) for the fast Fourier transform. In practi-
cal applications, for the sake of efficiency, one often
prefers continuously differentiable functions with
compact support as (prototype) mother wavelet
functions. During the past two decades, we have
seen a vast number of applications of wavelets to
signal and image processing, that often supercedes
the conventional Fourier transform. Thus, it is not
surprising to see earlier work such as [Azad & Sett,
2003; Perman & Hamilton, 1992] in an attempt to
apply wavelets to the analysis of chaos. Neverthe-
less, rigorous mathematical results are totally lack-
ing, to the best of our knowledge. This motivates
our work in this paper.

In this paper, in Sec. 2 we first review some
basic properties of wavelet transforms and notation
as prerequisites for the subsequent development. In
Sec. 3, we link the wavelet transform with the total
variation of a map via the Fourier transform and
the Parseval identity (Theorem 1). We then further
derive necessary and sufficient conditions for chaos
in terms of MRA coefficients in Corollary 3.2. Such
conditions, determined by whether certain sums
of the wavelet coefficients grow exponentially with
respect to n (i.e. the number of iterations), have
a good deal of similarities with the main results
we obtained earlier in Part I [Chen et al., 2011]
based on the Fourier analysis. In Sec. 4, using Haar
wavelets we have demonstrated that the theorems
we have obtained in Sec. 3 are quite tight.

2. Prerequisite: Notations and
Properties of Wavelets

We inherit the theoretical background from Part I
[Chen et al., 2011]. Now, for f ∈ L1(R), define its
Fourier transform by

f̂(ω) =
∫

R

e−i2πωtf(t)dt. (1)

Then by the denseness of L1(R) ∩ L2(R) in L2(R),
we can define f̂ for any f ∈ L2(R) by the usual con-
tinuity argument. From this, we have the Parseval
identity

〈f, g〉 = 〈f̂ , ĝ〉, f, g ∈ L2(R) (2)

and the Plancherel formula

‖f‖ = ‖f̂‖, f ∈ L2(R), (3)

where 〈, 〉 and ‖·‖ in (2) and (3) denote, respectively,
the L2-inner product and the L2-norm. A function
ψ in L2(R) is called a (mother) wavelet if ψ satisfies
the admissible condition:

Cψ =
∫

R

|ψ̂(ω)|2
|ω| dω < +∞. (4)

If, in addition, ψ ∈ L1(R) then ψ̂ is continuous and
thus (4) implies∫ 1

−1

|ψ̂(ω)|2
|ω| dω < +∞,

further implying ψ̂(0) = 0. That is,∫
R

ψ(t)dt = 0. (5)

For a given mother wavelet ψ, we can generate a
doubly-indexed family of wavelets by dilation and
translation:

ψs,b(t) =
1√|s|ψ

(
t− b

s

)
.

Definition 2.1. Let ψ be a mother wavelet and
f ∈ L2(R). The continuous wavelet transform of
f with respect to ψ is given by

(Wf)(s, b) = 〈f, ψs,b〉

=
∫

R

f
1√|s|ψ

(
t− b

s

)
dt. (6)

A function ψ ∈ L2(R) is said to be a
dyadic wavelet if the following stability condition
holds: there exist two positive constants A,B such
that

A ≤
∑
j

|ψ̂(2−jω)|2 ≤ B, a.e. ω. (7)

It is easy to see that the stability condition (7)
implies the admissible condition (4). More precisely,
we have the following.

Lemma 1. Let ψ be a dyadic wavelet, i.e. condi-
tion (7) holds. Then

A ln 2 ≤
∫ ∞

0

|ψ̂(ω)|2
|ω| dω,

∫ 0

−∞

|ψ̂(ω)|2
|ω| dω ≤ B ln 2.
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Moreover, if A = B in (7), then

Cψ =
∫

R

|ψ̂(ω)|2
|ω| dω = 2A ln 2.

