pter 3 .wwomommo& Applications of Difference Equations

1,2 Whooping crane
on data from 1938 to
to the exponential

id the Beverton-Holt

| T I I I | 1

200
180 —
160

— exponential
-~= logistic

— =
[AS T
o o

[

cQ
S
I

Whooping crane
=
=
o
I

-
S o
[

TP
| | | ! I | i
1940 1950 1960 1970 1980 1990 2000

Years

)
S
|

[

whooping cranes in North America breeds in Wood Buifalo National Park in
northern Canada and spends the winter in Aransas National Wildlife Refuge on$
the Texas coast. Data from the Wood Buffalo/Aransas (WBA) winter populationy
are graphed in Figure 3.2 (UU.S. Fish & Wildlife Service, 2005). (See the Appendix to§
Chapter 3.) An exponential curve, N; = Np)', and the Beverton-Holt curve are fit}
to the whooping crane population data (z, V,) using a least squares approximation. 3

For the exponential curve, let y, = In(N,) = In(N,) + ¢In(A). The command
pobyfit in MATLAB finds the least squares estimates for the parameters. The
estimate for N; = 15.88 and for A = 1.040. 3

The Beverton-Holt difference equation has an explicit solution which is:
given in Exercise 10 in Chapter 2 and equals

NK X
K+ Ng(A' = 1)

If we assume K is known, then we can make a change of variable and fit a linear §
curve. Making the change of variable :

1 1

in the Beverton-Holt solution leads to

1 1
¥ = Emzo Nu tlnA.
A least squares approximation is used to fit the whooping crane data to the
normalized logistic curve y, with X = 500. Estimates for the other parameters JE
are Ny = 14.71 and A = 1.046. The estimate for K is used only for illustration §&
purposes; an estimate for X is not known. For both models, the parameter
estimates for A show that the whooping crane population is increasing on the §
average about 4% per year. See Figure 3.2. l...
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3.3 Nicholson-Bailey Model

One of the earhest applications of a disérete-time model 10 a biological system
involved two insects, a parasiteid and its host. The model is named after the
two researchers, Nicholson and Bailey, who developed the model and applied
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it to the parasitoid, Encarsia formosa, and the host, Trialeurodes vaporariorum
(1935). The term “parasitoid” means a parasite which is free living as an adult
but lays eggs in the larvae or pupae of the host. Hosts that are not parasitized
give rise to their own progeny. Hosts that are successfully parasitized die but
the eggs laid by the parasitoid may survive to be the next generation of para-
sitoids,

Parasitoids are frequently used as bioclogical control agents to control insect
pests. Introduction of a parasitoid led to a successful biological control pro-
gram involving the California citrus industry. In the late 1800s citrus crops in
California were being ruined by the insect pest, cottony cushion scale insect.
A parasitoid fly and a predatory insect, the vedalia beetle, were introduced from
Australia (Hoffmann and Frodsham, 1993). Within a few years, the pest was
under control,

‘The following derivation for the host-parasitoid model of Nicholson-Bailey
is based on the discussion presented by Edelstein-Keshet (1988). The basic vari-
ables and parameters are defined as follows:

N, = density of host species in generation ¢.
B
f(M, B) = fraction of hosts not parasitized.

density of parasitoid species in generation ¢.

il

number of eggs laid by a host that survive through the larvae, pupae
and adult stages.

2

o™
I

number of eggs laid by a parasitoid on a single host that survive
through larvae, pupae, and adult stages.

The parameters r and e are positive. Applying these definitions, the general
host-parasitoid model has the following form:

.,

Nt = riNf(N, F),
By = eN(l - f(N, F)).

Note that if N, = 0, then P.; = 0. The parasitoid cannot survive without the
host. This is one reason why parasitoids are good biological control agents.

‘The Nicholson-Bailey model assumes a simple functional form for f(N,, B).
The function f depends on the searching behavior of the parasitoid. The number
of encounters of the parasitoids, F;, with the hosts, N, is in direct proportion to
host density N, that is, it follows the law of mass action,

ng?

where the constant « is referred to as the searching efficiency, the probability
that a given parasitoid will encounter a given host during its searching lifetime.
Nicholson and Bailey assumed that a was a constant. The number of encounters
are distributed randomly among the available hosts and assumed to follow the
Poisson distribution,

exp(—puu”

s hn=0,1,2,...,
7!

p(n) =
where £ is the number of encounters and w is the average number of encounters
per host in one generation. Once a host is parasitized, it cannot be parasitized
again. Therefore, only the first encounter between parasitoid and host is impor-

tant. Hosts with no encounters p{0) are separated from those with more than
one encounter, 1 — p(0).
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Now, we estimate the fraction of hosts not parasitized, F(N,, B). The proba- .
bility of no encounters of the host by the parasitoid represents the fraction of§
hosts that are not parasitized, that is, 1

exp(—upiu’

o = exp(—n)

p(0) =

The parameter y can be estimated from the number of encounters:

_ #encounters _ aN,F
Ny N,

i ab,.

