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Abstract. In this paper, we analyze a system modeling the growth of single

phytoplankton populations in a water column, where population growth in-
creases monotonically with the nutrient quota stored within individuals. We

establish a threshold result on the global extinction and persistence of phy-

toplankton. Condition for persistence is shown to depend on the principal
eigenvalue of a boundary value problem, which is related to the physical trans-

port properties of the water column (i.e. the diffusivity and the sinking speed),

nutrient uptake rate, and growth rate.

1. Introduction. In ecology, the understanding of competition between species
for resources is a fundamental ecological issue. Much classical competition theory
was developed for populations in well-mixed habitats, such as chemostats, in which
a nutrient resource is supplied via an inflow, and a balancing outflow removes nutri-
ent and organisms [26]. Classical competition models assume a direct relationship
between the external concentration of nutrients and the population growth of organ-
isms, without any intermediate steps of nutrient storage within cells. More precisely,
those models ignore differences between individuals, using one ordinary differential
equation to govern the growth of each species. These population growth are coupled
to dynamics of one or more resources by assuming a constant quota of nutrient per
individual, or equivalently, a constant yield of individuals from consumption of a
unit of resource [6].
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In phytoplankton ecology, it has long been known that the quota is not a fixed
constant. It can vary depending on the growth rate of population. This led to the
following internal storage model [4, 25, 26]:

dR
dt = (R(0) −R)d−

∑2
j=1 ρj(R,Qj)Nj ,

dNi
dt = (µi(Qi)− d)Ni, i = 1, 2,
dQi
dt = ρi(R,Qi)− µi(Qi)Qi, i = 1, 2

R(0) ≥ 0, Ni(0) ≥ 0, Qi(0) ≥ Qmin,i, i = 1, 2.

(1.1)

For i=1,2, Qi(t) represents the average amount of stored nutrient per cell of i-th
population at time t, µi(Qi) is the growth rate of species i as a function of cell
quota Qi, ρi(R,Qi) is the per capita nutrient uptake rate, per cell of species Ni as a
function of nutrient concentration R and cell quota Qi, Qmin,i denotes the threshold
cell quota below which no growth of species i occurs.

The growth rate µi(Qi) takes the forms [2, 3, 4]:

µi(Qi) = µi∞

(
1− Qmin,i

Qi

)
,

or (1.2)

µi(Qi) = µi∞
(Qi −Qmin,i)+

Ki + (Qi −Qmin,i)+
,

where (Qi −Qmin,i)+ is the positive part of (Qi −Qmin,i) and µi∞ is the maximal
growth rate of the species. According to Grover [5], the uptake rate ρi(R,Qi) takes
the form:

ρi(R,Qi) = ρmax,i(Qi)
R

ki +R
,

(1.3)

ρmax,i(Qi) = ρhigh
max,i − (ρhigh

max,i − ρ
low
max,i)

Qi −Qmin,i

Qmax,i −Qmin,i
,

where Qmin,i ≤ Qi ≤ Qmax,i. Cunningham and Nisbet [2, 3] took ρmax,i(Qi) to be
a constant.

Motivated by these examples, we assume that µi(Qi) is defined and continuously
differentiable for Qi ≥ Qmin,i > 0 and satisfies

µi(Qi) ≥ 0, µ′i(Qi) > 0 and is continuous for Qi ≥ Qmin,i, µi(Qmin,i) = 0. (1.4)

We assume that ρi(R,Qi) is continuously differentiable for R > 0 and Qi ≥ Qmin,i

and satisfies

ρi(0, Qi) = 0,
∂ρi
∂R

> 0,
∂ρi
∂Qi

≤ 0. (1.5)

In particular, ρi(R,Qi) > 0 when R > 0.
Next, we assume that Ui = NiQi, i = 1, 2, is the total amount of stored nutrient

at time t for the species i. Dividing the quantity Ui by Ni, then yields the average
quota per individual, which is identical to the quantity Qi under the assumption of
a well mixed system. Then system (1.1) can be rewritten as follows:

dR

dt
= (R(0) −R)d−

2∑
j=1

ρj(R,
Uj
Nj

)Nj ,

dNi
dt

= [µi(
Ui
Ni

)− d]Ni, i = 1, 2, (1.6)



SINGLE PHYTOPLANKTON SPECIES GROWTH IN A WATER COLUMN 609

dUi
dt

= ρi(R,
Ui
Ni

)Ni − dUi, i = 1, 2,

R(0) ≥ 0, Ui(0) ≥ 0, Ni(0) ≥ 0, i = 1, 2.

It is not hard to see that the following conservation properties hold (see, e.g., [25,
26]):

R+ U1 + U2 = R(0) +O(e−dt) as t→∞.

Thus, system (1.6) can be reduced into a limiting system which is a type-K mono-
tone system (see, e.g., [25, 26]). Smith and Waltman [25, 26] used the theory of
monotone dynamical system to prove only one species can survive for this inter-
nal storage model (1.1). Therefore, for models with constant quota [13] as well as
for variable-internal-stores models [17, 25], we have conclusions that two or more
species cannot coexist in a well mixed habitat with only a single limiting resource,
a result known as the Competitive Exclusion Principle [6].

For competition models with constant quota, several works have now considered
populations and resources that are distributed in spatially variable habitats. A
typical model is the unstirred chemostat model [13, 20, 21] that was introduced as
a poorly mixed analog of the chemostat with transport of nutrient and organisms by
diffusion. Similar systems were also constructed for competition in the flow reactor
habitat, with transport of nutrient and organisms by both advection and diffusion
[1, 10]. The flow reactor and its modifications are very relevant because they can
provide a simple model for riverine reservoirs [9, 10]. In contrast to models in a
well-mixed habitat, it is possible for two species with constant quota to coexist on a
single limiting resource in a spatially variable habitat. As mentioned in the previous
paragraphs, it was known that for many microorganisms the quota of nutrient per
individual varies dynamically, so that nutrient is stored internally within individuals.
Intuitively, quota variation in spatially variable habitats could allow individuals
to obtain nutrient in a rich zone of a habitat, for later use to survive passage
through a poor zone [12]. A full description of quota variation in a spatially variable
habitat should represent the distribution of quotas over individuals, as well as that
of individuals and nutrient over space. The existing models are mathematically
difficult [11] and computationally challenging [7].

