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Abstract. In this paper, we investigate two-vessel gradostat models describ-

ing the dynamics of harmful algae with seasonal temperature variations, in
which one vessel represents a small cove connected to a larger lake. We first

define the basic reproduction number for the model system, and then show that
the trivial periodic state is globally asymptotically stable, and algae is washed

out eventually if the basic reproduction number is less than unity, while there

exists at least one positive periodic state and algal blooms occur when it is
greater than unity. There are several types of productions for dissolved tox-

ins, related to the algal growth rate, and nutrient limitation, respectively. For

the system with a specific toxin production, the global attractivity of positive
periodic steady-state solution can be established. Numerical simulations from

the basic reproduction number show that the factor of seasonality plays an

important role in the persistence of harmful algae.

1. Introduction. Harmful algal blooms emerged as an important water quality
issue in recent decades, and have apparently increased in frequency and intensity
worldwide, in both coastal and inland waters. For example, blooms of the hapto-
phyte algae Prymnesium parvum have become common in western Texas and other
parts of the American Southwest, where it is referred to as golden algae [21, 24].
Blooms of this species were documented to cause large fish mortalities. However,
it has been known that water flow in reservoirs can wash out the populations of
planktonic algae, and their toxins [9]. This raises many ecological paradoxes [19].
Indeed, the shorelines and the bed can retard flow, producing slow-flowing regions
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which provide a hydraulic storage zone, so that the persistence of algae is enhanced
(e.g., [7, Section 3.3]).

A recent study suggests a potential technique that is possible for managing and
mitigating harmful algal blooms through flow manipulations in some river systems
[17, 18, 20]. This fact motivates the theoretical exploration of harmful algal dy-
namics in riverine reservoirs considered in [9]. To understand longitudinal patterns
arising along the axis of flow, advection-dispersion-reaction systems were proposed
to incorporate the effects of spatial variations of harmful algae and its toxin produc-
tion and decay, in riverine reservoirs [9]. The models are one-dimensional systems
with simple habitat geometry and transport processes [9], and they were analyzed
in [13].

In order to study differences between a single fringing cove and a main lake, the
authors in [9] also proposed two-vessel gradostat models with constant volumes to
represent the dynamics of harmful algae that can excrete a dissolved toxin. Indeed,
fringing coves along the shoreline of riverine reservoirs also provide a storage zone
that promotes the persistence of both algae and their toxins. In this paper, we
shall give rigorous proofs in the two compartment gradostat models with the influ-
ences of seasonal temperature variations, that is, we incorporate the periodic time
dependence in the parameters of the model system.

Following [9], we first describe model settings and assumptions. The limiting
nutrient for algal growth enters the main lake and the single cove at a constant
concentration Rin

1 (t) and Rin
2 (t), respectively. To simplify the model, constant vol-

ume is assumed and the system dilution rate is denoted by D(t) and the system
exchange rate between the main lake and the cove is denoted by E(t). We assume
that ψ represents the fraction of total volume in cove and φ represents the fraction
of total inflow entering cove. In the following, we set{

R
(0)
1 (t) = (1−φ)D(t)

1−ψ Rin
1 (t), R

(0)
2 (t) = φD(t)

ψ Rin
2 (t), α1(t) = D(t)+E(t)

1−ψ ,

α2(t) = φD(t)+E(t)
1−ψ , β1(t) = E(t)

ψ , β2(t) = φD(t)+E(t)
ψ .

(1.1)

Note that the main purpose of the definitions of R
(0)
i (t), αi(t), and βi(t), i = 1, 2,

is to save notations when we describe our governing systems (1.3) and (1.5) later.
The nutrient uptake function is assumed to be a Monod function of the limiting

nutrient concentration (R) at a given location:

f(t, R) =
µmax(t)R

K +R
. (1.2)

Here, µmax(t) represents the maximal growth rate; K represents the half saturation
constant; the mortality of algal is assumed to be a constant rate m. To simplify
our model, we suppose that the nutrient content of algae that die is instantaneously
and locally recycled [9]. Further, qN represents nutrient quota of algae. To reflect

temporal variations, we assume that there exists a τ > 0 such that R
(0)
1 (t), R

(0)
2 (t),

αi(t), βi(t) and µmax(t) satisfy
R

(0)
1 (t) > 0, R

(0)
2 (t) > 0, αi(t) > 0, βi(t) > 0, µmax(t) > 0,

R
(0)
1 (t+ τ) = R

(0)
1 (t), R

(0)
2 (t+ τ) = R

(0)
2 (t), αi(t+ τ) = αi(t),

βi(t+ τ) = βi(t), µmax(t+ τ) = µmax(t), i = 1, 2.

The following governing system represents the general form of two models, which
is true for many flagellate toxins [9]:
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dR1

dt = R
(0)
1 (t)− α1(t)R1 + α2(t)R2 − qN [f(t, R1)−m]N1,

dR2

dt = R
(0)
2 (t) + β1(t)R1 − β2(t)R2 − qN [f(t, R2)−m]N2,

dN1

dt = −α1(t)N1 + α2(t)N2 + [f(t, R1)−m]N1,
dN2

dt = β1(t)N1 − β2(t)N2 + [f(t, R2)−m]N2,
dC1

dt = −α1(t)C1 + α2(t)C2 + εp(t, R1, N1)− kC1,
dC2

dt = β1(t)C1 − β2(t)C2 + εp(t, R2, N2)− kC2,

Ri(0) ≥ 0, Ni(0) ≥ 0, Ci(0) ≥ 0, i = 1, 2,

(1.3)

where R1(t), N1(t) and C1(t) denote dissolved nutrient concentration, algal abun-
dance and dissolved toxin concentration at time t in the main lake, respectively;
R2(t), N2(t) and C2(t) denote dissolved nutrient concentration, algal abundance
and dissolved toxin concentration at time t in the cove, respectively. The terms
kC1 and kC2 stand for toxin degradation. There are two types of productions for
dissolved toxins. The first assumes that the algae produce toxin more rapidly when
there is little nutrient in the system [9],

εp(t, R,N) = ε[µmax(t)− f(t, R)]N = ε
µmax(t)K

K +R
N, (1.4)

where ε is a constant coefficient. It has been observed that toxins produced by
Prymnesium parvum (toxic flagellates) are proportional to the degree of algal nu-
trient limitation ([3, 8, 15, 16]). The second type of toxin production assumes that
the toxin is produced proportional to the algal productivity,

εp(t, R,N) = εf(t, R)N = ε
µmax(t)R

K +R
N.

This case assumes that toxin is produced in proportion to other cellular products
and released into the water at a constant rate [9]. We refer to this as the case of
cylindrospermopsin [6, 12], which is a cyanotoxin produced by a variety of freshwater
cyanobacteria.

It was also known that cyanobacteria excrete some toxins that contain nitrogen,
a potential limiting nutrient for algae. Hence, chemical decomposition of the toxin
results in nutrient recycling [9]. We assume that ε represents a dimensionless coef-
ficient that specifies the allocation to toxin production [9]. The nutrient content of
the toxin is denoted by qC and then the governing equations take the form [9]:

dR1

dt = R
(0)
1 (t)− α1(t)R1 + α2(t)R2 − qN [f(t, R1)−m]N1 + kqCC1,

dR2

dt = R
(0)
2 (t) + β1(t)R1 − β2(t)R2 − qN [f(t, R2)−m]N2 + kqCC2,

dN1

dt = −α1(t)N1 + α2(t)N2 + [(1− ε)f(t, R1)−m]N1,
dN2

dt = β1(t)N1 − β2(t)N2 + [(1− ε)f(t, R2)−m]N2,
dC1

dt = −α1(t)C1 + α2(t)C2 + ε qNqC f(t, R1)N1 − kC1,
dC2

dt = β1(t)C1 − β2(t)C2 + ε qNqC f(t, R2)N2 − kC2,

Ri(0) ≥ 0, Ni(0) ≥ 0, Ci(0) ≥ 0, i = 1, 2.

