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1 Introduction

In this paper, we consider

dS
dt

= (S(0)(t)− S)D − fS1(S,QS1)u1 − fS2(S,QS2)u2,
dR
dt

= (R(0)(t)−R)D − fR1(R,QR1)u1 − fR2(R,QR2)u2,
dQSi

dt
= fSi(S,QSi)−min{µSi(QSi), µRi(QRi)}QSi, i = 1, 2,

dQRi

dt
= fRi(R,QRi)−min{µSi(QSi), µRi(QRi)}QRi, i = 1, 2,

dui

dt
= [min{µSi(QSi), µRi(QRi)} −D]ui, i = 1, 2,

(1.1)

where S(0)(t + τ) = S(0)(t) ≥ 0 and R(0)(t + τ) = R(0)(t) ≥ 0, for some period

τ > 0.

We assume that for each i = 1, 2 and N = S, R, µNi(QNi) is defined and

continuously differentiable for QNi ≥ Qmin,Ni > 0 and satisfies

(H1) µNi(QNi) ≥ 0, µ′
Ni(QNi) > 0 and is continuous for QNi ≥ Qmin,Ni, µNi(Qmin,Ni) = 0.
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We assume that fNi(N,QNi) is continuously differentiable for N > 0 and QNi ≥
Qmin,Ni and satisfies

(H2) fNi(0, QNi) = 0,
∂fNi(N,QNi)

∂N
> 0,

∂fNi(N,QNi)

∂QNi

≤ 0.

It is better to assume that

(H2) fNi(0, QNi) = 0,
∂fNi(N,QNi)

∂N
≥ 0,

∂fNi(N,QNi)

∂QNi

≤ 0.

In [4], the authors studied the homogeneous case of (1.1).

2 Single Population

In this section, we first consider the single population model. Mathematically, it

simply means that we set u1 = 0 or u2 = 0 in equations (1.1). In order to simplify

notation, all subscripts are dropped in the remaining equations and we consider

dS
dt

= (S(0)(t)− S)D − fS(S,QS)u,
dR
dt

= (R(0)(t)−R)D − fR(R,QR)u,
dQS

dt
= fS(S,QS)−min{µS(QS), µR(QR)}QS,

dQR

dt
= fR(R,QR)−min{µS(QS), µR(QR)}QR,

du
dt

= [min{µS(QS), µR(QR)} −D]u,

(2.1)

with initial values in the domain

X = {(S,R,QS, QR, u) ∈ R5
+ : QS ≥ Qmin,S, QR ≥ Qmin,R}. (2.2)

It is easy to show that X is positively invariant for the system (2.1). Putting u = 0

in the first two equations of (2.1) results in

dS

dt
= (S(0)(t)− S)D, (2.3)

and
dR

dt
= (R(0)(t)−R)D. (2.4)
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The linear equations (2.3) and (2.4) have unique globally attractive positive τ−periodic

solutions S = S∗(t) = S∗(t + τ) and R = R∗(t) = R∗(t + τ), respectively, which

describe the available nutrient in a phytoplankton-free chemostat.

Now, putting S = S∗(t) and R = R∗(t) in system (2.1) results in{
dQS

dt
= fS(S

∗(t), QS)−min{µS(QS), µR(QR)}QS,
dQR

dt
= fR(R

∗(t), QR)−min{µS(QS), µR(QR)}QR,
(2.5)

with initial values in the domain

Γ = {(QS, QR) ∈ R2
+ : QN ≥ Qmin,N , N = S,R}. (2.6)

It is easy to show that Γ is positively invariant for the system (2.5).

Lemma 2.1. The system (2.5) has a unique τ−periodic solution (Q∗
S(t), Q

∗
R(t)) to

which all solutions are attracted.

Proof. We first show that every solution of system (2.5) exists for all t ≥ 0. Let

[0, σ) be the maximal interval of existence. We need to prove that σ = +∞. By the

continuation theorem, it suffices to prove that the solution is bounded on [0, σ).

Motivated by the proofs in [3, Proposition 3], we consider the dynamics of the

variable

V (t) =
1

2
[(QS(t))

2 + (QR(t))
2].

Using the monotonicity of fN , the inequality QN ≤ 1 + Q2
N and the fact that

QN ≥ Qmin,N , for N = S,R, it follows that V (t) satisfies

dV (t)

dt
=

dQS(t)

dt
QS +

dQR(t)

dt
QR

≤ fS(S
∗(t), QS)QS + fR(R

∗(t), QR)QR

≤ fS(S
∗
max, Qmin,S)[1 +Q2

S] + fR(R
∗
max, Qmin,R)[1 +Q2

R] (2.7)

≤ fS(S
∗
max, Qmin,S) + fR(R

∗
max, Qmin,R)

+ 2max{fS(S∗
max, Qmin,S), fR(R

∗
max, Qmin,R)}V (t),

where S∗
max := maxt∈[0,τ ] S

∗(t) and R∗
max := maxt∈[0,τ ]R

∗(t). The resulting inequal-

ity implies that V (t) are bounded in finite time intervals. So are QS(t) and QR(t).

Next, we show that every solution of system (2.5) is bounded eventually. From

the first equation of (2.5), it follows that

dQS

dt
≥ fS(S

∗
min, QS)− µS(QS)QS,
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where S∗
min := mint∈[0,τ ] S

∗(t). The resulting inequality and the fact that every

solution of system (2.5) exists globally, imply that lim inft→∞QS(t) ≥ Q0
S, where

Q0
S is the unique root of fS(S

∗
min, QS) − µS(QS)QS = 0, and hence, Q0

S > Qmin,S.

Similarly, it follows from the second equation of (2.5) that there exists a unique

constant Q0
R > Qmin,R such that lim inft→∞QR(t) ≥ Q0

R > Qmin,R. From the above

discussions and (H1), it follows that there exists δ0 > 0 and T > 0 such that

min{µS(QS(t)), µR(QR(t))} ≥ δ0, ∀ t ≥ T.

From (2.5), it follows that{
dQS

dt
≤ fS(S

∗
max, QS)− δ0QS, ∀ t ≥ T,

dQR

dt
≤ fR(R

∗
max, QR)− δ0QR, ∀ t ≥ T,

where S∗
max and R∗

max were defined in the previous discussion. Thus, every solution

of system (2.5) is bounded eventually.

System (2.5) is a planar, competitive, periodic system of differential equations.