Hsu et al. [18] suggested another approach that arises from averaging over dif-
ferences among individuals at a given location, in their amounts of stored nutrient.
The authors in [12] extend the results obtained concerning competition with vari-
able quota and nutrient storage in the unstirred chemostat [18] to the flow reactor
habitat, using a similar approach. In [8], the author further proposes the following
competition model with variable quota and nutrient storage in a water column:

∂R
∂t = δ ∂

2R
∂x2 − ρ1(R, U1

N1
)N1 − ρ2(R, U2

N2
)N2, x ∈ (0, L), t > 0,

∂Ni
∂t = δ ∂

2Ni
∂x2 − νi ∂Ni∂x + µi(

Ui
Ni

)Ni, x ∈ (0, L), t > 0, i = 1, 2,
∂Ui
∂t = δ ∂

2Ui
∂x2 − νi ∂Ui∂x + ρi(R,

Ui
Ni

)Ni, x ∈ (0, L), t > 0, i = 1, 2,

(1.7)

with boundary conditions
∂R
∂x (0, t) = 0, R(L, t) = R(0)(t),

νiNi(0, t)− δ ∂Ni∂x (0, t) = νiUi(0, t)− δ ∂Ui∂x (0, t) = 0, i = 1, 2,

Ni(L, t) = Ui(L, t), i = 1, 2, t > 0,

(1.8)
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and initial conditions{
R(x, 0) = R0(x) ≥ 0, Ni(x, 0) = N0

i (x) ≥ 0,

Ui(x, 0) = U0
i (x) ≥ 0, 0 < x < L, i = 1, 2,

(1.9)

where the initial-value functions N0
i (x), U0

i (x) satisfy
U0
i (·)

N0
i (·) ≥ Qmin,i, i = 1, 2. The

spatial coordinate x represents depth of a water column, with x = 0 being the
surface and x = L the bottom. Dissolved nutrient R(x, t) diffuses with diffusivity δ.
The boundary conditions of R(x, t) are zero-flux condition at the surface (x = 0),
and a periodically varying supply of the nutrient, R(0)(t), at the bottom of the
habitat (x = L). Population density transports at the same diffusivity δ and moves
by advection toward the bottom of the habitat at the sinking speed νi. The nutrient
taken up by individuals is carried within these individuals, so we assume that Ui(x, t)
follows the same transport processes as Ni(x, t). The boundary conditions of Ui(x, t)
and Ni(x, t) are zero-flux conditions at the surface of the habitat, and absorbing
conditions at the bottom. The functions µi(Qi) and ρi(R,Qi) satisfy (1.4) and (1.5)
respectively, i = 1, 2. Note that we can calculate the average quota at a location as

Qi(x, t) = Ui(x,t)
Ni(x,t)

, and apply the functions µi and ρi to this average.

In this paper, we shall focus on the analysis of the single population model
corresponding to system (1.7)-(1.9) with a constant supply of the nutrient, R(0)(t) ≡
R(0). Mathematically, it simply means that we set R(0)(t) ≡ R(0), and (N1, U1) =
(0, 0) or (N2, U2) = (0, 0). In order to simplify notation, all subscripts are dropped
in the remaining equations and we consider

∂R
∂t = δ ∂

2R
∂x2 − ρ(R, UN )N, x ∈ (0, L), t > 0,

∂N
∂t = δ ∂

2N
∂x2 − ν ∂N∂x + µ( UN )N, x ∈ (0, L), t > 0,

∂U
∂t = δ ∂

2U
∂x2 − ν ∂U∂x + ρ(R, UN )N, x ∈ (0, L), t > 0,

(1.10)

with boundary conditions
∂R
∂x (0, t) = 0, R(L, t) = R(0),

νN(0, t)− δ ∂N∂x (0, t) = νU(0, t)− δ ∂U∂x (0, t) = 0,

N(L, t) = U(L, t) = 0, t > 0,

(1.11)

and initial conditions{
R(x, 0) = R0(x) ≥ 0, N(x, 0) = N0(x) ≥ 0,

U(x, 0) = U0(x) ≥ 0, 0 < x < L.
(1.12)

The organization of this paper is as follows. In section 2, we study the well-posedness
and establish a threshold result on the global extinction and persistence for system
(1.10)-(1.12) in terms of the principal eigenvalue of an eigenvalue problem by ap-
pealing to the theory of uniformly persistence. The loss of a conservative law in
our system makes our analysis quite different from those in [18]. A brief discussion
section completes the paper.

2. Mathematical analysis of system (1.10)-(1.12). This section is devoted to
the analysis of system (1.10)-(1.12). Note that the boundary condition (1.11) at
x = L is Dirichlet-type. Let the following transformation:

W (x, t) = R(0) −R(x, t).
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Then system (1.10)-(1.12) becomes
∂W
∂t = δ ∂

2W
∂x2 + ρ(R(0) −W, UN )N, x ∈ (0, L), t > 0,

∂N
∂t = δ ∂

2N
∂x2 − ν ∂N∂x + µ( UN )N, x ∈ (0, L), t > 0,

∂U
∂t = δ ∂

2U
∂x2 − ν ∂U∂x + ρ(R(0) −W, UN )N, x ∈ (0, L), t > 0,

(2.1)

with boundary conditions
∂W
∂x (0, t) = 0, W (L, t) = 0,

νN(0, t)− δ ∂N∂x (0, t) = νU(0, t)− δ ∂U∂x (0, t) = 0,

N(L, t) = U(L, t) = 0, t > 0,

(2.2)

and initial conditions{
W (x, 0) = W 0(x) ≥ 0, N(x, 0) = N0(x) ≥ 0,

U(x, 0) = U0(x) ≥ 0, 0 < x < L.
(2.3)

Let Ω = (0, L) ⊆ R, and p ∈ (1,∞) be fixed. For each β ∈ ( 1
2 + 1

2p , 1), let

Xβ be the fractional power space of Lp(Ω) with respect to the operator − ∂2

∂x2 and

the boundary condition ∂W
∂x (0, t) = 0, W (L, t) = 0 (see, e.g., [14]). Then Xβ is

an ordered Banach space with the order cone X+
β consisting of all non-negative

functions in Xβ , and X+
β has non-empty interior Int(X+

β ). Moreover, Xβ ⊆ C1+λ(Ω̄)

with continuous inclusion for λ ∈ [0, 2β − 1 − 1
p ) (see, e.g., [16]). Similarly, we

assume that Yβ is the fractional power space of Lp(Ω) with respect to the operator

− ∂2

∂x2 + ν ∂
∂x and the boundary condition νN(0, t) − δ ∂N∂x (0, t) = 0, N(L, t) = 0.