Definition 2.2. Let ψ be a dyadic wavelet and
f ∈ L2(R). The dyadic wavelet transform of f with
respect to ψ is defined as

(Wjf)(b) = 〈f, 2j/2ψ(2j(· − b))〉

= 2j/2
∫

R

f(t)ψ(2j(t− b))dt. (8)

Computationally, it is impossible to analyze
a signal using all coefficients from the continuous
wavelet transform (6). Thus, a discretized wavelet
transform is in order. It is of great advantage to
have a mother wavelet ψ such that

{ψj,n(t) = 2j/2ψ(2jt− n)}(j,n)∈Z2,

forms an orthonormal basis in L2(R). Multi-
resolution analysis (MRA) is an effective approach
for constructing such a basis. MRA consists of a
sequence of closed subspaces Vj of L2(R) with the
following conditions

(1) · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·;
(2)

⋃
j Vj = L2(R),

⋂
j Vj = {0};

(3) f ∈ Vj ⇔ f(2·) ∈ Vj+1;
(4) f ∈ V0 ⇔ f(· − k) ∈ V0,∀ k ∈ Z;
(5) There exists a ϕ ∈ V0 such that {ϕ(· − k)}k is

an orthonormal basis for V0.

Such function ϕ is said to be a scaling function or
a father wavelet.

For a given MRA, a standard way to con-
struct an orthonormal basis in L2(R) is given in
[Daubechies, 1992, Theorem 5.1.1].

Lemma 2. If a ladder of closed subspaces {Vj}j∈Z
in L2(R) satisfies conditions (1)–(5) above, then
there exists an associated orthonormal wavelet basis
{ψj,k | j, k ∈ Z} for L2(R) such that

Pj+1 = Pj +
∑
k

〈·, ψj,k〉ψj,k, (9)

where Pj is the orthogonal projection onto Vj. A fea-
sible way to construct the wavelet ψ is by its Fourier
transform

ψ̂(ω) = e−iπωm0(π(ω + 1))ϕ̂
(ω

2

)
, (10)

where m0 is a periodic function (with period 2π)
called the faltering function, given by

m0(ω) =
1
2

∑
k

hke
−ikω,

where {hk} is determined uniquely by the represen-
tation of ϕ:

ϕ(t) =
∑
k

hkϕ(2t− k). (11)

(This decomposition is unique since {ϕ(2 · −k)}k is
an orthonormal basis for V1 by the assumptions.)

Similarly, the function ψ given by (10) has the
decomposition

ψ(t) =
∑
k

gkϕ(2t− k), (12)

where

gk = (−1)k−1h1−k.

It follows from Lemma 2 that each f ∈ L2(R)
has two representations: the first is

f(t) =
∑
j,k∈Z

dj,kψj,k(t), (13)

and the second is, for any j0 ∈ Z,

f(t) =
∑
k∈Z

cj0,kϕj0,k(t) +
∑
j≥j0

∑
k∈Z

dj,kψj,k(t), (14)

where

cj,k = 〈f, ϕj,k〉, dj,k = 〈f, ψj,k〉.
Also an MRA leads naturally to a fast scheme for
the computation of the wavelet coefficients cj,k and
dj,k important in applications. From (11), we have

cj,k =
∫
f(t)2

j
2ϕ(2jt− k)dt

=
∑
l

hl

∫
f(t)2

j
2ϕ(2j+1t− 2k − l)dt

=
1√
2

∑
l

hl

∫
f(t)ϕj+1,2k+l(t)dt.

So we have a fast scheme for the decomposition
computation:

cj,k =
1√
2

∑
l

hl−2kcj+1,l. (15)

Similarly, from (12), we have

dj,k =
1√
2

∑
l

gl−2kcj+1,l. (16)
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On the other hand, let Wj be the orthogonal
complement of Vj in Vj+1. That is, Vj+1 = Vj ⊕Wj.
Since {ϕj,l}l∈Z and {ψj,l}l∈Z are orthonormal bases
in Vj and Wj, respectively, ϕj+1,k ∈ Vj+1 can be
decomposed uniquely as

ϕj+1,k(t) =
∑
l

[ak,lϕj,l(t) + bk,lψj,l(t)], (17)

where, by orthonormality,

ak,l =
∫
ϕj,l(t)ϕj+1,k(t)dt

= 2j+1/2

∫
ϕ(2jt− l)ϕ(2j+1t− k)dt

= 2j+1/2
∑
m

hm

∫
ϕ(2j+1t− 2l −m)

×ϕ(2j+1t− k)dt

=
1√
2

∑
m

hm

∫
ϕ(t− 2l −m)ϕ(t− k)dt

=
1√
2

∑
m

hmδ2l+m,k =
1√
2
hk−2l.

Similarly,

bk,l =
1√
2
gk−2l.

Substituting the above two equations into (17) and
then taking the inner product with f , we have

cj+1,k =
1√
2

∑
l

(hk−2lcj.l + gk−2ldj,l). (18)

Formula (18) is called the fast scheme for recon-
struction computation.