The main results for such system is that all bounded solutions are asymptotic to

a periodic solution (See Chap. 7, Sect.4 in [9]). Let (Q∗
S(t), Q

∗
R(t)) be a periodic

solution of system (2.5). Then (H1) and (H2) imply that Q∗
S(t) ≥ Qmin,S and

Q∗
R ≥ Qmin,R for all t ≥ 0, and hence, (Q∗

S(t), Q
∗
R(t)) is a positive periodic solution

of system (2.5). If one can prove that the positive periodic solution (Q∗
S(t), Q

∗
R(t))

of system (2.5) is unique, then the proof is done. Suppose for contradiction that

(Q1∗
S (t), Q1∗

R (t)) and (Q2∗
S (t), Q2∗

R (t)) are two different positive τ−periodic solutions

of system (2.5). Then we have (Q1∗
S (0), Q1∗

R (0)) ̸= (Q2∗
S (0), Q2∗

R (0)). Note that any

two points in R2 are order related either in ≤ or ≤K . Without loss of generality, we

can assume that either (Q2∗
S (0), Q2∗

R (0)) < (Q1∗
S (0), Q1∗

R (0)), or (Q2∗
S (0), Q2∗

R (0)) <K

(Q1∗
S (0), Q1∗

R (0)).

In the case where (Q2∗
S (0), Q2∗

R (0)) < (Q1∗
S (0), Q1∗

R (0)), we have

(Q2∗
S (τ), Q2∗

R (τ)) = (Q2∗
S (0), Q2∗

R (0)) < (Q1∗
S (0), Q1∗

R (0)) = (Q1∗
S (τ), Q1∗

R (τ)).

By the backward comparison theorem (see, e.g., [2, Lemma 2.2] and [9, Lemma

7.4.1] ), it follows that (Q2∗
S (t), Q2∗

R (t)) ≤ (Q2∗
S (t), Q2∗

R (t)) for all t ∈ [0, τ ].

This should be corrected into (Q2∗
S (t), Q2∗

R (t)) ≤ (Q1∗
S (t), Q1∗

R (t)) for all

t ∈ [0, τ ].

Without loss of generality, we assume that Q2∗
S (0) < (Q1∗

S (0) and define

g(t) := Q1∗
S (t)−Q2∗

S (t). Otherwise, we have Q2∗
R (0) < Q1∗

R (0) and then choose
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g(t) := Q1∗
R (t)−Q2∗

R (t). Then it follows from the first equation of (2.5) that

g′(t) =
[
fS(S

∗(t), Q1∗
S (t))−min{µS(Q

1∗
S (t)), µR(Q

1∗
R (t))}Q1∗

S (t)
]

−
[
fS(S

∗(t), Q2∗
S (t))−min{µS(Q

2∗
S (t)), µR(Q

2∗
R (t))}Q2∗

S (t)
]
.

Using (H1) and (H2), we see that g(t) satisfies g′(t) ≤ 0 for all t ∈ [0, τ ], and

g′(t) < 0 when t ∈ [0, τ ] is sufficiently close to 0 or τ . This implies that

g(τ) < g(0), which contradicts the fact that g(t) is a τ−periodic function.

In the case where (Q2∗
S (0), Q2∗

R (0)) <K (Q1∗
S (0), Q1∗

R (0)), by the forward compar-

ison theorem (see, e.g., [9, Theorem B.4]), we have

(Q2∗
S (t), Q2∗

R (t)) ≤K (Q1∗
S (t), Q1∗

R (t)), ∀ t ∈ [0, τ ]. (2.8)

We divide the first (second) equation of (2.5) by QS(t) (QR(t)) and integrating the

resulting equation in t ∈ [0, τ ], we have

0 =

∫ τ

0

1

Q1∗
S (t)

d(Q1∗
S (t)) =

∫ τ

0

fS(S
∗(t), Q1∗

S (t))

Q1∗
S (t)

dt−
∫ τ

0

min{µS(Q
1∗
S (t)), µR(Q

1∗
R (t))}dt,

and

0 =

∫ τ

0

1

Q1∗
R (t)

d(Q1∗
R (t)) =

∫ τ

0

fR(R
∗(t), Q1∗

R (t))

Q1∗
R (t)

dt−
∫ τ

0

min{µS(Q
1∗
S (t)), µR(Q

1∗
R (t))}dt.

Therefore, ∫ τ

0

fS(S
∗(t), Q1∗

S (t))

Q1∗
S (t)

dt =

∫ τ

0

fR(R
∗(t), Q1∗

R (t))

Q1∗
R (t)

dt. (2.9)

Similarly, we can prove that∫ τ

0

fS(S
∗(t), Q2∗

S (t))

Q2∗
S (t)

dt =

∫ τ

0

fR(R
∗(t), Q2∗

R (t))

Q2∗
R (t)

dt. (2.10)

From (H2), (2.8) and the facts (Q2∗
S (0), Q2∗

R (0)) <K (Q1∗
S (0), Q1∗

R (0)), we have∫ τ

0

fS(S
∗(t), Q1∗

S (t))

Q1∗
S (t)

dt ≤
∫ τ

0

fS(S
∗(t), Q2∗

S (t))

Q2∗
S (t)

dt, (2.11)

Here I corrected your earlier > into ≤, and only the third inequality

in (H2) is used.
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and ∫ τ

0

fR(R
∗(t), Q1∗

R (t))

Q1∗
R (t)

dt ≥
∫ τ

0

fR(R
∗(t), Q2∗

R (t))

Q2∗
R (t)

dt. (2.12)

Here I corrected your earlier < into ≥, and only the third inequality

in (H2) is used.

Note that when t ∈ [0, τ ] is sufficiently close to zero or τ , we have

(Q2∗
S (t), Q2∗

R (t)) <K (Q1∗
S (t), Q1∗

R (t)), and hence, at least one of two inequali-

ties in (2.11) and (2.12) is strict. This, together with (2.9) and (2.10), leads

to a contradiction.

Next, we show that every solution (S(t), R(t), QS(t), QR(t), u(t)) of system (2.1)

exists for all t ≥ 0. By the continuation theorem, it suffices to prove that the

solution of system (2.1) is bounded on finite time intervals. To this end, we let

TS(t) = S(t) + QS(t)u(t) and TR(t) = R(t) + QR(t)u(t). Then TS(t) and TR(t)

satisfy the linear systems (2.3) and (2.4), respectively. Hence, TS(t) and TR(t) are

bounded on finite time intervals. So are S(t), R(t), QS(t)u(t) and QR(t)u(t). Since

QS(t) ≥ Qmin,S and QR(t) ≥ Qmin,R, it follows that u(t) is bounded on finite time

intervals. It remains to show QS(t) and QR(t) are bounded on finite time intervals.