Let E = Xβ × Yβ × Yβ and P = X+
β × Y+

β × Y+
β . Then E is an ordered Banach

space with the order cone P consisting of all non-negative functions in E, and P has
non-empty interior Int(P). Denote the norm on E by ‖ · ‖β . Then, there exists a
constant kβ > 0 such that

‖ φ ‖∞:= max
x∈Ω̄
|(φ1(x), φ2(x), φ3(x))| ≤ kβ ‖ φ ‖β , ∀ φ ∈ E. (2.4)

The biologically relevant domain for the system (2.1)-(2.3) is given by

X =

{
(W 0, N0, U0) ∈ P : 0 ≤W 0(·) ≤ R(0),

U0(·)
N0(·)

≥ Qmin

}
. (2.5)

Lemma 2.1. For any (W 0, N0, U0) ∈ X, system (2.1)-(2.3) has a unique mild so-
lution (W (·, t), N(·, t), U(·, t)) with (W (·, 0), N(·, 0), U(·, 0)) = (W 0(·), N0(·), U0(·))
and (W (·, t), N(·, t), U(·, t)) ∈ X, for t ∈ [0, τ), where τ ≤ ∞.

Proof. By [24, Corollary 7.3.2], it is easy to see that if (W 0, N0, U0) ∈ P then
(W (·, t), N(·, t), U(·, t)) ∈ P, for t ∈ [0, τ), where τ ≤ ∞. From the first equation of
system (1.10)-(1.12), it is obvious that

if 0 ≤ R(·, 0) ≤ R(0), then 0 ≤ R(x, t) ≤ R(0), ∀ x ∈ [0, L], t ∈ [0, τ).

Thus, if 0 ≤W (·, 0) = R(0)−R(·, 0) ≤ R(0), then 0 ≤W (·, t) = R(0)−R(·, t) ≤ R(0),
for t ∈ [0, τ).

Next, we shall that if U0(·)
N0(·) ≥ Qmin, then U(·,t)

N(·,t) ≥ Qmin, for t ∈ [0, τ). It is easy

to see that

µ(Q) = G(Q)(Q−Qmin) where G(Q) =

∫ 1

0

µ′(sQ+ (1− s)Qmin)ds > 0.
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Introducing

H = U −Qminu,

we get that

µ(
U

u
) = G(

U

u
)
H

u
.

By calculation,

dHxx −Ht −QminG(
U

u
)H ≤ 0, x ∈ (0, L), t > 0,

with the boundary conditions

νH(0, t)− δ ∂H
∂x

(0, t) = H(L, t) = 0, t > 0.

Thus,

H(·, t) ≥ 0, ∀ t ∈ [0, τ).

Let

Ñ(x, t) = e−
ν
2δ xN(x, t), Ũ(x, t) = e−

ν
2δ xU(x, t). (2.6)

Then the system (2.1)-(2.3) becomes
∂W
∂t = δ ∂

2W
∂x2 + ρ(R(0) −W, Ũ

Ñ
)e

ν
2δ xÑ , x ∈ (0, L), t > 0,

∂Ñ
∂t = δ ∂

2Ñ
∂x2 − ν2

4δ Ñ + µ( Ũ
Ñ

)Ñ , x ∈ (0, L), t > 0,
∂Ũ
∂t = δ ∂

2Ũ
∂x2 − ν2

4δ Ũ + ρ(R(0) −W, Ũ
Ñ

)Ñ , x ∈ (0, L), t > 0,

(2.7)

with boundary conditions
∂W
∂x (0, t) = 0, W (L, t) = 0,

−∂Ñ∂x (0, t) = − ν
2δ Ñ(0, t), Ñ(L, t) = 0,

−∂Ũ∂x (0, t) = − ν
2δ Ũ(0, t), Ũ(L, t) = 0, t > 0,

(2.8)

and initial conditions{
W (x, 0) = W 0(x) ≥ 0, Ñ(x, 0) = N0(x)e−

ν
2δ x ≥ 0,

Ũ(x, 0) = U0(x)e−
ν
2δ x ≥ 0, 0 < x < L.

(2.9)

Lemma 2.2. For any (W 0, N0, U0) ∈ X, the system (2.1)-(2.3) has a unique solu-
tion (W (·, t), N(·, t), U(·, t)) ∈ X defined on [0,∞) with (W (·, 0), N(·, 0), U(·, 0)) =
(W 0(·), N0(·), U0(·)) and it generates a semiflow Ψ(t) : X→ X defined by

Ψ(t)φ = (W (·, t), N(·, t), U(·, t)), t ≥ 0. (2.10)

Furthermore, Ψ(t) : X→ X has a global compact attractor in X, ∀ t ≥ 0.

Proof. We first show that

lim sup
t→∞

[e−
ν
2δ xU(x, t)] ≤ R(0), uniformly for x ∈ [0, L]. (2.11)

Let

V (x, t) = Ũ(x, t)−W (x, t).

Then it follows from the first and third equations of (2.7) that V (x, t) satisfies{
∂V
∂t ≤ δ

∂2V
∂x2 , x ∈ (0, L), t > 0,

−∂V∂x (0, t) = − ν
2δU(0, t) ≤ 0, V (L, t) = 0, t > 0.

(2.12)
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By [24, Theorem 7.3.4], it then follows that

V (x, t) ≤ V̂ (x, t), ∀ (x, t) ∈ (0, L)× (0, τ), (2.13)

where τ is defined in Lemma 2.1, and V̂ (x, t) satisfies
∂V̂
∂t = δ ∂

2V̂
∂x2 , x ∈ (0, L), t > 0,

−∂V̂∂x (0, t) = 0, V̂ (L, t) = 0, t > 0,

V̂ (x, 0) = V (x, 0), x ∈ (0, L).

