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Abstract. We analyze a competition model of two phytoplankton species

for a single nutrient with internal storage and light in a well mixed aquatic
environment. We apply the theory of monotone dynamical system to determine

the outcomes of competition: extinction of two species, competitive exclusion,
stable coexistence and bistability of two species. We also present the graphical

presentation to classify the competition outcomes and to compare outcome of

models with and without internal storage.

1. Introduction. Nutrients and light are essential resource for growth of phy-
toplankton. Competition for resources affects the composition of species in the
ecosystem. When species compete for one single limiting nutrient, the species with
the highest tolerance for nutrient conditions in the surrounding environment, hence
the smallest break-even concentration, wins the competition [4, 5] and outcompetes
the others. Similarly, when multiple species compete for light, the one with the
highest tolerance for light environment, hence the lowest break-even light intensity,
wins the competition [7]. These demonstrate competitive exclusion in ecosystems
and preclude species coexistence. Nevertheless, competition for multiple resources
may allow coexistence of species under certain conditions. For example, under the
condition of trade-off in tolerance for different nutrients, two species coexist in the
competition for two complementary nutrients [3]. Importance of trade-off in species
coexistence was revealed in the competition model on resources of single nutrient
and light [8]. The same conclusion has been demonstrated graphically by Tilman
[14].

Resource competition model mentioned previously assumed constant yield for
population dynamics. This implies no energy conservation from one stage to the
next. Grover [2] suggested that storage of excess resource could lead to variable
yield for converting nutrient into organism. Such storage results from surplus of
one resource due to limited reproduction (population growth) restricted by the
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other resource. This level of resource storage is called cell quota [1, 2]. In the
model proposed Passarge et al. [11], cell quota from previous stage constrains nu-
trient uptake rate of phytoplankton and affect population growth. This may alter
dynamics of species in competition and lead to different equilibrium statement for
species coexistence. Yet no analytical work was done for the model to the best of
our knowledge.

In this paper, we study a model of two phytoplankton species competing for
two complementary resources. The model assumes internal storage of the first
resource, nutrient, and no internal storage of the second resource, light, in a well-
mixed aquatic environment. Moreover, we will compare our results with those of
competitions for two nutrients in graphical illustration.

The paper is organized as following. In section two, we show the model and
study the single species model. We present results and analyze the model of the
competition of two species for single-nutrient and light in section three and four,
respectively. In section five we discuss the graphical presentation for the two species
competition model (2) with n = 2 or the system (13). The last section is the
discussion. We compare the experimental results in [11] with our analytic results.

2. Model and single species growth model. Assume that species consumes
nutrient and stores it into cell quota, and that the nutrient uptake rate increases
with nutrient and decreases with cell quota. It is the Droop model [1] or the
variable yield model. Assume that the light intensity changes in accordance with
the Lambert-Beer’s law (see the fourth equation in (DEn) below). When species
consumes nutrient and light, its growth function is modeled by Von Liebig’s “Law of
minimum” (see the first equation in (DEn) below). We shall analyze the following
n-species competition model which was proposed by J. Passarge et al [11]:

N ′i =
[

min{µi(Qi), ηi(Iout)} −D
]
Ni,

Q′i = νi(R,Qi)−min{µi(Qi), ηi(Iout)}Qi,
R′ = D(Rin −R)−

∑n
j=1 νj(R,Qj)Nj ,

Iout = Iin exp(−kbgzm −
∑n
j=1 kjNjzm),

Ni(0) ≥ 0, Qi(0) ≥ Qmin
i , R(0) ≥ 0, i = 1, 2..., n.

(DEn)

Here Ni(t) is the population density of phytoplankton species i at time t, and
Qi(t) is the intracellular nutrient content of species i, Qmin

i is the minimum cellular
quota satisfying µi(Q

min
i ) = 0, for i = 1, 2, ..., n. The variable R(t) is the nutrient

concentration in the water column, and Iout(t) is the light penetration to the bottom
of the water column. The parameter D is the dilution rate, Rin is the nutrient input
concentration, and Iin is the incident light intensity at the water surface, kbg is the
background turbidity caused by water, kj is the light attenuation coefficient of
phytoplankton species j, and zm is the total depth of the water column.

There are some properties for the related functions. The function µi(Qi) is the
growth rate of species i under nutrient limitation with

µi(Qi) ≥ 0, µ′i(Qi) > 0, µi(Q
min
i ) = 0,

and is continuous for Qi ≥ Qmin
i . For example, from Droop [1], µi(Qi) takes the

following forms

µi(Qi) = µi∞

(
1− Qmin

i

Qi

)
,
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where µi∞ is some specific parameter. The function ηi(Iout) is the growth rate of
species i under light limitation with ηi(Iout) ≥ 0, η′i(Iout) > 0 and is continuous
for Iout ≥ 0. For example, ηi(Iout) may satisfy Holling type II functional response
with half-saturation constant ai and maximal growth rate mi for i-th species, re-
spectively, it takes the form

ηi(Iout) =
miIout
ai + Iout

.

The function νi(R,Qi) is the nutrient uptake rate of species i, and it satisfies

νi(R,Qi) ≥ 0,
∂νi
∂R

> 0,
∂νi
∂Qi

< 0, νi ∈ C1(R+ × [Qmin
i ,∞)). (1)

Grover’s paper [2] presented a classical nutrient uptake function.
By the scaling, we may assume zm = 1. Denote I(t) to be Iout(t), I0 = Iine

−kbg .
Let

∑
= R +

∑n
j=1NjQj , then

∑′
= D(Rin −

∑
). Hence

∑
(t)→ Rin as t→∞.

Then the limiting system of (DEn) is:

N ′i =
[

min{µi(Qi), ηi(I)} −D
]
Ni,

Q′i = νi(R,Qi)−min{µi(Qi), ηi(I)}Qi,
I = I0 exp(−

∑n
j=1 kjNj),

R = Rin −
∑n
j=1NjQj ,

Ni(0) ≥ 0, Qi(0) ≥ Qmin
i , i = 1, 2..., n.

(2)

We define the following positive numbers σi, ξi and λi by the equilibrium analysis
of (2)

µi(σi) = D, ηi(ξi) = D, νi(λi, σi) = Dσi. (3)

For simplicity, we assume the following hypothesis:

(H1) λi 6= λj for i 6= j and λi 6= Rin for all i.
(H2) 0 < ξ1 < ξ2 < ξ3 < ... < ξn and ξi 6= I0 for all i.
(H3) µi(Qi) 6= ηi(I) at equilibria for all i.