3. Detecting Chaos with Wavelets

Having furnished the wavelet prerequisite, we now
enter the main section for the study of chaotic
time series by wavelets. In what follows, we always
assume that f : I = [0, 1] → I is continuous and
piecewise monotone with finitely many extremal
points. We take f as a function on the whole line
R by extending f(t) = 0 for all t /∈ I. Thus
f ∈ L2(R) ∩ L1(R). Its Fourier transform is

f̂(w) =
∫

R

f(t)e−i2πwtdt =
∫ 1

0
f(t)e−i2πwtdt. (19)

As in Part I [Chen et al., 2011], the total variation
VI(f) of f on I is defined as before to be the supre-
mum of all sums

m∑
k=1

|f(tk) − f(tk−1)|,

with respect to all partitions {tk}mk=0 on [0, 1] such
that 0 = t0 < t1 < · · · < tm = 1. In brevity, we
write VI(f) as V (f). The following lemma is a ver-
sion of [Edwards, 1979, Theorem 2.3.6].

Lemma 3. Let f : I → I be continuous with
bounded total variation. Then

2π|ω||f̂(ω)| ≤ 2 + V (f), ∀ω ∈ R. (20)

Proof. If ω = 0, (20) holds obviously. Assume
w �= 0, then one may write (19) as

f̂(ω) =
∫ 1

0
f(t)d

[
e−i2πωt

−i2πω
]
.

Set

g(t) =
e−i2πωt

−i2πω .

From the definition of an integral, for any given
ε > 0, there exists a sufficiently fine partition
0 = t0 < t1 < · · · < tm = 1 of the interval [0, 1],
such that∣∣∣∣∣f̂(ω) −

m∑
k=1

f(tk)[g(tk) − g(tk−1)]

∣∣∣∣∣ < ε.

Denoting by
∑

the sum appearing within the abso-
lute value signs above, and applying partial sum-
mation, we obtain∑

= [f(1)g(1) − f(t1)g(0)]

−
m−1∑
k=1

[f(tk+1) − f(tk)]g(tk).

Thus,

|f̂(ω)| < ε+ |f(1)||g(1)| + |f(t1)||g(0)|

+
m−1∑
k=1

|f(tk+1) − f(tk)||g(tk)|

≤ ε+ 2
1

2π|ω| +
1
2π
V (f)

1
|ω| ,

since f(x) ∈ [0, 1],∀x ∈ [0, 1] and |g(t)| ≤ 1/
(2π|ω|). Letting ε→ 0, we have obtained the desired
result. �
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Now we consider the one-dimensional dynami-
cal system (I, f). That is, we consider the dynami-
cal behavior of the iterates f©n of f as n→ ∞.

For a given mother wavelet ψ ∈ L2(R), the con-
tinuous wavelet transform of f©n with respect to ψ is

W (f©n )(s, b) = 〈f©n, ψs,b〉

=
∫

R

f©n(t)
1√|s|ψ

(
t− b

s

)
dt. (21)

Here and in the following, we view f©n as a function
on the whole real line R by setting f©n = 0 outside
the interval [0, 1].

Theorem 1. Let f : I→ I be continuous and piece-
wise monotone with finitely many extremal points
and ψ be a mother wavelet. In addition, if ψ
satisfies

Aψ ≡
∫

R

|ψ̂(ω)|
|ω| dω < +∞, (22)

then

sup
s �=0,b∈R

{|s|−1/2|W (f©n )(s, b)|}

≤ Aψ
2π

(2 + V (f©n )), ∀ n = 1, 2, 3, . . . . (23)

Proof. It suffices to prove that

sup
s �=0,b∈R

{|s|−1/2|Wf(s, b)|} ≤ Aψ
2π

(2 + V (f)). (24)

From the Parseval identity, we obtain

(Wf)(s, b) =
∫

R

f
1√|s|ψ

(
t− b

s

)
dt

=
∫

R

f̂(ω)
√

|s|ψ̂(sω)ei2πbωdω.

By Lemma 2 and (22), the above leads to

|(Wf)(s, b)| ≤
∫

R

|f̂(ω)|
√

|s| |ψ̂(sω)|dω

≤
∫

R

2 + V (f)
2π|ω|

√
|s| |ψ̂(sω)|dω

≤
√|s|
2π

(2 + V (f))
∫

R

|ψ̂(ω)|
|ω| dω

=

√|s|Aψ
2π

(2 + V (f)).