(2.14)

It is easy to see that lim
t→∞

V̂ (x, t) = 0 uniformly for x ∈ [0, L]. Therefore,

lim
t→∞

V (x, t) ≤ 0, uniformly for x ∈ [0, L].

Thus,

lim sup
t→∞

Ũ(x, t) = lim sup
t→∞

[V (x, t) +W (x, t)] ≤ R(0), uniformly for x ∈ [0, L].

From Lemma 2.1, it follows that Ũ(x,t)

Ñ(x,t)
= U(x,t)

N(x,t) ≥ Qmin, for x ∈ [0, L], t ∈ [0, τ),

which implies that

lim sup
t→∞

Ñ(x, t) ≤ R(0)

Qmin
, uniformly for x ∈ [0, L].

Thus, there exists r > 0 such that lim supt→∞ ‖(W (·, t), N(·, t), U(·, t))‖∞ ≤ r. By
the same arguments as in the proof of [28, Theorem 3.1], we conclude that there
exists r̂ > 0 such that

lim sup
t→∞

‖(W (·, t), N(·, t), U(·, t))‖β ≤ r̂,

which completes the proof of (2.11). This implies that Ψ(t) : X → X is point
dissipative. Obviously, Ψ(t) : X→ X is compact, ∀ t > 0. By [15, Theorem 3.4.8],
it follows that Ψ(t) : X→ X, t ≥ 0, has a global compact attractor.

Next, we consider a special case where the growth and uptake functions are
chosen specifically [8]. In this case, we can further obtain an improved relevant
domain for the system (2.1)-(2.3).

Proposition 2.1. Let

Y =

{
(W 0, N0, U0) ∈ P : 0 ≤W 0(·) ≤ R(0), Qmin ≤

U0(·)
N0(·)

≤ Qmax

}
.

Assume that µ(Q) takes the form in the first equation of (1.2), ρ(R,Q) takes the
form in (1.3), and

µ∞ ≥
ρlow

max

Qmax −Qmin
. (2.15)

Then for any (W 0, N0, U0) ∈ Y, system (2.1)-(2.3) has a unique mild solution
(W (·, t), N(·, t), U(·, t)) with (W (·, 0), N(·, 0), U(·, 0)) = (W 0(·), N0(·), U0(·)) and
(W (·, t), N(·, t), U(·, t)) ∈ Y, for t ∈ [0, τ), where τ ≤ ∞.
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Proof. From Lemma 2.1, it suffices to show that if U0(·)
N0(·) ≤ Qmax, then U(·,t)

N(·,t) ≤
Qmax, for t ∈ [0, τ). Set E = Ũ −QmaxÑ and Q = Ũ

Ñ
. Indeed, from (2.7)-(2.9), we

have

ρ(R(0) −W,Q)Ñ −Qmaxµ(Q)Ñ

≤ Ñ
[
ρhigh

max − (ρhigh
max − ρlow

max)

(
Q−Qmin

Qmax −Qmin

)
− Qmaxρ

low
max

Qmax −Qmin

(
1− Qmin

Q

)]
= Ñ

[
−ρhigh

max

(
Q−Qmax

Qmax −Qmin

)
+ ρlow

max

(
Q−Qmin

Qmax −Qmin

)(
Q−Qmax

Q

)]
= [(Q−Qmax)Ñ ]

[
−ρhigh

max

(
1

Qmax −Qmin

)
+ ρlow

max

(
Q−Qmin

Qmax −Qmin

)(
1

Q

)]
= c(x, t)E,

(2.16)
where

c(x, t) = −ρhigh
max

(
1

Qmax −Qmin

)
+ ρlow

max

(
Q−Qmin

Qmax −Qmin

)(
1

Q

)
is clearly bounded. From the equations for Ũ and Ñ we then deduce

Et ≤ δExx + [c(x, t)− ν2/(4δ)]E.

Since E(·, 0) ≤ 0, it follows from the comparison principle to conclude that

E(·, t) ≤ 0, ∀ t ∈ [0, τ).

Remark 2.1. The condition (2.15) is essential when we establish the inequality
(2.16). If fact, the author in [8] takes µ∞ as follows:

µ∞ =
ρlow

max

Qmax −Qmin
.

Consider the following system{
dQ
dt = ρ(R(0), Q)− µ(Q)Q,

Q(0) ≥ Qmin.
(2.17)

It is easy to see that there exists Qc such that Qc is the unique equilibria of system
(2.17), and hence,

ρ(R(0), Qc)− µ(Qc)Qc = 0. (2.18)

Then we consider the following eigenvalue problem:{
δφ′′(x)− νφ′(x) + µ(Qc)φ(x) = λφ(x), x ∈ (0, L),

νφ(0)− δφ′(0) = φ(L) = 0.
(2.19)

Suppose λ0 is the principal eigenvalue corresponding to the positive eigenfunction
φ0(x) which is uniquely determined by the normalization max[0,L]φ0(x) = 1.

Recall that X is the biologically relevant domain for system (2.1)-(2.3), which is
defined in (2.5). For convenience, we set

X0 := {(W 0(·), N0(·), U0(·)) ∈ X : W 0(·) 6≡ 0, N0(·) 6≡ 0, U0(·) 6≡ 0},

and ∂X0 := X\X0.



SINGLE PHYTOPLANKTON SPECIES GROWTH IN A WATER COLUMN 615

Theorem 2.1. Assume that λ0 is principal eigenvalue of (2.19). For any (W 0, N0,
U0) ∈ X, let (W (·, t), N(·, t), U(·, t)) be the solution of the system (2.1)-(2.3) with

(W (·, 0), N(·, 0), U(·, 0)) = (W 0(·), N0(·), U0(·)).

Then the following statements are valid:

(i) If λ0 < 0, then lim
t→∞

‖(W (·, t), N(·, t), U(·, t))‖β = 0;

(ii) If λ0 > 0, then system (2.1)-(2.3) is uniformly persistent with respect to
(X0, ∂X0) in the sense that there is an η > 0 such that for any (W 0, N0, U0) ∈
X0, we have

lim inf
t→∞

‖(W (·, t), N(·, t), U(·, t))‖β ≥ η.

