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Abstract. The dynamics of a reaction-diffusion system for two species of
microorganism in an unstirred chemostat with internal storage is studied. It

is shown that the diffusion coefficient is a key parameter of determining the

asymptotic dynamics, and there exists a threshold diffusion coefficient above
which both species become extinct. On the other hand, for diffusion coefficient

below the threshold, either one species or both species persist, and in the

asymptotic limit, a steady state showing competition exclusion or coexistence
is reached.

1. Introduction. Chemostat is a simple bioreactor for continuous culture of mi-
croorganisms. Nutrient necessary for the microorganism growth is pumped into
the vessel at a constant rate, while the mixture of the nutrient and microorganism
is pumped out at the same rate so the volume is kept at a constant. Differential
equation models have been set up for chemostats under various assumptions. One
assumption is on the nutrient uptake rate: it is called constant yield if it is pro-
portional to the microorganism per capita growth rate, and it is called variable
yield if is also depends on the growth rate. In the constant yield case, it has been
established that the competition exclusion principle holds so that only one species
of microorganism survives in the long run [1, 9, 11].

For the variable yield case, Droop [3, 4] formulated the following “cell-quota”
model for the phytoplankton growth with an internal storage of the nutrient:
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S′ = (S(0) − S)D − f1(S,Q1)u− f2(S,Q2)v,

u′ = (µ1(Q1)−D)u,

Q′1 = f1(S,Q1)− µ1(Q1)Q1,

v′ = (µ2(Q2)−D)v,

Q′2 = f2(S,Q2)− µ2(Q2)Q2,

S(0) ≥ 0, u(0) ≥ 0, v(0) ≥ 0, Q1(0) ≥ Qmin,1, Q2(0) ≥ Qmin,2.

(1)

Here S(t) is the substrate concentration, u(t), v(t) are the population concentrations
for the two species of phytoplankton respectively, and Qi(t) (i = 1, 2) is the average
amount of stored nutrient per cell of the i-th population. The positive constants
S(0) and D are the nutrient input rate and the washout rate respectively, µi(Qi) is
the growth rate of the i-th population as a function of cell quota Qi, fi(S,Qi) is
the per capital nutrient uptake rate per cell of the i-th population as a function of
nutrient concentration S and cell quota Qi, and Qmin,i is the threshold cell quota
below which no growth of the i-th population occurs. Typically the functions µi(Qi)
and fi(S,Qi) satisfy the following assumptions: (i = 1, 2)

(H1) µi(Qi) is continuously differentiable for Qi ≥ Qmin,i, µi(Qmin,i) = 0, µi(Qi) >
0 and µ′i(Qi) > 0 for Q ≥ Qmin,i.

(H2) fi(S,Qi) is continuously differentiable for S > 0 and Q ≥ Qmin,i, fi(0, Qi) =

0, fi(S,Qi) ≥ 0, ∂fi∂S (S,Qi) > 0 and ∂fi
∂Qi

(S,Qi) ≤ 0 for S > 0 and Qi ≥ Qmin,i.

Some specific functions µi(Qi) and fi(S,Qi) used in [2, 4] are

µi(Qi) = µi∞

(
1− Qmin,i

Qi

)
, µi(Qi) = µi∞

Qi −Qmin,i

Ki +Qi −Qmin,i
, (2)

where µi∞ is the maximal growth rate of the i-th population, and

fi(S,Qi) = ρi(Qi)
S

ki + S
, where ρi(Qi) is defined by

ρi(Qi) = ρhighmax,i − (ρhighmax,i − ρ
low
max,i)

Qi −Qmin,i

Qmax,i −Qmin,i
, or

ρi(Qi) = ρmax,i
Qmax,i −Qi

Qmax,i −Qmin,i
, or

ρi(Qi) = ρci , (constant),

(3)

where Qmin,i ≤ Qi ≤ Qmax,i (a maximal possible quota).
A complete mathematical analysis of (1) was carried out in [21]. It was shown

that (1) possesses (i) a trivial steady state solution E0 = (S̃, 0, Q̃1, 0, Q̃2) for any
positive parameters; (ii) a semi-trivial steady state solution E1 = (S1, u1, Q1

1, 0, Q
1
2)

if µ1(Q1
1) = D andDQ1

1 < f1(S(0), Q1
1) for someQ1

1 > Qmin,1; and (iii) a semi-trivial

steady state solution E2 = (S2, 0, Q2
1, v

2, Q2
2) if µ2(Q2

2) = D andDQ2
2 < f2(S(0), Q2

2)
for some Q2

2 > Qmin,2. Moreover assuming that the steady state solutions are all
non-degenerate, then a classification of the dynamics can be obtained as follows:

1. If E1 and E2 do not exist, then E0 is globally asymptotically stable.
2. If E1 exists but E2 does not exist, then E1 is globally asymptotically stable.
3. If E2 exists but E1 does not exist, then E2 is globally asymptotically stable.
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4. If E1 and E2 both exist, and S1 > S2, then E2 is globally asymptotically
stable.

5. If E1 and E2 both exist, and S1 < S2, then E1 is globally asymptotically
stable.

6. If E1 and E2 both exist, and S1 = S2, then there exists a family of positive
steady states connecting E1 and E2, and each of these positive steady states
can be an asymptotic limit.

In particular, positive coexistence steady states only exist in a very special param-
eter value, and for most cases, a competition exclusion holds for the two competing
species. This result was extended to the n-species case in [10], and the time-periodic
two-species case was considered in [20, 22]. More biological explanations of the
Droop model (1) can be found in [5, 6].

On the other hand, the system (1) is based on the important assumption that
the microorganism culture in the chemostat is well-stirred so the concentration
functions are spatially uniform. In general this assumption is only approximately
true and in reality nutrient and microorganism molecules move in the chemostat.
Under the assumption that the molecular movement of nutrient and microorganism
follows Fick’s diffusion law, a reaction-diffusion model for an unstirred chemostat
with an internal storage was proposed in [12] based on the Droop’s model (1) and
earlier work in [15] for the constant yield reaction-diffusion chemostat model. In
this new model, the chemostat is assumed to have one-dimensional geometry so the
domain is an interval (0, 1), S(x, t) is the nutrient concentration measured in units
of mass per unit length, u(x, t) and v(x, t) are the microorganism cell concentration
per unit length for species 1 and species 2, respectively. The instored nutrient per
cell per unit length Qi(x, t) (i = 1, 2) now also depends on the spatial variable x.
We define U(x, t) = u(x, t)Q1(x, t), V (x, t) = v(x, t)Q2(x, t) to be the total amount
of stored nutrient for species 1 and species 2, respectively. Then as the spatial
movements of u and v satisfy the diffusion equation, U and V disperse with the
same diffusion coefficient d. Therefore we have the following initial-boundary-value
reaction-diffusion system for the variables (S, u, U, v, V ):

St = dSxx − f1
(
S, Uu

)
u− f2

(
S, Vv

)
v, x ∈ (0, 1), t > 0,

ut = duxx + µ1

(
U
u

)
u, x ∈ (0, 1), t > 0,

Ut = dUxx + f1
(
S, Uu

)
u, x ∈ (0, 1), t > 0,

vt = dvxx + µ2

(
V
v

)
v, x ∈ (0, 1), t > 0,

Vt = dVxx + f2
(
S, Vv

)
v, x ∈ (0, 1), t > 0,

Sx(0, t) = −S(0), Sx(1, t) + γS(1, t) = 0,

wx(0, t) = 0, wx(1, t) + γw(1, t) = 0, w = u, U, v, V,

w(x, 0) = w0(x) ≥ ( 6≡)0, w = S, u, U, v, V,

(4)

and the initial value functions u0(x), U0(x), v0(x), and V 0(x) satisfy U0(x)
u0(x) ≥