(1.5)

The terms kqCC1 and kqCC2 in the first two equations of (1.5) reveal that the
toxin can get recycled back into the system as available nutrient. From the third
and fourth equations of (1.5), we realize that only a part, (1 − ε), of the nutri-
ent consumed is used for algal growth, which is discounted by the cost of toxin
production.
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The organization of the paper is as follows. The model analysis of systems (1.3)
and (1.5) are presented in sections 2 and 3, respectively. The simulation results are
presented in section 4. In section 5, we give some biological interpretations on the
analysis of the models.

2. Mathematical analysis of system (1.3). This section is devoted to the study
of the global attractivity of system (1.3). We first show that R6

+ is positively
invariant for (1.3). For any (R0

1, R
0
2, N

0
1 , N

0
2 , C

0
1 , C

0
2 ) ∈ R6

+, it follows from [23,
Theorem 5.2.1] that system (1.3) has a unique local nonnegative solution

(R1(t), R2(t), N1(t), N2(t), C1(t), C2(t)) ∈ R6
+

through the initial value

(R1(0), R2(0), N1(0), N2(0), C1(0), C2(0)) = (R0
1, R

0
2, N

0
1 , N

0
2 , C

0
1 , C

0
2 ).

Let

Wi(t) = Ri(t) + qNNi(t), i = 1, 2. (2.1)

Then W1(t) and W2(t) satisfy the following coupled differential equations
dW1

dt = R
(0)
1 (t)− α1(t)W1 + α2(t)W2,

dW2

dt = R
(0)
2 (t) + β1(t)W1 − β2(t)W2,

Wi(0) = W 0
i , i = 1, 2.

(2.2)

We have the following results concerned with the global dynamics of (2.2):

Lemma 2.1. The system (2.2) admits a unique positive τ -periodic solution (W ∗1 (t),
W ∗2 (t)) which is globally attractive in R2, that is, for any (W1(0),W2(0)) ∈ R2, we
have

lim
t→∞

[(W1(t),W2(t))− (W ∗1 (t),W ∗2 (t))] = 0.

Proof. We first consider the following system:{
dŴ1

dt = −α1(t)Ŵ1 + α2(t)Ŵ2,
dŴ2

dt = β1(t)Ŵ1 − β2(t)Ŵ2.
(2.3)

Let

H(t) =

(
−α1(t) α2(t)
β1(t) −β2(t)

)
.

From (1.1), it is easy to see that H(t) is irreducible, cooperative, and the sum of
each row in H(t) is negative, which imply that the Floquet multipliers of H(t) are
both less than 1 (see, e.g., [22, Lemma 1.0.]. Hence, the unique equilibrium (0, 0) is
locally asymptotically stable. Furthermore, the system (2.3) is cooperative. Thus,
(0, 0) is globally asymptotically stable for (2.3) in R2 (see [14, Theorem D]). That

is, lim
t→∞

(Ŵ1(t), Ŵ2(t)) = (0, 0).

The solution of (2.2) can be expressed as(
W1(t)
W2(t)

)
= T (t)

(
W 0

1

W 0
2

)
+

∫ t

0

T (t− s)

(
R

(0)
1 (s)

R
(0)
2 (s)

)
ds,
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where T (t) is the solution semigroup generated by (2.3). It is easy to see that
(W1(t),W2(t)) is a τ -periodic solution of (2.2) if and only if

(I − T (τ))

(
W 0

1

W 0
2

)
=

∫ τ

0

T (τ − s)

(
R

(0)
1 (s)

R
(0)
2 (s)

)
ds. (2.4)

From above discussions, it follows that r(T (τ)) < 1. This implies that I − T (τ) is
invertible, and hence, (2.2) admits a unique τ -periodic solution (W ∗1 (t),W ∗2 (t)). Let

Ŵ1(t) = W1(t)−W ∗1 (t) and Ŵ2(t) = W2(t)−W ∗2 (t). Then (Ŵ1(t), Ŵ2(t)) satisfies

(2.3), and hence, lim
t→∞

(Ŵ1(t), Ŵ2(t)) = (0, 0). Thus, we complete the proof.

It follows from Lemma 2.1 that Ri(t) and Ni(t) are ultimately bounded, i = 1, 2.
From the last two equations of (1.3), it is easy to see C1(t) and C2(t) are also
ultimately bounded. Thus, the solutions of system (1.3) exist globally on the interval
[0,∞). Let P : R6

+ → R6
+ be the Poincaré map associated with system (1.3), that

is,

P(R1(0), R2(0), N1(0), N2(0), C1(0), C2(0)) = (R1(τ), R2(τ), N1(τ), N2(τ), C1(τ), C2(τ)),

for all x := (R1(0), R2(0), N1(0), N2(0), C1(0), C2(0)) ∈ R6
+, where

(R1(t), R2(t), N1(t), N2(t), C1(t), C2(t))

is the unique solution of system (1.3). Then P is point dissipative (i.e., ultimately
bounded) in R6

+, and P is compact. By [11, Theorem 3.4.8], it follows that P :
R6

+ → R6
+ has a global compact attractor in R6

+.
We summarize our discussions above:

Lemma 2.2. R6
+ is positively invariant for (1.3) and system (1.3) has a unique

and bounded solution with the initial value in R6
+. Further, the Poincaré map asso-

ciated with system (1.3) admits a connected global attractor on R6
+ which attracts

all positive orbits in R6
+.

2.1. The basic reproduction number of system (1.3). In order to find the
trivial solution of (1.3), we assume N1 = N2 = 0 in (1.3). Then R1 and R2 satisfy
the system (2.2) and it follows from Lemma 2.1 that

lim
t→∞

[(R1(t), R2(t))− (W ∗1 (t),W ∗2 (t))] = 0.

Furthermore, C1 and C2 satisfy the following system
dC1

dt = −(α1(t) + k)C1 + α2(t)C2,
dC2

dt = β1(t)C1 − (β2(t) + k)C2,

Ci(0) ≥ 0, i = 1, 2.

(2.5)

By the same arguments as those in the dynamics of the system (2.3), we are able
to show that

lim
t→∞

(C1(t), C2(t)) = (0, 0).

Bacaër and Guernaoui [2] investigated a vector-borne disease model with season-
ality, and proposed a general definition of the basic reproduction number in periodic
habitats. Wang and Zhao [27] further gave a computational formula for periodic
compartmental epidemic models and showed that it is a threshold parameter for
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the local stability of the disease-free periodic solution. Here, we introduce the ba-
sic reproduction number R0 for the periodic compartmental ecological model (1.3).
Linearizing system (1.3) at the trivial solution

E0(t) := (W ∗1 (t),W ∗2 (t), 0, 0, 0, 0),

we get the following cooperative system:
dN1

dt = −α1(t)N1 + α2(t)N2 + [f(t,W ∗1 (t))−m]N1,
dN2

dt = β1(t)N1 − β2(t)N2 + [f(t,W ∗2 (t))−m]N2,

Ni(0) ≥ 0, i = 1, 2.

(2.6)

Next, we review some basic results related to a monodromy matrix that is needed
for our subsequent discussions. Let A(t) be a continuous, cooperative, irreducible,
and τ -periodic k × k matrix function. Suppose ΦA(·)(t) is the monodromy matrix
of the linear ordinary differential system

dx(t)

dt
= A(t)x, (2.7)

and r(ΦA(·)(τ)) is the spectral radius of ΦA(·)(τ). From [1, Lemma 2] (see also [10,
Theorem 1.1]), it follows that ΦA(·)(t) is a matrix with all entries positive for each
t > 0. By the Perron-Frobenius theorem, r(ΦA(·)(τ)) is the principal eigenvalue of
ΦA(·)(τ) in the sense that it is simple and admits a positive eigenvector. We further
have the following results:

Lemma 2.3. ([28, Lemma 2.1]) Let µ = 1
τ lnr(ΦA(·)(τ)). Then there exists a

positive, τ -periodic function v(t) such that eµtv(t) is a solution of (2.7).