Furthermore, the system (2.1)-(2.3) admits at least one (componentwise) pos-

itive steady state (Ŵ (x), N̂(x), Û(x)).

Proof. We first prove Part (i). From the last two equations of (2.1), it follows that{
∂N
∂t = δ ∂

2N
∂x2 − ν ∂N∂x + µ( UN )N, x ∈ (0, L), t > 0,

∂U
∂t ≤ δ

∂2U
∂x2 − ν ∂U∂x + ρ(R(0), UN )N, x ∈ (0, L), t > 0.

(2.20)

Consider the following auxiliary system
∂N
∂t = δ ∂

2N
∂x2 − ν ∂N∂x + µ( UN )N, x ∈ (0, L), t > 0,

∂U
∂t = δ ∂

2U
∂x2 − ν ∂U∂x + ρ(R(0), UN )N, x ∈ (0, L), t > 0,

νN(0, t)− δ ∂N∂x (0, t) = νU(0, t)− δ ∂U∂x (0, t) = 0,

N(L, t) = U(L, t) = 0, t > 0.

(2.21)

Note that (2.21) is a cooperative system. Given C > 0, we set

N̄(x, t) = Ceλ
0tφ0(x), Ū(x, t) = CQce

λ0tφ0(x),

where φ0(x) is the eigenfunction corresponding to λ0. With (2.18), it is easy to
see that (N̄(x, t), Ū(x, t)) satisfies system (2.21) and N̄(x, 0) = Cφ0(x), Ū(x, 0) =
CQcφ0(x). Choosing C > 0 such that (N0, U0) ≤ (N̄(x, 0), Ū(x, 0)). Then the
Comparison Principle implies that

(N(x, t), U(x, t)) ≤ (N̄(x, t), Ū(x, t)), t > 0.

Since λ0 < 0, it follows that lim
t→∞

(N̄(x, t), Ū(x, t)) = (0, 0) uniformly for x ∈ [0, L].

This implies that lim
t→∞

(N(x, t), U(x, t)) = (0, 0) uniformly for x ∈ [0, L]. Thus, the

equation for W is asymptotic to the reaction-diffusion equation{
∂W
∂t = δ ∂

2W
∂x2 , x ∈ (0, L), t > 0,

∂W
∂x (0, t) = 0, W (L, t) = 0, t > 0,

(2.22)

with initial condition. Then the theory for asymptotically autonomous semiflows
(see, e.g., [27, Corollary 4.3]) implies that lim

t→∞
W (x, t) = 0 uniformly for x ∈ [0, L].

Thus, lim
t→∞

‖(W (·, t), N(·, t), U(·, t))‖∞ = 0. By the same arguments as in the proof

of [28, Theorem 3.2 (1)], we conclude that lim
t→∞

‖(W (·, t), N(·, t), U(·, t))‖β = 0. The

proof of part (i) is finished.
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Next, we are in a position to prove part (ii). By the strong maximum prin-
ciple and the Hopf boundary lemma (see [23]), it follows that for any u0(·) :≡
(R0(·), N0(·), U0(·)) ∈ X0, we have

W (x, t,u0) > 0, N(x, t,u0) > 0, U(x, t,u0) > 0, ∀ x ∈ [0, L], t > 0,

that is, Ψ(t)X0 ⊆ X0 for all t ≥ 0.
Let

M∂ := {u0 ∈ ∂X0 : Ψ(t)u0 ∈ ∂X0,∀ t ≥ 0},
and ω(u0) be the omega limit set of the orbit O+(u0) := {Ψ(t)u0 : t ≥ 0}. We have
following claim.

Claim 1. ω(ψ) = {(0, 0, 0)}, ∀ ψ ∈M∂ .
For any given ψ ∈ M∂ , we have Ψ(t)ψ ∈ M∂ , ∀ t ≥ 0, that is, N(·, t, ψ) ≡ 0 or

W (·, t, ψ) ≡ 0 or U(·, t, ψ) ≡ 0, for any given t ≥ 0. In case where N(·, t, ψ) ≡ 0,

for any given t ≥ 0. From Lemma 2.1, it follows that U(·,t,ψ)
N(·,t,ψ) ≥ Qmin, t ≥ 0. This

implies that W satisfies system (2.22), and hence, lim
t→∞

W (x, t) = 0 uniformly for

x ∈ [0, L]. Similarly, U satisfies{
∂U
∂t = δ ∂

2U
∂x2 − ν ∂U∂x , x ∈ (0, L), t > 0,

νU(0, t)− δ ∂U∂x (0, t) = U(L, t) = 0, t > 0,

and hence, lim
t→∞

U(x, t) = 0 uniformly for x ∈ [0, L]. This shows that ω(ψ) =

{(0, 0, 0)}. In case where N(x0, t0, ψ) 6= 0, for some x0 ∈ [0, L] and t0 > 0. By
the strong maximum principle and the Hopf boundary lemma (see [23]), it follows
that N(x, t, ψ) > 0, for any x ∈ [0, L] and t ≥ t0. This implies that W (·, t, ψ) ≡ 0
or U(·, t, ψ) ≡ 0, for any given t ≥ t0. In case where W (·, t, ψ) ≡ 0, for any given
t ≥ t0, we substitute W (·, t, ψ) ≡ 0 into the first equation of (2.1) and we obtain

ρ(R(0),
U(·, t, ψ)

N(·, t, ψ)
)N(·, t, ψ) ≡ 0,

which implies that N(·, t, ψ) ≡ 0, for any given t ≥ t0, which is a contradiction.
In case where W (x̂0, t̂0, ψ) 6= 0, for some x̂0 ∈ [0, L] and t̂0 ≥ t0 > 0. By the
strong maximum principle and the Hopf boundary lemma (see [23]), it follows that
W (x, t, ψ) > 0, for any x ∈ [0, L] and t ≥ t̂0. This implies that U(·, t, ψ) ≡ 0, for
any given t ≥ t̂0. From Lemma 2.1, it follows that N(·, t, ψ) ≡ 0, for any given
t ≥ t̂0. This contradiction finishes the proof of claim 1.