Let

Ṽ (t) =
1

2
[(QS(t))

2 + (QR(t))
2].

Since S(t) and R(t) in system (2.1) are bounded on finite time intervals, we can use

the same arguments as in (2.7) to show that Ṽ (t) is bounded in finite time intervals.

So are QS(t) and QR(t). Thus, every solution of system (2.1) exists globally.

Let

ZS = S∗(t)− S −QSu and ZR = R∗(t)−R−QRu. (2.13)

Then (2.1) becomes

dQS

dt
= fS(S

∗(t)−QSu− ZS, QS)−min{µS(QS), µR(QR)}QS,
dQR

dt
= fR(R

∗(t)−QRu− ZR, QR)−min{µS(QS), µR(QR)}QR,
du
dt

= [min{µS(QS), µR(QR)} −D]u,
dZS

dt
= −DZS,

dZR

dt
= −DZR,

(2.14)
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with initial values in the domain

X = {(QS, QR, u, ZS, ZR) ∈ R5
+ : QN ≥ Qmin,N , QNu+ ZN ≤ N∗(0), N = S,R}.

(2.15)

Biologically, S(t) = S∗(t) − QSu − ZS and R(t) = R∗(t) − QRu − ZR should be

nonnegative. Indeed, if there exists a t0 such that S∗(t0)−QS(t0)u(t0)−ZS(t0) = 0

then

S ′(t0) = (S∗(t)−QSu− ZS)
′(t0)

= D(S(0) − S∗(t) +QSu+ ZS)(t0) = DS(0)(t0) ≥ 0,

which implies that S(t) ≥ 0 for all t ≥ 0. Similarly, we can show that R(t) ≥ 0 for

all t ≥ 0.

From the equations for u, QS and QR, along with (H1) and (H2) imply that

u(t) ≥ 0, QS(t) ≥ Qmin,S andQR(t) ≥ Qmin,R for all t ≥ 0. Obviously, ZS(t), ZR(t) →
0 as t → ∞. Therefore, solutions of (2.1) are ultimately bounded on X.

By putting ZS = 0 and ZR = 0 in (2.14), we obtain the following periodic

limiting system:
dQS

dt
= fS(S

∗(t)−QSu,QS)−min{µS(QS), µR(QR)}QS,
dQR

dt
= fR(R

∗(t)−QRu,QR)−min{µS(QS), µR(QR)}QR,
du
dt

= [min{µS(QS), µR(QR)} −D]u,

(2.16)

with initial values in the domain

Y = {(QS, QR, u) ∈ R3
+ : QN ≥ Qmin,N , QNu ≤ N∗(0), N = S,R}. (2.17)

Suppose P : Y → Y is the Poincaré map associated with system (2.16), that is,

P (QS(0), QR(0), u(0)) = (QS(τ), QR(τ), u(τ)), ∀ (QS(0), QR(0), u(0)) ∈ Y,

where (QS(t), QR(t), u(t)) is the unique solution of system (2.16). It is obvious that

P n(QS(0), QR(0), u(0)) = (QS(nτ), QR(nτ), u(nτ)), ∀ n ≥ 0.

From Lemma 2.1, it is easy to see that (Q∗
S(t), Q

∗
R(t), 0) is the trivial τ -periodic

solution of (2.16). We will not discuss the local stability of (Q∗
S(t), Q

∗
R(t), 0) since

the reaction functions in (2.16) are not differentiable. However, we are able to
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study the global stability of (Q∗
S(t), Q

∗
R(t), 0) by appealing to theory of monotone

dynamical system (see, e.g., [6]). In the following, we first convert (2.16) to a

cooperative system. Let

US = QSu and UR = QRu. (2.18)

Then (2.16) becomes
dUS

dt
= −DUS + fS(S

∗(t)− US,
US

u
)u,

dUR

dt
= −DUR + fR(R

∗(t)− UR,
UR

u
)u,

du
dt

= [min{µS(
US

u
), µR(

UR

u
)} −D]u,

(2.19)

with initial values in the domain

Y = {(US, UR, u) ∈ R3
+ : u > 0, Qmin,Nu ≤ UN ≤ N∗(0) ∀ N = S,R}.

It is easy to see system (2.19) is cooperative (see, e.g., [6]). Let P : Y → Y be the

Poincaré map associated with system (2.19), that is,

P(US(0), UR(0), u(0)) = (US(τ), UR(τ), u(τ)), ∀ x̃ := (US(0), UR(0), u(0)) ∈ Y,

where (US(t), UR(t), u(t)) is the unique solution of system (2.19).

For convenience, we define the time-average of a τ -periodic function as follows:

⟨f(t)⟩ := 1

τ

∫ τ

0

f(t)dt.

The following result is concerned with the extinction of species for system (2.16):

Lemma 2.2. Assume that (QS(t), QR(t), u(t)) is the solution of system (2.16) and

(QS(0), QR(0), u(0)) ∈ Y. If ⟨min{µS(Q
∗
S(t)), µR(Q

∗
R(t))} −D⟩ < 0, then

lim
t→∞

|(QS(t), QR(t), u(t))− (Q∗
S(t), Q

∗
R(t), 0)| = 0, (2.20)

where (Q∗
S(t), Q

∗
R(t)) is the unique periodic solution of system (2.5).

Proof. We first show that every solution of system (2.16) in Y satisfies

lim
t→∞

u(t) = 0. (2.21)
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In fact, if u(0) = 0, then u(t) ≡ 0, so this is obvious. Now, we consider the

case where u(0) > 0. Since systems (2.16) and (2.19) are essentially equivalent

by using the relations defined in (2.18), it suffices to show that every solution of

system (2.19) in Y satisfies (2.21). In system (2.19), we first extend fN(N,QN),

N = S,R, to the the domain R× [Qmin,N ,∞) by defining

FN(N,QN) =

{
fN(N,QN) for N ≥ 0, QN ≥ Qmin,N ,

0 for N < 0, QN ≥ Qmin,N .

Now, we consider the extended system corresponding to system (2.19):
dUS

dt
= −DUS + FS(S

∗(t)− US,
US

u
)u,

dUR

dt
= −DUR + FR(R

∗(t)− UR,
UR

u
)u,

du
dt

= [min{µS(
US

u
), µR(

UR

u
)} −D]u.