In this paper we restrict our attention to the case n = 2, the competition of two
species for light and one single nutrient with internal storage.

To understand the system (2) with n = 2, the first step is to consider the single
species model, which takes the form:

N ′ =
[

min{µ(Q), η(I)} −D
]
N,

Q′ = ν(R,Q)−min{µ(Q), η(I)}Q,
R = Rin −NQ,
I = I0 exp(−kN),

N(0) ≥ 0, Q(0) ≥ Qmin.

(4)

We define the following positive numbers λ, ξ, σ based on the equilibrium anal-
ysis of the system (4),

µ(σ) = D, η(ξ) = D, ν(λ, σ) = Dσ. (5)

Equilibrium analysis: There are two types of equilibria representing species
extinction and survival. First, we consider the equilibrium of extinction type, E0 =
(0, Q0) where Q0 satisfies

ν(Rin, Q
0) = min{µ(Q0), η(I0)}Q0. (6)
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For the survival type, Ec = (Nc, Qc), Nc > 0. From the first equation in (4),
we have either µ(Qc) = D or η(Ic) = D where Ic = I0 exp(−kNc). From the
basic assumption (H3), there are two possible cases. In the first case, we have
µ(Qc) = D and η(Ic) > D, and denote Ec = ER = (NR, QR). In this case,
we called that the species is R-limited. From (5), we obtain that QR = σ and
Rc = λ, NR = (Rin − λ)/σ > 0, denote Ic = IR = I0 exp(−kNR) > ξ. Thus ER
exists if and only if

Rin > λ, I0 > ξ,
ln I0 − ln ξ

Rin − λ
>
k

σ
. (7)

In the second case, we have η(Ic) = D and µ(Qc) > D, and denote Ec = EI =
(NI , QI), we say that the species is I-limited. From (5), we have that Ic = ξ and
NI = (ln I0 − ln ξ)/k. In this case, we denote R = RI . From (1), there exists a
unique QI > 0 satisfies ν(Rin − NIQI , QI) = DQI , then RI = Rin − NIQI > 0.
From the fact µ(QI) > D, we have QI > σ and

ν(RI , QI) = DQI > Dσ = ν(λ, σ) > ν(λ,QI).

Then we have RI > λ, and Rin − λ > Rin −RI = QINI > σNI , which implies that

k

σ
>

ln I0 − ln ξ

Rin − λ
.

Hence EI exists if and only if

Rin > λ, I0 > ξ,
ln I0 − ln ξ

Rin − λ
<
k

σ
. (8)

From (7) and (8), we conclude that if Rin > λ and I0 > ξ, then Ec exists and Ec is
either ER or EI exclusively.

Stability analysis of E0 , ER and EI : Consider the Jacobian of the system

(4) evaluated at E0 = (0, Q0), the washout equilibrium,

J(E0) =

[
min{µ(Q0), η(I0)} −D 0

−[ ∂ν∂R (Rin, Q
0) + ∆N (Q0, I0)]Q0 m44

]
m44 =

∂ν

∂Q
(Rin, Q

0)−min{µ(Q0), η(I0)} −∆Q(Q0, I0)Q0,

where ∆N (Q, I), ∆Q(Q, I) are functions of Q, I and

∆N (Q0, I0) =
∂

∂N
min{µ(Q), η(I)}

∣∣∣
(Q,I)=(Q0,I0)

=

{
0 if µ(Q0) < η(I0),
−kI0η′(I0) if µ(Q0) > η(I0).

∆Q(Q0, I0) =
∂

∂Q
min{µ(Q), η(I)}

∣∣∣
(Q,I)=(Q0,I0)

=

{
µ′(Q0) if µ(Q0) < η(I0),
0 if µ(Q0) > η(I0).

The eigenvalues of J(E0) are:

min{µ(Q0), η(I0)} −D, ∂ν

∂Q
(Rin, Q

0)−min{µ(Q0), η(I0)} −∆Q(Q0, I0)Q0.

From (1), ∂
∂Qν(Rin, Q

0) < 0, it follows that E0 is locally asymptotically stable if

and only if min{µ(Q0), η(I0)} < D, i.e. Q0 < σ or I0 < ξ. It is trivial that if I0 ≥ ξ,
then we have that Q0 < σ if and only if Rin < λ. Therefore, we conclude that E0

is locally asymptotically stable if and only if I0 < ξ or Rin < λ.
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If the species N is R-limited, at the neighborhood of ER, the system (4) becomes
N ′ =

[
µ(Q)−D

]
N,

Q′ = ν(R,Q)− µ(Q)Q,

R = Rin −NQ.
(9)

The Jacobian of the system (9) evaluated at ER is

J(ER) =

[
0 µ′(QR)NR

−QR ∂ν
∂R

(λ,QR) −NR ∂ν
∂R

(λ,QR) + ∂ν
∂Q

(λ,QR)− µ(QR)− µ′(QR)QR

]
The eigenvalues ρ of J(ER) satisfies

ρ2 + ρ[NR
∂ν

∂R
(λ,QR)− ∂ν

∂Q
(λ,QR) + µ(QR) + µ′(QR)QR] + µ′(QR)NRQR

∂ν

∂R
(λ,QR) = 0

From (1) and Roth-Hurwitz criteria, the equilibrium ER is locally asymptotically
stable.

If the species N is I-limited, at the neighborhood of EI , the system (4) becomes
N ′ =

[
η(I)−D

]
N,

Q′ = ν(R,Q)− η(I)Q,

R = Rin −NQ,
I = I0 exp(−kN).

(10)

The Jacobian of the system (10) evaluated at EI is

J(EI) =

[
−kξη′(ξ)NI 0

−QI ∂ν∂R (RI , QI) + kξη′(ξ)QI −NI ∂ν∂R (RI , QI) + ∂ν
∂Q (RI , QI)− η(ξ)

]
The eigenvalues are −kξη′(ξ)NI < 0 and −NI ∂ν∂R (RI , QI) + ∂ν

∂Q (RI , QI)− η(ξ) < 0.

Hence the equilibrium EI is locally asymptotically stable.
The following theorem describes the global dynamics of system (4).

Theorem 2.1. The following holds.