Thus,
p(0) = exp(~aF) = f(N, ). |

H;ocosmmwoaEmEmno&mm&monmﬂouﬂ:mﬁEo Zhonowom-wm:mwBoam_ wmm.“..
the following form:

Niyx = rNexp(—aP) = F(N, P), @C
Pay = eN(1 = exp(~aB)) = G(N, F). .,

The equilibrium solutions and the local asymptotic stability of model Am.b._,.,”
are analyzed. The equilibrium solutions of the Nicholson-Bailey model mam.”‘w

found by solving the following equations simultaneously for NV and P,
N = rN exp(—aP),
P = eN(1 — exp(—aP)).

There are two equilibria. One equilibrium is the zero equilibrium, where N = 0§

and P = 0.The other equilibrium is
= Inr _ rinr
L.U = — =
e and _2 ¢~ Dae

Note that the latter equilibrium is positive if » > 1. '

To analyze the local asymptotic stability, the Jacobian matrix is calculated
and evaluated at an equilibrium. Computer algebra systems can be used to sim-
plify calculations. In the Appendix to Chapter 3, commands in Maple are given
for setting up and evaluating the Jacobian matrix. The partial derivatives of §
F(N,P) = rN exp(—aP) and G(N, P) = eN(1 — exp(—aP)) are calculated §
below for the Jacobian matrix, ..,

r exp(—aP) —arN oxwﬁlawvv

TN F) = A% — exp(-aP))  aeN exp(—aP)

At the zero equilibrium J is given by ]
r 0 1
00-(; )

Since the eigenvalues are A, = 7, 0, the zero equilibrium is locally asymptoti- ‘
cally stable if || < 1 and unstable if |7| > 1. Since r > 0, the zero equilibrium }

is locally asymptotically stable if 0 < r < 1 and unstable if » > 1.

_ The Jacobian matrix at the positive equilibrium, P = In(r)/a and }
N = rinr/[(r - 1)ae],r > 1, can be simplified by noting  exp(—aP) = 1.Thus, f
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—rlnr
N L (r — 1)e
Qw — ..Cm In~
r -1
The equilibrium is locally asymptotically stable if

Inr Inr
1+ <1 + > + < 2. 32
(r—1) -1 B (3:2)
The first inequality is satisfied when » > 1. It will be shown by the following
theorem that the second inequality is not satisfied, which implies that the pos-

itive equilibrium is unstable. There exist eigenvalues of the Jacobian matrix
satisfying |[A;] > 1.

The positive equilibrium in the Nicholson-Bailey model (3.1), where

= Inr - rinr
- d =—"
F a " N (r — Dae

forr > 1,is unstable.

Proof Consider the second inequality in (3.2) and define s(r) = (» — 1)
(1 +In()/(r —1) +In(r) = 2] =1 —r + rin(s). If s(r) < 0, then the sec-
ond inequality is satisfied. However, it will be shown that s(r) > 0, which implies
the equilibrium is unstable.

First,notethats(1) =1 —1—-Inl =Q0ands'(r) = -1+ lnr +1=1Inr.
Thus, s'(r) > 0 for r > 1; 5 is strictly increasing for » > 1. Thus, s{r) > 0 for
r > 1.The equilibrium is unstable. O

Figure 3.3 illustrates the dynamics of the Nicholson-Bailey model (3.1)
when r < 1 and r > 1. When r > 1, the oscillations increase in amplitude, but
they also get very close to zero so that numerically the values are set to zero;
population extinction occurs even in this case.
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Figure 3.3 Some simulations of the Nicholson-Bailey model when r < 1 andr > 1 (@ =0.05ande = 2).
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Modified
-Bailey model with
pendent factor
sp(L.5(1 ~ N,f25))
and e = 2).

3.4 Other Host-Parasitoid Models

There are a number of unrealistic assumptions in the Nicholson-Bailey model}
For example, a constant reproductive rate of the host, a constant searchingj
efficiency, and a homogeneous environment are unrealistic assumptions. With§
additional realistic assumptions, the positive equilibrium can be locally asymptot-§
ically stable. Some of these more realistic assumptions are discussed next. ‘

Suppose the reproductive rate r in the host equation is replaced by a)

density-dependent factor, g(N),
Nuz = Ng(N) exp(—aP),
Py = eN(1 — exp(~aP)). ;
Some forms for the density-dependent factor g that have been studied included

4 ex A AH N, vv and !
—, ¥ - — T E—
no P K (1 + NP

¢

3

For some parameter values the density-dependent factor has a stabilizing}
influence. If the host population does not grow too fast (the value of r in}
the density-dependent factor should not be too large), then there Qnmﬁm
a locally asymptotically stable equilibrium. See Figure 3.4 when g(N) =
exp(1.5(1 — N/25)).

