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1 Introduction and result

The chemostat plays a well-established role as a model open system in ecology the com-
prehensive monograph see [HSm95]. Basically, the chemostat consists of a nutrient input
pumped at a constant rate into a well-mixed culture vessel. Volume is kept constant by
pumping the mixed contents out at the same rate. We assume all nutrients needed for
growth, except one, to be present in abundance. In addition to being a piece of laboratory
apparatus for continuous culturing of bacteria, the chemostat is also a model for a very simple
lake where exploitative competition is easily studied. Let S(t) denote the nutrient concen-
tration at time t and xi(t) the concentration of the i-th competing species, i = 1, 2 . . . N .
The model with possibly different removal rates di is then given by

(1.1)
Ṡ(t) = (S0 − S)D −

N∑
i=1

pi(S)xi,

ẋi(t) = (cipi(S)− di)xi,

with initial conditions S(0) > 0, xi(0) > 0, i = 1, 2 . . . N . Here ci is the conversion constant
for the i-th species and the uptake rate pi(S) satisfies pi(0) = 0, pi(S) > 0 and p′i(S) > 0 for
0 < S < S(0). The input concentration S(0) and the washout rate D are assumed constant
and are under the control of the experimenter.

Under the scaling S 7→ S/S(0), t 7→ Dt, pi(S) 7→ ci

di

pi(S), xi 7→
di

ci

xi, di =
di

D
, the above

simple chemostat equations take the form

(1.2)
Ṡ = 1− S −

∑N
j=1 pj(S)xj

ẋi = αi(pi(S)− 1)xi

with S(0) > 0, xi(0) > 0, i = 1, . . . , N .
One fundamental question on the chemostat model (1.2) is persistence of the species xi.

Looking for positive equilibria we have to solve

(1.3) pi(S) = 1,

simultaneously for all i = 1, . . . , N . For N ≥ 2 these conditions on S will contradict each
other, in general. Therefore equilibria require extinction of all but one species.

In the present paper we address the next best option: does the chemostat model (1.2)
support persistence of all species in the form of a positive nonstationary periodic solution?

Over the last decades many attempts have been made to negatively answer this periodicity
question. To our knowledge, these attempts have exclusivley been based on Lyapunov func-
tions. Indeed the existence of a Lyapunov function V = V (S, x1, . . . , xN) which deccreases
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strictly along nonstationary solutions precludes nonstationary periodicity. We survey and
discuss some of these results in section 6.

Instead of aiming for yet another Lyapunov function, we try to develop and apply a
higher-dimensional version of the planar negative Bendixson Dulac criterion: planar vector
fields of negative divergence do not possess nonstationary periodic orbits. Indeed the resulting
area contraction of the associated flow precludes invariance of the nonempty interior of the
periodic orbit in the plane, or in any simply connected domain. The case N = 1 of a single
species is a trivial illustration. Passing to y0 := S, y1 = log x1 we obtain

(1.4)
ẏ0 = 1− y0 − p1(y0)e

y1

ẏ1 = α1(p1(y0)− 1)

with resulting divergence

(1.5) div = −1− p′1(y0)e
y1 + 0 < 0.

This is the simplistic paradigm which we plan to follow in the present paper. Standard
prejudice, however, would immediately discard such an attempt because the area argument
is essentially planar: curves delimit area, in R2, but do no delimit volume, in RN+1, for
N ≥ 2. But the area argument is based on integration of divergence over the interior, and
on the Gauss theorem, to reach a contradiction. We will therefore invoke the Stokes theorem,
with some difficulty, to derive a sufficient condition for non-periodicity in the chemostat.

In fact we are not able to utilize the double appearance of the per capita consumption
rates as pj(S) and pi(S) in the original chemostat model (1.2). We will therefore address
the slightly more general model

(1.6)
ẋ0 = f0 := 1− x0 −

∑N
j=1 pj(x0)xj,

ẋi = fi(x0)xi.

Here x0 := S denotes the substrate, and functions pj and fi, 1 ≤ i, j ≤ N , are given.

Theorem 1.1 Let the C1-functions pj and fi satisfy the following three conditions, for suit-
able λi > 0 and all 1 ≤ i, j ≤ N, 0 < xj, 0 < x0 < 1, j 6= i:

pj > 0;(1.7)

fi(x0) · (x0 − λi) > 0, for x0 6= λi;(1.8)

fi(x0) < 1 + (fj(x0) + (1− x0)p
′
j(x0)/pj(x0).(1.9)

Then (1.6) does not possess positive nonstationary periodic orbits.
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The zero x0 = λi of fi denotes the break-even concentration of the substrate x0 where growth
of xi is balanced by death and dilution. For the standard chemostat, condition (1.8) reads
(pi(x0)− 1)(x0 − λi) > 0 and follows from monotonicity p′i > 0. Condition (1.9) can in fact
accomodate slightly negative p′i but then becomes more restrictive on fi. Condition (1.9) is
trivially satsified in the single species case N = 1 which is also amenable to the standard
negative Bendixson Dulac criterion.