(i) If Rin < λ or I0 < ξ, then E0 is the only equilibrium and

lim
t→∞

(N(t), Q(t)) = E0.

(ii) If Rin > λ and I0 > ξ, then E0 is unstable and Ec exists, and either Ec = ER
or Ec = EI exclusively. If species N is R-limited (I-limited) then for N(0) > 0

lim
t→∞

(N(t), Q(t)) = ER (EI).

Proof. Let U = NQ, then we convert system (4) into the following equations

N ′ =
[

min{µ( UN ), η(I)} −D
]
N,

U ′ = ν(R, UN )N −DU,
R = Rin − U,
I = I0 exp(−kN),

N(0) ≥ 0, U(0) ≥ 0.

(11)

Note that U = 0 when N = 0 and the system (11) is dissipative.
The isoclines of N are N = 0 and

min{µ(
U

N
), η(I)} = D. (12)
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(a) (b) 

Figure 1. The phase plane (N,U) of system (11) in case (ii). Solid
lines indicate the isoclines of N . Dashed line indicates the isocline
of U . The vectors indicate the vector field of system (11). The set
A in case (a) and the set B in case (b) are positively invariant sets.

Note that, if µ( UN ) = D, then U
N = σ; if η(I) = D, then I = I0e

−kN = ξ and

N = ln I0−ln ξ
k = NI for I0 > ξ. Hence the equation (12) implies that

U = σN for 0 ≤ N ≤ NI , and N = NI for U ≥ σNI if I0 > ξ.

Next, we shall describe the isocline of U . Let the function F (N,U) be defined by

F (N,U) = ν(Rin − U,
U

N
)N −DU.

Note that N = 0 implies U = 0 and Q = Q0, then F (0, 0) = 0. And

∂F

∂U
(0, 0) =

∂ν

∂Q
(Rin, Q

0)−D < 0.

By implicit function theorem, there exists Ũ(N), a function of N , which satisfies

Ũ(0) = 0, F (N, Ũ(N)) = 0 and

Ũ ′(N) = −
∂F
∂N (N, Ũ)
∂F
∂U (N, Ũ)

=
− ∂ν
∂Q (Rin − Ũ , ŨN ) ŨN + ν(Rin − Ũ , ŨN )

∂ν
∂R (Rin − Ũ , ŨN )N − ∂ν

∂Q (Rin − Ũ , ŨN ) +D
> 0.

(i) If Rin < λ or I0 < ξ, then min{µ(Q0), η(I0)} < D and

Ũ ′(0) = −
∂F
∂N (N, Ũ)
∂F
∂U (N, Ũ)

∣∣∣
(0,0)

=
− ∂ν
∂Q (Rin, Q

0)Q0 + ν(Rin, Q
0)

− ∂ν
∂Q (Rin, Q0) +D

<
− ∂ν
∂Q (Rin, Q

0)σ +Dσ

− ∂ν
∂Q (Rin, Q0) +D

= σ,

from the equation (6) the inequality holds. Hence Ẽ0 := (0, 0) is the only
equilibrium of system (11) and it is locally asymptotically stable. Hence there
is no periodic solutions, by Poincare-Bendixson theorem, and all solutions
converge to Ẽ0. Therefore, all solutions of system (4) converge to E0.

(ii) If Rin > λ and I0 > ξ, it implies that min{µ(Q0), η(I0)} > D and Ũ ′(0) > σ.

The nontrivial intersection of isoclines is either ẼR := (NR, σNR) or ẼI :=

(NI , Ũ(NI)) (see the Figure 1). From the phase plane analysis, we know that
the region A and B are positively invariant, where

A = {(N,U) : N ≥ NI , and U ≥ Ũ(N), for N ≥ NI}.
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B = {(N,U) : N ≤ NI , and U ≥ σN for 0 ≤ N ≤ NR,

U ≥ Ũ(N) for NR ≤ N ≤ NI}.
Hence there is no limit cycles, and by Poincare-Bendixon theorem the omega
limit set of (N(0), U(0)), ω(N(0), U(0)), is an equilibrium. We know that Ẽ0

is unstable under the assumption of (ii). Therefore ω(N(0), U(0)) is either

ẼR or ẼI for N(0) > 0. Thus, for system (4), ω(N(0), Q(0)) = ER or EI for
N(0) > 0, Q(0) ≥ Qmin.

3. Two species model. In this section we consider a model of two species com-
peting for light and a single nutrient with internal storage. The model takes the
form 

N ′1 =
[

min{µ1(Q1), η1(I)} −D
]
N1,

Q′1 = ν1(R,Q1)−min{µ1(Q1), η1(I)}Q1,

N ′2 =
[

min{µ2(Q2), η2(I)} −D
]
N2,

Q′2 = ν2(R,Q2)−min{µ2(Q2), η2(I)}Q2,

I = I0 exp(−k1N2 − k2N2),

R = Rin −N1Q1 −N2Q2,

Ni(0) ≥ 0, Qi(0) ≥ Qmin
i , i = 1, 2.

(13)

Let the set Ω be

Ω = {(N1, Q1, N2, Q2) : Ni(0) ≥ 0, Qi(0) ≥ Qmin
i , i = 1, 2}.

First of all, we find all equilibria and classify the stability of them.
Equilibrium analysis: The extinction equilibrium is E0 = (0, Q0

1, 0, Q
0
2) where

Q0
i satisfies νi(Rin, Q

0
i ) = min{µi(Q0

i ), ηi(I0)}Q0
i , i = 1, 2.

For the case of competitive exclusion, we have the following semi-trivial equilibria
ERi and EIi, i = 1, 2, representing that the species i is R-limited and I-limited,
respectively.

(1) ER1 = (NR1
1 , QR1

1 , 0, QR1
2 ), where QR1

1 = σ1, R
R1 = λ1 , NR1

1 = Rin−λ1

σ1
,

IR1 = I0 exp(−k1NR1
1 ), ν2(λ1, Q

R1
2 ) = min{µ2(QR1

2 ), η2(IR1)}QR1
2 . Species 1

is R-limited if and only if

Rin > λ1, I0 > ξ1,
ln I0 − ξ1
Rin − λ1

>
k1
σ1
.