Suppose the environment is not homogeneous. Suppose the environment Hm
patchy, so that a proportion of the host population may find a refuge and be safe
from attack by parasitoids. Let v be the proportion of hosts that are uo_“.
safe from attack by parasitoids and 1 — vy be the proportion of hosts that E,w
safe within a refuge. In this case, the model has the form

Nz = r(1 = )N, + ryNexp(—aF),
Frq = yeN[1 —~ exp(—aF)].

Another way to model the effect of a refuge is to assume there is a constant
number of hosts MV, in a refuge. The hosts, N, are safe from attack by para- §
sitoids. The model has the form :

Nay = rNy + r(N, = N) exp(~aP),
Baz = (N, = N[l — exp(—aP)]. _

25 _ E

Population size

(=]
i
e
[=3
—
u
b
(=)




3.4 Other Host-Parasitoid Models 97

Another generalization of the Nicholson-Bailey host-parasitoid model is
to include more than one parasitoid. Suppose there is one host and two
parasitoids which parasitize the same host. Suppose the host density is
denoted by N, and the two parasitoid densities are denoted by F, and Q,. In
addition, suppose the parasitoid P acts first, followed by @ that acts on the
surviving hosts. For example, the host species may be attacked in different
developmental stages by a range of parasitoids. Hassell (1978) discusses a
winter moth that is parasitized by egg, larval, and pupal parasitoids. A model
with this form is

Ny rN F1(POf200,
Pia etV (1 — f1(P)],
O = metJQubﬁ. — f2AQ)]

If the proportion of hosts not parasitized by the parasitoids takes the same form
as in the Nicholson-Bailey model [i.e., f{x) = exp(—a;x}], then the positive
equilibrium will be unstable. However, for some other forms, there are regions
in parameter space that give rise to a stable positive equilibrium.

A model in which a parasitoid parasitizes another parasitoid is referred to
as a host-parasitoid-hyperparasitoid system. In this case, N is the host, P is the
primary parasitoid, and Q is the hyperparasitoid which only parasitizes hosts
first parasitized by P. The function fj is the fraction of hosts N not parasitized
by P and f, is the fraction of parasitoids P not parasitized by Q. The model has
the form

Ny = rNf1(P),
P e:N,[1 — f1(P)If2(Q)),
O = N1 — f1{PII[L — f2(Q)]-

Hassell (1978) studies this host-parasitoid-hyperparasitoid model when

a;x

—k
NmmRvHAHuT am.v , ﬁ?wﬁ__.VO. i=1,2.

These particular forms are derived from a negative binomial distribution rather
than a Poisson distribution. The search for hosts by parasitoids is not random.
For example, parasitoids may aggregate in patches where there is high prey
density. The parameter k; is related to parasitoid aggregation. Aggregation is
strongest when k; — 0,

and weakest when k; — o0,

a;x

—k;
w_rlmwo? + s v = exp(—ax).
In this latter case, the form of fis the one in Nicholson-Bailey’s model (3.1).
Some extensions and applications to biclogical control in host-parasitoid

&aﬁmEm‘nmu‘_um‘mouna‘wm‘gm‘mmmmnmbomm‘mwmaos.‘mvmwﬂm.oo&\mmmmmF\a?mHﬂHoopw

King and Hastings, 2003; Lynch et al., 2002; Varkonyi et al., 2002).
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3.5 Host-Parasite Models

Host-parasite models are similar to host-parasitoid models, except that the par3
asite does not necessarily kill the host. A host-parasite model was formulated by3
Leslie and Gower in 1960 and has a particularly simple form. Let H, denote the}
host and F, the parasite populations at time ¢. Then the host-parasite model is3
defined as follows:

H
.wnhjra = ﬁ: . 3
1+ vk

QML.U

P = ~

1+ Q\mm\m_ﬂ,

where Hy > 0, B> 0, ;> 0, and 9, > 0, i = 1,2. The parameters o; are}
growth rates of the host and parasite populations in the absence of the other}
population. The larger the quantity y,F,, the greater the reduction of the]
host population. The larger the ratio F/H, the smaller the number of:
hosts per parasite resulting in a reduction in the parasite population}
(Piclou, 1977).
It is easy to see that solutions to (3.3) are positive for ¢ > 0. In addition}

if ; < 1,then lim, oo H, = 0and ifa; < 1,thenlim, .o P = 0.In Exercise 6.4
the dynamics when o; < 1 for i = 1 or i = 2 are summarized. In the follow-3
ing analysis, the parameters «; are assumed to be greater than one, a; > 13
i=1,2
Model (3.3) has a unique positive equilibrium given by
W”QHIH and B = Y2 »HIVHQ.MAQHle.