The remaining sections are organized as follows. In section 2 we given an outline of the
proof of theorem 1.1. We reduce the indirect proof to a string of several lemmas given in sec-
tions 3–5. Section 3 sets up the Stokes theorem and chooses an appropriate differential form.
Based on the negative winding of projected trajectories (xi, x0), 1 ≤ i ≤ N , as discussed in
section 4 we establish a contradiction in section 5 which is reminiscent of the planar proof
via the Gauss theorem. The expert reader may also jump to (2.8) for a technical summary.
In section 6 we summarize some earlier results based on Lyapunov functions and we compare
these results with our Stokes based Bendixson approach.

Acknowledgement. Both authors gratefully acknowledge mutual hospitality of their insti-
tutions. B. Fiedler is much indebted to S.-B. Hsu for drawing his attention to the chemostat
problem in 2002, again, which Willi Jäger had already flamboyantly suggested to him decades
ago. It was a question by Markus Dütmann, a physics student in class, which finally initi-
ated this work. He just wondered why supposedly curl in R3 would not work to generalize
a negative Bendixson Dulac criterion. A brief and very helpful tutorial on differential forms
by Oliver Schnürer has contributed substantially to the presentation. For careful and expert
typesetting we are indebted to Barbara Wengel.

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 555 “Complex
Nonlinear Systems”.

2 Outline of the proof of theorem 1.1

We outline the indirect proof o theorem 1.1, reducing the proof to a string of lemmas. The
details are filled in in sections 3–5.
Section 3 specifies our choice of the differential 1-form

(2.1) α = g0dx0 + g1dx1 + · · ·+ gNdxN

to enter the Stokes theorem. See [....] for a general background on the Cartan calculus of
exterior forms and the Stokes theorem. Assuming, indirectly, that a positive nonstationary
periodic orbit Γ ⊆ RN+1 exists, we choose an oriented immersed closed disk Ω ⊆ RN+1
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with (time) oriented boundary Γ, see lemma 4.1. In section 3 we choose the coefficients
g0(x), . . . , gN(x), x = (x0, . . . , xN) such that the Stokes theorem implies

(2.2) 0 =

∫
Γ=∂Ω

α =

∫
Ω

dα;

see lemma 3.1. In lemma 3.2 we calculate the exterior derivative dα to be of the special form

(2.3) dα = dx0 ∧ dH,

and we derive the explicit form of the scalar function H = H(x). To prepare for a contra-
diction we evaluate the right-hand side of (2.2), again via Stokes:

(2.4)

∫
Ω

dα =

∫
Ω

dx0 ∧ dH = −
∫
Ω

d(Hdx0) =

= −
∫

Γ=∂Ω

Hdx0.

In lemma 4.2 we show that

(2.5) −
∫
Γ

Hdx0 =

x0∫
x0

k(x0)∑
k=1

(−H(ξ+k) + H(ξ−k))dx0.

Here the integral on the right extends from the minimum x0 to the maximum x0 of x0(t)
on the periodic orbit Γ. Integration is with respect to increasing x0 and not with respect
to the differential form dx0 along the orientation of Γ. For convenience we work with ξ =
(ξ1, . . . , ξN), ξi := pi(x0)xi, instead of xi here and in the following lemmas. The points
(x0, ξ

±k) ∈ Γ ∩ ({x0} × RN), k = 1, . . . , k(x0), are enumerated such that the signs of the
superscripts ±k indicate points on Γ where ±ẋ0 > 0. In particular we address finiteness
of k in lemma 4.2. In lemma 4.3 we propose marriages based on the relative position of
the components ξ±k

j , for any fixed 1 ≤ j ≤ N . Marriages are based on the fact that the
projections of Γ onto each (xj, x0)-plane are negatively winding. More precisely we state
that for each fixed 1 ≤ j ≤ N and almost all x0 there exists a “marriage” numbering x±k,
which depends on j and x0, such that

(2.6) ξ+k
j > ξ−k

j

holds for all 1 ≤ k ≤ k(x0).
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In section 5 we reach a contradiction to our indirect assumption that a nonstationary
periodic orbit Γ exists. In fact we use the marriage result of (2.6) to conclude that

(2.7)

k(x0)∑
k=1

H(ξ+k)−
k(x0)∑
k=1

H(ξ−k) > 0,

at almost all levels of x0. See lemma 5.2.
To reach a contradiction which completes the proof of theorem 1.1 we only have to read

(2.2), (2.4), (2.5), and (2.7) sequentially:

(2.8)

0 =

∫
Γ

α =

∫
Ω

dα =

∫
Ω

dx0 ∧ dH = −
∫
Γ

Hdx0 =

=

x0∫
x0

( k(x0)∑
k=1

(−H(ξ+k) + H(ξ−k))
)
dx0 < 0.

This reduces the proof of theorem 1.1 to lemmas 3.1, 3.2, 4.1-4.3, and 5.2 below.