Motivated by (2.6), we define

F(t) =

(
f(t,W ∗1 (t)) 0

0 f(t,W ∗2 (t))

)
, V(t) =

(
α1(t) +m −α2(t)
−β1(t) β2(t) +m

)
. (2.8)

Suppose ΦV(·)(t) is the monodromy matrix of the linear τ -periodic differential sys-

tem dz(t)
dt = V(t)z. Assume Y (t, s), t ≥ s, is the evolution operator of the linear

τ -periodic system
dy(t)

dt
= −V(t)y, (2.9)

that is, for each s ∈ R, the 2× 2 matrix Y (t, s) satisfies

d

dt
Y (t, s) = −V(t)Y (t, s), ∀ t ≥ s, Y (s, s) = I,

where I is the 2 × 2 matrix. Thus, the monodromy matrix Φ−V(·)(t) of (2.9) is
equal to Y (t, 0), t ≥ 0.

We assume that φ(s), τ -periodic in s, is the initial distribution of algae individ-
uals. Then F(s)φ(s) is the rate of new population generated by initial fertile algae
individuals who were introduced at time s. Given t ≥ s, then Y (t, s)F(s)φ(s) gives
the distribution of those fertile individuals who were newly produced at time s and
remain in the fertile compartments at time t. It follows that

ψ(t) :=

∫ t

−∞
Y (t, s)F(s)φ(s)ds =

∫ ∞
0

Y (t, t− a)F(t− a)φ(t− a)da

is the distribution of accumulative new individuals at time t produced by all those
fertile individuals φ(s) introduced at time previous to t.
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Let Cτ be the ordered Banach space of all τ -periodic functions from R to R2,
which is equipped with the maximum norm ‖ · ‖ and the positive cone C+

τ := {φ ∈
Cτ : φ(t) ≥ 0, ∀ t ∈ R}. Then we define a linear operator L : Cτ → Cτ by

(Lφ)(t) =

∫ ∞
0

Y (t, t− a)F(t− a)φ(t− a)da, ∀ t ∈ R, φ ∈ Cτ . (2.10)

Then we call L the next generation operator [27], and define the basic reproduction
number as

R0 := r(L), (2.11)

the spectral radius of L.
We present the following result, which will be used in the proof of our main

result.

Lemma 2.4. [27, Theorem 2.2] The following statements hold.

(i) R0 = 1 if and only if r(ΦF(·)−V(·)(τ)) = 1;
(ii) R0 > 1 if and only if r(ΦF(·)−V(·)(τ)) > 1;
(iii) R0 < 1 if and only if r(ΦF(·)−V(·)(τ)) < 1.

It follows from Lemma 2.4 that the trivial solution

E0(t) := (W ∗1 (t),W ∗2 (t), 0, 0, 0, 0),

is locally asymptotically stable for (1.3) if R0 < 1, and unstable if R0 > 1.
In the following, we shall discuss a special case where µmax(t) ≡ µmax and all the

parameters in (1.1) are positive constants. Then it is easy to see that

(W ∗1 (t),W ∗2 (t)) ≡ (A
(0)
1 , A

(0)
2 ) :=

(
α2R

(0)
2 − β2R

(0)
1

α2β1 − α1β2
,
α1R

(0)
2 − β1R

(0)
1

α2β1 − α1β2

)
is the unique equilibrium for (2.2). Hence,

F =

(
f(A

(0)
1 ) 0

0 f(A
(0)
2 )

)
, V =

(
α1 +m −α2

−β1 β2 +m

)
, (2.12)

where we may choose f(R) = µmaxR
K+R as a classical example. Then the basic re-

production number corresponds to the spectral radius of FV−1 (see [4, 5]), that
is,

R0 = r(FV−1). (2.13)

By computations, it follows that

FV−1 =
1

detV

(
(β2 +m)f(A

(0)
1 ) α2f(A

(0)
1 )

β1f(A
(0)
2 ) (α1 +m)f(A

(0)
2 )

)
, (2.14)

where detV := (α1 +m)(β2 +m)− α2β1 > 0 ( using (1.1) ).

2.2. Global attractivity of system (1.3). We first study the following systems:
dN1

dt = −α1(t)N1 + α2(t)N2 + [f(t,W ∗1 (t)− qNN1)−m]N1,
dN2

dt = β1(t)N1 − β2(t)N2 + [f(t,W ∗2 (t)− qNN2)−m]N2,

Ni(0) ≥ 0, i = 1, 2.

(2.15)

If we linearize the system (2.15) at the trivial solution (0, 0), we get the linear
system (2.6). This means the trivial solution (0, 0) is locally asymptotically stable
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for (2.15) if R0 < 1, and unstable if R0 > 1. From the biological view of point, the
feasible domain Λ(t) for (2.15) should be

Λ(t) = {(N1, N2) ∈ R2
+ : qNN1 ≤W ∗1 (t), qNN2 ≤W ∗2 (t)}. (2.16)

It is not hard to see that for any (N0
1 , N

0
2 ) ∈ Λ(0), system (2.15) has a unique solu-

tion (N1(t), N2(t)) with (N1(0), N2(0)) = (N0
1 , N

0
2 ) and (N1(t), N2(t)) ∈ Λ(t), ∀ t ≥

0.

Lemma 2.5. Let X := Λ(0). The following statements hold.

(i) If R0 ≤ 1, then the trivial solution (0, 0) is globally attractive in X for (2.15);
(ii) If R0 > 1, then every solution (N1(t), N2(t)) of (2.15) with (N1(0), N2(0)) ∈

X\{(0, 0)} satisfies

lim
t→∞

[(N1(t), N2(t))− (N∗1 (t), N∗2 (t))] = (0, 0),

where (N∗1 (t), N∗2 (t)) is the unique positive τ -periodic solution of (2.15).

Proof. Let P : X → X be the Poincaré map associated with system (2.15), that is,

P (N1(0), N2(0)) = (N1(τ), N2(τ)), ∀ x := (N1(0), N2(0)) ∈ X,
where (N1(t), N2(t)) is the unique solution of system (2.15). It is easy to see that
P : X → X is strongly monotone, and strongly subhomogeneous in the sense that
P (θx) � θP (x), ∀x ∈ X, θ ∈ (0, 1) (see [30, section 2.3]). Further, it is not hard
to see that P (0, 0) = (0, 0) and DP (0, 0) = ΦF(·)−V(·)(τ), where DP (0, 0) denotes
the Fréchet derivative of P at (0, 0), and ΦF(·)−V(·)(t) denotes the monodromy
matrix of the linear ordinary differential system (2.6) (see [30, section 3.1.2]). From
Lemma 2.4 and [30, Theorem 2.3.4], it follows that

(i) If R0 ≤ 1, then every positive orbit of P in X converges to (0, 0);
(ii) If R0 > 1, then there exists a unique fixed point E � 0 in X such that every

positive orbit of P in X\{(0, 0)} converges to E .

Corresponding to the fixed point of the period map P , the conclusions in the Lemma
are true.

Since the equations ofRi andNi, i = 1, 2 in (1.3) are independent of the equations
of C1 and C2, we first study the following subsystem:

dR1

dt = R
(0)
1 (t)− α1(t)R1 + α2(t)R2 − qN [f(t, R1)−m]N1,

dR2

dt = R
(0)
2 (t) + β1(t)R1 − β2(t)R2 − qN [f(t, R2)−m]N2,

dN1

dt = −α1(t)N1 + α2(t)N2 + [f(t, R1)−m]N1,
dN2

dt = β1(t)N1 − β2(t)N2 + [f(t, R2)−m]N2,

Ri(0) ≥ 0, Ni(0) ≥ 0, i = 1, 2.