(2.22)

Note that if (US(0), UR(0), u(0)) ∈ Y and (US(t), UR(t), u(t)) is a solution of system

(2.19), then (US(t), UR(t), u(t)) satisfies

u(t) > 0, Qmin,Nu(t) ≤ UN(t) ≤ N∗(t), ∀ N = S,R, t ≥ 0. (2.23)

This implies that (US(t), UR(t), u(t)) is also a solution of system (2.22).

For any given δ > 0, we assume that ū(t) = ū(t, δ) is the unique solution of{
dū
dt

= [min{µS(Q
∗
S(t)), µR(Q

∗
S(t))} −D]ū,

ū(0) = δ,
(2.24)

and we let

ŪS(t) = Q∗
S(t)ū(t) and ŪR(t) = Q∗

R(t)ū(t). (2.25)

It is easy to see that

ŪN(t)

ū(t)
= Q∗

N(t) ≥ Qmin,N , for all N = S,R and t ≥ 0.

However, we can not guarantee that S∗(t)− ŪS(t) ≥ 0 and R∗(t)− ŪR(t) ≥ 0, for

all t ≥ 0. This is the reason why we consider the system (2.22) instead of (2.19).

From (2.5), (2.24) and (2.25), we are ready to show the following inequalities:
dŪS

dt
≥ −DŪS + FS(S

∗(t)− ŪS,
ŪS

ū
)ū,

dŪR

dt
≥ −DŪR + FR(R

∗(t)− ŪR,
ŪR

ū
)ū,

dū
dt

= [min{µS(
ŪS

ū
), µR(

ŪR

ū
)} −D]ū.

(2.26)
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The third equation in (2.26) is obvious. The establishments of the first two in-

equalities in (2.26) are similar, so we only demonstrate the first one. By direct

computations, it follows that

dŪS

dt
=

dQ∗
S(t)

dt
ū(t) +

dū(t)

dt
Q∗

S(t)

= [fS(S
∗(t), Q∗

S(t))−min{µS(Q
∗
S(t)), µR(Q

∗
R(t))}Q∗

S(t)] ū(t)

+ [min{µS(Q
∗
S(t)), µR(Q

∗
S(t))} −D] ū(t)Q∗

S(t)

= −DQ∗
S(t)ū(t) + fS(S

∗(t), Q∗
S(t))ū(t) = −DŪS + fS(S

∗(t),
ŪS

ū
)ū

≥ −DŪS + FS(S
∗(t)− ŪS,

ŪS

ū
)ū.

Thus, (2.26) is valid. Note that

ŪS(0) = Q∗
S(0)ū(0) = Q∗

S(0) · δ and ŪR(0) = Q∗
R(0)ū(0) = Q∗

R(0) · δ,

where δ appears in (2.24). Since (US(0), UR(0), u(0)) ∈ Y, it follows that (US(t), UR(t), u(t))

satisfies (2.23), and hence, we can choose a suitable δ > 0 such that

(ŪS(0), ŪR(0), ū(0)) ≥ (US(0)), UR(0), u(0)). (2.27)

Since (2.22) is a cooperative system, it follows from the comparison theorem to-

gether with (2.26) and (2.27) that

(ŪS(t), ŪR(t), ū(t)) ≥ (US(t)), UR(t), u(t)), ∀ t ≥ 0.

This implies that

ū(t) ≥ u(t), ∀ t ≥ 0. (2.28)

On the other hand, the assumption ⟨min{µS(Q
∗
S(t)), µR(Q

∗
R(t))} −D⟩ < 0 implies

that

lim
t→∞

ū(t) = 0. (2.29)

Thus, (2.21) follows from (2.28) and (2.29).

Next, we are going to show that (2.20) holds. Recall that P : Y → Y is the

Poincaré map associated with system (2.16). For any given x0 = (QS(0), QR(0), u(0)) ∈
Y0, let ω(x0) be the omega limit set of x0 for the period map P associated with

(2.16), that is,

ω = ω(x0) := {x∗ : ∃{mk} → ∞ such that lim
k→∞

Pmk(x0) = x∗}.
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From (2.21), it follows that there exists a set C ⊂ R2
+ such that

ω = C × {0}.

For any given (Q0
S, Q

0
R) ∈ C, we have (Q0

S, Q
0
R, 0) ∈ ω ⊂ Y. By the definition of Y,

it follows that (Q0
S, Q

0
R) ∈ Γ. Thus, C ⊂ Γ, where Γ is defined in (2.6). From the

property of the set Γ, it is easy to see that C ≠ {(0, 0)}.
Assume that P̂ : Γ → Γ is the Poincaré map associated with system (2.5) and

we define

W s(Q∗
S(0), Q

∗
R(0)) := {(Q0

S, Q
0
R) : P̂

m(Q0
S, Q

0
R) → (Q∗

S(0), Q
∗
R(0)) as m → ∞}.

By [12, Lemma 1.2.1′], ω is a compact, invariant and internal chain transitive set

for P . Moreover, if (Q0
S, Q

0
R) ∈ R2

+ with (Q0
S, Q

0
R, 0) ∈ ω, there holds

P |ω (Q0
S, Q

0
R, 0) = (P̂ (Q0

S, Q
0
R), 0).

It then follows that C is a compact, invariant and internal chain transitive set for

P̂ : Γ → Γ. Since C ≠ {(0, 0)} and {(Q∗
S(0), Q

∗
R(0))} is globally attractive for P̂ in

Γ, we have C ∩W s(Q∗
S(0), Q

∗
R(0)) ̸= ϕ. From [12, Theorem 1.2.1], it follows that

C = {(Q∗
S(0), Q

∗
R(0))}, and hence, ω = {(Q∗

S(0), Q
∗
R(0), 0)}. We complete the proof

of (2.20).

Next, we study the existence, uniqueness and the global stability of positive

periodic solutions for the limiting system (2.16). Let

Y0 := {(QS, QR, u) ∈ Y : u > 0}, ∂Y0 := Y\Y0.

Lemma 2.3. Assume that (QS(t), QR(t), u(t)) is the solution of system (2.16).

