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Abstract. We study the effect of photoinhibition in a nonlocal reaction-diffusion-
advection equation, which models the dynamics of a single phytoplankton species in
a water column where the growth of the species depends solely on light. Our results
show that, in contrast to the case of no photoinhibition, where at most one positive
steady state can exist, the model with photoinhibition possesses at least two positive
steady states in certain parameter ranges. Our approach involves bifurcation theory and
perturbation-reduction arguments.

1. Introduction

Phytoplankton are microscopic plants that float in oceans and lakes and form the base
of the aquatic food chain. Since they transport significant amounts of atmospheric carbon
dioxide into the deep oceans, they may also play a crucial role in the climate dynamics.
Phytoplankton species typically compete for nutrients and light [4, 5, 16, 19, 28, 29].
But in oligotrophic ecosystems with ample supply of light, they tend to compete only
for nutrients [20, 22], and in eutrophic environments with ample nutrients supply, they
compete only for light [8, 15]. In a water column, a phytoplankton population diffuses
due to turbulent mixing caused by wind and wave actions. In many cases, phytoplankton
also sinks due to its own weight.

In this paper, we consider a single sinking phytoplankton species in a eutrophic water
column. Our analysis is based on a nonlocal reaction-diffusion-advection model given by
Huisman and colleagues in [8, 14], but the growth function g(I) of phytoplankton species
in the model is modified to include photoinhibition into consideration.

Photoinhibition is characterized by a decreasing rate of photosynthesis with increasing
light, which occurs in many phytoplankton species that are sensitive to strong light.
This phenomenon is caused by damage to the photosynthetic machinery of cells and by
protective mechanisms to avoid this damage ([23, 27]).
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Without photoinhibition, the growth function g(I) is generally assumed to be strictly
increasing in I, representing the fact that increase of the light level I leads to better
growth of the phytoplankton. In such a case this model was investigated recently through
rigorous mathematical analysis in [6, 7, 13, 21] (see also earlier work in [17, 18, 26] and
references therein), which show that the phytoplankton population either stabilizes at
a unique positive steady-state or converges to 0 as time goes to infinity, depending on
whether the loss rate is below or above a critical level.

With photoinhibition, observations in many laboratory studies ([10, 11, 24]) suggest
that the function g(I) should be increasing before I reaches a certain critical level I∗ > 0
where g(I) has a maximum, after which g(I) decreases and converges to 0 as I →∞. In
a completely mixed water column, the reaction-diffusion-advection model reduces to an
ODE model, and the effect of photoinhibition was studied in the recent papers [9, 12].
With a growth function g(I) as above, [9] demonstrates that the phytoplankton popula-
tion may have two stable steady-states (one positive, the other 0), plus another unstable
positive steady state, causing a bistable dynamical behavior with the phytoplankton pop-
ulation stabilizing at one or the other stable steady state, depending on its initial value.
(The multi-species case was also considered in [9] and [12].)

In this paper, we examine the effect of photoinhibition in a incompletely mixed water
column, through a single species reaction-diffusion-advection model, where photoinhibi-
tion is incorporated into the growth function g(I) as described above. We show that
the phenomenon of multiple positive steady-states observed in completely mixed water
column persists, and their stability suggests a bistable dynamical behavior.

Multiplicity results for similar reaction-diffusion equations are usually obtained by mak-
ing use of the upper and lower solution technique, combined with tools from global analysis
(such as the topological degree theory or global bifurcation theory). However, such upper
and lower solution techniques are difficult to apply here due to the nonlocal nature of the
problem. To overcome this difficulty, apart from employing local and global bifurcation
analysis, we also use a perturbation and reduction approach, which is new to this kind
of nonlocal reaction-diffusion equations. It is our hope that the mathematical techniques
developed here may find more applications in phytoplankton models.

We now describe the model in more detail. Consider a vertical water column with a
cross section of one unit area and depth h. Let p(x, t) be the population density of the
phytoplankton at depth x ∈ [0, h] and time t. Then the change of density is governed by
the following reaction-diffusion-advection problem

(1.1)


pt = Dpxx − σpx +

[
g
(
I0e
−k0x−k

∫ x
0 p(s,t)ds

)
− d
]
p, 0 < x < h, t > 0,

Dpx(x, t)− σp(x, t) = 0, x = 0 or h, t > 0,

p(x, 0) = p0(x) 	 0, 0 ≤ x ≤ h,

where d > 0 is the loss rate of the species, the positive constants D, σ represent the
diffusion rate and the sinking rate, respectively.

The term

(1.2) I(x, t) = I0e
−k0x−k

∫ x
0 p(s,t)ds

is known as the light intensity, with k0 ≥ 0 the background turbidity, k > 0 the light
attenuation coefficient of the phytoplankton species, and I0 > 0 the incident light intensity.
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The function g(I) governs the growth rate according to the change of light level I. We
always assume that g is C1. Taking into account of photoinhibition we assume, as in [9],
that g(I) has the following properties:

(1.3)

 (i) g(0) = 0,
(ii) there exists I∗ > 0 such that (I∗ − I)g′(I) > 0 for I 6= I∗,
(iii) limI→∞ g(I) = 0.

The boundary conditions at x = 0 and x = h imply that there is no population flux at
the surface or bottom of the water column.

We are interested in the multiplicity of positive steady states of (1.1). To simplify
notations we assume that D = h = I0 = 1. We stress that this is for simplicity of the
notations only; our method can deal with the general case without extra difficulties. Thus
we will study the positive solutions of the nonlocal elliptic boundary value problem

(1.4)

{
pxx − σpx + p [g(I)− d] = 0, 0 < x < 1,

px(0)− σp(0) = 0, px(1)− σp(1) = 0,

with

(1.5) I = I(x) = e−k0x−k
∫ x
0 p(s)ds.

Our first existence and multiplicity result is obtained by a standard argument involving
local and global bifurcation theory of Crandall and Rabinowitz [1, 2, 25]. The multiplicity
result is local in nature.

Theorem 1.1. Suppose that (1.3) holds and I∗ < e−k0. Then there exist some positive
constants d∗ < d∗ < g(I∗) such that (1.4) has at least one positive solution for d ∈ (0, d∗],
two positive solutions for d ∈ (d∗, d

∗), and no positive solution for d > g(I∗).

Here d∗ is uniquely determined by an eigenvalue problem, and d∗ > d∗ is sufficiently
close to d∗, whose existence arises from a bifurcation analysis along the line of trivial
solutions {(d, 0) : d ∈ R1}, which shows that a branch of positive solutions {(d, p)}
bifurcates from the line of trivial solutions at (d∗, 0), and it goes rightward initially but
has to become unbounded through d converging to 0. It can be shown that for d ∈ (d∗, d

∗),
one of the positive steady state is unstable (see Lemma 2.3), but we have no information
on the stability of the other positive steady state, though we believe it is stable.