(2) ER2 = (0, QR2
1 , NR2

2 , QR2
2 ), where QR2

2 = σ2, R
R2 = λ2 , NR2

2 = Rin−λ2

σ2
,

IR2 = I0 exp(−k2NR2
2 ), ν1(λ2, Q

R2
1 ) = min{µ1(QR2

1 ), η1(IR2)}QR2
1 . Species 2

is R-limited if and only if

Rin > λ2, I0 > ξ2,
ln I0 − ξ2
Rin − λ2

>
k2
σ2
.

(3) EI1 = (N I1
1 , QI11 , 0, Q

I1
2 ), where II1 = ξ1, , N I1

1 = ln I0−ln ξ1
k1

, QI11 satisfies

ν1(Rin − N I1
1 QI11 , Q

I1
1 ) = DQI11 , RI1 = Rin − N I1

1 QI11 , and QI12 satisfies
ν2(RI1, QI12 ) = min{µ2(QI12 ), η2(ξ1)}QI12 . Species 1 is I-limited if and only
if

Rin > λ1, I0 > ξ1,
ln I0 − ξ1
Rin − λ1

<
k1
σ1
.
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(4) EI2 = (0, QI21 , N
I2
2 , QI22 ), where II2 = ξ2, , N I2

2 = ln I0−ln ξ2
k2

, QI22 satisfies

ν2(Rin −N I2
2 QI22 , Q

I2
2 ) = DQI22 , (14)

RI2 = Rin−N I2
2 QI22 , and QI21 satisfies ν1(RI2, QI21 ) = min{µ1(QI21 ), η1(ξ2)}QI21 .

Species 2 is I-limited if and only if

Rin > λ2, I0 > ξ2,
ln I0 − ξ2
Rin − λ2

<
k2
σ2
.

Next, we consider the coexistent equilibria. In this case, we must have that
min{µi(Qi), ηi(I)} = D, for all i = 1, 2. If µ1(Q1) = D and µ2(Q2) = D, which
implies that Q1 = σ1, Q2 = σ2, and νi(R, σi) = Dσi, for i = 1, 2. Hence R = λ1 =
λ2, a contrary to (H1). If η1(I) = D and η2(I) = D, then I = ξ1 = ξ2, a contrary
to (H2). From above discussion, we know that the resource can not attain to the
break-even concentration of each species at the same time. Hence the coexistent
equilibria exist if one species induces µi(Qi) = D and the other causes ηj(I) = D.
Therefore we have exactly two types of coexistent equilibria.

(1) ERIc = (NRI
1 , QRI1 , NRI

2 , QRI2 ) where QRI1 = σ1, R
RI = λ1, I

RI = ξ2. Note
that η1(ξ2) > D = η1(ξ1) then ξ2 > ξ1. QRI2 satisfies ν2(λ1, Q

RI
2 ) = DQRI2 .

From the fact η2(ξ2) = D < µ2(QRI2 ), we have QRI2 > σ2 and

ν2(λ1, Q
RI
2 ) = DQRI2 > Dσ2 = ν2(λ2, σ2) > ν2(λ2, Q

RI
2 ),

it follows that λ1 > λ2. NRI
1 , NRI

2 is the intersection of following two lines{
ln I0 − ln ξ2 = k1N

RI
1 + k2N

RI
2 ,

Rin − λ1 = σ1N
RI
1 +QRI2 NRI

2 .
(15)

We need assumption (H4):

(H4) Any two of
ln I0 − ln ξ2
Rin − λ1

,
k1
σ1
,

k2
QRI2

are not equal.

Then the solution (NRI
1 , NRI

2 ) of (15) exists and is unique if and only if

k1
σ1

<
ln I0 − ln ξ2
Rin − λ1

<
k2
QRI2

, (16)

or
k1
σ1

>
ln I0 − ln ξ2
Rin − λ1

>
k2
QRI2

. (17)

(2) EIRc = (N IR
1 , QIR1 , N IR

2 , QIR2 ) whereQIR2 = σ2, R
IR = λ2, I

IR = ξ1, η1(ξ1) =
D < µ1(QIR1 ), QIR1 > σ1 and QIR1 satisfies ν1(λ2, Q

IR
1 ) = DQIR1 . And

N IR
1 , N IR

2 satisfy{
ln Io − ln ξ1 = k1N

IR
1 + k2N

IR
2 ,

Rin − λ2 = QIR1 N IR
1 + σ2N

IR
2 .

(18)

Similarly, the existence of EIRc implies that ξ2 > ξ1, QIR1 > σ1, and λ2 > λ1.
The basic assumption is

(H5) Any two of
ln I0 − ln ξ1
Rin − λ2

,
k2
σ2
,

k1
QIR1

are not equal.

Under (H5) equation (18) has a unique positive solution (N IR
1 , N IR

2 ) if and
only if

k2
σ2

<
ln I0 − ln ξ1
Rin − λ2

<
k1
QIR1

,
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or

k2
σ2

>
ln I0 − ln ξ1
Rin − λ2

>
k1
QIR1

.

We present the criterion of the existence of ERIc and EIRc in Table 1. Note that
the assumption (H2) implies the nonexistence of EIRc .

Table 1

Equilibrium Existence criteria

ERIc λ1 > λ2, ξ2 > ξ1

either
k1
σ1

<
ln I0 − ln ξ2
Rin − λ1

<
k2
QRI2

or
k1
σ1

>
ln I0 − ln ξ2
Rin − λ1

>
k2
QRI2

EIRc λ2 > λ1, ξ1 > ξ2

either
k2
σ2

<
ln I0 − ln ξ1
Rin − λ2

<
k1
QIR1

or
k2
σ2

>
ln I0 − ln ξ1
Rin − λ2

>
k1
QIR1

.

Stability analysis: The details of the local stability analysis of each equilib-
rium are presented in the Appendix. We denote J(E) be the variational matrix
of (13) evaluated at equilibrium E. The eigenvalues of J(E0) are three nega-
tive real values and min{µ1(Q0

1), η1(I0)} − D. It follows that E0 is locally stable
if min{µi(Q0

i ), ηi(I0)} < D, equivalently ξi > I0 or λi > Rin, for each i = 1, 2.
There are three eigenvalues of J(ER1) with negative real part, ER1 is locally

stable if min{µ2(QR1
2 ), η2(IR1)} < D, that is, QR1

2 < σ2 or IR1 < ξ2. Hence ER1 is
locally stable if

λ1 < λ2 or
ln I0 − ln ξ2
Rin − λ1

<
k1
σ1
.