7 a =1 yifaz — 1)

The Jacobian matrix evaluated at the positive equilibrium has a simple form,

1 l.ﬁ?: -1
7= afey — 1) )
(@ — 1P 1

) 25]

The conditions in Theorem 2.10 can be easily checked to see whether th ;
equilibrium is locally asymptotically stable. It is straightforward to see that the
trace is positive and the trace is also less than one plus the determinant. H.Houna,”w
the only condition to check for local stability is that the determinant is less. i
than one,

QHQNIQM+HAH

o)y

This latter condition reduces to oy > 1.The stability conditions in Theorem 2.10
are always satisfied under the conditions e; > 1,i = 1,2 3

If the host population is a pest, then according to the Leslie-Gower model, §
a fast-growing parasite population with a growth rate larger than that of the
host that significantly reduces \En\rcwﬂboﬁﬁmmoumeV\S‘msa\q\ﬂvém,\éonﬁ ”

help in reducing the pest population. A numerical example in Figure 3.5 §
illustrates the dynamics of model (3.3). ]
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100 and A = 22.22.
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3.6 Predator-Prey Models

Predator-prey models are similar to both host-parasite and host-parasitoid models.
However, unlike the latter two systems, the predator does not live on the host. The
prey serves as a food source for the predator. In this section, we discuss a discrete-
time predator-prey model studied by Neubert and Kot (1992). This model is
related to the well-known continuous-time, Lotka-Volterra predator-prey model,
named after Alfred Lotka (1880-1949) and Vito Volterra (1860-1940), who con-
tributed to the analysis of the continuous-time predator-prey model. The continu-
ous-time predator-prey model is studied in Chapter 6, Section 6.3. The dynamics of
this model are much more complex than its continuous analogue or the Leshe-
Gower model, although it appears to be much simpler. The Neubert-Kot model
exhibits some new dynamics that are not present in scalar difference equations.

In the model of Neubert and Kot (1992), the per capita growth rates are linear.
The model has the following form:

N,

Nuyp1 =N + wZ_T - Nv -~ eNE, (3.4)

Fuy = bNF + (1 = d)B,

where N, is prey density at time ¢ and F, is predator density at time ¢. The para-
meters r, ¢, b, d, and K are positive. The term rN,(1 — N,/K) represents logistic
growth, r is the intrinsic growth rate, and K is the carrying capacity. The term eF;
is the per capita prey reduction due to consumption by the predator (assumes
the law of mass action). The term BN, is per capita predator increase due to prey
consumption and 4 is the death rate of the predator. Note that the original
system (3.4) has five parameters. A simpler version of the predator-prey model
(3.4) is formulated by reducing the number of parameters and assuming that
predators only live one generation, d = 1. ,

A change of variable reduces the model with d = 1 containing four para-
meters to one with only two parameters. This technique was used i Chapter 2,
when the approximate logistic equation was reduced to a simpler form containing
only one parameter. The new variables are chosen to be

N, eP

t t
X, = —

T EHWMM“ and ¢ = bK.
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Note that the variables x, and y, are dimensionless (e.g., K has the same units a$]
N, and eF, has the same units as bK). There are other choices for the change off
variables to put the system in dimensionless form, but this is a good choice moﬁ
our purposes. With this change of variables, the new system has only two H.um:.mE;
eters, r and ¢: ;

2

Xy = (r + Dx, ~ rxf — cxyyy, (3.5)

Vvl = CXp Y.

System (3.5) is much simpler to analyze than the original system because nos
there are only two parameters.

Before we begin the analysis of (3.5), it must be noted that the question Om
nonnegative solutions has not been addressed. If the initial conditions, x, and 0.4
are sufficiently large, it is easy to see that x; could become negative. The}
variable x.+; could be redefined to alleviate this problerm, for example,

X1 = max{0, (r + 1)x, — rx? — cx,y,}. (3. @
If x4 =0, then at the next time step, both predator and prey are zero %
(X2, ¥i12) = (0, 0); complete extinction occurs. In all of the numerical simulations}
performed here, solutions remained nonnegative, even without the Hmmﬁonou
given in (3.6). Therefore, in the following analysis, it is assumed that X, = 0 and;
¥ = 0 for all time. Note if the predator is absent, y; = 0, then X, satisfies Em
approximate logistic equation. In this case, for x, to be positive for all time requires §
0 <xy < (r+1)/rand r <3 (no restrictions on c). But the presence of the
predator, y;, reduces the size of x,.,. Thus, for solutions of (3.5) to be positive, :umr
restrictions on r can be relaxed somewhat; new restrictions on r will depend on ¢