By making use of a perturbation-reduction approach, we can obtain a multiplicity result
which is global in nature, together with information on the asymptotic profile and stability
of the solutions, but only for large σ.

Theorem 1.2. Suppose that (1.3) holds and I∗ < e−k0.
(i) Define

G(µ) =
1

µ

∫ µ

0

g(e−k0−s)ds.

Then there exists a unique µ∗ > ln(e−k0/I∗) such that

G′(µ∗) = 0, G′(µ)(µ∗ − µ) > 0 for µ ∈ (0,+∞) \ {µ∗}.

Moreover, for each d ∈ (g(e−k0), G(µ∗)), the equation d = G(µ) has exactly two positive
solutions µ1, µ2, and 0 < µ1 < µ∗ < µ2.
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(ii) For each d ∈ (g(e−k0), G(µ∗)), there exists ε∗ > 0 such that for every σ > 1/ε∗,
(1.4) has two positive solutions of the form

p1(x) =
µ1

k
σeσ(x−1) + z1,σ(x), p2(x) =

µ2

k
σeσ(x−1) + z2,σ(x),

with zi,σ satisfying limσ→∞
∫ 1

0
|zi,σ(x)|dx = 0, i = 1, 2.

Remark 1.3. If I∗ ≥ e−k0, we can show that (1.4) has at most one positive solution for
any σ. Indeed, we can modify g(I) for I > I∗ to obtain a new C1 function g̃(I) which
is strictly increasing in I for all I > 0. When I∗ ≥ e−k0 , it is easily seen that if p is a
positive solution of (1.4), then it is also a positive solution of (1.4) with g(I) replaced
by g̃(I). Hence we are back in the no-photoinhibition case and can apply the result in
[13, 7] to conclude that there is at most one positive solution, and the dynamics of (1.1) is
simple. Biologically this fact is rather natural, as e−k0 is the highest possible level of light
intensity felt by the species in the water column, so only the values of g(I) for I ∈ (0, e−k0 ]
contribute to the growth of the species.

The results in Theorem 1.2 suggest that for large σ, the two solutions p1 and p2 form
a “⊃”-shaped curve in the (d, p)-space as d is varied in the range (g(e−k0), G(µ∗)), which
resembles the solution curve of the equation d = G(µ) in the (d, µ)-plane. Figure 1 shows
the graph of the curve G(µ) and the two solutions µ1 and µ2 of d = G(µ) for the case
I∗ < e−k0 .

 g(e   ) -k₀ 
d

G(μ)         

μ 
μ1 μ2 μ∗ 

G(µ  )        * 

Figure 1. Illustrative graph of G(µ) and the solutions of d = G(µ).

It is interesting to note that, by Theorem 3.2 of [13], as σ → +∞, the bifurcation
value d∗ in Theorem 1.1 converges to g(e−k0), suggesting that the global bifurcation curve
in Theorem 1.1 for large σ looks like the solution curve of the equation d = G(µ) in
the (d, µ)-plane, and the two positive solutions in Theorem 1.2 are from the “lower” and
“upper” branches of the global bifurcation curve.
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Let us also note that for large σ, the solutions p1(x) and p2(x) are well approximated
by µ1

k
σeσ(x−1) and µ2

k
σeσ(x−1), respectively, which have values close to 0 away from x = 1,

while their values at x = 1 go to∞ as σ →∞. The fact that the populations concentrate
at the bottom of the water column is due to the assumption of large sinking rate σ. The
information on the asymptotic profiles of p1(x) and p2(x) enables us to investigate their
stability, see Theorem 4.1 in section 4, which suggests that p1 is unstable, p2 is stable, as
expected for the bistable phenomenon. (Note that 0 is a stable steady state for d in the
range of Theorem 1.2.)

The rest of the paper is organized as follows. In Section 2 we use a bifurcation approach
to prove Theorem 1.1, with d as the bifurcation parameter. To overcome some of the
limitations encountered in Section 2 in the bifurcation approach, in Section 3 we use
a perturbation and reduction approach to study the steady-state solutions of (1.1) with
large sinking rate and prove Theorem 1.2. In Section 4 we consider the linearized stability
of the two positive steady states found in Section 3.

We thank the referee for helpful suggestions on the presentation of the paper.

2. Multiple steady-states through a bifurcation approach

In this section we use a bifurcation approach to prove Theorem 1.1. We focus on the
existence of positive solutions by studying the bifurcation of a branch of positive solutions
of (1.4) from the trivial solution p = 0, with coefficient d as the bifurcation parameter.

We first consider the stability of p = 0, which is determined by the sign of the largest
eigenvalue, denoted by λ = d∗, of the linear eigenvalue problem

(2.1)

{
ϕxx − σϕx + g(e−k0x)ϕ = λϕ, 0 < x < 1,

ϕx(0)− σϕ(0) = 0, ϕx(1)− σϕ(1) = 0.

By the well-known Krein-Rutman theorem it is known that d∗ exists and is positive.
Its corresponding eigenfunction can be chosen to be positive in [0, 1], denoted by ϕ∗,
which is uniquely determined by the normalization max[0,1] ϕ∗ = 1. To investigate the
structure of the set of solutions of (1.4) near (d, p) = (d∗, 0), we first introduce a few
notations. Set X = {u ∈ C2([0, 1]) : Dux − σu = 0 at x = 0, 1}, Y = C([0, 1]). Define
mapping F (d, p) : (0,∞)×X → Y by

F (d, p) = pxx − σpx + p [g(I)− d] .

Clearly, F (d, 0) = 0 for d ∈ (0,∞). Since

(2.2) Fp(d, 0)ϕ = ϕxx − σϕx +
[
g(e−k0x)− d

]
ϕ,

we see that (i) the kernel of Fp(d∗, 0) is spanned by ϕ∗, and is thus one dimensional; (ii)
the range of Fp(d∗, 0), denoted by R(Fp(d∗, 0)), is given by{

ζ ∈ Y :

∫ 1

0

e−σxϕ∗ζdx = 0

}
,

and is thus of co-dimension one. Furthermore, Fpd(d∗, 0)ϕ∗ = −ϕ∗ 6∈ R(Fp(d∗, 0)). By
Theorem 1.7 of [1], we obtain the result:

Lemma 2.1. Let Z be any complement of span of {ϕ∗} in X. Then there exists some
δ > 0 and continuously differentiable functions d : (−δ, δ)→ R and ψ : (−δ, δ)→ X such
that d(0) = d∗, ψ(0) = 0, and F (d(s), p(s)) = 0, where p(s) = sϕ∗ + sψ(s). Moreover,
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F−1({0}) near (d∗, 0) consists precisely of the curves p = 0 and (d(s), p(s)), s ∈ (−δ, δ).
Furthermore,

(2.3) d′(0)

∫ 1

0

e−σxϕ2
∗ dx = −k

∫ 1

0

e−σxe−k0xg′(e−k0x)ϕ2
∗

(∫ x

0

ϕ∗

)
dx.