3 Choice of differential forms

In the outline of our proof of theorem 1.1 we have required the construction of a differential
1-form

(3.1) α = g0dx0 + g1dx1 + · · ·+ gNdxN

such that two properties hold:

(3.2)

∫
Γ

α = 0

along the hypothetical nonstationary periodic orbit Γ of the generalized chemostat system
(1.6), and

(3.3) dα = dx0 ∧ dH

for an explicit scalar function H = H(x0, x1, . . . , xN). See (2.2), (2.3).
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Although we could simply confront our reader with our choices of g0, . . . , gN we prefer
to motivate these choices for the sake of transparency, and let our reader participate in the
quest. By standard Cartan calculus of exterior forms (3.1) and (3.3) imply, respectively,

(3.4)

dα =
N∑

i=1

(−∂ig0 + ∂0gi)dx0 ∧ dxi+

+
∑

1≤i<j≤N

(−∂jgi + ∂igj)dxi ∧ dxj,

(3.5) dα =
N∑

i=1

∂iHdx0 ∧ dxi.

Here ∂i = ∂
∂xi

indicate partial derivatives. Comparing coefficients, we observe two things:

(3.6) ∂igj = ∂jgi,

(3.7) ∂0gi − ∂ig0 = ∂iH;

for all 1 ≤ i, j ≤ N . Conversely, (3.6) and (3.7) imply (3.3) for the choice (3.1). In the
positive orthant conditions (3.6) are equivalent to

(3.8) gi = ∂iG

for 1 ≤ i ≤ N and a suitable scalar potential G = G(x0, x1, . . . , xN). Thus (3.7) reads
∂i(H + g0 − ∂0G) = 0, for all 1 ≤ i ≤ N . Hence

(3.9) H + g0 − ∂0G = c(x0) ≡ 0

is a function of x0 alone, which we choose to vanish without altering dα = dx0 ∧ dH.
This general derivation of H does not address condition (3.2) yet, which requires

(3.10)

0 =

∫
Γ

α =

T∫
0

(g0ẋ0 + g1ẋ1 + · · ·+ gN ẋN)dt

=

T∫
0

(f0g0 + x1f1g1 + · · ·+ xNfNgN)dt
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along the T -periodic orbit Γ. Here f0 = f0(x) = 1 − x0 −
∑

pjxj depends on all variables,
whereas fi = fi(x0) for 1 ≤ i ≤ N . Without additional global information on the periodic
orbit Γ we must require the integrand to vanish pointwise everywhere – as we would in the
planar case. This motivates our Ansatz

gi := f0qi, for 1 ≤ i ≤ N ;(3.11)

g0 := −
N∑

j=1

xjfjqj(3.12)

with functions qj yet to be determined.

Lemma 3.1 With the choice (3.11), (3.12) of g0, g1, . . . , gN we have

(3.13) f0g0 +
N∑

j=1

xjfjgj ≡ 0.

In particular

∫
Γ

α = 0, as required in (2.2), (3.2).

Proof. Trivial by Ansatz (3.11), (3.12) and by (3.10). ./

To satisfy (3.6) alias (3.8) the functions qi in (3.11) must solve

(3.14) 0 = ∂igj − ∂jgi = −piqj + pjqi + f0(∂iqj − ∂jqi),

for all 1 ≤ i, j ≤ N . Here we have used ∂if0 = ∂i

(
1 − x0 −

N∑
j=1

pjxj

)
= −pi. To facilitate

the solution of this complicated linear system of PDEs for the vector q we only consider the
gradient case

(3.15) qi = ∂iQ,

1 ≤ i ≤ N with a scalar potential Q. Other choices are possible and cumbersome. Then
(3.14) is equivalent to

(3.16) −pi∂jQ + pj∂iQ = 0
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which possesses the general solution

(3.17) Q = Q(x0, σ)

with the abbreviations

(3.18) σ := ξ1 + · · ·+ ξN , ξi := pixi.

Here we have of course used that pi = pi(x0) are independent of xj, 1 ≤ j ≤ N . With the

abbreviation Qσ for
∂

∂σ
Q this specifies

(3.19) qi = piQσ

by (3.15), and therefore the 1-form α, by (3.1), (3.11), (3.12). The choice of Q = Q(x0, σ) is
still free.

Lemma 3.2 Let Q = Q(x0, σ) be an arbitrary C1-function. Let D0Q denote the partial
derivative of Q with respect to its first argument and let Qσ denote a primitive function with
respect to the second argument. Let G and H be defined via (3.8), (3.11), (3.12), (3.19) above.
Then

(3.20) G = f0Q + Qσ

up to an integration “constant” which depends on x0, only. Similarly, the differential 1-form
α from (3.1) and lemma 3.1 satisfies dα = dx0 ∧ dH, as required in (3.3), with H given
explicitly by

(3.21) H = −Q +
( N∑

j=1

ξj(fj + f0π
′
j)

)
Qσ + f0D0Q + (D0Q)σ,

again up to an integration “constant”. Here we have substituted

(3.22) πj := log pj, π′j = p′j/pj.