Qmin,1, V 0(x)
v0(x) ≥ Qmin,2. To understand the competition dynamics of (4) better, it

is also useful to consider the internal storage model of one species consuming one
nutrient from [12]:
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St = dSxx − f
(
S, Uu

)
u, x ∈ (0, 1), t > 0,

ut = duxx + µ
(
U
u

)
u, x ∈ (0, 1), t > 0,

Ut = dUxx + f
(
S, Uu

)
u, x ∈ (0, 1), t > 0,

Sx(0, t) = −S(0), Sx(1, t) + γS(1, t) = 0,

wx(0, t) = 0, wx(1, t) + γw(1, t) = 0, w = u, U,

w(x, 0) = w0(x) ≥ (6≡)0, w = S, u, U,

(5)

and we assume that µ(Q) and f(S,Q) also satisfy (H1) and (H2).
The dynamics of Eq. (5) and Eq. (4) were studied in [12]. For the single species

model (5), it was shown that either the population becomes extinct as t → ∞, or
the population approaches to a unique positive steady state as t → ∞ regardless
of initial conditions. The extinction and persistence of the population depends on
the growth rate µ(Q), the uptake rate f(S,Q) as well as the diffusion coefficient
d. Similar results were also obtained for the competition model (4). But unlike
the constant yield reaction-diffusion system in [15], the extinction or persistence of
the population is not completely classified for all possible parameter ranges in [12],
as the linearization techniques fail here because of the singular nonlinearities near
u = 0 or v = 0 in (5) or (4).

In this article, we complete the studies of (5) to classify the dynamics for all
possible parameter ranges, which also provides a more accurate description of the
competition dynamics of (4). More precisely in Section 2, we show that there is
a critical diffusion coefficient d0 > 0 such that the population becomes extinct as
t → ∞ in (5) for any initial conditions if d ≥ d0, and the population tends to a
unique positive steady state as t→∞ in (5) for any initial conditions if 0 < d < d0.
The existence of a critical diffusion coefficient d0 can be interpreted as a critical
patch size. Indeed it is easy to verify that a system defined on an interval (0, L) like

S̃t = d̃S̃yy − f
(
S̃, Uu

)
u, y ∈ (0, L), t > 0,

ũt = d̃ũyy + µ
(
Ũ
ũ

)
ũ, y ∈ (0, L), t > 0,

Ũt = d̃Ũyy + f
(
S̃, Ũũ

)
ũ, y ∈ (0, L), t > 0,

S̃y(0, t) = −LS(0), S̃y(L, t) + γ̃S̃(L, t) = 0,

wy(0, t) = 0, wy(1, t) + γ̃w(L, t) = 0, w = ũ, Ũ ,

w(y, 0) = w0(y/L) ≥ (6≡)0, w = S̃, ũ, Ũ ,

(6)

can be converted to (5) via the change of variables y = xL, ũ(y) = u(y/L), Ũ(y) =

U(y/L) with the parameter change d̃ = dL2 and γ̃ = γL. Therefore the parameter
d is equivalent to L−2. Hence the result described above can be interpreted as: for
a fixed diffusion coefficient d̃ > 0, there exists an L0 > 0, such that (6) has a unique
positive steady state solution which is globally asymptotically stable when L > L0,
and all solutions of (6) tend to (0, 0) if L < L0. So the critical domain size L0 is a
critical patch size for the persistence/extinction dynamics.

A complete description for the one species model (5) leads to a better under-
standing of the two species model (4). In Section 3, we obtain threshold diffusion
coefficients for the existence of semi-trivial steady state solution which represents
the competition exclusion in which a superior competitor prevails. We also provide
criterion for the existence of coexistence steady state solutions. Some of our the-
oretical predictions are confirmed by numerical simulations in Section 2 (for one
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species model) and Section 3 (for two species model). In particular it is found that
a coexistence steady state solution can be reached for small diffusion rate in the
two species model.

We also comment that a different model was considered in [16] in which the rate
of change of Qi is local only. The model assumptions in [12] and this paper are
more reasonable. Indeed one can show that Q(x, t) satisfies an equation

Qt = dQxx + 2d(lnu)xQx − µ(Q)Q+ f(S,Q), x ∈ (0, 1),

if (S, u, U) satisfies (5). Hence Q satisfies a diffusion rule du−2(u2Qx)x which de-
pends on u. Another recent development based on the model (4) is the model of two
species competing for two complementary resources with internal storage in [13].
Some other approaches were taken in [7, 8].

The remaining part of the paper is organized as follows. In Section 2, we consider
the dynamics of the single species model and prove the existence of the critical diffu-
sion coefficient d0 > 0 for (7). In Section 3, we consider the two species competition
model (4). Some concluding remarks are given in Section 4. For most places, we
follow the notations in [12].

2. Single species model. As shown in [12], the limiting system of (5) is
ut = duxx + µ

(
U
u

)
u, x ∈ (0, 1), t > 0,

Ut = dUxx + f
(
z(x)− U, Uu

)
u, x ∈ (0, 1), t > 0,

wx(0, t) = 0, wx(1, t) + γw(1, t) = 0, w = u, U,

w(x, 0) = w0(x) ≥ (6≡)0, w = u, U.

(7)

where z(x) = S(0)
(

1+γ
γ − x

)
. The steady states of (7) are the solutions of the

following elliptic system:
du′′ + µ

(
U
u

)
u = 0, x ∈ (0, 1),

dU ′′ + f
(
z(x)− U, Uu

)
u = 0, x ∈ (0, 1),

u′(0) = u′(1) + γu(1) = 0,

U ′(0) = U ′(1) + γU(1) = 0.

(8)

The biologically feasible domain for the system (7) is defined by

∆ =

{
(u0, U0) ∈ C([0, 1])2 : u0(x) > 0, 0 < U0(x) ≤ z(x),

U0(x)

u0(x)
≥ Qmin on [0, 1]

}
.

The eigenvalue problem{
dφ′′1(x) + η0φ1(x) = 0, x ∈ (0, 1),

φ′1(0) = φ′1(1) + γφ1(1) = 0
(9)

has a principal eigenvalue η0(d) = k20d > 0 with the corresponding positive eigen-
function φ1(x) = cos(k0x) uniquely determined by the normalization maxx∈[0,1]
φ1(x) = φ1(0) = 1, where k0 ∈ (0, π/2) is the smallest root of the equation
tan(k) = γ/k. Then from (H1), for any d > 0, there is at most one constant
Qc(d) > Qmin satisfying

µ(Qc(d)) = η0(d). (10)

It is clear that such a Qc(d) exists for small d > 0 since η0(d) = k20d→ 0 as d→ 0,
and from (H1), Qc(d) is strictly increasing in d with limd→0+ Qc(d) = Qmin.
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We recall the following results regarding (7) and (8) which were proved in [12]
(see Lemmas 2.1, 2.2, 2.3 and Theorem 2.1 of [12]).

Proposition 1. Suppose that d > 0, f, µ satisfy (H1) and (H2). Let ∆, η0(d),
Qc(d) and φ1(x) be defined as above. Then

1. The set ∆ is positively invariant under the semiflow Φt generated by (7).
2. Suppose that (u(x), U(x)) is a nonnegative solution of (8) satisfying u(x) 6≡ 0

and U(x) 6≡ 0. Then 0 < u(x)Qmin < U(x) < z(x) for x ∈ [0, 1].