Proof. It suffices to check (2.3). Dividing F (d(s), p(s)) = 0 by s and differentiating the
result with respect to s at s = 0, using p = sϕ∗ + sψ(s) we have

(ψ′(0))xx − σ(ψ′(0))x + ψ′(0)
[
g(e−k0x)− d∗

]
+ ϕ∗

[
−kg′(e−k0x)e−k0x

∫ x

0

ϕ∗ − d′(0)

]
= 0.

Multiplying the above equation by e−σxϕ∗ and integrating by parts we obtain (2.3). �

In the terminology of [2], 0 is a Fpd(d∗, 0)-simple eigenvalue of the operator Fp(d∗, 0).
By Corollary 1.13 and Theorem 1.16 of [2] we have

Proposition 2.2. There exist some positive constants δ1 and δ2 and continuously differ-
entiable functions γ : (d∗− δ1, d∗+ δ1)→ R, µ : (−δ2, δ2)→ R, v : (d∗− δ1, d∗+ δ1)→ X,
w : (−δ2, δ2)→ X such that

(2.4)

Fp(d, 0)v(d) = −γ(d)v(d),

Fp(d(s), p(s))w(s) = −µ(s)w(s),

lim
s→0,µ(s)6=0

−sd′(s)γ′(d∗)
µ(s)

= 1,

where γ(d∗) = µ(0) = 0, v(d∗) = w(0) = ϕ∗.

The next result suggests that for s > 0 small, the nontrivial (positive) solution p(s) =
sϕ∗ + sψ(s) is unstable under suitable conditions.

Lemma 2.3. Suppose that (1.3) holds and I∗ < e−k0. Then for any sufficiently small
s > 0, µ(s) < 0.

Proof. By (2.2) and the definition of d∗, we see that γ(d) = d − d∗. If (1.3) holds,
g′(e−k0x) < 0 for x ∈ (0, 1), which together with (2.3) implies that d′(0) > 0. By (2.4),
we see that µ(s) < 0 for s > 0 small. �

Lemma 2.4. Suppose that (1.3) holds. If d 6∈ (0, g(I∗)), then (1.4) has no positive
solution.

Proof. Let p denote a positive solution of (1.4). Integrating (1.4) in (0, h) and applying
the boundary condition in (1.4), we have∫ 1

0

p[g(I)− d] dx = 0.

Since g(I) ∈ (0, g(I∗)) and I 6≡ I∗, we see that d ∈ (0, g(I∗)). Therefore, (1.4) has no
positive solution when d 6∈ (0, g(I∗)). �

Lemma 2.5. Given any η > 0, there exists some positive constant C(η) such that every
positive solution p of (1.4) with d ≥ η satisfies ‖p‖L∞(0,1) ≤ C(η).
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The proof of Lemma 2.5 is identical to that of Lemma 4.2 of [13] and is omitted.

Proof of Theorem 1.1. By Lemma 2.1 and the global bifurcation result of Rabinowitz
[25], (1.4) has an unbounded connected branch of positive solutions, denoted by Γ =
{(d, p)} ⊂ R × C1([0, 1]), which bifurcates from the trivial solution branch {(d, 0)} at
(d∗, 0). Since (1.4) has no positive solutions when d 6∈ (0, g(I∗)) (Lemma 2.4) and all
positive solutions of (1.4) are uniformly bounded when d is positive and bounded away
from zero (Lemma 2.5), we see that Γ can only become unbounded as d → 0+. As
Γ is connected, (1.4) has at least one positive solution for every d ∈ (0, d∗). Denote
{(d, p) ∈ Γ : 0 < d < d∗} by Γ1. By Lemma 2.1, Γ contains a branch of positive solutions,
denoted by Γ2, which is given by (d(s), p(s)) for s > 0 small. By (1.3) and I∗ < e−k0 , we
have d′(0) > 0. In particular, there exists some d∗ > d∗ such that the projection of Γ2

onto the d-axis is given by (d∗, d
∗). Hence Γ1 and Γ2 must be disjoint. As Γ is connected

and Γ1,Γ2 ⊂ Γ, we see that the projection of Γ \ Γ2 onto the d-axis must contain (0, d∗),
i.e. (1.4) has at least two positive solutions for d ∈ (d∗, d

∗). By Lemma 2.4, (1.4) has no
positive solution for d > g(I∗). Thus we complete the proof of Theorem 1.1. �

The proof of Theorem 1.1 indicates that there exists d∗∗ ∈ [d∗, g(I∗)) such that (1.4)
has no positive solution lying on Γ for d > d∗∗, and it has at least one positive solution for
d ∈ (0, d∗∗]. In such a case, it is natural to expect that there exist two positive solutions
for d ∈ (d∗, d

∗∗), and the global bifurcation curve is “⊃”-shaped, with a turning point at
d = d∗∗. Moreover, one expects the following typical conclusions:

For d ∈ (d∗, d
∗∗), there are two positive solutions, and the solution on the “upper”

branch of the global bifurcation curve is stable, while that located on the “lower” branch
is unstable. Note also that the zero solution p = 0 is always stable for d > d∗.

Such a global bifurcation picture can be partially proved by techniques of [3] for in-
creasing operators, if the problem at hand has the usual order-preserving property. Un-
fortunately, due to the nonlocal nature of our problem, this nice property is lost and
we cannot use such tools involving the order-preserving property as in [3] or the usual
upper and lower solution technique. We remark that even the modified order-preserving
property used in [6] is lost here due to the fact that g(I) is no longer increasing in I for
all I > 0.

To overcome these difficulties, in the next two sections, we employ a perturbation and
reduction approach, which strongly suggests the validity of the global bifurcation picture
described above, at least for large σ.

3. Multiple steady-states via a perturbation-reduction approach

In this section, we use a perturbation and reduction approach to study the positive
solutions of (1.4). Their stability will be considered in Section 4 later. We will examine
the problem with a large σ, and write it in the form

σ = ε−1,

with ε > 0 small.
Let p(x) be a positive solution of (1.4), and define

u(x) = p(εx+ 1)e−x/2.

A simple calculation shows that
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(3.1)


uxx −

1

4
u+ ε2

[
g(Ĩ)− d

]
u = 0, x ∈ (−ε−1, 0),

ux −
1

2
u = 0, x ∈ {−ε−1, 0},

where

Ĩ = exp

(
−k0 − εk0x− kε

∫ x

−ε−1

u(s)es/2ds

)
.