(2.17)

We are now in the position to address the dynamics of system (2.17) in the sense
of the following theorem.

Theorem 2.1. Let (W ∗1 (t),W ∗2 (t)) be a unique positive τ -periodic solution of the
system (2.2). Then the following statements hold.

(i) If R0 ≤ 1, then the trivial solution (W ∗1 (t),W ∗2 (t), 0, 0) is globally attractive
in R4

+ for (2.17);
(ii) If R0 > 1, then every solution (R1(t), R2(t), N1(t), N2(t)) of (2.17) with

(R1(0), R2(0), N1(0), N2(0)) ∈ R4
+\{(a, b, 0, 0) : a, b ∈ R+} satisfies

lim
t→∞

((R1(t), R2(t), N1(t), N2(t))− (R∗1(t), R∗2(t), N∗1 (t), N∗2 (t))) = (0, 0, 0, 0),
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where R∗i (t) := W ∗i (t) − qNN∗i (t), i = 1, 2, and (N∗1 (t), N∗2 (t)) is the unique
positive τ -periodic solution of (2.15).

Proof. We rewrite the system (2.17) as follows:

dN1

dt = −α1(t)N1 + α2(t)N2 + [f(t,W1 − qNN1)−m]N1,
dN2

dt = β1(t)N1 − β2(t)N2 + [f(t,W1 − qNN2)−m]N2,
dW1

dt = R
(0)
1 (t)− α1(t)W1 + α2(t)W2,

dW2

dt = R
(0)
2 (t) + β1(t)W1 − β2(t)W2,

Wi(0) = W 0
i , Ni(0) ≥ 0, i = 1, 2,

(2.18)

where W1 and W2 are defined in (2.1). Let

X̃ = {(N1, N2,W1,W2) ∈ R4
+ : qNN1 ≤W1, qNN2 ≤W2},

X̃0 := {(N1, N2,W1,W2) ∈ X̃ : (N1, N2) 6= (0, 0)}, and ∂X̃0 = X̃\X̃0.

Claim. If x̃ := (N0
1 , N

0
2 ,W

0
1 ,W

0
2 ) ∈ X̃, then the solution of (2.18) through x̃

satisfies

(N1(t), N2(t),W1(t),W2(t)) ∈ X̃, ∀ t ≥ 0.

For this, we let R1(t) = W1(t) − qNN1(t) and R2(t) = W2(t) − qNN2(t). Then
(R1(t), R2(t), N1(t), N2(t)) satisfies (2.17) and R1(0) ≥ 0, R2(0) ≥ 0, N1(0) ≥
0, N2(0) ≥ 0. It is not hard to see that

(R1(t), R2(t), N1(t), N2(x, t)) ≥ 0, ∀ t ≥ 0.

Thus, our claim is true.
Let P̃ : X̃ → X̃ be the Poincaré map associated with system (2.18) and ω̃(x̃) be

the omega-limit set of the orbit of P̃ with initial values x̃ ∈ X̃. From the third and
fourth equations of (2.18) and Lemma 2.1, it follows that

lim
t→∞

[(W1(t),W2(t))− (W ∗1 (t),W ∗2 (t))] = 0.

Thus, there exists a set I ⊂ R2
+ such that ω̃(x̃) = I × {(W ∗1 (0),W ∗2 (0))}. For

any given (N0
1 , N

0
2 ) ∈ I, we have (N0

1 , N
0
2 ,W

∗
1 (0),W ∗2 (0)) ∈ ω̃(x̃) ⊂ X̃. By the

definition of X̃, it follows that (N0
1 , N

0
2 ) ⊂ X. Thus, I ⊂ X, where X := Λ(0) is

defined in (2.16).
By [30, Lemma 1.2.1′], ω̃(x̃) is a compact, invariant and internal chain transitive

set for P̃ . Moreover, if x0 ∈ R2
+ with (x0,W ∗1 (0),W ∗2 (0)) ∈ ω̃(x̃), there holds

P̃ |ω̃(x̃) (x0,W ∗1 (0),W ∗2 (0)) = (P (x0),W ∗1 (τ),W ∗2 (τ)),

where P : X → X is the Poincaré map associated with system (2.15). It then follows
that I is a compact, invariant and internal chain transitive set for P : X → X.

In the case where R0 ≤ 1, it follows from Lemma 2.5 (i) that (2.15) has a globally
attractive positive τ -periodic solution (0, 0) in X. This implies that the unique fixed
point (0, 0) is an isolated invariant set in X and no cycle connecting (0, 0) to itself in
X. Since I is a compact, invariant and internal chain transitive set for P : X → X,
it follows from a convergence theorem (see, e.g., [30, Theorem 1.2.2]) that I is a
fixed point of P . That is, I = {(0, 0)}, and hence, ω̃(x̃) = I × {(W ∗1 (0),W ∗2 (0))} =
{(0, 0,W ∗1 (0),W ∗2 (0))}. This implies that (0, 0,W ∗1 (0),W ∗2 (0)) is globally attractive

for P̃ in X̃. Corresponding to the fixed point of the period map P̃ , system (2.18)

has a globally attractive positive τ -periodic solution (0, 0,W ∗1 (t),W ∗2 (t)) in X̃. In
view of (2.1), we see that statement (i) is true.
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In the case where R0 > 1, that is, r(ΦF(·)−V(·)(τ)) > 1. Thus, we may choose
ζ0 > 0 small enough such that r(ΦFζ0 (·)−V(·)(τ)) > 1, where

Fζ0(t) =

(
f(t,W ∗1 (t))− ζ0 0

0 f(t,W ∗2 (t))− ζ0

)
.

Since R0 > 1, it follows from Lemma 2.5 (ii) that (2.15) has a globally attractive
positive τ -periodic solution (N∗1 (t), N∗2 (t)) in X0 := X\{(0, 0)}. Note that (0, 0)
is also a τ -periodic solution of (2.15). This implies that the possible fixed points
(0, 0) and (N∗1 (0), N∗2 (0)) are isolated invariant sets in X and no subset of {(0, 0)}∪
{(N∗1 (0), N∗2 (0))} forms a cycle in X. Since I is a compact, invariant and internal
chain transitive set for P : X → X, it follows from a convergence theorem (see, e.g.,
[30, Theorem 1.2.2]) that either I = {(0, 0)} or I = {(N∗1 (0), N∗2 (0))}.

Suppose, by contradiction, that I = {(0, 0)}. This implies that

P̃n(N1(0), N2(0),W1(0),W2(0)) := (N1(nτ), N2(nτ),W1(nτ),W2(nτ))

→ (0, 0,W ∗1 (0),W ∗2 (0)) as n→∞.

Equivalently,

lim
t→∞

|(N1(t), N2(t),W1(t),W2(t))− (0, 0,W ∗1 (t),W ∗2 (t))| = 0,

and hence, limt→∞ |(Wi(t)− qNNi(t))−W ∗i (t))| = 0, i = 1, 2. By the continuity of
f , it follows that there exists t1 > 0 such that

f(t,Wi(t)− qNNi) > f(t,W ∗i (t))− ζ0, ∀ t ≥ t1, i = 1, 2.