Similarly, for equilibrium ER2, there are three eigenvalues of J(ER2) with negative
real part and it is locally stable if

λ2 < λ1 or
ln I0 − ln ξ1
Rin − λ2

<
k2
σ2
.

There are three eigenvalues of J(EI1) with negative real part, EI1 is locally stable
if min{µ2(QI12 ), η2(ξ1)} < D, i.e., QI12 < σ1 of ξ1 < ξ2. Hence EI1 is locally stable
if

k1
QI11

<
ln I0 − ln ξ1
Rin − λ2

or ξ1 < ξ2.

Similarly, for equilibrium EI2, there are three eigenvalues of J(EI2) with negative
real part and it is locally stable if

k2
QI22

<
ln I0 − ln ξ2
Rin − λ1

or ξ2 < ξ1.

We summarize the criteria for the existence and local stability of E0, ER1, ER2,
EI1, EI2 in Table 2.
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Table 2

Equilibrium Existence Stability criteria

E0 Always exists Rin < σi or I0 < ξi, for each i = 1, 2.

ER1 Rin > λ1, I0 > ξ1,
ln I0 − ln ξ1
Rin − λ1

>
k1
σ1

λ1 < λ2 or
ln I0 − ln ξ2
Rin − λ1

<
k1
σ1

.

ER2 Rin > λ2, I0 > ξ2,
ln I0 − ln ξ2
Rin − λ2

>
k2
σ2

λ2 < λ1 or
ln I0 − ln ξ1
Rin − λ2

>
k2
σ2

.

EI1 Rin > λ1, I0 > ξ1,
ln I0 − ln ξ1
Rin − λ1

<
k1
σ1

ξ1 < ξ2 or
ln I0 − ln ξ1
Rin − λ2

>
k1
QI11

.

EI2 Rin > λ2, I0 > ξ2,
ln I0 − ln ξ2
Rin − λ2

<
k2
σ2

ξ2 < ξ1 or
ln I0 − ln ξ2
Rin − λ1

>
k2
QI22

.

The stability of coexistent equilibrium is more complicated. We note that from
assumption (H2) and Table 1, ERIc is the only coexistent equilibrium. Observing
that the equilibrium ERIc is hyperbolic since the determinant of J(ERIc ) is

ξ2N
RI
1 NRI

2 µ′1(σ1)η′2(ξ2)
∂ν1
∂R

(λ1, σ1)
(
D − ∂ν2

∂Q2
(λ1, Q

RI
2 )
)

(k2σ1 − k1QRI2 ),

which is not zero by (H4).
We state the outcomes of competition in the following theorems, and the proofs

are postponed to the next section.

Theorem 3.1. If either Rin < λi or I0 < ξi for some i ∈ {1, 2}, then limt→∞Ni(t)
= 0.

For the rest of this section, we always assume that Rin > λi, I0 > ξi for i = 1, 2.
We denote some important parameters as following:

T1 =
ln I0 − ln ξ1
Rin − λ1

, C1 =
k1
σ1
,

T2 =
ln I0 − ln ξ2
Rin − λ2

, C2 =
k2
σ2
, CI2 =

k2
QI22

,

and

T ∗ =
ln I0 − ln ξ2
Rin − λ1

.

Theorem 3.2. Assume (H1)-(H3). If λ1 < λ2 < Rin and ξ1 < ξ2 < I0, then for
N1(0) > 0, N2(0) > 0,

lim
t→∞

(N1(t), Q1(t), N2(t), Q2(t)) = ER1 (EI1), if T1 > C1 (T1 < C1).

Theorem 3.3. Assume (H1)-(H4) and λ2 < λ1 < Rin, ξ1 < ξ2 < I0.

(i) If T1 < C1, T2 < C2, then EI1, EI2 exist and EI1 is locally stable.
(a) If T ∗ > CI2, then EI2 is locally stable and there exists a saddle equilibrium

ERIc . The outcomes depend on initial conditions.
(b) If T ∗ < CI2, then EI2 is unstable, and for N1(0) > 0, N2(0) > 0,

lim
t→∞

(N1(t), Q1(t), N2(t), Q2(t)) = EI1.
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(ii) If T1 < C1, T2 > C2, then EI1, ER2 exist and both are locally stable and there
exists a saddle equilibrium ERIc . The outcomes depend on initial conditions.

(iii) If T1 > C1, T2 > C2, then ER1, ER2 exist and ER2 is locally stable.
(a) If T ∗ < C1, then ER1 is locally stable and there exists a saddle equilibrium

ERIc . The outcomes depend on initial conditions.
(b) If T ∗ > C1, then ER1 is unstable and for N1(0) > 0, N2(0) > 0,

lim
t→∞

(N1(t), Q1(t), N2(t), Q2(t)) = ER2.

(iv) If T1 > C1, T2 < C2, then ER1, EI2 exist.
(a) If T ∗ < C1, CI2, then ER1 is locally stable and EI2 is unstable, and for

N1(0) > 0, N2(0) > 0,

lim
t→∞

(N1(t), Q1(t), N2(t), Q2(t)) = ER1.

(b) If C1 < T ∗ < CI2, then ER1 and EI2 are unstable and ERIc exists, and
for N1(0) > 0, N2(0) > 0,

lim
t→∞

(N1(t), Q1(t), N2(t), Q2(t)) = ERIc .

(c) If CI2 < T ∗ < C1, then ER1 and EI2 are both locally stable and there
exists a saddle equilibrium ERIc . The outcomes depend on initial condi-
tions.

(d) If C1, CI2 < T ∗, then ER1 is unstable and EI2 is locally stable, and for
N1(0) > 0, N2(0) > 0,

lim
t→∞

(N1(t), Q1(t), N2(t), Q2(t)) = EI2.

We note that CI2 = k2
QI2

2
< k2

σ2
= C2, where QI22 = QI22 (Rin, I0), a function of Rin

and I0, satisfies equation (14). For convenience, we consider QI22 = QI22 (Rin, ln I0)
as a function of Rin and ln I0. Therefore CI2 = CI2(Rin, ln I0) is also a function of
Rin and ln I0. The following lemma describes the monotonicity of CI2.

Lemma 3.4. CI2(Rin, ln I0) is strictly decreasing in Rin and strictly increasing in
ln I0.

4. The proofs. To prove the results in section 3, we need the following lemma and
theorems. The lemma states the nonexistence of coexistent equilibrium. Note that
assumption (H2), ξ1 < ξ2, implies that EIRc does not exist.