We will look for a solution to (3.1) of the form

u(x) = ε−1ηex/2 + z(x)

with η > 0 and

z ∈ H :=

{
z :

∫ 0

−ε−1

z(x)ex/2dx = 0,

∫ 0

−ε−1

|z(x)|ex/2dx <∞
}
.

Since the function ex/2 satisfies

uxx −
1

4
u = 0 in (−ε−1, 0), ux −

1

2
u = 0 at x = −ε−1, 0,

we necessarily have
− zxx +

1

4
z = ε2

[
g(Ĩ)− d

]
u, x ∈ (−ε−1, 0),

zx −
1

2
z = 0, x ∈ {−ε−1, 0},

with Ĩ as above, and u(x) = ε−1ηex/2 + z(x).
We now define

f(x) = f(x; ε, η, z) := ε2
{
g(Ĩ)[ε−1ηex/2 + z(x)]+ − d[ε−1ηex/2 + z(x)]

}
(here u+ = max{u, 0}) and consider the auxiliary problem

(3.2)


− zxx +

1

4
z = f(x)− λex/2, x ∈ (−ε−1, 0),

zx −
1

2
z = 0, x ∈ {−ε−1, 0},

with λ determined by

(3.3) λ

∫ 0

−ε−1

exdx =

∫ 0

−ε−1

f(x)ex/2dx.

Then from (3.2) we find that z ∈ H has the expression

z(x) =

∫ 0

x

f(y)2 sinh(
x− y

2
)dy − λ

∫ 0

x

ey/22 sinh(
x− y

2
)dy + αex/2,

where sinh(x) = (ex − e−x)/2 and α ∈ R1 is chosen such that
∫ 0

−1/ε z(x)ex/2dx = 0. A

simple calculation gives

z(x) =

∫ 0

x

f(y)2 sinh(
x− y

2
)dy + λex/2(x− 1 + e−x) + αex/2.
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For z ∈ H, we now define the nonlinear operator

Fε,η(z)(x) := F 1
ε,η(z)(x) + α(ε, η, z)ex/2,

with

F 1
ε,η(z)(x) :=

∫ 0

x

f(y; ε, η, z)2 sinh(
x− y

2
)dy + λ(ε, η, z)ex/2(x− 1 + e−x),

where λ(ε, η, z) is determined by (3.3) with f(x) = f(x; ε, η, z), and α(ε, η, z) is determined
by ∫ 0

−1/ε
ex/2F 1

ε,η(z)(x)dx+ α

∫ 0

−1/ε
exdx = 0,

that is,

(3.4) α(ε, η, z) := −(1− e−1/ε)−1
∫ 0

−1/ε
ex/2F 1

ε,η(z)(x)dx.

We will show that for all small ε > 0 and all η > 0 in a certain interval J , the operator
Fε,η is a contraction mapping in H, and hence it has a unique fixed point z = zε,η. We will
then choose η = ηε so that λ(ε, η, z) = 0 for z = zε,η and η = ηε. We will show that this
gives a positive solution u = ε−1ηεe

x/2 + zε,ηε(x) to (3.1) for all small ε > 0. A key point
in this approach is that with our assumptions on g(I), for each small ε > 0, for d > 0 in
a certain range, we always have two solutions for ηε, and hence this approach yields two
positive steady-states for (3.1).

We will show that for ε > 0 small, the equation λ(ε, η, zε,η) = 0 is a perturbation of the
equation

d =

∫ kη

0

1

kη
g(ξ0e

−s)ds, ξ0 = e−k0 ∈ (0, 1].

Denote

µ = kη, G(µ) =
1

µ

∫ µ

0

g(ξ0e
−s)ds and G0(µ) =

∫ µ

0

g(ξ0e
−s)ds,

then the above equation is equivalent to

(3.5) d = G(µ).

In order to determine the range J for η so that Fε,η is a contraction mapping, and multiple
solutions to (3.1) exist, we need to obtain several simple properties of the functions G(µ)
and G0(µ) first.

3.1. Properties of G0(µ) and G(µ). Our assumptions on g imply that g(I) ≤ c0I for
some c0 > 0 and all I > 0. It follows that

G0(+∞) =

∫ +∞

0

g(ξ0e
−s)ds ∈ (0,∞).

Clearly
G(0) = g(ξ0) > 0, G(µ) > 0 for µ > 0, G(+∞) = 0

and
G′(µ) = µ−2[µG′0(µ)−G0(µ)] =: µ−2G̃(µ).

If I∗ ≥ ξ0, then

G′0(µ) = g(ξ0e
−µ) > 0, G′′0(µ) = −g′(ξ0e−µ)ξ0e

−µ < 0 ∀µ ≥ 0.
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Hence

G̃ ′(µ) = µG′′0(µ) < 0 for µ > 0.

It follows that

G̃(µ) < G̃(0) = 0 for µ > 0.

Thus G′(µ) = µ−2G̃(µ) < 0 for µ > 0. This implies that for each d ∈ (0, d∗) := (0, g(ξ0)),
(3.5) has a unique solution µ > 0, and for each d ≥ d∗, (3.5) has no solution µ > 0.

If I∗ < ξ0, then G′0(µ) > 0 for µ ≥ 0, and

G′′0(µ) > 0 for µ ∈ (0, ln(ξ0/I∗)), G
′′
0(µ) < 0 for µ > ln(ξ0/I∗).

Thus

G̃ ′(µ) > 0 for µ ∈ (0, ln(ξ0/I∗)), G̃
′(µ) < 0 for µ > ln(ξ0/I∗).

Using G′′0(µ) < 0 for all large µ > 0 and G0(+∞) > 0, it is easily seen that G̃(µ) < 0 for
all large µ. Thus there exists a unique µ∗ > ln(ξ0/I∗) such that for µ ∈ (0, µ∗), G̃(µ) > 0,
and for µ > µ∗, G̃(µ) < 0. It follows that

G′(µ) > 0 for µ ∈ (0, µ∗), G
′(µ) < 0 for µ > µ∗.

Define d̂∗ := G(µ∗); then for each d ∈ (g(ξ0), d̂∗), (3.5) has exactly two solutions µ1 ∈
(0, µ∗) and µ2 ∈ (µ∗,+∞), and (3.5) has a unique solution µ > 0 for d ∈ {d̂∗}∪ (0, g(ξ0)).
Moreover,

(3.6) G′(µ1) > 0 > G′(µ2).

From now on, we always assume that

(3.7) I∗ < ξ0 and d ∈ (g(ξ0), d̂∗).