From the first two equations (2.18), it follows that{
dN1

dt ≥ −α1(t)N1 + α2(t)N2 + [f(t,W ∗1 (t))−m− ζ0]N1, ∀ t ≥ t1,
dN2

dt ≥ β1(t)N1 − β2(t)N2 + [f(t,W ∗2 (t))−m− ζ0]N2, ∀ t ≥ t1,

From (N0
1 , N

0
2 ) > (0, 0) and the version for nonautonomous systems in [23, Theorem

4.1.1], it follows that the irreducibility of the cooperative matrix(
−α1(t) + [f(t,W1 − qNN1)−m] α2(t)

β1(t) −β2(t) + [f(t,W2 − qNN2)−m]

)
and the first two equations of system (2.18) imply that (N1(t), N2(t))T � (0, 0), ∀ t
> 0, and hence, (N1(t1), N2(t1))T � (0, 0).

By Lemma 2.3, it follows that there exists a positive, τ -periodic function J(t)
and µ̂ = 1

τ lnr(ΦFζ0 (·)−V(·)(τ)) such that J̄(t) := c̄eµ̂(t−t1)J(t) is a solution of

dx(t)

dt
= (Fζ0(t)−V(t))x(t),

where c̄ satisfies J̄(t1) := c̄J(t1) ≤ (N1(t1), N2(t1)). The standard comparison
theorem (see, e.g., [25, Theorem B.1]) implies that

(N1(t), N2(t)) ≥ J̄(t), ∀ t ≥ t1.

In particular, there exists n1 such that

(N1(nτ), N2(nτ)) ≥ J̄(nτ), ∀ n ≥ n1.

Since µ̂ > 0, it follows that J̄(nτ) → ∞ as n → ∞. Thus, (N1(nτ), N2(nτ)) → ∞
as n→∞. This contradiction proves that I = {(N∗1 (0), N∗2 (0))}, and hence,

ω̃(x̃) = I × {(W ∗1 (0),W ∗2 (0))} = {(N∗1 (0), N∗2 (0),W ∗1 (0),W ∗2 (0))}.
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This implies that (N∗1 (0), N∗2 (0),W ∗1 (0),W ∗2 (0)) is globally attractive for P̃ in X̃.

Corresponding to the fixed point of the period map P̃ , system (2.18) has a globally

attractive positive τ -periodic solution (N∗1 (t), N∗2 (t),W ∗1 (t),W ∗2 (t)) in X̃. By virtue
of (2.1), we complete the proof of (ii).

By Theorem 2.1 and the theory of asymptotically periodic semiflows (see, e.g.,
[29] or [30, section 3.2]), it is easy to obtain the following results:

Theorem 2.2. The following statements hold.

(i) If R0 ≤ 1, then the trivial solution (W ∗1 (t),W ∗2 (t), 0, 0, 0, 0) is globally attrac-
tive in R6

+ for (1.3);
(ii) If R0 > 1, then every solution (R1(t), R2(t), N1(t), N2(t), C1(t), C2(t)) of

(1.3) with (R1(0), R2(0), N1(0), N2(0), C1(0), C2(0)) ∈ R6
+\{(a, b, 0, 0, 0, 0) :

a, b ∈ R+} satisfies

lim
t→∞

((R1(t), R2(t), N1(t), N2(t), C1(t), C2(t))− E∗(t)) = (0, 0, 0, 0, 0, 0),

where E∗(t) := (R∗1(t), R∗2(t), N∗1 (t), N∗2 (t), C∗1 (t), C∗2 (t)). Here, R∗i (t) :=
W ∗i (t) − qNN∗i (t), i = 1, 2, (N∗1 (t), N∗2 (t)) is the unique positive τ -periodic
solution of (2.15) and (C∗1 (t), C∗2 (t)) is the unique positive τ -periodic solution
of the following system

dC1

dt = −α1(t)C1 + α2(t)C2 + εp(t, R∗1(t), N∗1 (t))− kC1,
dC2

dt = β1(t)C1 − β2(t)C2 + εp(t, R∗2(t), N∗2 (t))− kC2,

Ci(0) ≥ 0, i = 1, 2.

(2.19)

3. Threshold dynamics of system (1.5). This section is devoted to the study
of threshold dynamics of system (1.5). From [23, Theorem 5.2.1], it follows that
for any (R0

1, R
0
2, N

0
1 , N

0
2 , C

0
1 , C

0
2 ) ∈ R6

+, system (1.5) has a unique local nonnegative
solution

(R1(t), R2(t), N1(t), N2(t), C1(t), C2(t)) ∈ R6
+

through the initial value

(R1(0), R2(0), N1(0), N2(0), C1(0), C2(0)) = (R0
1, R

0
2, N

0
1 , N

0
2 , C

0
1 , C

0
2 ).

In the following, we will demonstrate that mass conservation for (1.5). Let

Vi(t) = Ri(t) + qNNi(t) + qCCi(t), i = 1, 2. (3.1)

Then Vi(t), i = 1, 2, satisfy the differential equations (2.2). From Lemma 2.1, it
follows that there exists a unique positive τ -periodic solution (W ∗1 (t),W ∗2 (t)) such
that for any (V1(0), V2(0)) ∈ R2, we have

lim
t→∞

[(V1(t), V2(t))− (W ∗1 (t),W ∗2 (t))] = 0. (3.2)

This implies that Ri(t), Ni(t) and Ci(t) are ultimately bounded, i = 1, 2. Thus, the
solutions of system (1.5) exist globally on the interval [0,∞).

By our discussions above and the similar arguments in Lemma 2.2, we have the
following results:

Lemma 3.1. R6
+ is positively invariant for (1.5) and system (1.5) has a unique

and bounded solution with the initial value in R6
+. Further, the Poincaré map asso-

ciated with system (1.5) admits a connected global attractor on R6
+ which attracts

all positive orbits in R6
+.
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From (3.2), we conclude that the limiting systems of (1.5) take the forms

dN1

dt = −α1(t)N1 + α2(t)N2 + [(1− ε)f(t,W ∗1 (t)− qNN1 − qCC1)−m]N1,
dN2

dt = β1(t)N1 − β2(t)N2 + [(1− ε)f(t,W ∗2 (t)− qNN2 − qCC2)−m]N2,
dC1

dt = −α1(t)C1 + α2(t)C2 + ε qNqC f(t,W ∗1 (t)− qNN1 − qCC1)N1 − kC1,
dC2

dt = β1(t)C1 − β2(t)C2 + ε qNqC f(t,W ∗2 (t)− qNN2 − qCC2)N2 − kC2,

Ni(0) ≥ 0, Ci(0) ≥ 0, i = 1, 2.

(3.3)
Clearly, reasonable region for (3.3) is

Σ(t) = {(N1, N2, C1, C2) ∈ R4
+ : qNN1 + qCC1 ≤W ∗1 (t), qNN2 + qCC2 ≤W ∗2 (t)},

where R+ := [0,∞). It is easy to see that for any (N0
1 , N

0
2 , C

0
1 , C

0
2 ) ∈ Σ(0), system

(3.3) has a unique mild solution (N1(t), N2(t), C1(t), C2(t)) with

(N1(0), N2(0), C1(0), C2(0)) = (N0
1 , N

0
2 , C

0
1 , C

0
2 )

and (N1(t), N2(t), C1(t), C2(t)) ∈ Σ(t), ∀ t ≥ 0. We will always restrict the initial
values of (3.3) in this region Σ(0). The solutions of the system (3.3) are in the
following forms:

(i) Trivial solution 0̂ := (0, 0, 0, 0) always exists;
(ii) There may be additional solutions as well and these must be positive.

Next, we shall discuss the stability of the trivial solution 0̂ := (0, 0, 0, 0) of (3.3).

Linearizing system (3.3) at the trivial solution 0̂ := (0, 0, 0, 0), we get the following
cooperative system for (N1, N2) compartments:

dN1

dt = −α1(t)N1 + α2(t)N2 + [(1− ε)f(t,W ∗1 (t))−m]N1,
dN2

dt = β1(t)N1 − β2(t)N2 + [(1− ε)f(t,W ∗2 (t))−m]N2,

Ni(0) ≥ 0, i = 1, 2.