3. Let (ũ, Ũ) := (εQc(d)
−1
φ1, εφ1). Then for any ε > 0, (ũ, Ũ) is an upper

solution for the system (8) if

max
x∈[0,1]

f(z(x), Qc(d)) ≤ η0(d)Qc(d); (11)

and (ũ, Ũ) is a lower solution for the system (8) if

min
x∈[0,1]

f(z(x), Qc(d)) > η0(d)Qc(d), (12)

where 0 < ε < min{z(x)/φ1(x) : x ∈ [0, 1]} is sufficiently small.
4. If (12) is satisfied, then (7) has a unique positive steady state solution which

is globally asymptotically stable in ∆.
5. If (11) is satisfied, then there is no steady state solution in ∆, and every

solution of (7) with initial conditions in ∆ satisfies (u(·, t), U(·, t)) → (0, 0)
as t→∞.

6. For any parameter values, the system (7) has at most one positive steady state
in its feasible set ∆. If such a positive steady state exists, then it is globally
asymptotically stable in the feasible set ∆; otherwise the origin is globally
attractive.

When using the diffusion coefficient d as a bifurcation parameter, one can see
that when d is large, then the condition (11) is satisfied since

max
x∈[0,1]

f(z(x), Qc(d)) ≤ max
x∈[0,1]

f(z(x), Qmin), and lim
d→d∗

η0(d)Qc(d) =∞,

where d∗ =∞ if limQ→∞ µ(Q) =∞, or d∗ satisfies η(d0) = µ∞ = limQ→∞ µ(Q) <
∞. On the other hand, when d is small, then the condition (12) is satisfied since

lim
d→0+

min
x∈[0,1]

f(z(x), Qc(d)) = min
x∈[0,1]

f(z(x), Qmin) > 0, and lim
d→0+

η0(d)Qc(d) = 0.

Indeed one can define 0 < dmin < dmax by

η0(dmax)Qc(dmax) = max
x∈[0,1]

f(z(x), Qc(dmax)),

and η0(dmin)Qc(dmin) = min
x∈[0,1]

f(z(x), Qc(dmin)),
(13)

then the extinction dynamics occurs when d > dmax and the persistence (thus global
stable steady state) dynamics occurs when 0 < d < dmin. Note that such dmax and
dmin can be uniquely determined since the functions

gmax(d) = max
x∈[0,1]

f(z(x), Qc(d))− η0(d)Qc(d)

= max
x∈[0,1]

f(z(x), Qc(d))− µ(Qc(d))Qc(d),

gmin(d) = min
x∈[0,1]

f(z(x), Qc(d))− η0(d)Qc(d)

= min
x∈[0,1]

f(z(x), Qc(d))− µ(Qc(d))Qc(d).

(14)
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are both strictly decreasing.
The analysis above based on previous results in [12] leaves a gap of dmin ≤ d ≤

dmax for which the dynamics is not determined. In the following we show that a
sharp threshold between the extinction and persistence dynamics exists. First we
establish the following lemma.

Lemma 2.1. Suppose that f, µ satisfy (H1) and (H2).

1. If (ua, Ua) and (ub, Ub) are positive solutions of (8) with d = da and d = db
respectively, and da > db > 0, then ua(x) < ub(x) and Ua(x) < Ub(x) for
x ∈ [0, 1].

2. If (ud, Ud) is a positive solution of (8) for some d > 0, then (ud, Ud) is linearly
stable with respect to the dynamics of (7).

Proof. 1. Since (ua, Ua) is a positive solution of (8) with d = da, then
dbu
′′
a + µ

(
Ua

ua

)
ua = da−db

db
µ
(
Ua

ua

)
ua > 0, x ∈ (0, 1),

dbU
′′
a + f

(
z(x)− Ua, Ua

ua

)
ua = da−db

db
f
(
z(x)− Ua, Ua

ua

)
ua > 0, x ∈ (0, 1),

u′a(0) = u′a(1) + γua(1) = 0,

U ′a(0) = U ′a(1) + γUa(1) = 0.

Hence (ua, Ua) is a lower solution of (8) with d = db. On the other hand, we can
choose dc ∈ (0, dmin) and dc < db, where dmin is defined in (13), so that (8) has
a positive solution (uc, Uc) with d = dc. By using the same argument as above,
we can show that (uc, Uc) is an upper solution of (8) with d = db. Therefore by
applying the well-known upper-lower solution method, (8) has a positive solution

(ũb, Ũb) with d = db satisfying

ua ≤ ũb ≤ uc, and Ua ≤ Ũb ≤ Uc.

From part 6 of Proposition 1, the positive solution of (8) is unique if it exists.

Hence (ũb, Ũb) = (ub, Ub), which implies ua(x) ≤ ub(x) and Ua(x) ≤ Ub(x) for
x ∈ [0, 1]. By using the strong maximum principle, we obtain that ua(x) < ub(x)
and Ua(x) < Ub(x) for x ∈ [0, 1].

2. Next we prove that (ud, Ud) is linearly stable. It is standard to show that the
mapping

F (d, u, U) =

(
du′′ + µ

(
U
u

)
u

dU ′′ + f
(
z(x)− U, Uu

)
u

)
, (15)

is continuously differentiable if u > 0, U > 0, where d > 0, u, U ∈ X = {v ∈
C2([0, 1]) : v(x) > 0, v′(0) = v′(1) + γv(1) = 0}. Let L = D(u,U)F (d, ud, Ud) be the
Fréchet derivative of F with respect to (u, v) at a positive solution (ud, Ud) of (8).
Then

L(φ, ψ) =

(
dφ′′ +

[
µ
(
Ud

ud

)
− Ud

ud
µ′
(
Ud

ud

)]
φ+ µ′

(
Ud

ud

)
ψ

dψ′′ + fφ− Ud

ud
fQφ+ [fQ − fSud]ψ

)
,

where

f = f

(
z(x)− Ud,

Ud
ud

)
, fS = fS

(
z(x)− Ud,

Ud
ud

)
, fQ = fQ

(
z(x)− Ud,

Ud
ud

)
.

Since

µ′
(
Ud
ud

)
> 0, and f

(
z(x)− Ud,

Ud
ud

)
− Ud
ud
fQ

(
z(x)− Ud,

Ud
ud

)
≥ 0,
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then the linear operator L is cooperative type. From [19], L and its adjoint operator
L∗ have a principal eigenvalue θ1 ∈ R with positive principal eigenfunctions. We de-
note the principal eigenfunction associated with L∗ by (φ1, ψ1). On the other hand,
one can also show that the mapping d 7→ (ud, Ud) is continuously differentiable, and

the derivative
(
∂ud

∂d ,
∂Ud

∂d

)
satisfies

L

(
∂ud
∂d

,
∂Ud
∂d

)
= −(u′′d , U

′′
d ) =

(
µ

(
Ud
ud

)
ud, f

(
z(x)− Ud,

Ud
ud

)
ud

)
.