Proof. To determine G, first, we integrate ∂iG = gi and suppress integration constants
which depend on x0 only. An elementary calculation yields

(3.23)

G =

x∫ N∑
j=1

∂iGdxi =

x∫ N∑
i=1

gidxi =

x∫ N∑
i=1

f0qidxi

=

x∫ N∑
i=1

(1− x0 − σ)∂iQdxi = (1− x0 − σ)Q +

x∫ N∑
i=1

(∂iσ)Qdxi

= (1− x0 − σ)Q +

x∫ N∑
i=1

∂iQ
σdxi = f0Q + Qσ.
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Here σ = ξ1 + · · ·+ ξN = p1x1 + · · ·+ pNxN , as in (3.18), so that f0 = 1− x0 − σ. We have
successively used (3.8), (3.11) (3.15), (3.18), integration by parts, and (3.17). This proves
claim (3.20).

We can now determine H from (3.9), and (3.23), as follows:

(3.24) H = ∂0G− g0 = (∂0f0)Q + f0∂0Q + ∂0(Q
σ)− g0.

In (3.17) we have noticed the restricted form Q = Q(x0, σ) = Q(x0, p1x1 + · · · + pNxN) for
our choice of the q-potential Q = Q(x0, x1, . . . , xN). Here is a little trap concerning the
treatment of ∂0Q and (∂0Q)σ. Since σ depends on x0 via pj = pj(x0), the partial differential

operator ∂0 =
∂

∂x0

in (3.24) becomes

(3.25) ∂0 = D0 + ∂0σ · ∂σ

when applied to Q = Q(x0, σ). Here D0 denotes the partial derivative with respect to
the explicit first entry x0 of Q(x0, σ), as in the statement of the lemma. Also note that
π′j = p′j/pj, from (3.22), implies

(3.26) ∂oσ =
N∑

j=1

ξjπ
′
j.

The preparations (3.25), (3.26) now enable us to insert

(3.27) −g0 =
N∑

j=1

xjfj∂jQ =
N∑

j=1

ξjfjQσ

from (3.12), (3.15), (3.19) into (3.24) and group terms:

(3.28)

H = ∂0(1− x0 − σ) ·Q + f0(D0Q + ∂0σ ·Qσ)

+(D0Q)σ + ∂0σ ·Q− g0

= −Q +
( N∑

j=1

ξj(fj + f0π
′
j)

)
Qσ + f0D0Q + (D0Q)σ.

This proves (3.21) and the lemma. ./
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Corollary 3.3 In lemma 3.2 choose

(3.29) Q(x0, σ) := log σ

to be independent of the first variable. Then lemma 3.2 holds with the simplified expression

(3.30) H =
1

σ

( N∑
j=1

ξj(fj + f0π
′
j)

)
− log σ.

Since σ = ξ1 + · · ·+ ξN , the first term is a convex combination of the values fj + f0π
′
j, 1 ≤

j ≤ N , for any fixed x0.

Proof. Insert Q = log σ in (3.21). ./

4 Orientation, winding, and marriage

We construct the oriented immersed closed disk Ω spanned by the hypothetical nonstationary
periodic orbit Γ = ∂Ω; see lemma 4.1. In lemma 4.2 we use integration by parts to show

(4.1)

∫
Γ

Hdx0 =

x̄0∫
x0

k(x0)∑
k=1

(H(ξ+k)−H(ξ−k))dx0,

as was claimed in (2.5). Here we recall that ξk
j = pj(x0)xkj

and ξ±k ∈ Γ enumerate the points
of Γ at level x0 where ±ẋ0 > 0. See fig. 4.1. The integral on the left follows the orientation
of the periodic orbit Γ. The integral on the right, on the other hand, follows the orientation
of x0 on R between the extrema x0 and x̄0 of x0 on Γ. In lemma 4.3 we conclude from the
specific form of the generalized chemostat (1.6) that there exist j-marriages favorable to the
positivity of (4.1). See fig. 4.1 again.

Lemma 4.1 Let Γ be a closed embedded Ck-curve in RN+1, N ≥ 1, k > 1. Then there exists
a closed disk Ω which is Ck immersed up to the boundary Γ.

Proof. For N = 1 choose Ω to be the closure of the interior of Γ in the plane.
For N ≥ 2 observe that the two-dimensional union of (affine) tangent lines to Γ does not fill
RN+1. Choose any point O outside that union such that Γ lies to one side of a hyperplane
through O without intersecting its normal through O itself. For minimal period T of the
regular parametrization x(t) ∈ Γ and r exp(iϕ) in the complex unit disk define the mapping.

(4.2) I : (r, ϕ) 7→ O + r(x(ϕT/2π)−O).
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+
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ξi

ξj

ξ+1

ξ+2

ξ-1

ξ-2

f0 = 1-x0-σ = 0

Figure 4.1: At fixed level x0, “male” points ξ+k with ẋ0 > 0 and “female” points ξ−k with
ẋ0 < 0 are in a j-marriage configuration indicated by dashed lines between couples. Note
how partners change when i-marriage is required: πj = (12) whereas πi = id.

By definition of O this is an immersion except possibly at O itself. Now Γ is on one side
of a hyperplane through O and Γ does not intersect the normal to the hyperplane at O.
Therefore we may easily smooth any resulting corner at O by local normal projection onto
the hyperplane.

This proves the lemma. For analytic Γ minimal surfaces of disk type provide an alterna-
tive construction of an immersion up to the boundary. ./

Lemma 4.2 Let Γ be a C1-curve and let H be C0 on Γ. Then (4.1) holds. In particular
k(x0) is finite for almost all x0.