Thus (3.5) has exactly two solutions 0 < µ1 < µ2, and apart from (3.6), we have

(3.8) µ > G(µ) for µ ∈ (0, µ1) ∪ (µ2,∞), µ < G(µ) for µ ∈ (µ1, µ2).

Clearly part (i) of Theorem 1.2 follows from the above discussions. The rest of this
section is devoted to the proof of part (ii) of Theorem 1.2. We set

J =

[
µ1

2k
,
2µ2

k

]
.

3.2. Fε,η maps a subset of H into itself. It is easily seen that H = Hε endowed with
the norm

‖z‖ =

∫ 0

−ε−1

|z(x)|ex/2dx

is a Banach space.

Lemma 3.1. There exists ε0 > 0 and M > 0 such that for each ε ∈ (0, ε0] and η ∈ J ,
Fε,η maps Ω := {z ∈ H : ‖z‖ ≤M} into itself.

Proof.

ex/2F 1
ε,η(z)(x) = ex/2

∫ 0

x

f(y; ε, η, z)2 sinh(
x− y

2
)dy + λ(ε, η, z)[(x− 1)ex + 1]

= S1(x) + S2(x).
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We have, for ε > 0 small,

|λ(ε, η, z)| = (1− e−ε−1

)−1
∣∣∣∣∫ 0

−ε−1

ε2
{
g(·)[ε−1ηex/2 + z(x)]+ − d[ε−1ηex/2 + z(x)]

}
ex/2dx

∣∣∣∣
≤ 2

∫ 0

−ε−1

ε2
[
c0e
−εk

∫ x
−ε−1 (ε

−1ηey/2−|z(y)|)ey/2dy + d
]

(ε−1ηex + |z(x)|ex/2)dx

≤ 2

∫ 0

−ε−1

[
c0e

εk‖z‖ + d
]

(εηex + ε2|z(x)|ex/2)dx

≤ C(eεk‖z‖ + 1)(ε+ ε2‖z‖),

for some C > 0 independent of η ∈ J and small ε > 0. In the following, we will use C to
denote a generic positive constant that is independent of η ∈ J and small ε > 0, whose
value may change from line to line.

From the above estimate we obtain∫ 0

−ε−1

|S2(x)|dx ≤ |λ(ε, η, z)|
∫ 0

−ε−1

|(x− 1)ex + 1|dx

≤ C(eεk‖z‖ + 1)(1 + ε‖z‖).

For the term S1(x) we have

|S1(x)| =
∣∣∣∣ex/2 ∫ 0

x

f(y; ε, η, z)2 sinh(
x− y

2
)dy

∣∣∣∣
≤ ex/2

∫ 0

x

ε2|g(·)− d|
(
ε−1ηey/2 + |z(y)|

)
2| sinh(

x− y
2

)|dy

≤ ε2
∫ 0

x

C(eεk‖z‖ + 1)
(
ε−1ey + |z(y)|ey/2

)
|ex−y − 1|dy

≤ C(eεk‖z‖ + 1)(1 + ε‖z‖)ε.

Thus ∫ 0

−ε−1

|S1(x)|dx ≤ C(eεk‖z‖ + 1)(1 + ε‖z‖).

We therefore have

‖F 1
ε,η(z)‖ ≤ C(eεk‖z‖ + 1)(1 + ε‖z‖).

By (3.4), we have

‖α(ε, η, z)ex/2‖ ≤ ‖F 1
ε,η(z)‖ ≤ C(eεk‖z‖ + 1)(1 + ε‖z‖).

Therefore, taking M = 3C then from the above inequalities we can easily find ε0 > 0
sufficiently small (depending on C) such that for all ε ∈ (0, ε0] and η ∈ J ,

‖Fε,η(z)‖ ≤M if ‖z‖ ≤M.

�
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3.3. Fε,η is a contraction mapping. In this subsection we show that there exists ε0 ∈
(0, ε0] such that for each ε ∈ (0, ε0] and each η ∈ J , Fε,η is a contraction mapping on Ω.

Suppose that z1, z2 ∈ Ω, and denote for i = 1, 2,

Ii(x) = exp

(
−k0 − εk0x− k

∫ x

−ε−1

ηeydy

)
e−εk

∫ x
−ε−1 zi(y)e

y/2dy.

Clearly

|g(I1)− g(I2)| ≤ C|I1 − I2|

≤ C
∣∣∣e−εk ∫ x−ε−1 z1(y)e

y/2dy − e−εk
∫ x
−ε−1 z2(y)e

y/2dy
∣∣∣

≤ Ceεk(‖z1‖+‖z2‖)εk

∫ x

−ε−1

|z1(y)− z2(y)|ey/2dy

≤ Ceεk2Mε‖z1 − z2‖
≤ εC‖z1 − z2‖.

We write[
F 1
ε,η(z1)(x)− F 1

ε,η(z2)(x)
]
ex/2

= ε2
∫ 0

x

{
g(I1)

(
ε−1ηey/2 + z1

)+ − g(I2)
(
ε−1ηey/2 + z2

)+ − d(z1 − z2)
}
ey/2(ex−y − 1)dy

+ [λ(ε, η, z1)− λ(ε, η, z2)]e
x(x− 1 + e−x)

= ε2
∫ 0

x

[g(I1)− g(I2)]
(
ε−1ηey/2 + z1

)+
ey/2(ex−y − 1)dy

+ ε2
∫ 0

x

{
g(I2)

[(
ε−1ηey/2 + z1

)+ − (ε−1ηey/2 + z2
)+]− d(z1 − z2)

}
ey/2(ex−y − 1)dy

+ [λ(ε, η, z1)− λ(ε, η, z2)]e
x(x− 1 + e−x)

= T1(x) + T2(x) + T3(x).

Then

|T1(x)| ≤ ε2Cε‖z1 − z2‖
∫ 0

x

(
ε−1ηey + |z1|ey/2

)
dy

≤ Cε2‖z1 − z2‖.

Since

|g(I2)|+ d ≤ CI2 + d ≤ Ceεk‖z2‖ + d ≤ C,

we have

|T2(x)| ≤ Cε2
∫ 0

x

{∣∣∣(ε−1ηey/2 + z1
)+ − (ε−1ηey/2 + z2

)+∣∣∣+ |z1 − z2|
}
ey/2|ex−y − 1|dy

≤ Cε2
∫ 0

x

|z1(y)− z2(y)|ey/2dy

≤ Cε2‖z1 − z2‖.
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To estimate T3(x), we notice that[
λ(ε, η, z1)− λ(ε, η, z2)

] ∫ 0

−ε−1

exdx

= ε2
∫ 0

−ε−1

{
g(I1)

(
ε−1ηey/2 + z1

)+ − g(I2)
(
ε−1ηey/2 + z2

)+ − d(z1 − z2)
}
ey/2dy

= ε2
∫ 0

−ε−1

[g(I1)− g(I2)]
(
ε−1ηey/2 + z1

)+
ey/2dy

+ ε2
∫ 0

−ε−1

{
g(I2)

[(
ε−1ηey/2 + z1

)+ − (ε−1ηey/2 + z2
)+]− d(z1 − z2)

}
ey/2dy.