Therefore, we have established (24).

Replace f in (24) with f©n, we get (23). �

Condition (22) can be eliminated, as shown in
the following.

Corollary 3.1. Under the same assumptions as in
Theorem 1 except (22), we have

sup
s �=0,b∈R

{|s|−1/2|W (f©n )(s, b)|}

≤ A(V (f©n ) + 1), ∀n = 1, 2, 3, . . . ,

where

A = ‖θ(t)‖∞,
and θ(t) ≡ ∫ t

0 ψ(τ)dτ .

Proof. We follow the proof of [Boyarsky & Góra,
1997, Lemma 2.3.2, p. 24] that for any interval [c, d]
in R,∫ d

c
g(t)ψ(t)dt ≤ ‖θ(t)‖∞(V[c,d](g) + ‖g‖∞),

where g(t) = f(st+ b) and V[c,d](g) denote the vari-
ation of g on [c, d]. Thus,

|(Wf)(s, b)| =

∣∣∣∣∣
∫

R

f
1√|s|ψ

(
t− b

s

)
dt

∣∣∣∣∣
=

∣∣∣∣∣ s√s
∫ (1−b)/s

−b/s
f(sτ + b)ψ(τ) dτ

∣∣∣∣∣
≤ √

s‖θ(t)‖∞(V[− b
s
, 1−b

s
](g) + ‖g‖∞)

≤ √
s‖θ(t)‖∞(V (f) + ‖f‖∞)

≤ √
s‖θ(t)‖∞(V (f) + 1).

We thus obtain the result by using f©n for f . �

Example 3.1. The Haar wavelet may be said to be
the earliest wavelet, dating back to Haar’s work in
the early 20th century. It is defined as

ψ(t) =




1 0 ≤ t <
1
2
,

−1
1
2
≤ t ≤ 1, (=χ[0,1/2)(t)−χ[1/2,1](t)),

0 otherwise,

where χJ denote the characteristic function of an
interval J . We have

ψ̂(ω) =
1

i2πω
(1 − e−iπω)2.
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A direct computation shows that condition (22)
is satisfied.

We will use Haar’s wavelet shortly as a major
example.

Example 3.2. For a family of derivatives of a Gaus-
sian wavelet

ψ(t) =
(−1)m+1√
Γ
(
m+ 1

2

) dm

dtm
(e−t

2/2),

by direct computation, one obtains

ψ̂(ω) =
−im√

Γ
(
m+ 1

2

)ωme−ω2

2 , m = 1, 2, . . .

Thus, again, condition (22) holds for m = 1, 2, . . . .

From Theorem 1, we obtain a criterion for chaos
by wavelet transform.

Corollary 3.2. Under the assumptions of Theo-
rem 1, if there exist sn �= 0 and bn ∈ R such that

lim
n→+∞

1
n

ln|sn|−1/2|W (f©n )(sn, bn)| > 0, (25)

then

lim
n→+∞

1
n

lnV (f©n ) > 0.

Thus, the system (I, f) has positive topological
entropy and is chaotic in the sense of Li–Yorke.

Proof. The first part comes directly from Theo-
rem 1. The second part follows from the first part
and the results in [Chen et al., 2011; Chen et al.,
2004]. �

Without condition (22), instead, if we assume
that {ψj,k; j, k ∈ Z} forms an orthonormal wavelet
basis for L2(R) which is derivable by Lemma 2, we
can establish not only necessary conditions but also
sufficient conditions for chaos of the system (I, f)
in terms of the corresponding wavelet coefficients.
There are two ways to decompose f in terms of
the basis for L2(R). One is to extend f as a func-
tion on the whole line R by setting f(t) = 0 out-
side the interval [0, 1] and then decompose it as (13)
or (14). This approach is often not appreciated from
the point of view of wavelet analysis since it intro-
duces an artificial “jump” at the boundary of I, and
is reflected in the wavelet coefficients. Another is to
modify the orthonormal basis for L2(R) such that

it forms an orthonormal basis for L2(0, 1) and then
decompose f in terms of the modified basis. There
are several different ways to achieve this modifica-
tion. But the basis for L2(0, 1) obtained becomes
more complicated and as a result it is difficult to
compute the corresponding wavelet coefficients ana-
lytically. Here, since we are concerned only with
the dynamics, the artificial jump at the boundary
caused by the former approach does not affect our
analysis. Therefore, we have decided to take the
extension by setting f = 0 outside the interval I.