First, the equilibria of system (3.5} are identified, then their local stability i Hm
analyzed. The equilibria satisfy ‘

r

¥=Xx(r +1-r%~cy),
¥ = cXy.
It can be seen that there exist equilibria at ¥ = 0 = yandatx = land y = 0.
Also, there exists a positive equilibrium if ¢ > 1, ;.
¥ =~ and wﬁ%'Ml@. ﬁ
c c

"The Jacobian matrix for system (3.5) is -

r+1—-2rx—c¢ —cx L

J(x,y) = A c Y ox v S Ti

Y T th

The Jacobian matrix evaluated at the zero equilibrium is E e
r+1 0 p

J(0,0) = ; : E o de

(0.9 ﬁ 0 ov . oC

be

This matrix has a positive eigenvalue r + 1 > 1, The equilibrium with both §
species extinct is unstable. .
The Jacobian matrix evaluated at (1, 0) is

A 1-r Inv

0 e/
This matrix has the eigenvalues ;, = 1 — r, ¢.The equilibrium with only the prey 3
present-is-locally-asymptotically -stable-if 0—<—7—<-2-and 0< ¢ <1, The growi growth

I

J(1,0)

rates of the prey and predator must be within a certain range, but not too large.
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Finally, the Jacobian matrix at the positive equilibrium (¥, ¥}, where ¢ > 1,is
_ 1—-rfc -1
I 5) = Aw - w\n 1 v
The stability criterion from Theorem 2.10 is
2 —rfcl<2+7r—-2rfc <2
Each of these inequalities can be stated separately,
2—rle<2+r-—2rfc
2—rfc> =2 —r+2rfc,
2+r—=2rfc <2

If the first condition fails there is a real eigenvalue, A; = 1. If the second
condition fails there is a real eigenvalue, A; = — 1. If the third condition fails
and the eigenvalue is complex, its magnitude |A] = 1. The three stability
conditions simplify as follows:

c>1,
de
I—c¢

c < 2.

r< if ¢<3

The three conditions together imply

1<e¢<2 and _.‘Alanl.
3—-c
‘These conditions are graphed in the r-c parameter space (Figure 3.6). The
parameter ¢ must be large to guarantee that the predator persists, but not too
large. In addition, the parameter » must not be too large and its magnitude
depends on the magnitude of ¢.

As a stability boundary is crossed in Figure 3.6, at least one eigenvalue
has magnitude equal to one. The type of eigenvalue, positive or negative,
real or complex determines the type of bifurcation. There exists a trans-
critical bifurcation when A = 1, a flip bifurcation when A = —1, and a Hopf
bifurcation when the eigenvalues are complex and satisfy [A| = 1 (Neubert
and Kot, 1992). The terminology “Hopf bifurcation” is more often used
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Figure 3.9 Solutions to the normalized predator-prey system when r = 3.1l andc = 2.1 (periodic solution) i
mmd whenr = 25andc 1.1 (period 2 solutions for the prey and the predator goes extinct). N

3.7 Population Genetics Models I

Inheritance depends on the information contained in the chromosomes that are 0
passed down from generation to generation. Humans have two sets of 23 e
chromosomes (diploid), making a total of 46 chromosomes; one set is obtained S
from each parent. Certain locations along the chromosomes contain the instruc- N
tions for some characteristic, such as eye or hair color. The locations along the b
chromosomes are called the loci (a single location is called a locus). The instruc- Al
tions within the chromosomes are referred to as the genes. Each gene gives a
unique instruction {for color of eyes, color of hair, etc.) and each human has two
genes per locus because there are two sets of chromosomes. The physical
characteristics (eye or hair color) unique to each individual are determined by
that individual’s genes. In simple organisms, such as bacteria, there are 2000 to
3000 genes, whereas in higher organisms such as plants and animals there are
50,000 to 100,000 genes (Clark and Russell, 1997). Each gene has different ;
variant forms (the gene for eye color can be green, blue, brown, etc.). These i |
different variant forms of the genes are referred to as alleles. Here, we shall £ |
consider the simplest possible case, the case where there are only two different ,
alleles associated with a particular gene.

Suppose there are two alleles for a given gene. The two alleles are denoted
a and A. A human with two sets of chromosomes could then have one of three
different combinations on his or her chromosome: AA, Aa, or aa. The combina-
tions AA and aa are homozygous, whereas the combination Aa is heterozygous.
The three combinations, A4, Aa, and aa, are called the genotypes of the locus.