Let 〈·, ·〉 be the inner product of L2((0, 1))×L2((0, 1)). Then one obtain that θ1 < 0
by

θ1

〈(
∂ud
∂d

,
∂Ud
∂d

)
, (φ1, ψ1)

〉
=

〈(
∂ud
∂d

,
∂Ud
∂d

)
, θ1(φ1, ψ1)

〉
=

〈(
∂ud
∂d

,
∂Ud
∂d

)
, L∗(φ1, ψ1)

〉
=

〈
L

(
∂ud
∂d

,
∂Ud
∂d

)
, (φ1, ψ1)

〉
=

〈(
µ

(
Ud
ud

)
ud, f

(
z(x)− Ud,

Ud
ud

)
ud

)
, (φ1, ψ1)

〉
> 0,

since ∂ud

∂d < 0, ∂Ud

∂d < 0 from part 1, φ1, ψ1 > 0 as (φ1, ψ1) is the principal eigen-

function, and µ
(
Ud

ud

)
ud > 0, f

(
z(x)− Ud, Ud

ud

)
ud > 0 from (H1) and (H2). This

implies that (ud, Ud) is linearly stable (thus locally asymptotically stable) with re-
spect to the dynamics of (7).

Now we are ready to state the main result of this section about the existence of
a threshold diffusion coefficient.

Theorem 2.2. Suppose that d > 0, f, µ satisfy (H1) and (H2). Then there exists
a d0 > 0 such that

1. If d ≥ d0, then there is no steady state solution in ∆, and every solution of
(7) with initial conditions in ∆ satisfies (u(·, t), U(·, t))→ (0, 0) as t→∞.

2. If 0 < d < d0, then (7) has a unique positive steady state solution (ud, Ud)
which is globally asymptotically stable in ∆. Moreover (ud, Ud) is strictly
decreasing in d such that

lim
d→d−0

(ud(x), Ud(x)) = (0, 0) uniformly for x ∈ [0, 1], and

lim
d→0+

(ud(x), Ud(x)) = (z(x)/Qmin, z(x)) uniformly for x ∈ [0, 1].
(16)

Proof. We define

d0 = sup
d>0
{(8) has a positive solution with this d} .

For any da < d0, if (8) has a positive solution (ua, Ua) with this d = da, then for any
db ∈ (0, da), (8) has a positive solution (ub, Ub) for d = db since we can use (ua, Ua)
as a lower solution, and (uc, Uc) (a solution of (8) with d = dc ∈ (0,min{dmin, db}))
as an upper solution to construct a solution for d = db as in the proof of Lemma
2.1. Therefore for each d < d0, (8) has a positive solution (ud, Ud), and the solution
is unique from part 6 of Proposition 1. For d > d0, (8) has no positive solution from
the definition of d0.
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Next we consider the limiting behavior of (ud, Ud) as d → d−0 . Since (ud, Ud) is
strictly decreasing in d from the proof above, then

(u0(x), U0(x)) = lim
d→d−0

(ud(x), Ud(x))

exists. We prove that u0(x) ≡ 0 and U0(x) ≡ 0 for x ∈ [0, 1]. Suppose this is
not true. Define δd = ||ud||∞. Then limd→d−0

δd = δ0 > 0. Let wd = ud/δd and

Wd = Ud/δd, then (wd,Wd) satisfies
dw′′d + µ

(
Wd

wd

)
wd = 0, x ∈ (0, 1),

dW ′′d + f
(
z(x)− δdWd,

Wd

wd

)
wd = 0, x ∈ (0, 1),

w′d(0) = w′d(1) + γwd(1) = 0,

W ′d(0) = W ′d(1) + γWd(1) = 0.

(17)

Since {(ud, Ud) : d0 − ε < d < d0} and {Qd = Ud/ud = Wd/wd : d0 − ε < d < d0}
are uniformly bounded from part 2 of Proposition 1, and f, g are continuously
differentiable, then (wd,Wd) is bounded in C3([0, 1]). Then from Ascoli-Arzela
Theorem, there exists a sequence {di : i ≥ 1} such that di+1 > di and limi→∞ di =
d0, and

(wdi ,Wdi)→ (w0,W0), in C2([0, 1]), as i→∞.
Then (w0,W0) satisfies

d0w
′′
0 + µ

(
W0

w0

)
w0 = 0, x ∈ (0, 1),

d0W
′′
0 + f

(
z(x)− δ0W0,

W0

w0

)
w0 = 0, x ∈ (0, 1),

w′0(0) = w′0(1) + γw0(1) = 0,

W ′0(0) = W ′0(1) + γW0(1) = 0.

(18)

Since ||wd||∞ = 1, then ||w0||∞ = 1 and ||W0||∞ ≥ Qmin||w0||∞ > 0. Since
h1 = µ(W0/w0) > 0 on [0, 1], then w0 must be positive for x ∈ [0, 1]. This implies
that u0(x) = δ0w0(x) > 0, U0(x) ≥ Qminu0(x) > 0 for x ∈ [0, 1], and (u0, U0) is a
positive solution of (8) with d = d0.

Since u0 > 0 and U0 > 0, then from Lemma 2.1 we know that (u0, U0) is linearly
stable thus a non-degenerate solution of (8). By applying the implicit function
theorem to F defined in (15), we obtain that for d ∈ (d0− ε, d0 + ε) for some ε > 0,

(8) has a unique solution (ũd, Ũd) near (u0, U0). Apparently ũd > 0 and Ũd > 0 for
d close to d0 since u0 > 0 and U0 > 0. This contradicts with the definition of d0 as
the supremum of d for the existence of positive solutions to (8). Therefore u0 ≡ 0
and U0 ≡ 0.

Finally we prove the limiting behavior of (ud, Ud) as d → 0+. Since (ud, Ud) is
decreasing in d and 0 < Ud(x) < z(x), then for d ∈ (0, δ), there exists C > 0 such
that 0 < C < Ud(x) < z(x) and 0 < C < ud(x) < z(x)/Qmin. Since both ud and Ud
are monotone in d and uniformly bounded, then there exists a measurable Q̃ such
that Ud/ud → Q̃ pointwisely as d → 0+. Since µ is continuous, then we also have

µ(Ud/ud)→ µ(Q̃) pointwisely as d→ 0+. Integrating the equation of u in (8) and
applying the boundary conditions, we obtain

− dγud(1) +

∫ 1

0

µ

(
Ud
ud

)
uddx = 0. (19)
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Since ud(1) is bounded as d→ 0+, and 0 < C < ud(x) < z(x)/Qmin, then

lim
d→0+

∫ 1

0

µ

(
Ud
ud

)
uddx = lim

d→0+

∫ 1

0

µ

(
Ud
ud

)
dx = 0.

From Lebesgue’s Dominated Convergence Theorem, we have∫ 1

0

µ
(
Q̃
)
dx = lim

d→0+

∫ 1

0

µ

(
Ud
ud

)
dx = 0.

From the condition (H1) and Q̃ ≥ Qmin, we must have Q̃(x) ≡ Qmin. By integrat-
ing the equation of U in (8) and applying the boundary conditions, we obtain

− dγUd(1) +

∫ 1

0

f

(
z(x)− Ud,

Ud
ud

)
uddx = 0. (20)

Hence

lim
d→0+

∫ 1

0

f

(
z(x)− Ud,

Ud
ud

)
uddx = 0.

Then similar to the argument above, z(x) − Ud(x) → 0 pointwisely as d → 0+,
and since Ud/ud → Qmin as d → 0+, then ud → z(x)/Qmin. This proves that
(ud, Ud)→ (z(x)/Qmin, z(x)) uniformly as d→ 0+. The dynamical behavior in the
statement of the theorem follows form part 6 of Proposition 1.