Therefore similar to the estimates for T1(x) and T2(x) above, we obtain

|λ(ε, η, z1)− λ(ε, η, z2)| ≤ Cε2‖z1 − z2‖.

Since ex|x− 1 + e−x| ≤ C on [−ε−1, 0], we obtain

|T3(x)| ≤ Cε2‖z1 − z2‖.

It follows that

‖F 1
ε,η(z1)− F 1

ε,η(z2)‖ ≤
∫ 0

−ε−1

(|T1(x)|+ |T2(x)|+ |T3(x)|)dx

≤ Cε‖z1 − z2‖.

By (3.4), we have

‖α(ε, η, z1)e
x/2 − α(ε, η, z2)e

x/2‖ = ‖F 1
ε,η(z1)− F 1

ε,η(z2)‖ ≤ Cε‖z1 − z2‖.

Thus Fε,η is a contraction mapping on Ω provided that ε ∈ (0, ε0] and η ∈ J with ε0 =
min{ε0, (3C)−1}.

Summarizing, we have proved the following result.

Lemma 3.2. There exists ε0 ∈ (0, ε0] such that Fε,η is a contraction mapping on Ω for
every ε ∈ (0, ε0] and η ∈ J .

Applying Banach’s fixed point theorem, we obtain

Proposition 3.3. For each ε ∈ (0, ε0] and η ∈ J , Fε,η has a unique fixed point zε,η ∈ Ω.

Remark 3.4. Since Fε,η depends continuously on (ε, η), the uniqueness of the fixed point
implies that zε,η also depends continuously on (ε, η).

3.4. The reduced equation.

Proposition 3.5. Suppose ε ∈ (0, ε0]. If η ∈ J satisfies

(3.9) λ(ε, η, zε,η) = 0,

then

uε,η = ε−1ηex/2 + zε,η(x)

is a positive solution to (3.1).
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Proof. Since Fε,ηzε,η = zε,η and λ(ε, η, zε,η) = 0, from the definition of Fε,η we find that
u = uε,η satisfies, for x ∈ (−ε−1, 0),

−uxx +
1

4
u = −(zε,η)xx +

1

4
zε,η = f(x; ε, η, zε,η).

Using the definition of f we have

(3.10) −uxx +

(
1

4
+ ε2d

)
u = ε2g(Ĩ)u+ ≥ 0 in (−ε−1, 0),

with

Ĩ = exp

(
−k0 − εk0x− εk

∫ x

−ε−1

u(y)ey/2dy

)
.

Clearly u also satisfies the boundary condition of (3.1). Hence, due to ε2d > 0, we can
apply the maximum principle to (3.10) to conclude that u ≥ 0. Thus u+ = u and u solves
(3.1).

To show u is a positive solution, by the strong maximum principle, it suffices to show
that u 6≡ 0. But this follows trivially from∫ 0

−ε−1

u(x)ex/2dx =

∫ 0

−ε−1

ε−1ηexdx > 0.

�

We next examine closely the reduced equation λ(ε, η, zε,η) = 0, that is

(3.11)

∫ 0

ε−1

ex/2
{
g(Iε,η)

[
ε−1ηex/2 + zε,η(x)

]+
− d
[
ε−1ηex/2 + zε,η(x)

]}
dx = 0,

with

Iε,η(x) = exp

(
−k0 − εk0x− εk

∫ x

−ε−1

[ε−1ηey/2 + zε,η(y)]ey/2dy

)
.

Multiplying (3.11) by εη−1 we obtain

0 =

∫ 0

ε−1

ex/2
{
g(Iε,η)

[
ex/2 + εη−1zε,η(x)

]+
− d
[
ex/2 + εη−1zε,η(x)

]}
dx

=

∫ 0

ε−1

ex[g(Iε,η)− d]dx+ δ1,

with

|δ1| =
∣∣∣∣∫ 0

ε−1

ex/2g(Iε,η)

{[
ex/2 + εη−1zε,η(x)

]+
− ex/2

}
dx

∣∣∣∣
≤ Cε

∫ 0

−ε−1

|zε,η(x)|ex/2dx

≤ Cε.

We may write

Iε,η(x) = ξ0 exp (−εk0x− kηex)mε,η(x),

with

mε,η(x) = ξ−10 e−k0 exp

(
−kε

∫ x

−ε−1

zε,η(y)ey/2dy

)
exp

(
kηe−ε

−1
)
→ 1
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uniformly for x ∈ [−ε−1, 0] and η ∈ J as ε→ 0. Therefore

g(Iε,η(x)) = g
(
ξ0e
−εk0x−kηex

)
+ δ̃2(x)

with

δ̃2(x)→ 0 uniformly as ε→ 0.

It follows that

0 =

∫ 0

−ε−1

[
g
(
ξ0e
−εk0x−kηex

)
− d
]
exdx+ δ1 + δ2,

where

δ2 =

∫ 0

−ε−1

δ̃2(x)exdx = o(1) as ε→ 0.

We thus have

d[1− exp(−ε−1)] =

∫ 0

−ε−1

g
(
ξ0e
−εk0x−kηex

)
exdx+ δ1 + δ2,

and

d =

∫ 0

−ε−1

g
(
ξ0e
−εk0x−kηex

)
exdx+ δ1 + δ2 + δ3

with

δ3 = d exp(−ε−1) = o(1).

Finally we have ∫ 0

−ε−1

g
(
ξ0e
−εk0x−kηex

)
exdx

=

∫ 0

−ε−1

g(ξ0e
−εk0x−kηex)(εk0x+ kηex)′

1

kη
dx

− εk0
kη

∫ 0

−ε−1

g(ξ0e
−εk0x−kηex)dx

=
1

kη

∫ kη

−k0+kη exp(−ε−1)

g(ξ0e
−µ)dµ

− 1

kη

∫ 0

−k0
g(ξ0e

−µ−kη exp( µ
εk0

)
)dµ

=
1

kη

∫ kη

−k0
g(ξ0e

−µ)dµ+ o(1)

− 1

kη

∫ 0

−k0
g(ξ0e

−µ)dµ+ o(1)

=
1

kη

∫ kη

0

g(ξ0e
−µ)dµ+ o(1).

Therefore the reduced equation can be written as

d =
1

kη

∫ kη

0

g(ξ0e
−s)ds+ o(1),
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where o(1) → 0 uniformly in η ∈ J as ε → 0. Recalling the definition of G(µ) we find
that the reduced equation can be written as

(3.12) d = G(kη) + o(1).