Lemma 4.1. Assume the semi-trivial equilibria EL1 and EL2 exist, L ∈ {R, I}. If
one of them is locally stable and the other is unstable, then ERIc does not exist.

Proof. Assumption (H2) implies that EI1 is locally stable if it exists.

(1) For the case ER1 or EI1 is locally stable and ER2 is unstable, then the insta-
bility of ER2 implies λ1 < λ2, and it follows that ERIc does not exist.

(2) Assume ER1 is locally stable and EI2 is unstable, then the instability of EI2
implies that QI22 > σ2 if and only if RI2 > λ1. Assume ERIc exists, then
λ1 > λ2 and either

(16)⇔ C1 < T ∗ <
k2
QRI2

or

(17)⇔ C1 > T ∗ >
k2
QRI2
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holds. The stable condition of ER1 implies T ∗ < C1, then (16) does not

hold. From (17), N I2
2 = ln(I0)−ln(ξ2)

k2
> Rin−λ1

QRI
2

> Rin−RI2

QRI
2

, which implies

QRI2 > Rin−RI2

NI2
2

= QI22 . It follows that

ν2(λ1, Q
RI
2 ) = DQRI2 > DQI22 = ν2(RI2, QI22 ) > ν2(RI2, QRI2 ),

and λ1 > RI2, a contradiction.
(3) If EI1 is locally stable and EI2 is unstable, similarly, we have RI2 > λ1, and

the existence of EI1 implies T1 < C1. Assume ERIc exists, then λ1 > λ2 and
either (16) or (17) holds. If (16) holds, then

ln I0 − ln ξ1
Rin − λ1

= T1 < C1 < T ∗ =
ln I0 − ln ξ2
Rin − λ1

implies that ξ2 < ξ1, a contradiction. Under assumption (H2) and instability
of EI2, RI2 > λ1 implies QI22 > QRI2 . If (17) holds,

N I2
2 =

Rin −RI2

QI22
<
Rin − λ1
QRI2

<
ln I0 − ln ξ2

k2
= N I2

2 ,

a contradiction.
(4) If ER2 is locally stable and ER1 is unstable, then λ1 > λ2 and

ln I0 − ln ξ1
Rin − λ2

< C2 <
ln I0 − ln ξ2
Rin − λ2

.

Hence ξ1 > ξ2, it implies the nonexistence of ERIc .
(5) If EI2 is locally stable and ER1 is unstable, then λ1 > λ2 and T ∗ > C1, CI2.

Assume ERIc exists, then (16) holds. EI2 is locally stable means that QI22 <
σ2 < QRI2 . Thus T ∗ > CI2 >

k2
QRI

2
, a contradiction to (16).

By changing variables, we transform the system (13) into a monotone system,
and apply monotone dynamical theory to obtain the global asymptotic behavior of
the solutions. Let Ui = NiQi, i = 1, 2, then we have the following equations.

N ′1 =
[

min{µ1( U1

N1
), η1(I)} −D

]
N1,

U ′1 = ν1(R, U1

N1
)N1 −DU1,

N ′2 =
[

min{µ2( U2

N2
), η2(I)} −D

]
N2,

U ′2 = ν2(R, U2

N2
)N2 −DU2,

I = I0 exp(−k1N1 − k2N2), R = Rin − U1 − U2,

Ni(0) ≥ 0, Ui(0) ≥ 0, i = 1, 2.

(19)

Let the biological relevant domain be

Ω̃ = {(N1, U1, N2, U2) ∈ R4
+ : U1 + U2 ≤ Rin,

Qmin
i ≤ Ui

Ni
, Ni = 0⇒ Ui = 0, i = 1, 2}.

Then Ω̃ is positively invariant for (19), and the forward orbit of (19) have compact

closure in Ω̃.
We denote Ẽ0, ẼR1, ẼI1, ẼR2, ẼI2, Ẽ

RI
c , be the associated equilibria of system

(19) with respect to the equilibria of system (13), and their stability are the same
as in system (13). Let Xi = (Ni, Ui) ∈ R2, X+

i = {(Ni, Ui) : Ni ≥ 0, Ui ≥ 0}
be the positive cone of Xi for i = 1, 2. Let the space X = X1 × X2, the positive
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cone be X+ = X+
1 × X

+
2 , the cone K = X+

1 × (−X+
2 ). We can define an order

by cone K, denoted by ≤K , and (N1, U1, N2, U2) ≤K (N̄1, Ū1, N̄2, Ū2) means that
N1 ≤ N̄1, U1 ≤ Ū1, and N2 ≥ N̄2, U2 ≥ Ū2. Define Φt : X+ → X+ for t ≥ 0 by
that Φt(N1(0), U1(0), N2(0), U2(0)) is the solution flow of (19) with initial condition

(N1(0), U1(0), N2(0), U2(0)) which belongs to Ω̃ ⊂ X+. Then the flow Φt is strongly
monotone with respect to <K .

Theorem 4.2. If either Rin < λi or I0 < ξi for each i = 1, 2, then E0 is the only
equilibrium of system (13) and limt→∞(N1(t), Q1(t), N2(t), Q2(t)) = E0.

Proof. From Table 2, E0 is the only equilibrium of system (13), then Ẽ0 is also the
only equilibrium of system (19). Since

(0, 0, N2(0), U2(0)) ≤K (N1(0), U1(0), N2(0), U2(0)) ≤K (N1(0), U1(0), 0, 0),

and Φt is monotone, we have that for t ≥ 0

Φt(0, 0, N2(0), U2(0)) ≤K Φt(N1(0), U1(0), N2(0), U2(0)) ≤K Φt(N1(0), U1(0), 0, 0).
(20)

From Theorem 2.1, Φt(0, 0, N2(0), U2(0)) and Φt(N1(0), U1(0), 0, 0) tend to Ẽ0 as t
goes to infinity. Then the equation (20) implies that

lim
t→∞

Φt(N1(0), U1(0), N2(0), U2(0)) = Ẽ0.

Furthermore, for system (13) every trajectory tends to E0.

Theorem 4.3. The following holds.

(i) If Rin > λ1 and I0 > ξ1, and either Rin < λ2 or I0 < ξ2, then E0 and
ER1(EI1) exist, and for N1(0) > 0,

lim
t→∞

(N1(t), Q1(t), N2(t), Q2(t)) = ER1 (EI1), if T1 > C1 (T1 < C1).