Since λ0 > 0, there exists ε0 > 0 such that λ0
ε0 > 0 is the principal eigenvalue of

the following eigenvalue problem:{
δφ′′(x)− νφ′(x) + [µ(Qc)− ε0

Qc
]φ(x) = λφ(x), x ∈ (0, L),

νφ(0)− δφ′(0) = φ(L) = 0.
(2.23)

Suppose φ0
ε0(x) is the positive eigenfunction corresponding to λ0

ε0 , and φ0
ε0(x) is

uniquely determined by the normalization max[0,L]φ
0
ε0(x) = 1. It follows from

lim
W→0

ρ(R(0) −W, U
N

) = ρ(R(0),
U

N
)

that we can choose σ0 > 0 such that

ρ(R(0) −W, U
N

) > ρ(R(0),
U

N
)− ε0, for any |W |< σ0.
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Let σ̂0 := σ0

kβ
, where kβ is defined in (2.4). Then we further prove the following

claim.

Claim 2. (0, 0, 0) is a uniform weak repeller for the system (2.1)-(2.3) in the sense
that

lim sup
t→∞

‖Ψ(t)(W 0, N0, U0)− (0, 0, 0)‖β ≥ σ̂0, ∀ (W 0, N0, U0) ∈ X0.

Suppose, by contradiction, there exists (W 0, N0, U0) ∈ X0 such that

lim sup
t→∞

‖Ψ(t)(W 0, N0, U0)− (0, 0, 0)‖β < σ̂0.

Then, there exists t1 > 0 such that

‖Ψ(t)(W 0, N0, U0)‖∞ ≤ kβ‖Ψ(t)(W 0, N0, U0)‖β
< kβ σ̂0 = σ0, ∀ t ≥ t1, x ∈ [0, L].

Thus, there exists t1 > 0 such that

|W (x, t) |< σ0, ∀ t ≥ t1, x ∈ [0, L].

This implies that

ρ(R(0) −W (x, t),
U

N
) > ρ(R(0),

U

N
)− ε0, ∀ t ≥ t1, x ∈ [0, L]. (2.24)

From the last two equations of (2.1) and (2.24), it follows that{
∂N
∂t ≥ δ

∂2N
∂x2 − ν ∂N∂x + µ( UN )N − ε0

Qc
N, x ∈ (0, L), t ≥ t1,

∂U
∂t ≥ δ

∂2U
∂x2 − ν ∂U∂x + [ρ(R(0), UN )− ε0]N, x ∈ (0, L), t ≥ t1.

(2.25)

Consider the following auxiliary system
∂N
∂t = δ ∂

2N
∂x2 − ν ∂N∂x + µ( UN )N − ε0

Qc
N, x ∈ (0, L), t ≥ t1,

∂U
∂t = δ ∂

2U
∂x2 − ν ∂U∂x + [ρ(R(0), UN )− ε0]N, x ∈ (0, L), t ≥ t1,

νN(0, t)− δ ∂N∂x (0, t) = νU(0, t)− δ ∂U∂x (0, t) = 0,

N(L, t) = U(L, t) = 0, t ≥ t1.

(2.26)

Note that (2.26) is a cooperative system. Given m > 0, we set

N̂(x, t) = meλ
0
ε0
tφ0
ε0(x), Û(x, t) = mQce

λ0
ε0
tφ0
ε0(x).

With (2.18), it is easy to see that (N̂(x, t), Û(x, t)) satisfies system (2.26) and

N̂(x, t1) = meλ
0
ε0
t1φ0

ε0(x), Û(x, t1) = mQce
λ0
ε0
t1φ0

ε0(x). Since v0 :≡ (R0, N0, U0) ∈
X0, it follows that

N(x, t,v0) > 0, ∀ x ∈ [0, L], t > 0.

From Lemma 2.1, it follows that U(·,t,v0)
N(·,t,v0) ≥ Qmin, t ≥ 0. This implies that

U(x, t,v0) > 0, ∀ x ∈ [0, L], t > 0.

Thus, we may choose m > 0 such that

(N(x, t1,v
0), U(x, t1,v

0)) ≥ (N̂(x, t1), Û(x, t1)).

Then the Comparison Principle implies that

(N(x, t,v0), U(x, t,v0)) ≥ (N̂(x, t), Û(x, t)), t ≥ t1.
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Since λ0
ε0 > 0, it follows that lim

t→∞
N̂(x, t) = ∞, and hence, lim

t→∞
N(x, t,v0) = ∞.

This contradiction proves claim 2.
By Claims 1, Claims 2 and the continuous-time version of [29, theorem 1.3.3], it

follows that Ψ(t) : X→ X is uniformly persistent with respect to (X0, ∂X0) in the
sense that there is an η > 0 such that for any (W 0, N0, U0) ∈ X0, we have

lim
t→∞

‖Ψ(t)(W 0(·), N0(·), U0(·))‖β ≥ η.

Then, the uniform persistence stated in statement (ii) are true. By [22, Theorem 3.7
and Remark 3.10], it follows that Ψ(t) : X0 → X0 has a global attractor A0. It then

follows from [22, Theorem 4.7] that Ψ(t) has a steady-state solution (R̂, N̂ , Û) ∈ X0,

which satisfies Ŵ (x) > 0, N̂(x) > 0 and Û(x) > 0, for any x ∈ [0, L]. We complete
the proof of Part (ii).

3. Discussion. In this paper, we analyze a PDE system (1.10)-(1.12), or equiva-
lently (2.1)-(2.3) that models the growth of single phytoplankton species consuming
nutrients in a water column, which are capable of storing the nutrient within their
cells. Due to the loss of a conservative law, our system can not be reduced to a mono-
tone system, and the arguments used in [18] can not be applied to our model. We
first show that the biologically relevant domain for system (2.1)-(2.3) is positively
invariant (see Lemma 2.1), and solutions of our system are eventually bounded (see
Lemma 2.2). We can also obtain another biologically relevant domain for system
(2.1)-(2.3) if the growth and uptake functions are specifically chosen as in [8] (see
Proposition 2.1 and Remark 2.1). Next, we use theory of uniform persistence to
prove that the extinction/persistence of phytoplankton species is determined by the
principal eigenvalue of (2.19) (see Theorem 2.1). The principal eigenvalue involves
the diffusivity, the sinking speed, nutrient uptake rate, and growth rate (see (2.18)
and (2.19) ). It is worth noting that the crucial observations in the proof of The-
orem 2.1 are two auxiliary systems, (2.21) and (2.26). Since systems (2.21) and
(2.26) are both cooperative, the standard comparison principle can be used in our
analysis.