If ⟨min{µS(Q
∗
S(t)), µR(Q

∗
R(t))} − D⟩ > 0, then system (2.16) admits a globally

attractive positive τ -periodic solution (Q̃S(t), Q̃R(t), ũ(t)) in Y0, that is, for any

(QS(0), QR(0), u(0)) ∈ Y0, we have

lim
t→∞

|(QS(t), QR(t), u(t))− (Q̃S(t), Q̃R(t), ũ(t))| = 0. (2.30)

Proof. Our strategy of the proof is as follows: we first prove that the system (2.16) is

uniformly persistent, and hence, system (2.16) admits at least one positive periodic

solution. Then the uniqueness and global attractivity of positive periodic solution

11



can be proved by appealing to the theory of monotone dynamical system for the

system (2.19). Note that systems (2.16) and (2.19) are essentially equivalent.

Claim 1. The system (2.16) is uniformly persistent with respect to (Y0, ∂Y0)

in the sense that there is an η > 0 such that for any (QS(0), QR(0), u(0)) ∈ Y0, the

solution (QS(t), QR(t), u(t)) of (2.16) satisfies

lim inf
t→∞

u(t) ≥ η,

and system (2.16) admits at least one positive periodic solution.

We shall apply the theory of uniform persistence for discrete-time dynamical

systems. Recall that P : Y → Y is the Poincaré map associated with system (2.16).

It is easy to see that P (Y0) ⊂ Y0. Further, P is point dissipative and compact

since solutions of system (2.16) are ultimately bounded. Let

E0 := {(Q∗
S(0), Q

∗
R(0), 0)}.

Then E0 is a fixed point of P and is a compact and isolated invariant set for P in

∂Y0.

In the case where u(0) = 0, we have u(t) = 0 for any t ≥ 0. Thus, (QS, QR)

satisfies system (2.5) and it follows from Lemma 2.1 that

lim
t→∞

|(QS(t), QR(t))− (Q∗
S(t), Q

∗
R(t))| = 0.

Consequently, P : Y → Y has the property that

ω(QS(0), QR(0), u(0)) = {(Q∗
S(0), Q

∗
R(0), 0)}, ∀ (QS(0), QR(0), u(0)) ∈ ∂Y0,

where ω(x0) is the omega-limit set of the orbit of P with initial values x0. It is

obvious that there is no cycle in ∂Y0 from E0 to E0.

Note that ⟨min{µS(Q
∗
S(t)), µR(Q

∗
R(t))} − D⟩ > 0 and the third component of

E0 is identically zero. By the same arguments as in [12, Lemma 5.1.1], it follows

that there exists a δ0 > 0 such that E0 is a uniform weak repeller for Y0 in the

sense that

lim sup
n→∞

∥P n(QS(0), QR(0), u(0))− E0∥ ≥ δ0,

for any (QS(0), QR(0), u(0)) ∈ Y0. Therefore, E0 is isolated in Y andW s(E0)∩Y0 =

∅, where W s(E0) is the stable set of E0 (see [12]).

Since P : Y → Y is point dissipative and compact, we conclude from [12,

Theorem 1.1.3] that there exists a global attractor A for P in Y. By [12, Theorem

12



1.3.1] on strong repellers, P : Y → Y is uniformly persistent with respect to

(Y0, ∂Y0). It follows from [12, Theorem 1.3.6] that there exists a global attractor A0

for P in Y0 and P has a fixed point (Q̃S, Q̃R, ũ) ∈ Y0. Thus, there exists a positive

periodic solution for (2.16) corresponding to the fixed point of the period map. By

[12, Theorem 3.1.1], it follows that the periodic semiflow T (t) : Y → Y, t ≥ 0,

associated with (2.16) is uniformly persistent with respect to (Y0, ∂Y0).

Next, we will show that the positive periodic solution is unique and globally

asymptotically stable. Recall that P : Y → Y is the Poincaré map associated with

system (2.19). It is easy to see that P : Y → Y is strongly monotone, and strictly

subhomogeneous in the sense that P(θx̃) > θP(x̃), ∀ x̃ ∈ Y, θ ∈ (0, 1) (see [12,

section 2.3]).

Why is system (2.19) strongly monotone?

Why is system (2.19) strictly subhomogeneous?

It then follows from [12, Theorem 2.3.2] that the following observation is valid:

Claim 2. If P : Y → Y admits a nonempty compact invariant set K ⊂Int(R3
+)

, then P has a fixed point e ≫ 0 such that every nonempty compact invariant set

of P in Int(R3
+) consists of e.

For any x̃ := (US(0), UR(0), u(0)) ∈ Y, the solution (US(t), UR(t), u(t)) of (2.19)

satisfies (US(0)
u(0)

, UR(0)
u(0)

, u(0)) ∈ Y0 and (US(t)
u(t)

, UR(t)
u(t)

, u(t)) is a solution of system (2.16).

From Claim 1, there is an η > 0 such that

lim inf
t→∞

u(t) ≥ η. (2.31)

Then (2.18) and (2.31) imply that ω̃(x̃) ⊂Int(R3
+), where ω̃(x̃) is the omega-limit

set of the orbit through x̃ ∈ Y for P. By Claim 2, there is an e ≫ 0 such

that ω̃(x̃) = {e} for all x̃ ∈ Y. This implies that e is globally attractive for P

in Y. Corresponding to the fixed point of the period map P, the system (2.19)

has a globally attractive positive τ -periodic solution (ŨS(t), ŨR(t), ũ(t)) in Y. Let

Q̃S(t) = ŨS(t)
ũ(t)

and Q̃R(t) = ŨR(t)
ũ(t)

. Then (2.16) has a globally attractive positive

τ -periodic solution (Q̃S, Q̃R, ũ) in Y0. This ends the proofs.

Let

X0 := {(S,R,QS, QR, u) ∈ X : u > 0}, ∂X0 := X\X0,

where X is defined in (2.2).

Theorem 2.1. Let (Q∗
S(t), Q

∗
R(t)) be the unique periodic solution of system (2.5);

S∗(t) and R∗(t) be the globally attractive positive τ -periodic solutions of the linear
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equations (2.3) and (2.4), respectively. Assume that (S(t), R(t), QS(t), QR(t), u(t))

is the solution of system (2.1). Then the following statements are valid:

(i) If ⟨min{µS(Q
∗
S(t)), µR(Q

∗
R(t))} −D⟩ < 0, then for any

(S(0), R(0), QS(0), QR(0), u(0)) ∈ X,

we have

lim
t→∞

|(S(t), R(t), QS(t), QR(t), u(t))− (S∗(t), R∗(t), Q∗
S(t), Q

∗
R(t), 0)| = 0;

(ii) If ⟨min{µS(Q
∗
S(t)), µR(Q

∗
R(t))} − D⟩ > 0, then the system (2.1) admits a

globally attractive positive τ -periodic solution (S̃(t), R̃(t), Q̃S(t), Q̃R(t), ũ(t))

in X0, that is, for any (S(0), R(0), QS(0), QR(0), u(0)) ∈ X0, we have

lim
t→∞

|(S(t), R(t), QS(t), QR(t), u(t))− (S̃(t), R̃(t), Q̃S(t), Q̃R(t), ũ(t))| = 0,

(2.32)

where S̃(t) = S∗(t)− Q̃S(t)ũ(t) and R̃(t) = R∗(t)− Q̃R(t)ũ(t).