By Lemma 2, f has decomposition (13) or (14).
In addition, if the scaling function ϕ and the mother
function ψ have compact supports, which, without
loss of generality, we may assume that they are con-
tained in (0, 1), then for any given j0 > 0, j ≥ j0
and n ≥ 2j , the support of ψj,n has no intersec-
tion with [0, 1]. Nor does ϕj0,n for n ≥ 2j0 . Thus
decomposition (14) can be written as

f(t) =
∑
j≥j0

2j−1∑
k=0

dj,kψj,k(t) +
2j0−1∑
k=0

cj0,kϕj0,k(t), (26)

for any j0 > 0.

Theorem 2. Let ϕ and ψ be real and have compact
supports in [0, 1]. If f ∈W 1,1(0, 1), then there exists
a constant A > 0 such that

V (f) ≥ A sup
j≥j0

2j/2
2j−1∑
k=0

|〈f, ψj,k〉|. (27)

Proof. Let

θ(t) =
∫ t

0
ψ(τ)dτ.

Then from (5) θ has support in [0, 1]. For any j ≥ j0
doing integration by parts, we have

2j−1∑
k=0

|〈f, ψj,k〉|

=
2j−1∑
k=0

∣∣∣∣
∫ 1

0
f(t)2j/2ψ(2jt− k)dt

∣∣∣∣
=

2j−1∑
k=0

∣∣∣∣
∫ 1

0
f ′(t)2−j/2θ(2jt− k)dt

∣∣∣∣
≤ 2−j/2

2j−1∑
k=0

∣∣∣∣
∫ 1

0
|f ′(t)|

∣∣∣∣ θ(2jt− k)dt
∣∣∣∣.
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Since the support of θ is contained in [0, 1], it follows
that

2j−1∑
k=0

|〈f, ψj,k〉| ≤ 2−j/2 sup
t∈R

|θ(t)|
∫ 1

0
|f ′(t)|dt

= 2−j/2A−1

∫ 1

0
|f ′(t)|dt︸ ︷︷ ︸
V (f)

,

where A−1 = supt∈R |θ(t)|. Thus we have (27). �

Theorem 3. Let ϕ and ψ have compact supports in
[0, 1]. If, in addition, V (ψ) < +∞, then there exists
a constant B ≥ 1 such that

V (f) ≤ B


∑
j≥j0

2j−1∑
k=0

2j/2|〈f, ψj,k〉|

+ 2j0/2
2j0−1∑
k=0

|〈f, ϕj0,k〉|

. (28)

Proof. It follows from (26) that

V (f) ≤
∑
j≥j0

2j−1∑
k=0

|〈f, ψj,k〉|V (ψj,k)

+
2j0−1∑
k=0

|〈f, ϕj0,k〉|V (ϕj0,k),

in which

V (ψj,k) =
∫ 1

0
2j/22j |ψ′(2j − k)|dt ≤ 2j/2V (ψ).

And similarly,

V (ϕj0,k) ≤ 2j0/2V (ϕ).

The inequality (28) follows from the above three
inequalities. �

Corollary 3.3. Assume that ϕ and ψ have compact
supports in [0, 1] with finite total variations.

(1) If f ∈W 1,∞ and there exists an increasing inte-
ger sequence jn → ∞ and

lim
n→∞

1
n

ln


2jn/2

2jn−1∑
k=0

|〈f©n, ψjn,k〉|

 > 0,

then

lim
n→∞

1
n

lnV (f©n ) > 0,

and f has chaotic oscillations.

(2) If f ∈W 1,∞ and there exists an increasing inte-
ger sequence jn → +∞ such that

lim
n→∞

2jn−1∑
k=0

|〈f©n, ψjn,k〉| > 0,

then

lim
n→∞

1
n

lnV (f©n ) > 0,

and f has chaotic oscillations.
(3) Conversely, if f ∈W 1,∞ and

lim
n→∞

1
n

lnV (f©n ) > 0,

then 
∑
j≥j0

2j−1∑
k=0

2j/2|〈f©n, ψj,k〉|

+ 2j0/2
2j0−1∑
k=0

|〈f©n, ϕj0,k〉|



grows exponentially as n→ ∞.