We remark that the curve of positive steady state solutions Γ1 = {(d, ud, Ud) :
0 < d < d0} connects to the line Γ0 = {(d, 0, 0) : d > 0}, so in some sense the
curve Γ1 bifurcates from Γ0 at d = d0. It is not a bifurcation in the classical sense
since (0, 0) is not a classical steady state of the system and the system (7) is not
defined for (u, U) = (0, 0). On the other hand, as d→ d0, although ud and Ud both
approach to zero, their quotient Qd(x) = Ud(x)/ud(x) (or equivalently the stored
nutrient per cell) approaches to a fixed profile. Indeed we define a change of variable

U(x) = u(x)Q(x), (21)

then one can calculate that the steady state (u,Q) satisfies the equation
du′′ + µ(Q)u = 0, x ∈ (0, 1),

dQ′′ + 2d(lnu)′Q′ − µ(Q)Q+ f(z(x)− uQ,Q) = 0, x ∈ (0, 1),

u′(0) = u′(1) + γu(1) = 0,

Q′(0) = Q′(1) = 0.

(22)

Let w = u/||u||∞, then (w,Q) satisfies
dw′′ + µ(Q)w = 0, x ∈ (0, 1),

dQ′′ + 2d(lnw)′Q′ − µ(Q)Q+ f(z(x)− ||u||∞wQ,Q) = 0, x ∈ (0, 1),

w′(0) = w′(1) + γw(1) = 0,

Q′(0) = Q′(1) = 0.

(23)

Because of the boundedness of (wd, Qd) = (ud/||ud||∞, Ud/ud) in as d → d0, then
limd→d0(wd, Qd) = (w0, Q0) exists and satisfies

d0w
′′
0 + µ(Q0)w0 = 0, x ∈ (0, 1),

d0Q
′′
0 + 2d0(lnw0)′Q′0 − µ(Q0)Q0 + f(z(x), Q0) = 0, x ∈ (0, 1),

w′0(0) = w′0(1) + γw0(1) = 0,

Q′0(0) = Q′0(1) = 0.

(24)
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Note that in Theorem 2.2, an explicit characterization of the threshold diffusion
coefficient d0 is not obtained, but (24) provides a nonlinear eigenvalue equation
satisfied by (d0, w0, Q0). For the ODE Droop model (1), the threshold dilution
rate D0 can be explicitly solved by algebraic equations µ(Q0) = D0 and D0Q0 =
f(S(0), Q0) (see [21]). In the following proposition the monotonicity of the solutions
ud(x), Ud(x) as well as Qd(x) with respect to the spatial variable x is shown.

Proposition 2. Suppose that d > 0, f, µ satisfy (H1) and (H2). Let (ud(x), Ud(x))
be the unique positive solution of (8) for 0 < d < d0. Then

1. The functions ud(x) and Ud(x) are strictly decreasing in x,
2. The functions Qd(x) = Ud(x)/ud(x) and Sd(x) = z(x) − Ud(x) are strictly

decreasing in x.

Proof. The monotonicity of ud and Ud follows easily from the equations and bound-
ary conditions in (8). Since µ and f are positive, then each of ud and Ud is concave.
Combining that u′d(0) = U ′d(0) = 0, we obtain that each of ud and Ud is strictly
decreasing in x.

We notice that Sd(x) = z(x)−Ud(x) is indeed the steady state resource function.
That is, (Sd, ud, Ud) is a steady state solution of the (5). Hence from S′′d (x) =

f(Sd, Ud/ud)ud > 0, S′d(0) = −S(0) < 0 and S′d(1) = −γSd(1) < 0, we conclude
that Sd(x) is strictly decreasing in x. To prove that Qd(x) is decreasing, we prove
by contradiction. Suppose that Qd(x) is not strictly decreasing, then there exist
0 ≤ x1 < x2 ≤ 1 such that Q1 = Qd(x1) < Qd(x2) = Q2, Q′d(x) > 0 for x ∈ (x1, x2),
and Q′d(x1) = Q′d(x2) = 0. Then from the equation of Qd in (22), we obtain that

−µ(Q1)Q1 + f(Sd(x1), Q1) ≤ 0 ≤ −µ(Q2)Q2 + f(Sd(x2), Q2).

By using (H1) and (H2), we obtain that Sd(x1) < Sd(x2), which contradicts with
that Sd(x) is strictly decreasing. Hence Qd(x) must be strictly decreasing in x.

We comment that the fact of ud, Ud and Sd are all decreasing in x is not surprising
as x = 0 is the source of the nutrient. But the decreasing property of the quota
function Qd(x) is not obvious. Hence the monotonicity of Qd(x) in x proved in
Proposition 2 shows that the microorganism in the chemostat tends to store more
nutrient near the source.

Some numerical simulations of (ud, Ud) and Qd are shown in Fig. 1-2 with the
growth function and uptake function given by

µ(Q) = 1− Qmin

Q
, f(S,Q) =

ρmax(Qmax −Q)

Qmax −Qmin
· S

k + S
, (25)

with

ρmax = 1, Qmin = 2, Qmax = 4, k = 1, γ = 1, S(0) = 1. (26)

For this set of growth, uptake functions and parameters, one can observe (through
numerical simulation) that the critical diffusion coefficient d0 ≈ 0.27. The left panel
of Fig. 1 shows the profile of (ud, Ud) for d = 0.26, while the right panel shows the
profile of Qd. Since it is close to the bifurcation point, the amplitude of the steady
state is small (maxud ≈ 0.009 and maxUd ≈ 0.022). Fig. 2 shows the profiles of
(ud, Ud) and Qd for d = 0.1.

In Fig. 3, the profile of functions Ud(x) and Qd(x) for various d-values is plotted.
We have proved in Theorem 2.2 that Ud(x) is strictly decreasing in d and Ud(x)→
z(x) = 2−x as d→ 0. On the other hand it appears that Qd(x) is strictly increasing
in d with limd→0+ Qd(x) = Qmin.
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Figure 1. Profile of the functions ud(x), Ud(x) and Qd(x) with growth

and uptake functions as in (25) and (26). Here d = 0.26. Left: graph

of ud(x) and Ud(x); Right: graph of Qd(x). The horizontal axis is x

(0 ≤ x ≤ 1), and the vertical axis is the value of functions.
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Figure 2. Profile of the functions ud(x), Ud(x) and Qd(x) with growth

and uptake functions as in (25) and (26). Here d = 0.1. Left: graph

of ud(x) and Ud(x); Right: graph of Qd(x). The horizontal axis is x

(0 ≤ x ≤ 1), and the vertical axis is the value of functions.

3. Competition model. In this section we consider the dynamics of the two
species competition model (4) with fi, µi satisfying (H1) and (H2). Similar to
the single species model, the dynamics of (4) can be reduced to the one of the
limiting system:

ut = duxx + µ1

(
U
u

)
u, x ∈ (0, 1), t > 0,

Ut = dUxx + f1
(
z(x)− U − V, Uu

)
u, x ∈ (0, 1), t > 0,

vt = dvxx + µ2

(
V
v

)
v, x ∈ (0, 1), t > 0,

Vt = dVxx + f2
(
z(x)− U − V, Vv

)
v, x ∈ (0, 1), t > 0,

wx(0, t) = 0, wx(1, t) + γw(1, t) = 0, w = u, U, v, V,

w(x, 0) = w0(x) ≥ ( 6≡)0, w = u, U, v, V.