Proof. Since system (2.1) and (2.14) are equivalent, it suffices to analyze the system

(2.14). Let

X0 := {(QS, QR, u, ZS, ZR) ∈ X : u > 0}, ∂X0 := X\X0,

where X is defined in (2.15). Let P1 : X → X be the Poincaré map associated

with system (2.14) and ω1(x
1) be the omega-limit set of the orbit of P1 with initial

values x1 ∈ X.
From the last two equations of (2.14), it follows that limt→∞ ZS(t) = 0 and

limt→∞ ZR(t) = 0. Thus, there exists a set I ⊂ R3
+ such that ω1(x

1) = I ×{(0, 0)}.
For any given (Q0

S, Q
0
R, u

0) ∈ I, we have (Q0
S, Q

0
R, u

0, 0, 0) ∈ ω1(x
1) ⊂ X. By the

definition of X, it follows that (Q0
S, Q

0
R, u

0) ∈ Y. Thus, I ⊂ Y, where Y is defined

in (2.17).

By [12, Lemma 1.2.1′], ω1(x
1) is a compact, invariant and internal chain tran-

sitive set for P1. Moreover, if x0 ∈ R3
+ with (x0, 0, 0) ∈ ω1(x

1), there holds

P1 |ω1(x1) (x
0, 0, 0) = (P (x0), 0, 0),

where P : Y → Y is the Poincaré map associated with system (2.16). It then follows

that I is a compact, invariant and internal chain transitive set for P : Y → Y.
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In the case where ⟨min{µS(Q
∗
S(t)), µR(Q

∗
R(t))} −D⟩ < 0, it follows from Lem-

ma 2.2 that (2.16) has a globally attractive positive τ -periodic solution (Q∗
S(t), Q

∗
R(t), 0)

in Y. This implies that the unique fixed point (Q∗
S(0), Q

∗
R(0), 0) is an isolated in-

variant set in Y and no cycle connecting (Q∗
S(0), Q

∗
R(0), 0) to itself in Y. Since I

is a compact, invariant and internal chain transitive set for P : Y → Y, it fol-

lows from a convergence theorem (see, e.g., [12, Theorem 1.2.1]) that I is a fixed

point of P . That is, I = {(Q∗
S(0), Q

∗
R(0), 0)}, and hence, ω1(x

1) = I × {(0, 0)} =

{(Q∗
S(0), Q

∗
R(0), 0, 0, 0)}. This implies that (Q∗

S(0), Q
∗
R(0), 0, 0, 0)} is globally at-

tractive for P1 in X. Corresponding to the fixed point of the period map P1, system

(2.14) has a globally attractive positive τ -periodic solution (Q∗
S(t), Q

∗
R(t), 0, 0, 0)}

in X. In view of (2.13), we see that statement (i) holds true.

In the case where ⟨min{µS(Q
∗
S(t)), µR(Q

∗
R(t))} −D⟩ > 0, it follows from Lem-

ma 2.3 that (2.16) has a globally attractive positive τ -periodic solution (Q̃S(t), Q̃R(t), ũ(t))

in Y0. Note that (Q∗
S(t), Q

∗
R(t), 0) is also a τ -periodic solution of (2.16). This im-

plies that the possible fixed points (Q∗
S(0), Q

∗
R(0), 0) and (Q̃S(0), Q̃R(0), ũ(0)) are

isolated invariant sets in Y and no subset of {(Q∗
S(0), Q

∗
R(0), 0)}∪{(Q̃S(0), Q̃R(0), ũ(0))}

forms a cycle in Y. Since I is a compact, invariant and internal chain transitive

set for P : Y → Y, it follows from a convergence theorem (see, e.g., [12, Theorem

1.2.2]) that either I = {(Q∗
S(0), Q

∗
R(0), 0)} or I = {(Q̃S(0), Q̃R(0), ũ(0))}.

Suppose, by contradiction, that I = {(Q∗
S(0), Q

∗
R(0), 0)}. This implies that

P n
1 (QS(0), QR(0), u(0), ZS(0), ZR(0)) := (QS(nτ), QR(nτ), u(nτ), ZS(nτ), ZR(nτ))

→ (Q∗
S(0), Q

∗
R(0), 0, 0, 0) as n → ∞.

Equivalently,

lim
t→∞

|(QS(t), QR(t), u(t), ZS(t), ZR(t))− (Q∗
S(t), Q

∗
R(t), 0, 0, 0)| = 0,

and hence, limt→∞ |(QS(t), QR(t))− (Q∗
S(t), Q

∗
R(t))| = 0. Let

ϵ0 :=
1

2
⟨min{µS(Q

∗
S(t)), µR(Q

∗
R(t))} −D⟩ > 0.

Then there is a T > 0 such that

min{µS(QS(t)), µR(QR(t))} −D ≥ min{µS(Q
∗
S(t)), µR(Q

∗
R(t))} −D − ϵ0, ∀ t ≥ T.

By the third equation of (2.14), it follows that

du(t)

dt
≥ [min{µS(Q

∗
S(t)), µR(Q

∗
R(t))} −D − ϵ0]u, ∀ t ≥ T.
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Without loss of generality, let T = n1τ and t = n2τ for some natural number n1

and n2 with n2 > n1, we obtain

u(n2τ) ≥ u(n1τ)exp

[∫ n2τ

n1τ

[min{µS(Q
∗
S(t)), µR(Q

∗
R(t))} −D − ϵ0]dt

]
.

Since Q∗
S(t) and Q∗

R(t) are τ -periodic functions, it follows that

u(n2τ) ≥ u(n1τ)exp [(n2 − n1)τ(⟨min{µS(Q
∗
S(t)), µR(Q

∗
R(t))} −D⟩ − ϵ0)] ,

that is,

u(n2τ) ≥ u(n1τ)exp

[
(n2 − n1)τ

2
⟨min{µS(Q

∗
S(t)), µR(Q

∗
R(t))} −D⟩

]
.