Example 3.3. Consider the tent map (as in Part I
[Chen et al., 2011]):

f(t) =




2t if 0 ≤ t <
1
2
,

−2(t− 1) if
1
2
≤ t ≤ 1.

This map is well known to be chaotic. Here we apply
Corollary 3.3 part (1) to this map. We choose the
Haar wavelet as in Example 3.1:

ψ(t) = χ[0, 1
2
)(t) − χ[ 1

2
,1](t). (29)

For j > 0, consider the wavelet coefficients of f©n,
where by Part I [Chen et al., 2011],

f©n(t) =




2nt− 2(l − 1), if
2(l − 1)

2n
≤ t <

2l − 1
2n

,

−2nt+ 2l, if
2l − 1

2n
≤ t ≤ 2l

2n
,

(30)

l = 1, 2, . . . , 2n−1.
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For k = 0, 1, . . . , 2j−1, we compute the wavelet
coefficients of f©n with respect to the wavelet basis
{ψj,k}:

dnj,k ≡
∫ 1

0
f©n(t)ψj,k(t)dt

= 2j/2
∫ 1

0
f©n(t)ψ(2jt− k)dt

= 2−j/2
∫ 2j−k

−k
f©n(2−j(τ + k))ψ(τ)dτ

= 2−j/2
∫ 1

0
f©n(2−j(τ + k))ψ(τ)dτ,

by change of variables and noting that supp(ψ) =
[0, 1], where “supp” means “the support of”. Sub-
stituting (29) into the above equation, we have

dnj,k = 2j/2
[∫ 2−j(k+1/2)

2−jk
f©n(t)dt

−
∫ 2−j(k+1)

2−j(k+1/2)
f©n(t)dt

]
. (31)

Taking j = n, from (30), it follows that when k
is even

dnn,k = 2n/2
[∫ 2−n(k+1/2)

2−nk
(2nt− k)dt

−
∫ 2−n(k+1)

2−n(k+1/2)
(2nt− k)dt

]

= 2n/22−(n+1)

(
−1

2

)
,

and when k is odd,

dnn,k = 2n/2
[∫ 2−n(k+1/2)

2−nk
(−2nt+ k)dt

−
∫ 2−n(k+1)

2−n(k+1/2)
(−2nt+ k)dt

]

= 2n/22−(n+1)

(
1
2

)
.

Therefore
2n−1∑
k=0

|dnn,k| = 2
n
2
−2 > 0,

which, by Corollary 3.3, implies

lim
n→∞

1
n

lnV (f©n ) > 0.

In fact, combining with Theorem 2, we have

lim
n→∞

1
n

lnV (f©n ) ≥ ln 2.

4. The Growth Rate of the Total
Variation of f©n in Terms of the
Wavelet Coefficient of the Haar
Wavelet

Let f : [0, 1] → [0, 1] be continuous and piecewise
monotone, and ψ be a mother wavelet with com-
pact supports in [0, 1]. For j ≥ j0 with respect to
the scaling function ϕ, denote by dnj,k the wavelet
coefficients of f©n. That is,

dnj,k = 〈f©n, ψj,k〉 =
∫ 1

0
f©n(t)2j/2ψ(2jt− k)dt.

Then by Theorem 2, we have

V (f©n ) ≥ A sup
j≥j0

2j/2
2j−1∑
k=0

|dnj,k|, (32)

where A > 0 is defined in Theorem 2.
We denote by d̃nj,k the coefficients of f under

the basis {ψ̃j,k(t) ≡ 2j/2ψ(2jt − k − (1/2))}j,k∈Z .
That is, for k = 0, 1, . . . , 2j − 2,

d̃nj,k =
∫ 1

0
f©n(t)2j/2ψ

(
2jt− k − 1

2

)
dt,

d̃nj,2j−1 = 0.

Please note that for k ≥ 2j − 1 the support of ψ̃j,k
has empty intersection with [0, 1].

By the same approach as in the proof of
Theorem 2, we also have

V (f©n ) ≥ A sup
j≥j0

2j/2
2j−1∑
k=0

|d̃nj,k|. (33)

If we denote

Wψ(f©n ) = lim
j→∞

2j/2
2j−1∑
k=0

(|dnj,k| + |d̃nj,k|), (34)

then from (32) and (33), we obtain

2V (f©n ) ≥ AWψ(f©n ).
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Thus we have

lim
n→∞

1
n

lnV (f©n ) ≥ lim
n→∞

1
n

lnWψ(f©n ). (35)

A natural question here is if there exists a
wavelet such that inequality (35) becomes equality.
We have the following.