Proof. The only difference between the two integrals in (4.1) lies in the orientation of
dx0. Let x(t) ∈ Γ parametrize the oriented C1-curve Γ, alias the periodic orbit. Then
dx0 = ẋ0(t)dt, on the left, whereas dx0 = |ẋ0(t)|dt on the right. The summation on the right
takes care of this discrepancy, if the summation k = 1, . . . , k(x0) is finite.

We claim that k(x0) is finite at regular values of the coordinate function t 7→ x0(t) on
the periodic orbit Γ, i.e. at values η ∈ R such that x0(t) = η implies ẋ0(t) 6= O. By Sard’s
theorem Lebesgue almost all values η are regular, and therefore it is sufficient to consider
the regular value case in the integrals of (4.1).

To prove finiteness of k(x0) at regular values x0 = η assume the contrary. Then the
“males” x = (η, x+k

1 , . . . , x+k
N ) ∈ Γ possess an accumulation point x∗ = (η, x∗1, . . . , x

∗
N) being

confined by positivity and by pix
+k
i = ξ+k

i ≤
N∑

j=1

ξ+k
j = σ < 1 − x0. Indeed “males” have
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O < ẋ0 = f0 = 1 − x0 − σ. Since the periodic orbit possesses finite length we must have
f0(x

∗) = 0 at the accumulation point. Indeed Γ cannot traverse a finite distance from the
“males” in {f0 < 0} infinitely often. Therefore ẋ0 = f0(η, x∗1, . . . , x

∗
N) = 0 at x∗ ∈ Γ and

x0 = η is not a regular value. This contradiction proves finiteness of k(x0) in (4.1), not
claiming uniform boundedness, and proves the lemma. ./

We call points ξ+k of the sum in (2.5), (4.1), where ẋ0 > 0 “male”, and points ξ−k

with ẋ0 < 0 “female”. This terminology arises as follows. In lemma 5.2 below we establish
positivity of pair differences H(ξ+k) − H(ξ−k) in (4.1) for suitable pairings which we call
married couples. Feasible mass marriages, for this purpose, are prepared by the following
marriage lemma.

Lemma 4.3 Let x±k ∈ Γ, k = 1, . . . , k(x0), enumerate the intersection points of the periodic
orbit with any fixed regular value x0(t) = η and fix any component 1 ≤ j ≤ N . Let fj(x0)
possess only one sign change, as required in (1.8).
Then there exists a j-marriage permutation πj of the superscripts k = 1, . . . , k(x0) such that
females exceed males in j-value in each couple:

(4.3)
x

πj(k)
j < x−k

j ,

ξ
πj(k)
j < ξ−k

j ,

for all k = 1, . . . , k(x0).

Proof. Consider the j-th component of the chemostat, i.e.

(4.4) ẋj = fj(x0)xj.

By assumption (1.8) the sign of ẋj changes only at x0 = λj > 0, for positive xj. In particular
the projection (xj(t), x0(t)) of x(t) ∈ Γ to the (xj, x0)-plane is a negatively (right, clockwise)
winding curve, possibly with self-intersections. Indeed ẋj ≷ 0 for x0 ≷ λj; see fig. 4.2.

For regular levels x0 = η ≥ λj we propose the following j-marriage. Consider the arches
of x(t) ∈ Γ above η, in the (xj, x0)-plane. Since ẋj > 0 along these arches, these are graphs
x0 = x0(xj) over xj. Each arch k terminates at a “female” point x−k = (η, x−k

1 , . . . , x−k
N ) and

emanates from some “male” point x+πj(k). Conversely, each x±k is on some arch. Therefore
the arches define a marriage permutation πj(k) assigning a “male” +π(k) to each “female”

−k. Moreover the “male” has lower j-value than the “female”, x
πj(k)
j < x−k

j , for each couple.
Indeed ẋj > 0 along each arch, and the arch emanates from the male. By pj > 0 this implies

ξ
πj(k)
j < ξ−k

j and proves the lemma in case x0 = η ≥ λj.
For x0 = η < λj we repeat the above argument using the arches of Γ below the level

x0 = η where ẋj < 0. Note that the arches which j-marry x−k to x+πj(k) emanate from
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ä

xj

x0

xπj(1) xπj(2) x-1 x-2

λj

η

Figure 4.2: Periodic orbit Γ projected into the (xj, x0)-plane. Couples (xπj(k),x−k) at level
x0(t) = η ≥ λj of x0. Ascending “males” xπj(k) and descending “females” x−k are married
by permutation πj via arches of the periodic orbit Γ above η. Note how marriages change
at levels x0 = η < λj where arches of Γ below η are used.

the “females”, this time, which still exceed their “male” partners in j-value. Also note how
marriages may switch at x0 = η = λj. This proves the j-marriage lemma. ./

5 Marriage and positivity

In this section we complete the proof of theorem 1.1. In sections 2–4 we have constructed a
function

(5.1) H =
1

σ

( N∑
j=1

ξj(fj + f0π
′
j)