Since ⟨min{µS(Q
∗
S(t)), µR(Q

∗
R(t))} −D⟩ > 0, it follows that

u(n2τ) → ∞ as n2 → ∞,

which is a contradiction. Thus, we have I = {(Q̃S(0), Q̃R(0), ũ(0))}, and hence,

ω1(x
1) = I × {(0, 0)} = {(Q̃S(0), Q̃R(0), ũ(0), 0, 0)}.

This implies that (Q̃S(0), Q̃R(0), ũ(0), 0, 0) is globally attractive for P1 in X. Cor-

responding to the fixed point of the period map P1, system (2.14) has a globally

attractive positive τ -periodic solution (Q̃S(t), Q̃R(t), ũ(t), 0, 0)} in X. By virtue of

(2.13), it follows that statement (ii) is valid.

3 Two Species Competition Model

In this section, we study the coexistence periodic solutions and uniform persistence

for two species phytoplankton model (1.1). The following set is the region of interest

for system (1.1):

Ω = {(S,R,QS1, QR1, u1, QS2, QR2, u2) ∈ R8
+ : QSi ≥ Qmin,Si, QRi ≥ Qmin,Ri, i = 1, 2}.

It is easy to show that Ω is positively invariant for (1.1) and any solution of (1.1)

with initial value in Ω exists globally on [0,∞).

Why does every solution of (1.1) with initial value in Ω exist globally

on [0,∞)? It is better to give arguments supporting this claim.
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Let

WS(t) = S∗(t)−S−QS1u1−QS2u2 and WR(t) = R∗(t)−R−QR1u1−QR2u2, (3.1)

where S∗(t) and R∗(t) are the globally attractive positive τ -periodic solutions of

(2.3) and (2.4), respectively. Then WS and WR satisfy dWS

dt
= −DWS and dWR

dt
=

−DWR, respectively. Obviously,

lim
t→∞

WS(t) = 0 and lim
t→∞

WR(t) = 0. (3.2)

Therefore, solutions of (1.1) are ultimately bounded on Ω.

From Lemma 2.1, we assume that (Q∗
Si(t), Q

∗
Ri(t)) is the globally attractive

positive τ−periodic solution for the system (2.5) with fS = fSi, fR = fRi, µS = µSi

and µR = µRi, i= 1, 2, respectively. This implies that

(S∗(t), R∗(t), Q∗
S1(t), Q

∗
R1(t), 0, Q

∗
S2(t), Q

∗
R2(t), 0)

is the trivial τ−periodic solution for (1.1).

Assume that

⟨min{µSi(Q
∗
Si(t)), µRi(Q

∗
Ri(t))} −D⟩ > 0, i = 1, 2. (3.3)

Since ⟨min{µS1(Q
∗
S1(t)), µR1(Q

∗
R1(t))} −D⟩ > 0, it follows from Theorem 2.1 that

we may assume (S̄(t), R̄(t), Q̄S1(t), Q̄R1(t), ū1(t)) is the globally attractive positive

τ -periodic solution of the system (2.1) in its feasible domain with fS = fS1, fR =

fR1, µS = µS1 and µR = µR1, that is,

dS
dt

= (S(0)(t)− S)D − fS1(S,QS1)u1,
dR
dt

= (R(0)(t)−R)D − fR1(R,QR1)u1,
dQS1

dt
= fS1(S,QS1)−min{µS1(QS1), µR1(QR1)}QS1,

dQR1

dt
= fR1(R,QR1)−min{µS1(QS1), µR1(QR1)}QR1,

du1

dt
= [min{µS1(QS1), µR1(QR1)} −D]u1.

(3.4)

By the arguments similar to those in Lemma 2.1, we may assume (Q̄S2(t), Q̄R2(t))

is the globally attractive positive τ−periodic solution for the following system:{
dQS2

dt
= fS2(S̄(t), QS2)−min{µS2(QS2), µR2(QR2)}QS2,

dQR2

dt
= fR2(R̄(t), QR2)−min{µS2(QS2), µR2(QR2)}QR2.

(3.5)
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This implies that (S̄(t), R̄(t), Q̄S1(t), Q̄R1(t), ū1(t), Q̄S2(t), Q̄R2(t), 0) is the semi-

trivial τ−periodic solution for (1.1).

Similarly, we assume that (Ŝ(t), R̂(t), Q̂S1(t), Q̂R1(t), 0, Q̂S2(t), Q̂R2(t), û2(t)) is

the semi-trivial τ−periodic solution for (1.1), where (Ŝ(t), R̂(t), Q̂S2(t), Q̂R2(t), û2(t))

is the globally attractive positive τ -periodic solution of the system (2.1) in its feasi-

ble domain with fS = fS2, fR = fR2, µS = µS2 and µR = µR2 and (Q̂S1(t), Q̂R1(t))

is the globally attractive positive τ−periodic solution for the following system:{
dQS1

dt
= fS1(Ŝ(t), QS1)−min{µS1(QS1), µR1(QR1)}QS1,

dQR1

dt
= fR1(R̂(t), QR1)−min{µS1(QS1), µR1(QR1)}QR1.

(3.6)

We further impose the following assumptions:

⟨min{µS1(Q̂S1(t), µR1(Q̂R1(t))} −D⟩ > 0, (3.7)

and

⟨min{µS2(Q̄S2(t), µR2(Q̄R2(t))} −D⟩ > 0. (3.8)

Next, we present the uniform persistence for the system (1.1). Let

Ω0 := {(S,R,QS1, QR1, u1, QS2, QR2, u2) ∈ Ω : u1 > 0, u2 > 0}, ∂Ω0 := Ω\Ω0.

Then

Theorem 3.1. Let (3.3), (3.7) and (3.8) hold. Then system (1.1) is uniformly

persistent with respect to (Ω0, ∂Ω0) in the sense that there is an η > 0 such that

for any (S(0), R(0), QS1(0), QR1(0), u1(0), QS2(0), QR2(0), u2(0)) ∈ Ω0, the solution

(S(t), R(t), QS1(t), QR1(t), u1(t), QS2(t), QR2(t), u2(t)) of (1.1) satisfies

lim inf
t→∞

ui(t) ≥ η, i = 1, 2.

Further, system (1.1) admits at least one positive periodic solution.