(ii) If Rin > λ2 and I0 > ξ2, and either Rin < λ1 or I0 < ξ1, then E0 and
ER2(EI2) exist, and for N2(0) > 0,

lim
t→∞

(N1(t), Q1(t), N2(t), Q2(t)) = ER2 (EI2), if T2 > C2 (T2 < C2).

Proof. We focus on case (i), the proof of case (ii) is similar.
From assumption and Table 2, it follows that E0, ER1(EI1) exist in system

(13), and E0 is unstable. Similarly, Ẽ0, ẼR1(ẼI1) exist in system (19) and Ẽ0 is
unstable. It is similar to the proof of Theorem 4.2, we will use the monotonicity of
Φt. Consider the initial condition (N1(0), U1(0), N2(0), U2(0)), then equation (20)

holds. From Theorem 2.1, Φt(N1(0), U1(0), 0, 0) tends to ẼR1 or ẼI1 as t goes to

infinity for N1(0) > 0, and Ẽ0 is unstable in (N1, Q1) direction. Hence for the
system (13) with initial condition N1(0) > 0, the desired results hold.

From now on, we assume that (H1)-(H4) hold and Rin > λi and I0 > ξi, for all

i = 1, 2. From Table 2, E0 is a repelling in system (13), so is Ẽ0 in system (19).
Note that

Φt(X
+
1 × {0}) ⊂ X

+
1 × {0}, Φt({0} ×X+

2 ) ⊂ {0} ×X+
2 ,

and Theorem 2.1 tells us that the omega limit set ω(x1, 0) = ẼR1 or ẼI1 for x1 ∈
X+

1 \ {0}, ω(0, x2) = ẼR2 or ẼI2 for x2 ∈ X+
2 \ {0}.

By Theorem B in [6] or Theorem 2.4.1 in [16], we have the following results.
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Theorem 4.4. Let S = [ẼL2, ẼL1]K , L ∈ {R, I}. Then S is positively invariant
and the omega limit set of every orbit in X+ is contained in S and exactly one of
the following holds:

(i) There exists a positive equilibrium ẼRIc of Φt in S;

(ii) ω(x) = ẼL1 for every x = (x1, x2) ∈ S with xi 6= 0, i = 1, 2.

(iii) ω(x) = ẼL2 for every x = (x1, x2) ∈ S with xi 6= 0, i = 1, 2.

Finally, if (ii) or (iii) hold, x = (x1, x2) ∈ X+ \ S and with xi 6= 0, i = 1, 2, then

either Φt(x)→ ẼL1 or Φt(x)→ ẼL2 as t→∞.

Theorem 4.5. If ELi is locally stable and ELj is unstable for i, j ∈ {1, 2}, i 6=
j, L ∈ {R, I}, then limt→∞(N1(t), Q1(t), N2(t), Q2(t)) = ERi(EIi), for Ni(0) > 0.

Proof. From Lemma 4.1, we know that the coexistent equilibrium ERIc does not

exist in system (13), and neither do ẼRIc . The assumption implies that ẼLi is

locally stable and ẼLj is unstable for system (19). By Theorem 4.4 then ω(x) = ẼLi
for every x ∈ X+ with Ni(0) > 0. Hence for system (13), we proves the desired
results.

Theorem 4.6. If both EL1 and EL2 are unstable, L ∈ {R, I}, then ERIc exists and
limt→∞(N1(t), Q1(t), N2(t), Q2(t)) = ERIc , for N1(0) > 0, N2(0) > 0.

Proof. From assumption, we have that ẼL1, ẼL2 are unstable. By Theorem 4.4,

ω(x) 6= ẼL1, ẼL2 for all x ∈ S, then there exists ẼRIc .
The result of Theorem 4.4 (ii) does not hold, which implies that EL1 is not locally

attractive from below. Similarly, Theorem 4.4 (iii) does not hold implies that EL2
is not attractive from above.

By Theorem 2 of [12], and the fact that the coexistent equilibrium is unique,

then for x ∈ [ẼRIc , ẼL1]K ∪ [ẼL2, Ẽ
RI
c ]K := M , ω(x) = ẼRIc . We denote ẼRIc :=

(Ñ1, Q̃1, Ñ2, Q̃2). Next, we consider x = (x1, x2) ∈ S \ M , if xi ≥ (Ñi, Q̃i) for
i = 1, 2 then there exist x̄1 < x1, x̄2 < x2 such that (x̄1, x2), (x1, x̄2) ∈ M and

(x̄1, x2) <K (x1, x2) <K (x1, x̄2). Since ω(x̄1, x2) = ẼRIc and ω(x1, x̄2) = ẼRIc , we

have that ω(x1, x2) = ẼRIc . It is similar for the case xi ≤ (Ñi, Q̃i) for i = 1, 2.

Hence for x ∈ S, ω(x) = ẼRIc , and ẼRIc is a global attractor. Thus for system (13),
we gives the desired results.

Theorem 4.7. If both EL1 and EL2 are locally stable, L ∈ {R, I}, we denote
Bi = {x ∈ S : ω(x) = ELi} be the basin of attracting of ELi, for i = 1, 2, then ERIc
exists and ω(x) = ERIc for x ∈ Q = Ω \ (B1 ∪ B2) where Q is an unordered and
positively invariant sub-manifold with codimension one.

Proof. From assumption, we have that ẼL1, ẼL2 are also locally stable. From

Theorem 4.4, ω(x) 6= ẼL1, ẼL2 for all x ∈ S, then there exists ẼRIc .
The assumption (H3) implies that Φt is continuously differentiable near the equi-

librium ẼRIc . By [13] Theorem E.1, the spectral radius r(DxΦt(Ẽ
RI
c )) > 1. By [9],

we have that Q̃ = X+ \ {B̃1 ∪ B̃2} is an unordered and positively invariant sub-

manifold with codimension one. Note that Ẽ0 and ẼRIc belong to the set Q̃. Since

Q̃ is positively invariant, there is a heteroclinic orbit connecting Ẽ0 and ẼRIc . In

fact, the set Q̃ is the stable manifold of ẼRIc . Hence, for x 6∈ Q̃, either ω(x) = ẼL1
or ω(x) = ẼL2. The outcomes depend on initial conditions.
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Proof of Theorem 3.1. The assumption Rin < λi or I0 < ξi, by Theorem 4.2 or
Theorem 4.3, we know that Ni(t)→ 0 as t→∞.