Theorem 4. Let f : [0, 1] → [0, 1] be continuous
and piecewise monotone, and ψ be the Haar wavelet
given by (29). Then

lim
n→∞

1
n

lnV (f©n ) = lim
n→∞

1
n

lnWψ(f©n ), (36)

where Wψ(f©n ) is defined by (34).

Proof. Since the mother wavelet we choose here is
the Haar wavelet, we have (31). Thus

dnj,k = 2j/2
[∫ 2−j(k+1/2)

2−jk
f©n(t)dt

−
∫ 2−j(k+1)

2−j(k+1/2)
f©n(t)dt

]

= 2j/2(f©n(ξk) − f©n(ξ′k))2
−j−1,

k = 0, 1, . . . , 2j − 1,

for some

ξk ∈
[
2−jk, 2−j

(
k +

1
2

)]
,

ξ′k ∈
[
2−j

(
k +

1
2

)
, 2−j(k + 1)

]
.

By the same argument, we have for the coefficients
d̃nj,k,

d̃nj,k = 2j/2
[∫ 2−j(k+1)

2−j(k+1/2)
f©n(t)dt

−
∫ 2−j(k+3/2)

2−j(k+1)
f©n(t)dt

]

= 2j/2(f©n(ξ′k) − f©n(ξk+1))2−j−1,

k = 0, 1, . . . , 2j − 2.

Therefore

2j/2


2j−1∑
k=0

|dnj,k| +
2j−2∑
k=0

|d̃nj,k|



=
1
2


2j−1∑
k=0

|f©n(ξk) − f©n(ξ′k)|

+
2j−2∑
k=0

|f©n(ξ′k) − f©n(ξk+1)|



→ 1
2
V (f©n ), as j → ∞.

We have (36) and the proof is complete. �

Remark 4.1. It follows from Theorem 4 that a one-
dimensional dynamical system (I, f) has chaotic
behavior if and only if there exists an orthonormal
wavelet basis (Haar wavelet) {ψj,k}j,k∈Z such that
either

2jn/2


2jn−1∑

k=0

|dnjn,k|



or

2jn/2


2jn−1∑

k=0

|d̃njn,k|



grows exponentially as jn → ∞.

Remark 4.2. It is well known that the Haar wavelet
is disadvantageous in wavelet analysis since it lacks
smoothness. Here, rather, we see from Theorem 4
that for interval maps Haar’s wavelet can be effi-
ciently used to detect the growth of the total vari-
ation of iterates of f .

Finally, we give a result pertaining to topolog-
ical conjugate systems.

Theorem 5. Let f and g be continuous maps from
I into itself and be piecewise monotone, and ψ be the
Haar wavelet. If f and g have topological conjugacy,
then

lim
n→∞

1
n

lnWψ(f©n ) = lim
n→∞

1
n

lnWψ(g©n ).

In other words, the quantity

lim
n→∞

1
n

lnWψ(f©n )

is a topological invariant.
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Proof. This follows from Theorem 4 and the fact
that

lim
n→∞

1
n

lnV (f©n ) = lim
n→∞

1
n

lnV (g©n ),

since f and g are topologically conjugate and piece-
wise monotone. �

We remark here that the basis {ψ̃j,k(t) ≡
2j/2ψ(2jt− k− (1/2))}j,k∈Z defined above may not
be a wavelet basis. So the corresponding coefficients
d̃nj,k cannot be taken as a wavelet coefficient. In the
last part of the paper, we establish the wavelet coef-
ficients dnj,k related to the Lyapunov exponent of
one-dimensional dynamical systems. More impor-
tantly, we can estimate the wavelet coefficient dnj,k
of f©n from some properties of f , but not from its
iterates f©n.

Let f : [0, 1] → [0, 1] be C1 and

|f ′(x)| ≤ L,

except at a finite number of points and ψ be the
Haar wavelet given by (29). Then for any j = 0,
1, 2, . . . and k = 0, 1, 2, . . . , 2j − 1, we have

dnj,k = 2j/2
[∫ 2−j(k+1/2)

2−jk
f©n(t)dt

−
∫ 2−j(k+1)

2−j(k+1/2)
f©n(t)dt

]

= 2j/2
∫ 2−j(k+1/2)

2−jk
(f©n(t) − f©n(t+ 2−j−1))dt

= 2−(j/2)−1

∫ 2−j(k+1/2)

2−jk
f©n ′(τ(t))dτ, (37)

for some

τ(t) ∈ [2−jk, 2−j(k + 1)].