(27)

As shown in [12], the feasible domain for initial value functions of (27) is

Σ =
{

(u0, U0, v0, V 0) ∈ (C([0, 1]))4 : u0(x) > 0, U0(x) > 0, v0(x) > 0, V 0(x) > 0,
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Figure 3. Profile of the function Ud(x) and Qd(x) with growth and

uptake functions as in (25) and (26). Here d takes the values 0.3, 0.2, 0.1

and 0.01. Left: graph of Ud(x); Right: graph of Qd(x). The horizontal

axis is x (0 ≤ x ≤ 1), and the vertical axis is the value of functions.

U0(x) + V 0(x) ≤ z(x),
U0(x)

u0(x)
≥ Qmin,1,

V 0(x)

v0(x)
≥ Qmin,2 on [0, 1]

}
.

The steady state equation of (27) is given by

du′′ + µ1

(
U
u

)
u = 0, x ∈ (0, 1),

dU ′′ + f1
(
z(x)− U − V, Uu

)
u = 0, x ∈ (0, 1),

dv′′ + µ2

(
V
v

)
v = 0, x ∈ (0, 1),

dV ′′ + f2
(
z(x)− U − V, Vv

)
v = 0, x ∈ (0, 1),

u′(0) = u′(1) + γu(1) = 0, U ′(0) = U ′(1) + γU(1) = 0,

v′(0) = v′(1) + γv(1) = 0, V ′(0) = V ′(1) + γV (1) = 0.

(28)

Similar to the definition in (10), for d > 0, we define Qc,i(d) ≥ Qmin,i to be the
unique number such that

µi(Qc,i(d)) = η0(d), i = 1, 2, (29)

where η0(d) is the principal eigenvalue of (9). Furthermore for i = 1, 2, we define
functions

gmaxi (d) = max
x∈[0,1]

fi(z(x), Qc,i(d))− η0(d)Qc,i(d)

= max
x∈[0,1]

fi(z(x), Qc,i(d))− µi(Qc,i(d))Qc,i(d),

gmini (d) = min
x∈[0,1]

fi(z(x), Qc,i(d))− η0(d)Qc,i(d)

= min
x∈[0,1]

fi(z(x), Qc,i(d))− µi(Qc,i(d))Qc,i(d).

(30)

It is easy to verify that g∗i (d) is strictly decreasing in d for ∗ = max,min. Indeed,
for example, observing that gmaxi (d) = fi(z(1), Qc,i(d))− µi(Qc,i(d))Qc,i(d), and

(gmaxi )′(d) = [(fi)Q(z(1), Qc,i(d))− µ′i(Qc,i(d))Qc,i(d)− µi(Qc,i(d))]Q′c,i(d) < 0,

since (fi)Q < 0, µ′i(Q) > 0, and Q′c,i(d) > 0. Thus for each of i = 1, 2, there exist
unique dmax,i and dmin,i such that

0 < dmin,i < dmax,i, gmaxi (dmax,i) = 0, gmini (dmin,i) = 0. (31)
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From the results in Section 2, for each of i = 1, 2, there exists d0,i satisfying dmin,i <
d0,i < dmax,i, such that the population of the species i persists when 0 < d < d0,i,
and it becomes extinct when d > d0,i. In the following we assume that

dmax,2 ≤ dmin,1. (32)

The assumption (32) implies that

0 < dmin,2 < d0,2 < dmax,2 ≤ dmin,1 < d0,1 < dmax,1. (33)

Hence the species 2 requires a smaller threshold diffusion coefficient d0,2 than the
one d0,1 for the species 1, or equivalently, the species 2 requires a larger critical
patch size L0,2 than the one L0,1 for the species 1. This suggests that the species 1
is a superior competitor than the species 2. Indeed the assumption (32) holds if we
assume that

max
x∈[0,1]

f2(z(x), Q) ≤ min
x∈[0,1]

f1(z(x), Q), and µ2(Q) < µ1(Q), Q ≥ Qmin, (34)

where Qmin = Qmin,1 = Qmin,2, as (34) implies that Qc,1(d) < Qc,2(d) and

max
x∈[0,1]

f2(z(x), Qc,2) ≤ max
x∈[0,1]

f2(z(x), Qc,1) ≤ min
x∈[0,1]

f1(z(x), Qc,1).

Biologically (34) means that the species 1 has larger per capita nutrient uptake rate
and larger growth rate than the species 2, which makes the species 1 a superior
competitor.

By using the results in Section 2, for d > 0, the system (28) has a trivial gen-
eralized steady state solution (0, 0, 0, 0), and possibly two semi-trivial generalized
steady state solutions (ud, Ud, 0, 0) and (0, 0, vd, Vd). We assume that (32) is satis-
fied, then the trivial and semi-trivial generalized steady state solutions are on three
curves in the space R+ × Σ:

Γ0 = {(d, 0, 0, 0, 0) : d > 0},
Γ1 = {(d, ud, Ud, 0, 0) : d0,1 > d > 0},
Γ2 = {(d, 0, 0, vd, Vd) : d0,2 > d > 0}.

(35)

For a generalized steady state solution of (27) with either u = 0 or v = 0, linear
stability cannot be defined through linearized equation because of the singularity
in the equations. Nevertheless we define that a generalized steady state solution
(u∗, U∗, v∗, V∗) of (27) is locally asymptotically stable, if there exists a δ > 0 such
that when the initial condition satisfies ||(u0, U0, v0, V0)− (u∗, U∗, v∗, V∗)|| < δ, then
||(u(·, t), U(·, t), v(·, t), V (·, t))− (u∗, U∗, v∗, V∗)|| < δ for all t > 0 and

lim
t→∞

||(u(·, t), U(·, t), v(·, t), V (·, t))− (u∗, U∗, v∗, V∗)|| = 0,

and we define that (u∗, U∗, v∗, V∗) of (27) is globally asymptotically stable if the
convergence holds for all (u0, U0, v0, V0) ∈ Σ.

Now we can prove the following global stability result following the results in
Section 2.

Theorem 3.1. Suppose that d > 0, fi, µi satisfy (H1) and (H2) for i = 1, 2, and
the condition (32) is satisfied. Then

1. If d ≥ d0,1, then (0, 0, 0, 0) is globally asymptotically stable, and every solution
of (27) with initial conditions in Σ satisfies

lim
t→∞

(u(·, t), U(·, t), v(·, t), V (·, t)) = (0, 0, 0, 0).
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2. If d0,2 ≤ d < d0,1, then (ud, Ud, 0, 0) is globally asymptotically stable, and
every solution of (27) with initial conditions in Σ satisfies

lim
t→∞

(u(·, t), U(·, t), v(·, t), V (·, t)) = (ud, Ud, 0, 0).

Proof. (i) If d ≥ d0,1, then from (27), (v(x, t), V (x, t)) satisfies inequalities

vt = dvxx + µ2

(
V

v

)
v,

Vt = dVxx + f2

(
z(x)− U − V, V

v

)
v ≤ dVxx + f2

(
z(x)− V, V

v

)
v.

Then by the comparison theorem and part 1 of Theorem 2.2, limt→∞(v(x, t), V (x, t))
= (0, 0) uniformly in x ∈ [0, 1] since d ≥ d0,1 > d0,2. Similarly limt→∞(u(x, t), U(x,
t)) = 0 uniformly in x ∈ [0, 1].