)
− log σ,

see (3.30) such that

(5.2) 0 =

∫
Γ

α = −
x̄0∫

x0

H(x0)dx0

where H(x0) abbreviates the sum

(5.3) H(x0) :=

k(x0)∑
k=1

(H(ξ+k)−H(ξ−k)).
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We have seen in lemma 4.2 how this sum is finite for all regular values x0(t) = η along the
nonstationary periodic orbit Γ, i.e for Lebesgue almost all values. To reach a contradiction
to the assumed existence of Γ we show positivity, H > 0, in lemma 5.2, based on marriage
lemma 4.3. To prepare for the wedding we collect some monotonicity facts on H in lemma
5.1. This is the only place where we use assumption (1.9), which equivalently reads

(5.4) fi < 1 + min
j 6=i

(fj + (1− x0)π
′
j)

with πj := log pj and for all 1 ≤ i ≤ N .

Lemma 5.1 Fix any 1 ≤ i ≤ N and positive x0 and ξj, for j 6= i. Let σ0 :=
∑
j 6=i

ξj. Define

ξ∗i such that

(5.5) σ∗ := ξ∗i + σ0 = 1− x0

makes f0 = 1−x0−σ vanish: f0 = 0. Let H+ := H(ξ) with ξi = ξ∗i . Then assumption (1.9),
alias (5.4), implies

H(ξ) > H∗ for 0 ≤ ξi < ξ∗i ;(5.6)

H(ξ) < H∗ for ξi > ξ∗i .(5.7)

Note that ξ∗i can be negative, in the latter case.

Proof. To prove claims (5.6), (5.7) on the partial map ξi 7→ H(ξ) we first calculate the
partial derivative:

σ2∂iH = (−1 + fi + f0π
′
i)σ −

N∑
j=1

ξj(fj + f0π
′
j)

The right-hand side is affine linear in ξi with coefficient −1. Therefore the lemma is proved
provided we show

(5.8) H0 := H
∣∣
ξi=0

> H∗.

To show (5.8) we write out H0 and H∗ from (5.1), replacing f0 in H0 by ξ∗i = σ∗ − σ0 to
get

(5.9)

H0 = − log σ0 +
1

σ0

∑
j 6=i

ξj(fj +
σ∗ − σ0

σ∗
σ∗π

′
j);

H∗ = − log σ∗ +
1

σ∗
(σ∗ − σ0)fi +

σ0

σ∗
· 1

σ0

∑
k 6=i

ξjfj.
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Taking differences, using concavity of the logarithm and noting that the sums
1

σ0

∑
over

j 6= i with coefficients ξj amount to convex combinations we obtain

(5.10)

σ∗
σ∗ − σ0

(H0 −H∗) = σ∗
log σ∗ − log σ0

σ∗ − σ0

− fi +
1

σ0

∑
j 6=i

ξj(fj + σ∗π
′
j)

≥ 1− fi + minj 6=i(fj + (1− x0)π
′
j) > 0.

Here we have used assumption (1.9), alias (5.4) in the last step to complete the proof of
claim (5.8) and of the lemma.

Lemma 5.2 Under the assumptions of theorem (1.2), the integrand H(x0) defined in (5.2),
(5.3) is strictly positive for Lebesgue almost every x0.

Proof. For the regular level x0 = η let 1 ≤ i ≤ N denote the index with maximal fi. We
prove the lemma in two steps. First we project the ξi-component, both of the “males” ξ+k

and of the “females” ξ−k to the diagonal

(5.11) f0 = 1− x0 − σ = 0,

i.e. to σ = σ∗ = 1 − x0, leaving all other components ξ±k
j with j 6= i fixed. Then we apply

the j-marriage lemma 4.3, separately for each j 6= i, to conclude positivity of H.
To perform the diagonal projection let ξ∗±k denote ξ±k with ξi replaced by ξ∗i := σ∗−σ+ξi.

For “females” we have 0 > ẋ0 = f0 = 1−x0−σ = σ∗−σ so that ξ∗i < ξi. For “males” we have
the opposite inequalities, 0 < ξi < ξ∗i ; because 0 > ẋ0. Abbreviating H±k := H(ξ±k) and
H±k
∗ := H(ξ∗±k), lemma 5.1 imples H+k > H+k

∗ for the “males” by (5.6), and H−k < H−k
∗

for the “females” by (5.7). Summing up over k this shows

(5.12) H =

k(x0)∑
k=1

(H+k −H−k) >

k(x0)∑
(H+k

∗ −H−k
∗ ) =: H∗

This completes the diagonal projection step.
In our second step we use j-marriage lemma 4.3, for every j 6= i, to conclude H∗ ≥ 0 is

nonnegative. Explicitly

(5.13) ξ∗i +
∑
j 6=i

ξj = σ∗ = 1− x0

for all ξ∗±k. We use (5.13) to replace ξ∗i in H±k
∗ = H(ξ∗±k) and obtain

(5.14) H±k
∗ =

1

σ∗

( ∑
j 6=i

ξ±k
j (fj − fi)

)
fi − log σ∗,
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from (5.1), because f0 = 0 at ξ∗±k. Note that the components ξ±k
j with j 6= i have not been

touched by the diagonal i-projection. Moreover our choice of i to provide the maximal fi

ensures fj − fi ≥ 0 for all coefficients of ξ±k
j in (5.14). Summing up and rearranging by the

permutations πj of j-marriage lemma 4.3 we finally obtain

(5.15)

σ∗H∗ =

k(x0)∑
k=1

σ∗(H
+k
∗ −H−k

∗ )

=

k(x0)∑
k=1

∑
j 6=i

(ξ+k
j − ξ−k

j )(fj − fi)

=

k(x0)∑
k=1

∑
j 6=i

(ξ
πj(k)
j − ξ−k

j )(fj − fi) ≥ 0.