(3.4)

Then we define

Fε(t) =

(
(1− ε)f(t,W ∗1 (t)) 0

0 (1− ε)f(t,W ∗2 (t))

)
, (3.5)

and a linear operator Lε : Cτ → Cτ by

(Lεφ)(t) =

∫ ∞
0

Y (t, t− a)Fε(t− a)φ(t− a)da, ∀ t ∈ R, φ ∈ Cτ . (3.6)

Then we call Lε the next generation operator [27], and define the basic reproduction
number as

Rε0 := r(Lε), (3.7)

the spectral radius of Lε. Furthermore, Rε0 − 1 and r(ΦFε(·)−V(·)(τ)) − 1 have the
same sign.

In order to present our results, we introduce the following notations: X := Σ(0),
X0 := {(N1, N2, C1, C2) ∈ X : (N1, N2) 6= (0, 0)} and ∂X0 = X\X0. Suppose
S : X→ X is the Poincaré map associated with system (3.3), that is,

S(x0) = u(τ, x0), ∀ x0 := (N0
1 , N

0
2 , C

0
1 , C

0
2 ) ∈ X,

where u(t, x0) is the unique solution of system (3.3) with u(0, x0) = x0. It is easy
to see that

Sn(x0) = u(nτ, x0), ∀ n ≥ 0.
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Lemma 3.2. Let Rε0 > 1. Then there exists σ > 0 such that for any (N0
1 , N

0
2 , C

0
1 ,

C0
2 ) ∈ X0 with

‖(N0
1 , N

0
2 , C

0
1 , C

0
2 )− 0̂‖ ≤ σ,

we have lim supn→∞dist(Sn(N0
1 , N

0
2 , C

0
1 , C

0
2 ), 0̂) ≥ σ.

Proof. Since Rε0 > 1, it follows that r(ΦFε(·)−V(·)(τ)) > 1. Thus, we may choose
ξ0 > 0 small enough such that r(ΦFεξ0

(·)−V(·)(τ)) > 1, where

Fεξ0(t) =

(
(1− ε)f(t,W ∗1 (t))− ξ0 0

0 (1− ε)f(t,W ∗2 (t))− ξ0

)
.

By the continuity of f , it is easy to see that

lim
(Ni,Ci)→(0,0)

f(t,W ∗i (t)− qNNi − qCCi) = f(t,W ∗i (t)), i = 1, 2.

Thus, we can choose ρ > 0 such that

f(t,W ∗i (t)− qNNi − qCCi) > f(t,W ∗i (t))− ξ0
1− ε

, ∀ ‖(Ni(·), Ci(·))‖ < ρ. (3.8)

By the continuity of the solutions with respect to the initial values, there exists a
σ > 0 such that for all (N0

1 , N
0
2 , C

0
1 , C

0
2 ) ∈ X0 with

‖(N0
1 , N

0
2 , C

0
1 , C

0
2 )− 0̂‖ ≤ σ,

there holds ‖u(t, (N0
1 , N

0
2 , C

0
1 , C

0
2 ))− u(t, 0̂)‖ < ρ, ∀ t ∈ [0, τ ].

Claim.
lim sup
n→∞

dist(Sn(N0
1 , N

0
2 , C

0
1 , C

0
2 ), 0̂) ≥ σ.

Assume, by contradiction, that the above conclusion does not hold. Then we have

lim sup
n→∞

dist(Sn(N0
1 , N

0
2 , C

0
1 , C

0
2 ), 0̂) < σ,

for some (N0
1 , N

0
2 , C

0
1 , C

0
2 ) ∈ X0. Without loss of generality, we assume that

dist(Sn(N0
1 , N

0
2 , C

0
1 , C

0
2 ), 0̂) < σ, ∀ n ≥ 0.

It follows that

‖u(t, Sn(N0
1 , N

0
2 , C

0
1 , C

0
2 ))− u(t, 0̂)‖ < ρ, ∀ t ∈ [0, τ ], n ≥ 0.

For any t ≥ 0, let t = mτ + t′, where t′ ∈ [0, τ), and m is the largest integer

less than or equal to t
τ . Therefore, we have ‖u(t, (N0

1 , N
0
2 , C

0
1 , C

0
2 )) − u(t, 0̂)‖ =

‖u(t′, Sm(N0
1 , N

0
2 , C

0
1 , C

0
2 )) − u(t′, 0̂)‖ < ρ. Note that (N1(t), N2(t), C1(t), C2(t)) =

u(t, (N0
1 , N

0
2 , C

0
1 , C

0
2 )) and u(t, 0̂) = 0̂, ∀ t ≥ 0. It then follows that ‖(Ni(t), Ci(t))‖ <

ρ, ∀ t ≥ 0 and i = 1, 2. Thus, (3.8) implies that

f(t,W ∗i (t)− qNNi − qCCi) > f(t,W ∗i (t))− ξ0
1− ε

, t ≥ 0, i = 1, 2. (3.9)

From the first two equations (3.3), it follows that{
dN1

dt ≥ −α1(t)N1 + α2(t)N2 + [(1− ε)f(t,W ∗1 (t))−m− ξ0]N1, ∀ t ≥ 0,
dN2

dt ≥ β1(t)N1 − β2(t)N2 + [(1− ε)f(t,W ∗2 (t))−m− ξ0]N2, ∀ t ≥ 0,

(3.10)
Since (N0

1 , N
0
2 , C

0
1 , C

0
2 ) ∈ X0 and regarding [23, Theorem 4.1.1] as generalized to

nonautonomous systems, the irreducibility of the cooperative matrix(
−α1(t) + [(1− ε)f(t,W∗1 (t))−m] α2(t)

β1(t) −β2(t) + [(1− ε)f(t,W∗2 (t))−m]

)
(3.11)
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and the first two equations of system (3.3) imply that (N1(t), N2(t))T � (0, 0), ∀ t >
0. Here, W∗i (t) = W ∗i (t) − qNNi − qCCi, i = 1, 2. Fix t0 > 0, it follows that
(N1(t0), N2(t0))T � (0, 0).

By Lemma 2.3, it follows that there exists a positive, τ -periodic function J(t)
and µ̃ = 1

τ lnr(ΦFεξ0
(·)−V(·)(τ)) such that J̄(t) := b̄eµ̂(t−t0)J(t) is a solution of

dx(t)

dt
=
(
Fεξ0(t)−V(t)

)
x(t),

where b̄ satisfies J̄(t0) := b̄J(t0) ≤ (N1(t0), N2(t0)). The standard comparison
theorem (see, e.g., [25, Theorem B.1]) implies that

(N1(t), N2(t)) ≥ J̄(t), ∀ t ≥ t0.

In particular, there exists n1 such that

(N1(nτ), N2(nτ)) ≥ J̄(nτ), ∀ n ≥ n1.

Since µ̃ > 0, it follows that J̄(nτ) → ∞ as n → ∞. Thus, (N1(nτ), N2(nτ)) → ∞
as n→∞. This contradiction completes the proof.

Now we are ready to state the main result of this section, which indicates that
Rε0 is a threshold index for the persistence of algae.

Theorem 3.1. The following statements hold.

(i) If Rε0 < 1, then the trivial solution 0̂ := (0, 0, 0, 0) is globally attractive for
system (3.3) in X;

(ii) If Rε0 > 1, there exists η > 0 such that for any solution (N1(t), N2(t), C1(t),
C2(t)) with initial value (N0

1 , N
0
2 , C

0
1 , C

0
2 ) ∈ X0 satisfies

lim inf
t→∞

Ni(t) ≥ η, for some i = 1, 2.

Moreover, system (3.3) admits at least one positive τ -periodic solution

(Ñ1(t), Ñ2(t), C̃1(t), C̃2(t)).