(ii) If d0,2 ≤ d < d0,1, then with the same proof, we have limt→∞(v(x, t), V (x,
t)) = (0, 0) uniformly in x ∈ [0, 1] since d ≥ d0,2. Then the limiting equations of
the first two equations in (27) become

ut = duxx + µ1

(
U

u

)
u, Ut = dUxx + f1

(
z(x)− U, U

u

)
u,

with the same boundary conditions. Then (u(·, t), U(·, t)) converges to (ud, Ud) as
t→∞ from the part 2 of Theorem 2.2.

We remark that Theorem 3.1 makes the result in Theorem 3.1 in [12] complete,
since the result in [12] is equivalent to

1. If d ≥ dmax,1, then the result in Theorem 3.1 part 1 holds.
2. If dmax,2 ≤ d < dmin,1, then the result in Theorem 3.1 part 2 holds.

The results in Theorem 3.1 is more complete from the relations in (33).
To further consider the stability of the semi-trivial generalized steady state so-

lutions (ud, Ud, 0, 0) and (0, 0, vd, Vd) for 0 < d < d0,2, we define

g̃max1 (d) = max
x∈[0,1]

f1(z(x)− Vd(x), Qc,1(d))− η0(d)Qc,1(d)

= max
x∈[0,1]

f1(z(x)− Vd(x), Qc,1(d))− µ1(Qc,1(d))Qc,1(d),

g̃min1 (d) = min
x∈[0,1]

f1(z(x)− Vd(x), Qc,1(d))− η0(d)Qc,1(d)

= min
x∈[0,1]

f1(z(x)− Vd(x), Qc,1(d))− µ1(Qc,1(d))Qc,1(d),

(36)

where d ∈ (0, d0,2) and

g̃max2 (d) = max
x∈[0,1]

f2(z(x)− Ud(x), Qc,2(d))− η0(d)Qc,2(d)

= max
x∈[0,1]

f2(z(x)− Ud(x), Qc,2(d))− µ2(Qc,2(d))Qc,2(d),

g̃min2 (d) = min
x∈[0,1]

f2(z(x)− Ud(x), Qc,2(d))− η0(d)Qc,2(d)

= min
x∈[0,1]

f2(z(x)− Ud(x), Qc,2(d))− µ2(Qc,2(d))Qc,2(d),

(37)

where d ∈ (0, d0,1).
The following result connects the local stability of the semi-trivial steady state

solutions to the functions g̃∗i (i = 1, 2, and ∗ = min,max).
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Proposition 3. Let g̃∗i (d) (i = 1, 2, and ∗ = min,max) be defined as above.

1. Suppose that 0 < d < d0,1. If g̃min2 (d) > 0, then the semi-trivial steady state
solution (ud, Ud, 0, 0) is unstable; and if g̃max2 (d) < 0, then (ud, Ud, 0, 0) is
locally asymptotically stable.

2. Suppose that 0 < d < d0,2. If g̃min1 (d) > 0, then the semi-trivial steady state
solution (0, 0, vd, Vd) is unstable; and if g̃max1 (d) < 0, then (0, 0, vd, Vd) is
locally asymptotically stable.

Proof. The instability part is proved in Lemma 3.5 of [12], so we only prove the
local stability part. For that purpose, we construct a different lower solution for
the case 0 < d < d0,1 and g̃max2 (d) < 0. Since ud and Ud are strictly positive, then
there exists ξ > 0 such that Ud(x) > ξφ1(x), where φ1 is the normalized positive
principal eigenfunction defined in (9). For small ε > 0, we define

Q(ε) := (u, U, v, V ) =

(
(1− ε)ud(x), (1− ε)Ud(x),

εξ

Qc,2
φ1(x), εξφ1(x)

)
.

It is easy to verify that that Q(ε) ∈ Σ, for ε > 0 sufficiently small, and Q(ε) satisfies
all boundary conditions. The following calculation verifies that Q(ε) is a strict lower
solution:

duxx + µ1

(
U

u

)
u = (1− ε)

[
d(ud)xx + µ1

(
Ud
ud

)
ud

]
= 0 ≥ 0,

dUxx + f1

(
z − U − V , U

u

)
u

=(1− ε)
[
d(Ud)xx + f1

(
z − (1− ε)Ud − εξφ1,

Ud
ud

)
ud

]
>(1− ε)

[
d(Ud)xx + f1

(
z − Ud,

Ud
ud

)
ud

]
= 0,

and

dvxx + µ2

(
V

v

)
v =

εξ

Qc,2
[dφ′′1 + µ2(Qc,2)φ1]

=
εξ

Qc,2
[dφ′′1 + η0(d)φ1] = 0 ≤ 0,

dV xx + f2

(
z(x)− U − V , V

v

)
v

=
εξ

Qc,2
[dQc,2φ

′′
1 + f2(z − (1− ε)Ud − εξφ1, Qc,2)φ1]

=
εξ

Qc,2
[−η0(d)Qc,2 + f2(z − (1− ε)Ud − εξφ1, Qc,2)]φ1 < 0,

provided that g̃max2 (d) < 0 and ε > 0 is small enough. Hence Q(ε) is a strict lower
solution of (27) in the type-K order. For initial condition P in Σ, we can choose
P sufficiently close to (ud, Ud, 0, 0) so that Q(ε) �K Ψt(P ), then ω(P ) = Q∗ =
(ud, Ud, 0, 0).

From Proposition 3, we obtain the following criterion on the existence of coexis-
tence equilibria:
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Theorem 3.2. Suppose that fi, µi satisfy (H1) and (H2) for i = 1, 2, and the
condition (32) is satisfied. Assume that 0 < d < d0,2, and let g̃∗i (d) (i = 1, 2, and
∗ = min,max) be defined as (36) and (37).

1. If g̃min1 (d) > 0 and g̃min2 (d) > 0, then there is a minimal positive steady state
E− ∈ Σ which is lower asymptotically stable and a maximal positive steady
state E+ ∈ Σ which is upper asymptotically stable such

ω(P ) ⊂ [E−, E+]K ∩ Σ for any P ∈ Σ.

The system (27) is uniformly persistent and Ψt(P ) tends to a steady state for
P in an open and dense subset in Σ.

2. If g̃max1 (d) < 0 and g̃max2 (d) < 0, then each of P ∗ = (0, 0, vd, Vd) and Q∗ =
(ud, Ud, 0, 0) is locally asymptotically stable in Σ, and there exists at least one
positive steady state solution of (27) in Σ.

Proof. The first part is proved in Theorem 3.2 of [12]. The second part follows from
the result in [14].

We comment that if we assume that

f2(S,Q) ≤ f1(S,Q), and µ2(Q) < µ1(Q), S ≥ 0, Q ≥ Qmin, (38)

then the species 1 is a superior competitor than the species 2. Note that the
condition for fi in (38) is pointwisely defined while the one in (34) is not. The
condition (38) is easily satisfied if we assume, for example

µ1∞ > µ2∞, K1 = K2, Qmin,1 = Qmin,2, (39)

in (2), and

ρmax,1 ≥ ρmax,2, k1 < k2, Qmin,1 = Qmin,2, Qmax,1 = Qmax,2, (40)

in (3). Under the condition (38), one can prove that for 0 < d < d0,2, for the semi-
trivial solutions P ∗ = (0, 0, vd, Vd) and Q∗ = (ud, Ud, 0, 0), we have vd(x) < ud(x)
and Vd(x) < Ud(x). Hence g̃∗2(d) ≤ g̃∗1(d) for d ∈ (0, d0,2) and ∗ = min,max. This
suggests that three scenarios are possible for d ∈ (0, d0,2) (following [14]):

1. Q∗ = (ud, Ud, 0, 0) is locally asymptotically stable, and P ∗ = (0, 0, vd, Vd) is
unstable.

2. Both of Q∗ and P ∗ are locally asymptotically stable, and there exists at least
one positive steady state solution.

3. Both of Q∗ and P ∗ are unstable, the system is persistent, and there exists at
least one positive steady state solution.