Thus

|dnj,k| ≤ 2−j/2−1Ln2−j−1, 23j/2|dnj,k| ≤
1
4
Ln.

Recall that for a piecewise smooth map f :
[0, 1] → [0, 1], and t0 ∈ [0, 1] such that f©n ′(t0) is
well-defined for n ∈ Z+, then the quantity

λ(t0) = lim sup
n→∞

1
n

ln |f©n ′(t0)|

is said to be the Lyapunov exponent of t0. Let µ
be a Borel probability f -invariant ergodic measure.
Then, for every µ-typical point t0 (i.e. it belongs to
a set of µ-measure one), we have

λ(t0) =
∫ 1

0
ln|f ′(x)|dµ,

by the Birkhoff Ergodic theorem. Furthermore, if µ
is an absolutely continuous invariant measure, that
is, there exists a density function ρ(·) such that

µ(A) =
∫
A
ρ(x)dx

for any measurable set A, and ρ(x) �= 0,L-a.e.
x ∈ [0, 1]. Here L denotes the Lebesgue measure.
Then the set of all µ-typical points has full-measure
with respect to the Lebesgue measure. Therefore,
from Eq. (37), for any j = 0, 1, 2, . . ., and k =
0, 1, 2, . . . , 2j − 1

23j/2|dnj,k| ≤
1
4
λn,

for n large enough. Summarizing this, we have

Theorem 6. Let f : [0, 1] → [0, 1] be a piecewise
smooth map and have absolutely continuous invari-
ant measure with the density function being non-
zero for L-almost all points in [0, 1]. If f has
negative Lyapunov exponent, then

23j/2|dnj,k| → 0, n→ ∞,

uniformly for j = 0, 1, 2, . . . and k = 0, 1, 2, . . . ,
2j − 1.

For the case when the Lyapunov exponent is
positive, we have

Theorem 7. Let a continuous map f : [0, 1] → [0, 1]
be piecewise expanding. That is, there is λ > 1
such that |f ′| ≥ λ, except at a finite number of
points. Then for any positive integer n, there exists
jn such that for j > jn there is at least an k ∈
{0, 1, 2, . . . , 2j − 1} with

23j/2|dnj,k| ≥
1
4
λn. (38)

Remark 4.3. The Lasota–Yorke theorem implies
that every C2 piecewise expanding map has an
absolutely continuous invariant measure [Lasota &
Yorke, 1973]. Such kind of maps also have positive
Lyapunov exponent. These indicate the presence of
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dynamical chaos. Theorem 7 implies the quantity
23j/2|dnj,k| grows exponentially as n→ ∞.

Proof of Theorem 7. Let l(f) denote the lap num-
ber of f and s the growth number of f [Milnor &
Thurston, 1988]. That is

s = lim
n→∞ l(f©n )1/n = inf

n≥1
l(f©n )1/n. (39)

It is easy to see that s ∈ [λ, l(f)]. Actually the log-
arithm of s is equal to the topological entropy of f .
See, for example, [Milnor & Thurston, 1988].

It follows from (39) that there exists N such
that when n > N ,

(s+ 1)n ≥ l(f©n ).

Let m be such that

2m > max{l(f), l(f2), . . . , l(fN ), s + 1}.

Let jn = mn. Then when j > jn, we have

2j > l(f©n ).

Recall that l(f©n ) is the lap number of f©n. So there
is at least an interval [2−jk, 2−j(k + 1)] on which
f©n is strictly monotone for some k ∈ {0, 1, 2, . . . ,
2j − 1}. Thus

23j/2|dnj,k| ≥ 2j−1

∫ 2−j(k+1/2)

2−jk
|f©n ′(τ(t))|dτ

≥ 1
4
λn,

by (37).
A time series f©n generated by a deterministic

chaotic interval map f is known to behave chaoti-
cally on some subintervals while nonchaotically on
other subintervals. In this case, the use of wavelet
analysis would offer distinct advantages over Fourier
analysis due to certain wavelets’ multiresolution
capability. Nevertheless, concrete examples with
explicitly calculated wavelet coefficients are nearly
impossible to construct due to the complexities
involved. Thus, one must still rely on numerics to
perform simulations.
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