Proof. Assume that Rε0 < 1, that is, r(ΦFε(·)−V(·)(τ)) < 1. From the first two
equations of (3.3), it follows that

dN1

dt ≤ −α1(t)N1 + α2(t)N2 + [(1− ε)f(t,W ∗1 (t))−m]N1, t > 0,
dN2

dt ≤ β1(t)N1 − β2(t)N2 + [(1− ε)f(t,W ∗2 (t))−m]N2, t > 0,

Ni(0) = N0
i ≥ 0, i = 1, 2.

(3.12)

By Lemma 2.3, it follows that there exists a positive, τ -periodic function v(t) and
µε = 1

τ ln[r(ΦFε(·)−V(·)(τ))] such that v̄(t) := āeµ
εtv(t) is a solution of

dx(t)

dt
= (Fε(t)−V(t))x(t),

where ā satisfies v̄(0) := āv(0) ≥ (N1(0), N2(0), C1(0), C2(0)). The standard com-
parison theorem (see, e.g., [25, Theorem B.1]) implies that

(N1(t), N2(t), C1(t), C2(t)) ≤ v̄(t), ∀ t ≥ 0.

Since µε < 0, it follows that v̄(t) → 0 as t → ∞. Thus, (N1(t), N2(t)) → 0
as t → ∞. This implies that (C1, C2) is asymptotic to (2.5). By the theory of
asymptotically periodic semiflows (see, e.g., [29] or [30, section 3.2]), it follows that
limt→∞(C1(t), C2(t)) = (0, 0). We complete the proof of Part (i).
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Next, we consider the case where Rε0 > 1. From (3.1) and (3.2), it follows that
the discrete-time system {Sn}n≥0 admits a global attractor in X. Now we prove
that {Sn}n≥0 is uniformly persistent with respect to (X0, ∂X0).

Given (N0
1 , N

0
2 , C

0
1 , C

0
2 ) ∈ X0. Then by [23, Theorem 4.1.1] as generalized to

nonautonomous systems, the irreducibility of the cooperative matrix (3.11) and the
first two equations of system (3.3) imply that (N1(t), N2(t))T � (0, 0), ∀ t > 0.
Hence, X and X0 are positively invariant. Clearly, ∂X0 is relatively closed in X.

Let

M∂ = {(N0
1 , N

0
2 , C

0
1 , C

0
2 ) ∈ ∂X0 : Sn(N0

1 , N
0
2 , C

0
1 , C

0
2 ) ∈ ∂X0, ∀ n ≥ 0}.

We are going to prove that

M∂ := {(0, 0, C0
1 , C

0
2 ) ∈ ∂X0 : C0

1 ≥ 0, C0
2 ≥ 0}. (3.13)

It suffices to prove that for any (N0
1 , N

0
2 , C

0
1 , C

0
2 ) ∈M∂ , we have (N1(mτ), N2(mτ))

= (0, 0), ∀ m ≥ 0. If it is not true, then there exists m1 ≥ 0 such that (N0
1 , N

0
2 , C

0
1 ,

C0
2 ) ∈ M∂ and (N1(m1τ), N2(m1τ)) > (0, 0). Hence, the irreducibility of the coop-

erative matrix (3.11) implies that (N1(mτ), N2(mτ))T � (0, 0), ∀ m > m1. This
contradicts the definition of M∂ , and hence, (3.13) is true.

Note that every orbit in M∂ approaches to {0̂}, and {0̂} is acyclic in M∂ . By
[30, Theorem 1.3.1], it follows that {Sn}n≥0 is uniformly persistent with respect
to (X0, ∂X0). By [30, Theorem 3.1.1], the solutions of system (3.3) are uniformly
persistent with respect to (X0, ∂X0), that is, there exists a η > 0 such that for
any solution (N1(t), N2(t), C1(t), C2(t)) with initial value (N0

1 , N
0
2 , C

0
1 , C

0
2 ) ∈ X0

satisfies lim inft→∞Ni(t) ≥ η, for some i = 1, 2.
Furthermore, [30, Theorem 1.3.6] implies that S has a fixed point

(Ñ1(0), Ñ2(0), C̃1(0), C̃2(0)) ∈ X0.

The irreducibility of the cooperative matrix (3.11) implies

(Ñ1(t), Ñ2(t))� 0, ∀ t > 0.

From the third equation of (3.3), we have

C̃1(t) = e−
∫ t
0
[α1(s1)+k]ds1

[∫ t

0

e
∫ s2
0 [α1(s1)+k]ds1Λ(s2)ds2 + C̃1(0)

]
, (3.14)

where

Λ(t) := α2(t)C̃2(t) + ε
qN
qC
f(t,W ∗1 (t)− qN Ñ1(t)− qCC̃1(t))Ñ1(t). (3.15)

From (3.14) and (3.15), it is easy to see that C̃1(t) > 0, ∀ t > 0. Similarly, we can

show that C̃2(t) > 0, ∀ t > 0. We complete the proof.

By Theorem 3.1, [30, Theorem 1.3.1] and the similar arguments as in Theo-
rem 2.1, we can obtain the dynamics of the full system (1.5).

Theorem 3.2. The following statements hold.

(i) If Rε0 < 1, then the trivial solution (W ∗1 (t),W ∗2 (t), 0, 0, 0, 0) is globally attrac-
tive in R6

+ for (1.5);
(ii) If Rε0 > 1, then there exists η > 0 such that every solution

(R1(t), R2(t), N1(t), N2(t), C1(t), C2(t))
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of (1.5) with (R1(0), R2(0), N1(0), N2(0), C1(0), C2(0)) ∈ R6
+\{(a, b, 0, 0, c, d) :

a, b, c, d ∈ R+} satisfies

lim inf
t→∞

Ni(t) ≥ η, for some i = 1, 2.

Moreover, system (1.5) admits at least one positive τ -periodic solution

(R̃1(t), R̃2(t), Ñ1(t), Ñ2(t), C̃1(t), C̃2(t)),

where (Ñ1(t), Ñ2(t), C̃1(t), C̃2(t)) is a positive τ -periodic solution of system
(3.3).

4. Numerical simulations. We first explore influences of seasonality on algae
growth/bloom by numerical simulations of system (1.3). We choose the basal pa-
rameters by

D = 0.01, E = 0.3, ψ = 0.2, φ = 0.1,m = 0.1, (4.1)

and εp(t, R,N) = εµmax(t)K
K+R N . Then we select K = 1 and let

Rin
1 (t) = 0.5[u cos(2πt/365) + 1.01],

Rin
2 (t) = u cos(2πt/365) + 1.01,

µmax(t) = 0.3131.

(4.2)

As u varies in [0.4, 0.9], numerical calculations indicate that the algae growth/bloom
threshold R0 is a decreasing function of u (see Figure 4.1). Since the the time

0.4 0.5 0.6 0.7 0.8 0.9
0.99

0.995

1
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1.01

1.015

u

R
0

Figure 4.1. R0 decreases as the heterogenous coefficient u increases.

averages of Rin
1 and Rin

2 in (4.2) are given at u = 0, it suggests that the more time
heterogeneity of resource inputs, the lower of the basic reproduction number. One
more interesting thing from the simulation is that suitable heterogenous resource
inputs can reduce the algae growth/bloom threshold below unity under the condition
that the time averages are fixed.