One of the two alleles may be dominant. For example, if A is the dominant
allele, then a is referred to as the recessive allele. Then genotypes AA and Aa
correspond to the same physical trait, but different from that of ga. This is also o
described as saying that genotypes AA and Aa have phenotype A and aa has A
phenotype a (Hoppensteadt, 1975). ;

We explore the question of whether the allele frequencies (associated with a
a particular gene) change in a given population over time as individuals within Y
that population mate and reproduce. Our population genetics model is a simple
one-locus; two-allele-model-We-assume-that-during-each-time-step; the-popula-

tion in generation 7 is replaced by the population in generation ¢t + 1.




3 Biological Applications of Difference Equations

T T

J
24 25 26 27 2.8

! I | | (.2
2.314 2.315 2316 2.317
r

e 3.7 Bifurcation diagram for the normalized predator-prey system when ¢ = 1.1 and
2.3135,2.3175} and r € (2.317, 2.8} (flip or period-doubling bifurcations). The cycles of the prey x are
1ed.

in connection with differential equations (see Chapter 5). In difference
equations, such types of bifurcations are referred to as Neimark-Sacker
bifurcations (Elaydi, 2000; Hale and Kocak, 1991). Figures 3.7 and 3.8 are
bifurcation diagrams for a period-doubling bifurcation (flip) and a Neimark-
Sacker bifurcation, respectively. When a flip bifurcation occurs, the pre-
dator becomes extinct and the prey exhibits period-doubling behavior
(Tigure 3.7).

A Neimark-Sacker bifurcation represents a new type of bifurcation that
occurs in systems of difference equations, but not in scalar difference equations.
When this bifurcation occurs, there is a pair of purely imaginary eigenvalues. In
this case, there exists a periodic solution, but the period may not be integer
valued (Figure 3.8).

Solutions to the normalized predator-prey system are graphed in Figure 3.9
when r = 3.1 and ¢ = 2.1 and when r = 2.5 and ¢ = 1.1 (when the flip and
Hopf bifurcation boundaries are crossed in Figure 3.6). They illustrate a peri-
odic solution for the prey and predator and a 2-cycle for the prey, respectively.

ifurcation

1¢ normalized
system when
€[1.9,2.4].

the predator y
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Boom, Bust, and Chaos in the Beetle Census

DAMAGE DUE TO flour beetles is a significant cost to the food processing
industry. One of the major goals of entomologists is to gain insight inro the
population dynamics of beetles and other insects, as a way of learning about insect
physiology. A commercial application of population studies is the development
of strategies for population control.

A group of researchers recently designed a study of population fluctuation
in the flour beetle Tribolium. The newly hatched larva spends two weeks feeding
before entering a pupa stage of about the same length. The beetle exits the pupa
stage as an adult. The researchers proposed a discrete map that models the three
separate populations. Let the numbers of larvae, pupae, and adults at any given
time t be denoted L,, P,, and A, respectively, The output of the map is three
numbers: the three populations L1, Pryy, and A, | one time unit later. It is most

cenvenient to take the time unit to be two weeks. A typical model for the three
beetle populations is

L1 = bA
Py = L(1~ )
Ay = Pl — w,) + Al — ), (1.5)

where b is the birth rate of the species (the number of new larvae per adult each
time unit), and where 1, Ky, and p, are the death rates of the larva, pupa, and
adult, respectively.

We call a discrete map with three variables a three-dimensional map, since
the state of the population at any given time is specified by three numbers L,, P,
and A;. In Chapter 1, we studied one-dimensional maps, and in Chapter 2 we
move on to higher dimensional maps, of which the beetle population model is an
example.

Tribolivm adds an interesting twist to the above model: cannibalism caused
by overpopulation stress. Under conditions of overcrowding, adults will eat pupae

Costanrine, R.E, Cushing, J.M., Dennis, B., Desharnais, R.A., Experimentally induced
Tansitions in the dynamic behavior of insect populations. Nature 375, 227-230 (1995).
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and unhatched eggs (future larvae); larvae will alsc eat eggs. Incorporating these

refinements into the model yields

Levi = bA, muﬂuﬁlnmn\&“ — caly)
wun.l = H\ﬂ: o PL

Pl — pp) exp(—cpae) + Al — o). (1.6)

>n+_ =
The parameters ¢y = 0.012, c.s = 0.009, ¢z = 0.004, py = 0.267, , = C, and
b = 7.48 were determined from population experiments. The mortality rate of
the adult was determined from experiment to be g, = 0.0036.

The effect of calling the exterminator can be modeled by artificially chang-
ing the adult mortality rate. Figure 1.17 shows a bifurcation diagram from Equa-
tions (1.6). The horizontal axis represents the mortality rate p,. The asymptotic
value of L—found by unning the model for a long time at a fixed w, and recording
the resulting larval population—is graphed vertically.