From Theorem 2.1, we know that λ0, the principal eigenvalue of (2.19), plays a
central role in the extinction/persistence of phytoplankton species. Next, we shall
adopt the results in [19, Section 5.3] to summarize how λ0 changes as δ or ν varies,
and give some biological interpretations. For a continuous function Φ(x), consider
the eigenvalue problem{

− δφxx + νφx + Φ(x)φ = Λφ, 0 < x < L,

δφx(0)− νφ(0) = φ(L) = 0.
(3.1)

We assume that the principal eigenvalue of (3.1) is denoted by Λ1(Φ(x)). Then
λ0 = −Λ1 (−µ(Qc)), and it follows from [19, Theorem 5.3] and [19, Theorem 5.4]
that we have the following observations and interpretations:

• If we consider λ0 as a function of ν (ν > 0), that is, λ0 = λ0(ν), then λ0(ν) is
a decreasing function of ν > 0, and

lim
ν→∞

λ0(ν) = −∞.

For sufficiently large sinking rate ν, we have shown that λ0(ν) must be negative,
and hence, the phytoplankton species goes to extinction. The larger ν is, the greater
the tendency is for the species to sink, that is, the phytoplankton species will tend
towards the bottom of water columns. Due to the absorbing boundary conditions
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at the bottom (i.e., N(L) = 0), this makes it easier for the phytoplankton species
to die out.

• If we consider λ0 as a function of δ, that is, λ0 = λ0(δ), then for any ν ≥ 0
and L > 0, we have

lim
δ→∞

λ0(δ) = −∞; lim
δ→0+

λ0(δ) =

{
µ(Qc) if ν = 0,

−∞ if ν > 0.

Although we are unable to investigate the monotonicity of the principal eigenvalue
λ0(δ) on the turbulent diffusion rate δ, we determine the asymptotic behaviors of
λ0(δ) for small turbulent diffusion rate δ, and large turbulent diffusion rate δ under
the case where the advection ν ≥ 0. For sufficiently large turbulent diffusion rate δ,
we have shown that λ0(δ) must be negative, and hence, the phytoplankton species
cannot bloom. In such situation, the habitat is a well-mixing water column and
the density of the phytoplankton species is the same at any position of the habitat.
Then the absorbing boundary conditions at the bottom (i.e., N(L) = 0) ensures that
the phytoplankton species cannot bloom. For sufficiently small turbulent diffusion
rate δ (poorly mixing water columns), we showed that the phytoplankton species
will always persist if advection ν = 0, while the phytoplankton species will always
go to extinction if advection ν > 0. We point out that the asymptotic behaviors
of λ0(ν) or λ0(δ) remains open when advection ν is negative. Although it will be
of interest to understand the asymptotic behaviors of λ0(L) for large/small water
column depth L, it remains unclear to us.

We have discussed the extinction/persistence of phytoplankton species, and es-
tablished the existence of steady-state solutions of the single population model
(2.1)-(2.3) under suitable conditions (see Theorem 2.1). However, the uniqueness
of steady-state solutions of system (2.1)-(2.3) remains open. To make the analysis
more tractable, we also assumed that the supply of the nutrient from the bottom
of the habitat is a constant, and we only investigated the single population model
in this study. In the near future, we shall study the two-species model (1.7)-(1.9)
with variable quota and nutrient storage in a water column, where the supply of
the nutrient is a time-periodic function.

Acknowledgments. We would like to thank the anonymous referee for careful
reading and helpful suggestions which led to improvements of our original manu-
script.

REFERENCES

[1] J. V. Baxley and S. B. Robinson, Coexistence in the unstirred chemostat, Appl. Math. Com-
putation, 89 (1998), 41–65.

[2] A. Cunningham and R. M. Nisbet, Time lag and co-operativity in the transient growth

dynamics of microalgae, J. Theoret. Biol., 84 (1980), 189–203.
[3] A. Cunningham and R. M. Nisbet, Transient and oscillation in continuous culture, Mathe-

matics in microbiology, 77–103, Academic Press, London, 1983.
[4] M. Droop, Some thoughts on nutrient limitation in algae, J. Phycol., 9 (1973), 264–272.

[5] J. P. Grover, Constant- and variable-yield models of population growth: Responses to environ-

mental variability and implications for competition, J. Theoret. Biol., 158 (1992), 409–428.
[6] J. P. Grover, Resource Competition, Chapman and Hall, London, 1997.

[7] J. P. Grover, Is storage an adaptation to spatial variation in resource availability?, The Amer-

ican Naturalist , 173 (2009), E44–E61.
[8] J. P. Grover, Resource storage and competition with spatial and temporal variation in resource

availability, The American Naturalist , 178 (2011), E124–E148.

http://www.ams.org/mathscinet-getitem?mr=MR1491693&return=pdf
http://dx.doi.org/10.1016/S0096-3003(97)81647-5
http://dx.doi.org/10.1016/S0022-5193(80)80003-8
http://dx.doi.org/10.1016/S0022-5193(80)80003-8
http://www.ams.org/mathscinet-getitem?mr=MR754190&return=pdf
http://dx.doi.org/10.1111/j.1529-8817.1973.tb04092.x
http://dx.doi.org/10.1007/978-1-4615-6397-6
http://dx.doi.org/10.1086/595751
http://dx.doi.org/10.1086/662163
http://dx.doi.org/10.1086/662163


620 LINFENG MEI, SZE-BI HSU AND FENG-BIN WANG

[9] J. P. Grover, K. W. Crane, J. W. Baker, B. W. Brooks and D. L. Roelke, Spatial variation of
harmful algae and their toxins in flowing-water habitats: a theoretical exploration, Journal

of Plankton Research, 33 (2011), 211–227.

[10] J. P. Grover, S. B. Hsu and F. B. Wang, Competition and coexistence in flowing habitats
with a hydraulic storage zone, Mathematical Biosciences, 222 (2009), 42–52.

[11] J. P. Grover, S. B. Hsu and F. B. Wang, Competition between microorganisms for a single
limiting resource with cell quota structure and spatial variation, Journal of Mathematical

Biology, 64 (2012), 713–743.