Indeed (4.3) prevents any of the summands to be negative. Because σ∗ = 1 − x0 > 0 on
the hypothesized nonstationary periodic orbit Γ we conclude strict positivity of H(x0) from
(5.12), (5.15). This completes the proof of the final lemma and, in view of section 2, of
theorem 1.1. ./

6 Discussion

We survey some previous results on competitive exclusion and absence of periodic orbits in
the chemostat, which are based on Lyapunov functions. We recall here that competitive
exclusion means global convergence to equilibria where all but one species go extinct. We
also comment on some previous results of negative Bendixson Dulac type for other types of
equations.

We first consider the simple chemostat

(6.1)
ẋ0 = 1− x0 −

N∑
j=1

pj(x0)xj

ẋi = fi(x0)xi

of (1.2) with equal normalized dilution rates di = D = 1 and net growth rates qi proportional
to the uptake rates pi,

(6.2) fi(x0) = qi(x0)− di;
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(6.3) qi(xo) = bipi(x0).

In this setting [HHW77]have established competitive exclusion for uptakes pi of Michaelis-
Menten type

(6.4) pi(x0) = mi
x0

ai + x0

.

Their methods are “elementary” and neither use a Lyapunov function nor a negative Be-
dixson type theorem. They show that the species with smallest break-even concentration
λi wins the competition , and all other species go extinct. [Hsu78] constructed a Lyapunov
function of the form

(6.5) V (S, x1 . . . xN) =

S∫
λ1

ξ − λ1

ξ
dξ + c1

x1∫
x∗1

ξ − x∗1
ξ

dξ +
N∑

i=2

cixi

with suitable constants ci > 0. He proves that the equilibrium E1 = (λ1, x
∗
1, 0 . . . 0) is globally

asymptotically stable for the case of different removal rates di 6= D and for Michaelis-Menten
uptake pi. Wolkowicz and Lu [WL92] used a different Lyapunov function of the type

(6.6) V (S, x1 . . . xn) =

x0∫
λ1

Q(ξ)dξ + c1

x1∫
x∗1

ξ − x∗1
ξ

dξ +
N∑

i=2

cixi

to prove global stability of E1 for more general uptakes pi including Holling type III

(6.7) pi(x0) = mix
2
0/(ai + x2

0).

B. Li [Li98] also constructs a Lyapunov function for some non-monotone uptakes pi. Arm-
strong and McGehee [AM80] proved competitive exclusion for general monotone uptake rates
pi(x0) > 0. They used two Lyapunov functions to complete the proof.

Our system (1.6) is more general than the simple chemostat equation (6.1), (6.3). We do
not require fi(x0), the net growth rate, to be proportional to the uptake rate pi(x0). The
construction of Lyapunov functions in [Hsu78], [AM80], [WL92], [Li98] strictly depends on
the proportionality fi = cipi − di required in (6.2), (6.3). Moreover, our growth rates fi(x0)
are allowed to be non-monotone as long as the break-even concentrations stay unique; see
the sign condition (1.8).

To discuss our crucial and most restrictive condition, (1.9), consider the case N = 1 of a
single species first. Then (1.9) holds trivially and there is no periodic orbit for system (6.1).
Similarly, (1.9) holds for N identical species: fi(x0) = fj(x0) for all 1 ≤ i, j ≤ N .
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It has long been known that the yield is not a fixed constant in the chemostat model.
Droop [D] introduced a variable yield model, also called internal storage model, to replace
the classical fixed yield chemostat model. In the present paper we allow that the uptake rate
pi(x0) and the net growth rate qi(x0) are not proportional. Assume fi(x0) = fi(x0) − di as
in (6.2). Consider the case N = 2 and d1 = d2. If f1(x0) < f2(x0) for 0 < x0 < 1, then it
is easy to verify that x1(t) ≤ Cx2(t)e

−δt for some δ > 0, C > 0. In particular x1 dies out:
lim
t→∞

x1(t) = 0. Thus we assume for some x∗0, 0 < x∗0 < 1

(6.8)
q2(x0) > q1(x0), 0 < x0 < x∗0,

q2(x0) > q1(x0), x∗0 < x0 ≤ 1.