Figure 1.17 suggests that for relatively low mortality rates, the larval pop-
ulation reaches a steady state (a fixed point). For g, > .1 (representing a death
rate of 10% of the adults over each 2 week period), the model shows oscillation
between two widely-different states. This is a “boom-and-bust” cycle, well-known
to population biologists. A low population (bust) leads to uncrowded living con-
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Figure 1.17  Bifurcation diagram for the model equations (1.5).
The bifurcation parameter is p,, the adult mortality rate.
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ditions and runaway growth (boom) at the next generation. At this point the
limits to growth (cannibalism, in this system) take over, leading to a catastrophic
decline and repeat of the cycle.

The period-doubling bifurcation near w, = 0.1 is followed by a period-
halving bifurcation at u, = 0.6. For very high adult mortality rates (near 100%),
we see the complicated, nonperiodic behavior characteristic of the logistic map-.

It is one thing to find “chaos” in a mathemartical model. A much more
significant finding would show that the model is true enough to areal-world system
that its chaotic behavior can be reproduced in the laboratory. The experimenters
put several hundred beetles and 20 grams of food in each of several half-pint milk
bottles. They recorded the populations for 18 consecutive two-week periods. Five
different adult mortality rates, », = 0.0036 (the natural rate), 0.04, 0.27, 0.50,
0.73, and 0.96 were enforced in different bottles, by periodicaily removing the
requisite number of adult beetles to artificially reach that rate. Each of the five
experiments was replicared in four separate bottles.

Figure 1.18 shows the population counts taken from the experiment. Popu-
lations of adults from the four separate bottles are graphed together in the boxes
on the left. The four curves in the box are the adult population counts for the
four bottles as a function of time. The boxes on the right are similar but show
the population counts for the larvae. During the first 12 weeks, the populations
were undisturbed, so that the natural adult mortality rate applied; after thart, the
artificial mortality rares were imposed by removing or adding adult bettles as
needed.

The population counts from the experiment agree remarkably well with the
computer simulations from Figure 1.18. The top two sets of boxes represent p, =
0.0036 and 0.04, which appear experimentally to be sinks, or stable equilibria, as
predicted by Figure 1.18. The period-two sink predicted also can be seen in the
populations for w, = 0.27 and 0.50. For w, = 0.96, the populations seem to be
governed by aperiodic oscillations.
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Figure 3.12 The LMMDDR mode] with two ages, g(x) = e and R(t+1) = glw(t)w(t),a = 1. (a)
b1 =105, = 10,and s = 0.5 (b) b, = 0,, = 20, and 4 = 0.5

3.8.2 Structured Model for Flour Beetle Populations

The structured model for the flour beetle has received much attention because

it is one of the few mathematical models that has not only been investigated -
theoretically but has been tested against data collected from many laboratory
experiments. The population of flour beetles from the species Tribolium is
modeled. In the structured model, the population is subdivided into three devel-
opmental stages, larval, pupal, and adult stages, denoted as £, P and A, respec
tively (e.g., Costantino et al., 1997, 1998; Cushing et al., 1998, 2003; Henson and-
Cushing, 1997; Henson et al., 1998). Deterministic and stochastic formulations
of this model have been analyzed mathematically and statistically by Cushing

>

cian, and biologists: http://caldera.calstatela. edu/nontin/lpamodet . html. The
results from the laboratory studies and the mode] agree very well,
The model is a system of difference equations satisfying

N¢.+H = _w\r mxﬁﬁlnmn\wh - mtﬁ_.u,
Py = L - ),
Ay = .Nmﬁuﬁln_g\pb T ALl — pg),

where all of the parameters b, Cony Cop, Cpas M4, @0d L, are positive and, in add
tion, u; and p, are less than one, We shall refer to this modei as the LPA mode
The time unit, ¢ to ¢ + 1, is two weeks, which is the average amount of tim
i spent in the larval stage and is also the time unit for the duration of the pupal
stage. The exponential terms are Ricker type density dependence and repre-;
sent the effects of cannibalism. In particular, the coefficients Cear Cel» 211 ¢, are 3

Hm8m\om\omnE.wmmmE\onmmmrcw\maﬁ:m“ €ges by larvae, and

respectively (see also Caswell, 2001; Cipra, 1999; Cushing, 1998). The fractions
exp{—cylL,) and exp(—c,,A,) are the probabilities that an egg is not eaten in
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the presence of L, larvae and A, adults in one time unit. The fraction
eXp(—cps A,) is the survival probability of a pupa in the presence of A, adults
in one time unit. The coefficient b represents the average number of larvae
produced per adult; and u, and u, denote the mortality fractions of adults and
larvae.

In the laboratory experiments, the beetles are kept in a bottle containing
20 grams of flour at a constant incubator temperature and humidity (Cushing,
1998). The flour is sifted every two weeks and the number of larvae, pupae, and
adults counted, then returned to a fresh bottle of flour.