Proof. Let P2 : Ω → Ω be the Poincaré map associated with system (1.1), that is,

P2(S(0), R(0), QS1(0), QR1(0), u1(0), QS2(0), QR2(0), u2(0))

= ((S(τ), R(τ), QS1(τ), QR1(τ), u1(τ), QS2(τ), QR2(τ), u2(τ)),

where (S(0), R(0), QS1(0), QR1(0), u1(0), QS2(0), QR2(0), u2(0)) ∈ Ω. Let ω2(x) be

the omega-limit set of the orbit of P2 through x ∈ Ω. It is easy to see that
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P2(Ω0) ⊂ Ω0. Since solutions of the system (1.1) are ultimately bounded, it follows

that P2 is point dissipative and compact.

Let

M0 = (S∗(0), R∗(0), Q∗
S1(0), Q

∗
R1(0), 0, Q

∗
S2(0), Q

∗
R2(0), 0),

M1 = (S̄(0), R̄(0), Q̄S1(0), Q̄R1(0), ū1(0), Q̄S2(0), Q̄R2(0), 0),

and

M2 = (Ŝ(0), R̂(0), Q̂S1(0), Q̂R1(0), 0, Q̂S2(0), Q̂R2(0), û2(0)).

Then M0, M1 and M2 are fixed points of P2 and are pairwise disjoint, compact and

isolated invariant sets for P2 in ∂Ω0. We are going to show the following property∪
x∈∂Ω0

ω2(x) ⊂ M0 ∪M1 ∪M2. (3.9)

In the case where u1(0) > 0 and u2(0) = 0, we have u1(t) > 0 and u2(t) = 0,

∀ t ≥ 0. Then (S(t), R(t), QS1(t), QR1(t), u1(t)) satisfies the system (3.4). Since

⟨µS1(Q
∗
S1(t))µR1(Q

∗
R1(t))−D⟩ > 0, it follows from Theorem 2.1 that

lim
t→∞

|(S(t), R(t), QS1(t), QR1(t), u1(t))− (S̄(t), R̄(t), Q̄S1(t), Q̄R1(t), ū1(t))| = 0.

Thus, the equations for QS2(t) and QR2(t) in (1.1) are asymptotic to the system

(3.5). By the theory of asymptotically periodic semiflows (see, e.g., [11] or [12,

section 3.2]) and the arguments similar to those in Lemma 2.1, it follows that

lim
t→∞

|(QS2(t), QR2(t))− (Q̄S2(t), Q̄R2(t))| = 0.

Since

P n
2 (S(0), R(0), QS1(0), QR1(0), u1(0), QS2(0), QR2(0), 0)

= ((S(nτ), R(nτ), QS1(nτ), QR1(nτ), u1(nτ), QS2(nτ), QR2(nτ), 0),

it follows that

lim
n→∞

P n
2 (S(0), R(0), QS1(0), QR1(0), u1(0), QS2(0), QR2(0), 0) = M1.

In the case where u1(0) = 0 and u2(0) > 0, we can use the similar arguments to

show that

lim
n→∞

P n
2 (S(0), R(0), QS1(0), QR1(0), 0, QS2(0), QR2(0), u2(0)) = M2.
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In the case where u1(0) = 0 and u2(0) = 0, we can show that

lim
n→∞

P n
2 (S(0), R(0), QS1(0), QR1(0), 0, QS2(0), QR2(0), 0) = M0.

Consequently, P2 : Ω → Ω satisfies the property (3.9). It is obvious that no subset

of {M0,M1,M2} forms a cycle in ∂Ω0.

Each Mj corresponds to a periodic solution with at least one component that

is identically zero. By (3.3), (3.7), (3.8) and the same arguments as in [12, Lemma

5.1.1], there exists a δ > 0 such that each Mj is a uniform weak repeller for Ω0 in

the sense that

lim sup
n→∞

∥P n
2 (x)−Mj∥ ≥ δ,

for any x ∈ Ω0. Therefore, each Mj is isolated in Ω and Ws(Mj) ∩ Ω0 = ∅, where
Ws(Mj) is the stable set of Mj (see [12]).

Since P2 : Ω → Ω is point dissipative and compact, we conclude from [12,

Theorem 1.1.3] that there exists a global attractor A for P2 in Ω. By [12, Theorem

1.3.1] on strong repellers, P2 : Ω → Ω is uniformly persistent with respect to

(Ω0, ∂Ω0). It follows from [12, Theorem 1.3.6] that there exists a global attractor

A0 for P2 in Ω0 and P2 has at least one fixed point x ∈ Ω0. Thus, there exists a

positive periodic solution for (1.1) corresponding to the fixed point x of the period

map. By [12, Theorem 3.1.1], it follows that the periodic semiflow T (t) : Ω →
Ω, t ≥ 0, associated with (1.1) is uniformly persistent with respect to (Ω0, ∂Ω0).

This completes the proof.

To finish this section, we remark that by a change of variables

USi = QSiui and URi = QRiui, i = 1, 2, (3.10)

together with (3.1), we can rewrite (1.1) as the following system:

dUSi

dt
= −DUSi + fSi(S

∗(t)− US1 − US2 −WS,
USi

ui
)ui,

dURi

dt
= −DURi + fRi(R

∗(t)− UR1 − UR2 −WR,
URi

ui
)ui,

dui

dt
= [min{µSi(

USi

ui
), µRi(

URi

ui
)} −D]ui, i = 1, 2,

dWS

dt
= −DWS,

dWR

dt
= −DWR,

(3.11)
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with initial values in its feasible domain. In view of (3.2), we see that (3.11) has a

limiting system:
dUSi

dt
= −DUSi + fSi(S

∗(t)− US1 − US2,
USi

ui
)ui,

dURi

dt
= −DURi + fRi(R

∗(t)− UR1 − UR2,
URi

ui
)ui,

dui

dt
= [min{µSi(

USi

ui
), µRi(

URi

ui
)} −D]ui, i = 1, 2.

(3.12)

It is easy to see that the Poincaré map associated with system (3.12) is monotone

with respect to the partial order ≤K (see, e.g., [6]), which is induced by the positive

cone K := R3
+ × R3

− in R6. Consequently, if system (1.1) admits at most one

positive periodic solution, then we can conclude that the positive periodic solution

obtained in Theorem 3.1 is globally attractive in Ω0 by appealing to the theory

of monotone systems. Note that the uniqueness of positive periodic solution of

the high dimensional periodic system (1.1) remains a challenging problem, and we

leave it for future investigation.
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