Then (1.9) is equivalent to

(6.9)

q1(x0)− q2(x0) < 1 + (1− x0)
p′2(x0)

p2(x0)
, 0 < x0 < x∗0

q2(x0)− q1(x0) < 1 + (1− x0)
p′1(x0)

p1(x0)
, x∗0 < x0 ≤ 1

Similarly consider N species, N ≥ 2, with equal dilution rates d1 = . . . = dN = D and
net growth rates

(6.10) qi(x0) =
Mix0

Ki + x0

,

all of Michaelis-Menten type. Assume positivity of all pi and p′i. Then it is easy to verify
that assumptions (1.7)–(1.9) of theorem 1.1 all hold provided that

(6.11) Mi < Ki + 1

for all 1 ≤ i ≤ N . The same conditions are also sufficient for Holling type III net growth
rates, replacing (6.10), or in fact for any positive uptake rates qi(x0) such that

(6.12) q′i(x0) > 0, qi(1) < 1

for all 0 < x0 ≤ 1 and all 1 ≤ i ≤ N .
In the literature there are several alternative approaches to periodic orbit exclusion which

do not make use of Lyapunov functions. We have mentioned the classical planar negative
Bendixson, or Dulac, divergence criterion in the introduction; see (1.4), (1.5). Before we
comment on its direct generalization to higher dimensions we discuss approaches based on
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higher-dimensional generalizations of the likewise classical planar Poincaré-Bendixson theo-
rem.

For planar C1 vector fields the classical Poincaré-Bendixson theorem establishes the fol-
lowing property of ω-limit sets ω(x0) of bounded forward trajectories x(t) with initial con-
dition x(0) = x0. Either ω(x0) is a single periodic orbit, or else ω(y0) and the α-limit set
α(y0) consist entirely of equilibria for any initial condition y0 in the original invariant ω-limit
set ω(x0). Exclusion of periodic orbits, in this context, implies the presence of equilibria in
ω(x0).

One type of higher-dimensional Poincaré-Bendixson theorems originates with work by
Russel Smith [RSm81], [RSm86]. He imposes conditions which basically imply contraction
of area functionals under the linearized flow, and absence of periodic orbits. Moreover the
Hausdorff dimension of compact invariant sets is less than two. For some further generaliza-
tions in this spirit see [Mul90]. An application to the Lorenz system was given in [LM93].
For refined dimension estimates see also [BLR05].

Another type of generalizations is based on nodal sign-changing properties of Sturm type.
Such properties refine monotonicity or comparison porperties, as reviewed by [HHSm05] and
originate as early as 1836 with Sturm’s seminal work [Stu1836] on the nodal properties
of solutions to linear parabolic PDEs. Nonlinear variants have been successfully revived
by Matano [Mat82] in a scalar, one-dimensional PDE setting. For a Poincaré-Bendixson
theorem see [FMP89] and the references there. For related results in the ODE setting
of cyclic monotone feedback systems see [MPHSm90]. Time delayed systems have been
addressed by [MPS96]. In the PDE-setting u = u(t, ξ) time periodic orbits can easily be
excluded under separated boundary conditions because the projection

(6.13)
ω 7→ R2

u 7→ (u(ξ0), uξ(ξ0))

is injective for any fixed ξ0. Choosing ξ0 on the domain boundary, the right-hand side
becomes one-dimensional. For example Dirichlet conditions impose u(ξ0) = 0 at boundary
points ξ0. Injectivity of (6.13) thus excludes periodic orbits.

A first application to ecological dynamics of the negative Bendixson Dulac criterion,
based on the Stokes theorem, was given by [CHW98]. That paper addresses the asymmetric.
May-Leonard model of three competing species. They proved the nonexistence of periodic
solutions by contradiction. Assuming there exists a periodic orbit Γ, they constructed an
explicit surface Ω with boundary Γ and a differential 1-form α such that the Stokes theorem
provides a contradiction. The basic strategy of [CHW98] had been proposed in [BD93],
including some applications to population dynamics under restrictive homogeneity assume.
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In our present paper one may dispute whether or not we have actually used the Stokes
theorem. Admittedly our summary (2.8) uses the Stokes theorem twice in the equalities

(6.14) 0 =

∫
Γ

α =

∫
Ω

dα =

∫
Ω

dx0 ∧ dH = −
∫
Γ

Hdx0 < 0.

However, we may avoid the Stokes theorem altogether with the Ansatz

(6.15) α = dG−Hdx0.

As a consequence we then obtain

(6.16) dα = dx0 ∧ dH,

as we have observed in (2.3). In (3.4)–(3.9) we have actually derived (6.15) as a consequence
of (6.16). If we start from (6.15), conversely, we may abbreviate (6.14) and conclude

(6.17) 0 =

∫
Γ

α = −
∫
Γ

Hdx0 < 0,

directly. Here we have only used the primeval form
∫
Γ

dG = 0 of the Stokes theorem. The

planar negative Bendixson Dulac theorem, by the way, can be subsumed under this view

point, in the notation of (1.4), (1.5), if we define H :=
y1∫

div < 0. Up to an integration
“constant” c(x0) which depends on x0 only, this choice coincides with our abstract choice
in corollary 3.3, (3.30) when applied to the planar case N = 1. We may therefore argue
our negative Bendixson Dulac theorem to circumvent the Stokes theorem and the required
construction of explicit surfaces Ω with boundary Γ, altogether, just like the planar negative
Bendixson Dulac criterion does.
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