We examine a simple case for this model: the conditions for stability of the
zero equilibrium or extinction equilibrium. The Jacobian matrix of the LPA
model satisfies

—begAe i ATk peedmaal (1o, A)
I = 1—py 0 0
0 et I—p,—c,, Pe A

At the extinction equilibrium, the Jacobian matrix has the following form:

0 0 b
J0,000=|1-4 0 o | (3.13)
0 11—y,

The characteristic polynomial is

PA) = 2% = (1 — p A% — b1 — ).

"The local asymptotic stability of the extinction equilibrium can be determined
Irom the Jury conditions:

p(1) = g — b1 — py) > 0,
P(=1) = =2 + iy~ b(1 — ) < 0,
=651 — w)® > b(1 — p)(1 — p,).

The first condition is satisfied if 5(1 — ;) < u, The second condition is always
satisfied. Finally, the third condition follows from the first condition. That is,

D= ) + (L = (L~ ) < g2+ pel ~ ) = e < 1.

Hence, the extinction equilibrium is locally asymptotically stable if

b(1 = ) < . (3.14)

In fact, it can be shown that the extinction equilibrium is _globally
asymptotically stable if condition (3.14) holds. Denote X, = (L, P, AT and
note that X,,; = JX,, where J = J(0,0,0) is defined in (3.13). Since J is a
nonnegative matrix, it easily follows that X, = J'X|. The magnitude of the
eigenvalues of J are less than one iff Eo@zm:dﬂa.lmaﬁm. Thus, if (3.14) holds,
then lim,_,.o. X, = (0, 0, 0)7.

Condition (3.14) can be interpreted biologically. Extinction is possible if, in
the absence of cannibalism, the number of new larvae that survive to the pupal
stage during the two-week interval is less than the fraction of adults who die
during that same period. When b(1 — ;) = u, there is a change in behavior;
a transeritical bifurcation occurs (sec Exercise 14),
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It is interesting to note that a positive equilibrium (£, 7, 4) requires

1- - _ _
= w{@mxmmlng\» = Ceal = CcpeA).

Al a positive equilibrium, the exponential term is less than one. Hence, if
b(1 — py) = p,, then there cannot exist a positive equilibrium. Existence of g
positive equilibrium requires that b(1 — u;) > #- When this condition holds,
the LPA model exhibits a wide array of behaviors as different parameters are
varied—from periodic behavior to chaos. Please consult the references for more
information about this Interesting modeél and the experiments that have been
conducted to test this model.

1

3.8.3 Structured Model for the Northern Spotted Owl

The northern spotted owl, Strix occidentalis cauring, is Jocated in the Pacific
Northwest of the United States and Canada. It is a monogamous, territorial bird
requiring large tracts of mature, coniferous trees for its survival (Lande, 1988).
Due to logging of old-growth forests in the Northwest, researchers have predicted
extinction of the spotted owl if suitable habitat is not maintained (Lamberson
et al,, 1992; Lande, 1988). The species was given threatened status in 1990
(McKelvey et al., 1992). A number of models have been developed for the spotted
owl, including a simple Leslie matrix model (Lamberson et al., 1992) and a
spatially explicit, stage-structured, stochastic metapopulation model (Akgakaya
and Raphael, 1998). We discuss a model first reported by Thomas et al. (1990) and
later analyzed by Lamberson et al, (1992). This particular model is a density-
dependent, structured model; it is also discussed by Caswell (2001), Cushing
(1998), and Haefner (1996). The discussion follows that of Allen et . (2005).

Suppose the landscape is fixed; only a fraction of the landscape is suitable
for spotted owl occupation. The suitable area is made up of sites, T = total
number of sites and {7 = number of available sites, U < 7. Single females find
a single male to become paired with or are eliminated from the population.
Juvenile birds that survive disperse at the end of their first year; males seek an
unoccupied site and females seek a site occupied by a solitary male. Let P, be
the number of paired owls in year ¢, S be the number of single males, and § I
be the number of single females. The sex ratio between males and females is one,
so that S,,, = S¢,. The number of occupied sites equals the number of paired
owls plus the number of male owls, 0, = P, + S The number of available and
unoccupied sites is A, = U — O,. To ensure that available sites remain nonnega-
tive, we modify the definition of occupied sites, O, = min{U, F, + S,,,}.

We model the number of paired owls P, and number of single male owls
Spms- The model takes the following form:

P = _ﬂﬁw + .m.:r:mrm.g~ = mqu:.m_E.L“ mmw_mV

1
.m.:ii. = M.\.M.\‘ULN + ,m.:r?w.wﬁ_. - EL + ﬁ&.ﬂ. = QQHT Mzrb. ﬁmeu

The model parameters are defined as follows:

Dy-=-probability of juveniles surviving dispersal,
M, = probability of female finding a male,
ss = fraction of single owis surviving one year,