Now, we select K = 0.2, take

Rin
1 (t) = 0.5[cos(2πt/365) + 1.01],

Rin
2 (t) = cos(2πt/365) + 1.01,

µmax(t) = 0.15[1.01 + u cos(2πt/365)]

(4.3)
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and fix the other parameters as in (4.1). Through the synthetic effects of heteroge-
nous resource inputs and heterogenous nutrient conversions, the algae growth/bloom
threshold becomes an increasing function of u (see Figure 4.2). This means that
the higher heterogenous conversion rate, the more risk algae blooming. In contrast,

0 0.2 0.4 0.6 0.8 1
0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

u

R
0

Figure 4.2. R0 increases as the heterogenous coefficient u increases.

if we replace the fluctuation functions of resource inputs by their time averages and
let only µmax(t) fluctuate by (4.3). Then numerical calculations show that R0 is
a decreasing function of u. Therefore, the combined-effects of resource oscillations
and conversion oscillations result in the monotonic increase of R0 in u. Further nu-
merical computations for model (1.3) support the above results for the persistence
and extinction of algae according to algae growth/bloom threshold R0. Let u = 0
in (4.3), which corresponds to R0 < 1 (see Figure 4.2). Then algae die out (see the
left panel of Figure 4.3). If u = 1 in (4.3), which corresponds to R0 > 1 (see Figure
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Figure 4.3. The left panel shows that algae die out where u takes
zero in (4.3). The right panel indicates that algae invade periodi-
cally where u takes 1 in (4.3).

4.2), then algae populations invade seasonally (see the right panel of Figure 4.3).
Inspired by practical management of algae blooming, we introduce a term −k1(t)

N1 in the third equation of (1.3) and a term −k2(t)N2 in the fourth equation of
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(1.3) to simulate the removal of algae by mechanical or chemical approaches. Then
we select K = 0.2, take

k1(t) = 0.04u[cos(2πt/365) + 1.01],

k2(t) = 0.08u[cos(2πt/365) + 1.01],

µmax(t) = 0.15[1.01 + cos(2πt/365)],

(4.4)

and fix Rin
i (t) by (4.3). Simulations indicate that R0 is below 1 when u > 0.5 (see

Figure 4.4).
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Figure 4.4. R0 decreases as the heterogenous coefficient u in-
creases and is below 1 when u > 0.5.

In the rest of this section, we focus on the numerical simulations of system (1.5) to
demonstrate influences of allocation coefficient ε and recycling coefficient qC on the
dynamics of (1.5). For illustration purpose, we take K = 0.2, qN = 0.0139, k = 0.1,
and use the parameter values in (4.1) and the time-dependent coefficients:

Rin
1 (t) = 0.0056(1.01 + cos(2πt/365)),

Rin
2 (t) = 0.005(1.01 + cos(2πt/365)),

µmax(t) = 0.15(1.01 + cos(2πt/365)).

(4.5)

In the first step, we fix k = 0.1 and then take ε = 0.012, 0.022, 0.032 respectively.
Numerical simulations indicate that algae concentrations decreases as ε increases,
which results in the decrease of toxin (see Figure 4.5). Further simulations indicate
that C2 increases as ε increases in the left of ε = 0.012 and approximates the
maximum at ε = 0.012 (see Figure 4.6). It should be noted that the enhance of
allocation coefficient ε adds more production coefficient of toxin, but lowers the
production of algae. Since algae are the main pool to produce toxin in the former
case, the concentration of toxin is reduced. However, the production coefficient of
toxin plays the major role in the latter, thus giving more toxin concentrations when
ε increases in the left of ε = 0.012.

In the second step, we fix ε = 0.01 and take qC = 0.01, 0.02, 0.03 respectively.
Numerical calculations show that toxin concentrations are reduced due to larger
inhibition coefficient qC in the production rates of toxins, but this coefficient gives
little effect on the concentrations of resources for large time (see Figure 4.7).
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Figure 4.5. The left panel shows that algae decrease as ε in-
creases. The right panel indicates that toxin decreases as a result
of algae decrease.

5. Discussion. In this paper, we analyze two mathematical models which were es-
tablished to represent the growth of populations of toxic flagellates or cyanobacteria
in the cove-main lake. Large lakes often have a number of smaller adjoining coves,
and that previous models either treat these as an ensemble, or focus on a single
cove [9]. For the approach where an ensemble of fringing coves is represented as a
hydraulic storage zone, the authors in [9] proposed an advection-dispersion-reaction
system to model the interactions of nutrient, algae and their toxins in a riverine
reservoir. Those mathematical analyses of this model are given in [13]. Here, we
concentrate on the study of another approach, that is, we focus on the investi-
gation of the dynamics of nutrient, algae and their toxins with exchange between
a single cove and a large lake. To incorporate the influence of seasonal tempera-
ture variations on non-steady dynamics, the coefficients in the model systems are
time-dependent.

For many flagellate toxins, the toxin contains little or none of the limiting nutrient
and the model (1.3) is more appropriate. Since the first four equations of (1.3) are
independent of the equations of C1 and C2, this makes the analyses easier and
the results more complete. We first define the basic reproduction number, R0, for
the system (1.3) in (2.11). Then, we are able to prove that the washout periodic
state is globally stable if R0 < 1, and there exists a globally stable coexistence
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Figure 4.6. The left panel shows that toxin concentration C2 in-
crease as ε increases in the left of ε = 0.012. The right panel
indicates that C2 attains the maximum at ε = 0.012.
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Figure 4.7. The left panel shows that toxin concentration de-
creases as qC increases. The right panel indicates that the nutrient
recycling coefficient contributes little to the nutrient concentration
in the long run.
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periodic state if R0 > 1 (see Theorem 2.1 and Theorem 2.2) by appealing to the
theory of monotone dynamical systems and chain transitive sets (see, e.g., [23, 26]).
Although R0 is abstractly given in (2.11), we can calculate it numerically (see our
numerical simulations). For the special where the coefficients of (1.3) are all positive
constants ( i.e., the system (1.3) is temporally homogenous ), R0 is reduced into
the one defined in (2.13). For this homogenous case, it follows that R0 is the largest
real eigenvalue of FV−1 by (2.13) and the Perron-Frobenius Theorem (see, e.g., [23,
Theorem 4.3.1]), where FV−1 is given in (2.14).

The toxin production of cyanobacteria (cylindrospermopsin case) is assumed to
be proportional to the product of growth rate and abundance, and the governing
system is (1.5). In (3.7), we also define the basic reproduction number, Rε0, for the
system (1.5). Then we determine the threshold dynamics of system (1.5), namely,
the trivial periodic state is globally asymptotically stable, and the algae will be
washed out eventually if Rε0 < 1, while there exists at least one positive periodic
state and the algae can persist continuously when Rε0 > 1 (see Theorem 3.1 and
Theorem 3.2). In general, the uniqueness and stability of this positive periodic state
remain open. However, we point out that we are able to prove the positive periodic
state is unique and globally stable for system (1.5) under the additional assumption:

m (algal mortality) = k (toxin decay).

Mathematically, (1.5) is more tractable if we further impose this extra assumption
(mathematical proofs not shown). When the coefficients of (1.5) are all positive
constants, we can also show that Rε0 is the largest real eigenvalue of FεV−1 :=
(1− ε)FV−1, where FV−1 is given in (2.14).

There might be opportunities to mitigate algal blooms in some reservoirs where
toxic blooms have occurred. It was recognized that mathematical modeling can
provide assistance in management of harmful algae within coves through flow ma-
nipulations. Here, we rigorously determine a threshold index, the basic reproduction
number for the algae, and show that it can predict the algal persistence or extinc-
tion for the two-compartment model of algal dynamics with temporal variations
proposed by the authors in [9]. The basic reproduction number for the algae in-
volves: the main-cove characteristics (i.e. D(t) and E(t)); the inflowing nutrient
concentration ( Rin

1 (t) and Rin
2 (t) ); a value of the nutrient uptake rate (or growth

rate) f(t, R); and the value of period τ . We numerically compute the basic repro-
duction number and show the influences of seasonality on algae growth in Section
4. This study provides a computable formula that predicts the algal dynamics with
temporal variations.
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