[12] J. P. Grover and F.-B. Wang, Dynamics of a model of microbial competition with internal
nutrient storage in a flowing habitat, Applied Mathematics and Computation, 225 (2013),

747–764.

[13] S. B. Hsu, S. Hubbell and P. Waltman, Mathematical theoy for single nutrient competition
in continuous cultures of microorganisms, SIAM J. Appl. Math., 32 (1977), 366–383.

[14] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathemat-

ics, vol. 840, Berlin, New York, Springer, 1981.
[15] J. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society Prov-

idence, RI, 1988.

[16] P. Hess, Periodic-parabolic Boundary Value Problem and Positivity, Pitman Res. Notes
Math., 247, Longman Scientific and Technical, 1991.

[17] S. B. Hsu and T. H. Hsu, Competitive exclusion of microbial species for a single-limited
resource with internal storage, SIAM J. Appl. Math., 68 (2008), 1600–1617.

[18] S. B. Hsu, J. Jiang and F. B. Wang, On a system of reaction-diffusion equations arising

from competition with internal storage in an unstirred chemostat , J. Diff. Eqns., 248 (2010),
2470–2496.

[19] S. B. Hsu, L. Mei and F. B. Wang, On a nonlocal reaction-diffusion-advection system mod-

elling the growth of phytoplankton with cell quota structure, J. Diff. Eqns., 259 (2015),
5353–5378.

[20] S. B. Hsu, H. L. Smith and P. Waltman, Dynamics of competition in the unstirred chemostat,

Canad. Appl. Math. Quart., 2 (1994), 461–483.
[21] S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from compe-

tition in an unsirred chemostat, SIAM J. Appl. Math., 53 (1993), 1026–1044.

[22] P. Maga and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynam-
ical systems, SIAM. J. Math. Anal., 37 (2005), 251–275.

[23] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-
Verlag, 1984.

[24] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive

and Cooperative Systems, Mathematical Surveys and Monographs 41, American Mathemati-
cal Society, Providence, RI, 1995.

[25] H. L. Smith and P. E. Waltman, Competition for a single limiting resouce in continuous
culture: The variable-yield model, SIAM J. Appl. Math., 54 (1994), 1113–1131.

[26] H. L. Smith and P. E. Waltman, The Theory of the Chemostat , Cambridge Univ. Press, 1995.

[27] H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically

autonomous differential equations, J. Math. Biol., 30 (1992), 755–763.
[28] K. F. Zhang and X.-Q. Zhao, Asymptotic behaviour of a reaction-diffusion model with a

quiescent stage, Proc. R. Soc. A., 463 (2007), 1029–1043.
[29] X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003.

Received December 2014; 1st revision July 2015; 2nd revision August 2015.

E-mail address: lfmei@outlook.com

E-mail address: sbhsu@math.nthu.edu.tw

E-mail address: fbwang@mail.cgu.edu.tw

http://dx.doi.org/10.1093/plankt/fbq070
http://dx.doi.org/10.1093/plankt/fbq070
http://www.ams.org/mathscinet-getitem?mr=MR2597083&return=pdf
http://dx.doi.org/10.1016/j.mbs.2009.08.006
http://dx.doi.org/10.1016/j.mbs.2009.08.006
http://www.ams.org/mathscinet-getitem?mr=MR2910789&return=pdf
http://dx.doi.org/10.1007/s00285-011-0426-4
http://dx.doi.org/10.1007/s00285-011-0426-4
http://www.ams.org/mathscinet-getitem?mr=MR3129688&return=pdf
http://dx.doi.org/10.1016/j.amc.2013.09.054
http://dx.doi.org/10.1016/j.amc.2013.09.054
http://www.ams.org/mathscinet-getitem?mr=MR0434492&return=pdf
http://dx.doi.org/10.1137/0132030
http://dx.doi.org/10.1137/0132030
http://www.ams.org/mathscinet-getitem?mr=MR0610244&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0941371&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1100011&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2424955&return=pdf
http://dx.doi.org/10.1137/070700784
http://dx.doi.org/10.1137/070700784
http://www.ams.org/mathscinet-getitem?mr=MR2600965&return=pdf
http://dx.doi.org/10.1016/j.jde.2009.12.014
http://dx.doi.org/10.1016/j.jde.2009.12.014
http://www.ams.org/mathscinet-getitem?mr=MR3377529&return=pdf
http://dx.doi.org/10.1016/j.jde.2015.06.030
http://dx.doi.org/10.1016/j.jde.2015.06.030
http://www.ams.org/mathscinet-getitem?mr=MR1326901&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1232165&return=pdf
http://dx.doi.org/10.1137/0153051
http://dx.doi.org/10.1137/0153051
http://www.ams.org/mathscinet-getitem?mr=MR2172756&return=pdf
http://dx.doi.org/10.1137/S0036141003439173
http://dx.doi.org/10.1137/S0036141003439173
http://www.ams.org/mathscinet-getitem?mr=MR0762825&return=pdf
http://dx.doi.org/10.1007/978-1-4612-5282-5
http://www.ams.org/mathscinet-getitem?mr=MR1319817&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1284704&return=pdf
http://dx.doi.org/10.1137/S0036139993245344
http://dx.doi.org/10.1137/S0036139993245344
http://www.ams.org/mathscinet-getitem?mr=MR1315301&return=pdf
http://dx.doi.org/10.1017/CBO9780511530043
http://www.ams.org/mathscinet-getitem?mr=MR1175102&return=pdf
http://dx.doi.org/10.1007/BF00173267
http://dx.doi.org/10.1007/BF00173267
http://www.ams.org/mathscinet-getitem?mr=MR2310135&return=pdf
http://dx.doi.org/10.1098/rspa.2006.1806
http://dx.doi.org/10.1098/rspa.2006.1806
http://www.ams.org/mathscinet-getitem?mr=MR1980821&return=pdf
http://dx.doi.org/10.1007/978-0-387-21761-1
mailto:lfmei@outlook.com
mailto:sbhsu@math.nthu.edu.tw
mailto:fbwang@mail.cgu.edu.tw

	1. Introduction
	2. Mathematical analysis of system (1.10)-(1.12)
	3. Discussion
	Acknowledgments
	REFERENCES