From the monotonicity of the steady state (u, U) (and also (Q,S)) of (5) in spatial
variable x proved in Proposition 2, we can also obtain these properties for compo-
nents of the semi-trivial steady state Q∗ and P ∗. Here we point out that such mono-
tonicity also holds for a coexistence steady state. Let (u∗(x), U∗(x), v∗(x), V∗(x))
be a positive steady state of (4). Define Q1(x) = U∗(x)/u∗(x) and Q2(x) =
V∗(x)/v∗(x). Then Q1 and Q2 satisfy
dQ′′1 + 2d(lnu∗)

′Q′1 − µ1(Q1)Q1 + f1(z(x)− u∗Q1 − v∗Q2, Q1) = 0, x ∈ (0, 1),

dQ′′2 + 2d(ln v∗)
′Q′2 − µ2(Q1)Q2 + f2(z(x)− u∗Q1 − v∗Q2, Q2) = 0, x ∈ (0, 1),

Q′1(0) = Q′1(1) = Q′2(0) = Q′2(1) = 0.

Then by using the same proof as in Proposition 2, we can prove the following result
about the monotonicity of the coexistence steady state with respect to x.
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Proposition 4. Suppose that d > 0, fi, µi satisfy (H1) and (H2) for i = 1, 2. Let
(u∗(x), U∗(x), v∗(x), V∗(x)) be a positive steady state of (4). Then

1. The functions u∗(x), Ud(x), v∗(x) and V∗(x) are strictly decreasing in x,
2. The functions Q1(x) = U∗(x)/u∗(x), Q2(x) = V∗(x)/v∗(x) and S∗(x) =

z(x)− U∗(x)− V∗(x) are strictly decreasing in x.
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Figure 4. Profile of the competition exclusion steady state (left) and

Q1(x), Q2(x) (right) with growth and uptake functions as in (41) and

(42). Here d = 0.38. The horizontal axis is x (0 ≤ x ≤ 1), and the

vertical axis is the value of functions.

Finally some numerical simulations of steady state solutions to (27) are shown
in Fig. 4-5 with

µi(Qi) = µi∞

(
1− Qmin,i

Qi

)
, fi(S,Qi) =

ρmax,i(Qmax,i −Qi)
Qmax,i −Qmin,i

· S

ki + S
, (41)

with
ρmax,1 = ρmax,2 = 1, Qmin,1 = Qmin,2 = 2, Qmax,1 = Qmax,2 = 4, γ = 1,

µ1∞ = 1.2, µ2∞ = 1, k1 = 1, k2 = 2, S(0) = 8.
(42)

Note that the growth, uptake functions and parameters are chosen in (41)-(42) so
that (39) and (40) are satisfied, which implies that species 1 is a superior competitor
than species 2. In this case, d0,1 ≈ 0.4. In Fig. 4, a competition exclusion is
achieved when d is slightly smaller than d0,1 with species 2 becoming extinct. We
notice that the asymptotic limit of Q2(x, t) = V (x, t)/v(x, t) is higher than that
of Q1(x, t) = U(x, t)/u(x, t) (see the right panel of Fig. 4). When d is smaller,
it appears that a coexistence steady state becomes the asymptotic limit of the
solution. Fig. 5 shows the profile of a coexistence steady state for d = 0.1. In the
coexistence steady state C = (u∗, U∗, v∗, V∗), u∗ is much larger than v∗ and U∗ is
much larger than V∗, but (v∗, V∗) is not zero (see the lower panel of Fig. 5). Hence
it is likely that a branch of coexistence steady state solutions “bifurcate” from the
branch of semi-trivial solutions (d, ud, Vd, 0, 0) near d = 0.1. Indeed the (stable)
coexistence steady state is observed for all d ∈ (0, 0.1). The profile of a coexistence
steady state for very small d (d = 0.01) is shown in Fig. 6. In this case, again
U∗(x) + V∗(x) ≈ z(x) (this can be analytically proved using similar proof as in
Section 2), and Q1, Q2 are both near Qmin = Qmin,1 = Qmin,2 = 2. However while
(v∗, V∗) is still smaller than (u∗, U∗), the share of the resource taken by species 2
is much larger than the one for larger d. This shows a quite robust coexistence is
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achieved for small diffusion rate or a large spatial domain even though species 1 is
a superior competitor.
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Q2(x) (right) with growth and uptake functions as in (41) and (42).

Here d = 0.01. The horizontal axis is x (0 ≤ x ≤ 1), and the vertical

axis is the value of functions.

4. Conclusions. The dynamics of a reaction-diffusion two-species competitive sys-
tem for an unstirred chemostat with internal storage is completed. A first threshold
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diffusion coefficient d0,1 exists so that when the system diffusion coefficient d is above
d0,1, both species become extinct. There is a second threshold diffusion coefficient
d0,2 so that species 1 always wipes out species 2 for d0,2 < d < d0,1, assuming that
species 1 is a superior competitor. When 0 < d < d0,2, the two competing species
may reach a coexistence steady state. The conditions on parameters for the coexis-
tence is not quite explicit, but coexistence has been observed for all small diffusion
coefficient values. These findings are compatible with early studies for Monod type
chemostat models with fixed yields. It is known that for the well-mixed fixed yield
(ODE) model, competition exclusion holds for most cases so that only one species
can survive in the chemostat [9, 11], while for the unstirred fixed yield (reaction-
diffusion) model, coexistence is possible for certain parameter ranges [15]. Together
with earlier work in [12], here we establish a qualitative picture for the unstirred
variable yield (reaction-diffusion) Droop model in which coexistence can be achieved
at small diffusion rate, which is not likely for the well-stirred (ODE) Droop model
[21]. While the two parallel classes of models show some similarity in qualitative
behavior, the Droop cell-quota model is known to have several advantages over the
Monod model [17, 18].

A richer structure for the quota function Q(x) is also revealed through our qual-
itative analysis. While the quota Q is a constant in well-stirred ODE model, the
spatial heterogeneity in the unstirred model makes the quota function to be spa-
tially heterogenous as well. Moreover we prove that the Q(x) is always a decreasing
function of x from the nutrient influx point towards the outflux point, and numeri-
cal simulations show that Q(x) is increasing in d so that when d is very small, the
quota is close to the minimum.

From a mathematical point of view, the analysis for the Droop type model (4)
is more difficult due to the singularity caused by the ratio U/u at the extinction
steady state. This makes standard techniques such as linearization and bifurcation
hard to be applied at the extinction steady state. This difficulty does not occur in
ODE Droop model as one can analyze the equations of the population u and the
quota Q, which do not have a singularity. In this paper and [12], we avoid to use
linearization and bifurcation near the extinction steady state, but use monotone
method and continuation method for the analysis. The disadvantage for such ap-
proach is that we cannot obtain an explicit expression for the threshold diffusion
coefficient d0, which was expressed as a principal eigenvalue for the diffusive Monod
model. Another unanswered question for both diffusive Droop model and Monod
model is the parameter ranges for the two semi-trivial steady state solutions to be
both stable or both unstable. When such conditions are met, then the abstract
theory for general competition models in [14] can be applied to ensure the existence
of coexistence steady states.
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