Fix η1, η2 and η3 in J such that

η1 ∈
(µ1

2k
,
µ1

k

)
, η2 ∈

(µ1

k
,
µ2

k

)
, η3 ∈

(
µ2

k
,
2µ2

k

)
.

Then from (3.8) we find that

d > G(kη1), d < G(kη2), d > G(kη3).

Since λ(ε, η, zε,η) is a continuous function in (ε, η), the term o(1) in (3.12) can be written
as o(ε, η) which is continuous and satisfies o(ε, η) → 0 uniformly in η ∈ J as ε → 0.
Therefore, for all small ε > 0, say ε ∈ (0, ε∗], with some ε∗ ∈ (0, ε0), the equation

d = G(kη) + o(ε, η)

has at least two solutions in J : ηε1 ∈ (η1, η2) and ηε2 ∈ (η2, η3). Moreover,

lim
ε→0

ηε1 =
µ1

k
, lim
ε→0

ηε2 =
µ2

k
and G′(kηε1) > 0 > G′(kηε2).

We have thus proved the following result.

Theorem 3.6. Suppose that (3.7) holds. Then there exists ε∗ > 0 such that for each
ε ∈ (0, ε∗], (3.1) has two positive solutions of the form

u1 = ε−1(ηε1e
x/2 + zε1), u2 = ε−1(ηε2e

x/2 + zε2)

with zε1, z
ε
2 ∈ H satisfying ‖zεi‖ ≤ Cε, and

lim
ε→0

ηε1 =
µ1

k
, lim
ε→0

ηε2 =
µ2

k
, G′(µ1) > 0 > G′(µ2).

Since, for i = 1, 2,

ui = ε−1
(
ηεie

x/2 + zεi
)

= ε−1
(µi
k
ex/2 + z̃εi

)
with z̃εi := zεi +o(1)ex/2, we find that ‖z̃εi‖ = o(1), and part (ii) of Theorem 1.2 now follows
directly from Theorem 3.6.

4. Stability analysis

In this section, we consider the linearized stability of the two solutions u1 and u2 in
Theorem 3.6. Let u∗ = u∗ε denote either u1 or u2. The linearized eigenvalue problem of
(3.1) at u = u∗ is given by

(4.1)


φxx − 1

4
φ+ ε2[g(Iε)− d]φ

−ε2u∗g′(Iε)Iε ε k
∫ x

−1/ε
φ(s)es/2ds+ λφ = 0, x ∈ (−1/ε, 0),

φx − 1
2
φ = 0, x ∈ {−1/ε, 0},

where

Iε(x) = e−k0−εk0x−kε
∫ x
−1/ε u

∗(s)es/2ds.
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We will show that, for every small ε > 0, this problem has an eigenpair (λ, φ) of the form

λ = ε2µε, φ(x) = ex/2 + ε wε(x), wε ∈ H,
with µε → µ0 6= 0 as ε→ 0 and ‖wε‖ ≤ C for all ε > 0 small. Here H is the Banach space
defined in the previous section. Moreover, we will show that µ0 < 0 when u∗ = u1, and
µ0 > 0 when u∗ = u2. This implies that u1 is linearly unstable. Although this does not
prove that u2 is linearly stable, but as explained below, it strongly suggests the validity
of such a conclusion.

The difficulty in proving the linearized stability of u2 is due to the fact that (4.1) is a
nonlocal eigenvalue problem, and the corresponding linear operator to this problem is not
self-adjoint, nor order-preserving. Therefore it is difficult to use variational characteriza-
tion or the well-known Krein-Rutman theorem to know the relationship of the eigenvalue
obtained above to the rest of the spectrum. However, since φ = ex/2 + εwε is a small
perturbation of a positive function, it is reasonable to believe that λ = εµε behaves like a
principle eigenvalue, with all other eigenvalues having real parts strictly greater than λ,
which would imply the linearized stability of u2.

We now look for an eigenpair of (4.1) of the form

λ = ε2µ, φ = ex/2 + εw, w ∈ H.
Substituting these into (4.1) we obtain

(4.2)


wxx − 1

4
w + ε[g(Iε)− d](ex/2 + εw)

−ε u∗g′(Iε)Iε ε k
∫ x

−1/ε
[es + εwes/2]ds+ εµ(ex/2 + εw) = 0, x ∈ (−1/ε, 0),

wx − 1
2
w = 0, x ∈ {−1/ε, 0}.

Multiplying the first equation in (4.2) by ε−1ex/2, and integrating over (−1/ε, 0), we obtain

(4.3)

∫ 0

−1/ε
[g(Iε)− d](ex + εwex/2)dx−

∫ 0

−1/ε
ex/2u∗g′(Iε)Iε ε k

∫ x

−1/ε
[es + εwes/2]dsdx

= −µ
∫ 0

−1/ε
exdx = −µ(1− e−1/ε).

This defines µ as a functional of w and we may write

µ = µ(w, ε).

Much as in the previous section, from (4.2) we obtain

w(x) = ε

∫ 0

x

[g(Iε)− d](ey/2 + εw)2 sinh(
x− y

2
)dy

−ε
∫ 0

x

u∗g′(Iε)Iε ε k

(∫ y

−1/ε
[es + εwes/2]ds

)
2 sinh(

x− y
2

)dy

+ε µ

∫ 0

x

(ey/2 + εw)2 sinh(
x− y

2
)dy + γex/2,

with γ ∈ R1 chosen such that
∫ 0

−1/ε e
x/2w(x)dx = 0.

For w ∈ H, we now define the operator

Lε(w)(x) := L1
ε(w)(x) + L2

ε(w)(x) + L3
ε(w)(x) + γ(w, ε)ex/2,
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with

L1
ε(w)(x) : = ε

∫ 0

x

[g(Iε)− d](ey/2 + εw)2 sinh(
x− y

2
)dy,

L2
ε(w)(x) : = −ε

∫ 0

x

u∗g′(Iε)Iε ε k

(∫ y

−1/ε
[es + εwes/2]ds

)
2 sinh(

x− y
2

)dy,

L3
ε(w)(x) : = ε µ(w, ε)

∫ 0

x

(ey/2 + εw)2 sinh(
x− y

2
)dy,

where µ(w, ε) is determined by (4.3), and

γ(w, ε) = −
[∫ 0

−1/ε
exdx

]−1 ∫ 0

−1/ε
ex/2

[
L1
ε(w)(x) + L2

ε(w)(x) + L3
ε(w)(x)

]
dx.

We are going to show that there exists C > 0 such that for every small ε > 0, Lε maps
B := {w ∈ H : ‖w‖ ≤ 2C} into itself, and is a contraction mapping. Therefore Lε has a
unique fixed point wε in B: Lε(wε) = wε. Clearly this gives an eigenpair to (4.1):

(λ, φ) = (ε2µ(wε, ε), e
x/2 + εwε).

From (4.3), we easily obtain

|µ(w, ε)| ≤ C(1 + ε‖w‖) for all small ε > 0 and some C > 0.

Clearly

ex/2
∣∣∣∣∫ 0

x

(ey/2 + εw)2 sinh(
x− y

2
)dy

∣∣∣∣ ≤ ∫ 0

x

[ey + ε|w|ey/2] |ex−y − 1|dy ≤ C(1 + ε‖w‖).

It follows that

‖L3
ε(w)‖ =

∫ 0

−1/ε
ex/2|L3

ε(w)(x)|dx ≤ C(1 + ε‖w‖)2.

Using

ex/2|L1
ε(w)(x)| = ε ex/2

∣∣∣∣∫ 0

x

[g(Iε)− d](ey/2 + εw)(e
x−y
2 − e

y−x
2 )dy

∣∣∣∣
≤ ε

∫ 0

x

[g(Iε) + d](ey + ε|w|ey/2)|ex−y − 1|dy

≤ ε C

∫ 0

−1/ε
(ey + ε|w|ey/2)dy ≤ ε C(1 + ε‖w‖),

we deduce
‖L1

ε(w)‖ ≤ C(1 + ε‖w‖).
To estimate L2

ε(w) we notice that∣∣∣∣∫ y

−1/ε
[es + εwes/2]ds

∣∣∣∣ ≤ C(1 + ε‖w‖) for all y ∈ (−1/ε, 0),

|u∗g′(Iε)Iε ε k| ≤ C(ey/2 + ε|zεi (y)|),
and hence

ex/2|L2
ε(w)(x)| ≤ ε C(1 + ε‖w‖)

∫ 0

x

(
ey + ε|zεi (y)|ey/2

)
|ex−y − 1|dy ≤ ε C(1 + ε‖w‖).
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It follows that

‖L2
ε(w)‖ ≤ C(1 + ε‖w‖).

From the definition of γ(w, ε) we obtain

‖γ(w, ε)ex/2‖ ≤ ‖L1
ε(w) + L2

ε(w) + L3
ε(w)‖ ≤ C(1 + ε‖w‖)2.

Therefore

‖Lε(w)‖ ≤ C(1 + ε‖w‖)2.
If ‖w‖ ≤ 2C, we obtain

‖Lε(w)‖ ≤ C(1 + 2ε C)2 ≤ 2C

provided that ε ∈ (0, ε0], with ε0 determined by (1 + 2ε0C)2 = 2.
Next we show that Lε is a contraction mapping on B ⊂ H for all small ε > 0. Let

w1, w2 ∈ B. Then

L1
ε(w1)− L1

ε(w2) = ε

∫ 0

x

[g(Iε)− d]ε(w1 − w2)2 sinh(
x− y

2
)dy.

It follows easily that

‖L1
ε(w1)− L1

ε(w2)‖ ≤ ε C‖w1 − w2‖.
Similarly

L2
ε(w1)− L2

ε(w2) = −ε
∫ 0

x

u∗g′(Iε)Iε ε k

(∫ y

−1/ε
ε(w1 − w2)e

s/2ds

)
2 sinh(

x− y
2

)dy,

which gives

‖L2
ε(w1)− L2

ε(w2)‖ ≤ ε C‖w1 − w2‖.
Finally

L3
ε(w1)− L3

ε(w2) =ε µ(w1, ε)

∫ 0

x

ε(w1 − w2)2 sinh(
x− y

2
)dy

+ ε
[
µ(w1, ε)− µ(w2, ε)

] ∫ 0

x

(ey/2 + εw2)2 sinh(
x− y

2
)dy.

By (4.3) we easily see that

|µ(w2, ε)− µ(w1, ε)| ≤ ε C‖w1 − w2‖.
It then follows easily that

‖L3
ε(w1)− L3

ε(w2)‖ ≤ ε C‖w1 − w2‖.
We now obtain

‖γ(w1, ε)e
x/2 − γ(w2, ε)e

x/2‖
≤ ‖L1

ε(w1)− L1
ε(w2)‖+ ‖L1

ε(w1)− L1
ε(w2)‖+ ‖L3

ε(w1)− L3
ε(w2)‖

≤ ε C‖w1 − w2‖.
Thus we have

‖Lε(w1)− Lε(w2)‖ ≤ ε C‖w1 − w2‖ ≤
1

2
‖w1 − w2‖ for all w1, w2 ∈ B

provided that ε > 0 is small enough, say 0 < ε ≤ ε1 ≤ ε0.
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We may now use the contraction mapping theorem to conclude that for every small
ε > 0, say ε ∈ (0, ε1], Lε has a unique fixed point wε in B: Lε(wε) = wε. It follows that,
for such ε, (4.1) has an eigenpair of the form (λ, φ) = (ε2µ(wε, ε), e

x/2 + εwε).
Let us now determine the sign of µ(wε, ε) for u∗ = u1 and u∗ = u2, respectively. We

will denote µ(wε, ε) by µiε for u∗ = ui, i = 1, 2. We define I iε(x) from Iε(x) analogously.
From its definition, we easily see that

lim
ε→0

I iε(x) = e−k0−
∫ x
−∞ kηie

sds = ξ0e
−µiex uniformly in compact subsets of (−∞, 0].

Thus we can use (4.3) to obtain

− lim
ε→0

µiε =

∫ 0

−∞
[g(ξ0e

−µiex)− d]exdx−
∫ 0

−∞
ηike

xg′(ξ0e
−µiex)ξ0e

−µiexexdx

=

∫ 1

0

g(ξ0e
−µis)ds− d−

∫ 1

0

ξ0µise
−µisg′(ξ0e

−µis)ds

= G(µi)− d+ µiG
′(µi) = µiG

′(µi).

Therefore

µ1
ε = −µ1G

′(µ1) + oε(1) < 0, µ2
ε = −µ2G

′(µ2) + oε(1) > 0.

Summarizing, we have proved the following result:

Theorem 4.1. Let u1 and u2 be given by Theorem 3.6. Then for each small ε > 0, the
linearized eigenvalue problem (4.1) with u∗ = ui has an eigenpair of the form

(λ, φ) = (ε2µiε, e
x/2 + εwiε), i = 1, 2,

with wiε ∈ H having a uniform bound independent of ε, and

µ1
ε = −µ1G

′(µ1) + oε(1) < 0, µ2
ε = −µ2G

′(µ2) + oε(1) > 0.
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