Proof of Theorem 3.2. The assumption implies that ER1 (or EI1) is locally asymp-
totically stable if it exists, and the coexistent equilibrium ERIc does not exist. As-
sume that ER2 (or EI2) is also locally asymptotically stable, from Theorem 4.7,
ERIc exists, a contradiction. Thus ER2 (or EI2) is unstable if it exists. By Theorem
4.5, the conclusion of this theorem holds.

Proof of Theorem 3.3. Note that, under the assumption λ2 < λ1 and ξ1 < ξ2, we
have that T1 > T ∗ > T2. Table 2 tells us that ER2, EI1 are locally asymptotically
stable if they exist; T ∗ < C1 if and only if ER1 is locally asymptotically stable;
T ∗ > CI2 if and only if EI2 is locally stable.

(i) If T1 < C1, T2 < C2, then EI1, EI2 exists and EI1 is locally stable. We know
that the stability of EI2 affects the global behavior of system (13). Hence
there are two subcases:
(a) If T ∗ > CI2, then EI2 is locally stable. Hence, by Theorem 4.7, the

outcomes depend on initial conditions.
(b) If T ∗ < CI2, then EI2 is unstable. Hence, by Theorem 4.5,limt→∞(N1(t),

Q1(t), N2(t), Q2(t)) = EI1, for N1(0) > 0, N2(0) > 0.
(ii) If T1 < C1, T2 > C2, then EI1, ER2 exist and they are locally stable. Hence,

by Theorem 4.7, the outcomes depend on initial conditions.
(iii) If T1 > C1, T2 > C2, then ER1, ER2 exist and ER2 is locally stable. Similarly,

we will consider the following subcases.
(a) If T ∗ < C1, then ER1 is locally stable, and by Theorem 4.7, the outcomes

depend on initial conditions.
(b) If T ∗ > C1, then ER1 is unstable, by Theorem 4.5, limt→∞(N1(t), Q1(t),

N2(t), Q2(t)) = ER2, for N1(0) > 0, N2(0) > 0.
(iv) If T1 > C1, T2 < C2, then ER1, EI2 exist. Similarly, we will consider the

stability of ER1, EI2.
(a) If T ∗ < C1, CI2, then ER1 is locally stable and EI2 is unstable. Hence,

by Theorem 4.5, limt→∞(N1(t), Q1(t), N2(t), Q2(t)) = ER1, for N1(0) >
0, N2(0) > 0.

(b) If C1 < T ∗ < CI2, then ER1 and EI2 are unstable and ERIc exists, since
Theorem 4.4. Hence, by Theorem 4.6, limt→∞(N1(t), Q1(t), N2(t), Q2(t))
= ERIc , for N1(0) > 0, N2(0) > 0.

(c) If CI2 < T ∗ < C1, then ER1 and EI2 are locally stable. Hence, by
Theorem 4.7, the outcomes depend on initial conditions.

(d) If C1, CI2 < T ∗, then ER1 is unstable and EI2 is locally stable. Hence,
by Theorem 4.5, limt→∞(N1(t), Q1(t), N2(t), Q2(t)) = EI2, for N1(0) >
0, N2(0) > 0.

Proof of Lemma 3.4. From (14), we have

ν2(Rin −N I2
2 QI22 , Q

I2
2 ) = DQI22 , (21)

where N I2
2 = N I2

2 (ln I0) = ln I0−ln ξ2
k2

, QI22 = QI22 (Rin, ln I0). Note that

d

d ln I0
N I2

2 (ln I0) =
1

k2
.
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Differentiating the equation (21) with respect to Rin, then

∂ν2
∂R

(Rin −N I2
2 QI22 , Q

I2
2 )(1−N I2

2

∂QI22
∂Rin

)

+
∂ν2
∂Q

(Rin −N I2
2 QI22 , Q

I2
2 )

∂QI22
∂Rin

= D
∂QI22
∂Rin

.

Hence

∂QI22
∂Rin

=
∂ν2
∂R (Rin −N I2

2 QI22 , Q
I2
2 )

∂ν2
∂R (Rin −N I2

2 QI22 , Q
I2
2 )N I2

2 − ∂ν2
∂Q (Rin −N I2

2 QI22 , Q
I2
2 ) +D

> 0

Similarly, differentiating (21) with respective to ln I0, we have

∂ν2
∂R

(Rin −N I2
2 QI22 , Q

I2
2 )(−Q

I2
2

k2
−N I2

2

∂QI22
∂ ln I0

)

+
∂ν2
∂Q

(Rin −N I2
2 QI22 , Q

I2
2 )

∂QI22
∂ ln I0

= D
∂QI22
∂ ln I0

.

Hence

∂QI22
∂ ln I0

=
−Q

I2
2

k2
∂ν2
∂R (Rin −N I2

2 QI22 , Q
I2
2 )

∂ν2
∂R (Rin −N I2

2 QI22 , Q
I2
2 )N I2

2 − ∂ν2
∂Q (Rin −N I2

2 QI22 , Q
I2
2 ) +D

= −Q
I2
2

k2

∂QI22
∂Rin

< 0

Therefore,

∂CI2
∂Rin

= −
k2

∂QI2
2

∂Rin

(QI22 )2
< 0,

∂CI2
∂ ln I0

= −
k2

∂QI2
2

∂ ln I0

(QI22 )2
> 0.

5. Graphical presentation. In this section we demonstrate the graphical pre-
sentation of the two species competition for light and single nutrient with internal
storage under the assumption λi < Rin, ξi < I0 for all i = 1, 2. First of all, we
consider the identities for resources R and I in (13) that is

Rin −R = Q1N1 +Q2N2, (22)

ln I0 − ln I = k1N1 + k2N2, (23)

Here we rewrite the identity of I(t) in (13) as equation (23). Note that (22), (23)
imply that the supply resource is equal to all consumption. We can rewrite (22),
(23) in the form [

Rin −R
ln I0 − ln I

]
=

[
Q1

k1

]
N1 +

[
Q2

k2

]
N2. (24)

We called the vector in the left hand side of (24) the supply vector, and called
the right hand side the consumption vector. We can use graphical presentation to
predict the outcomes of competition, the method is similar to [14].

See Figure 2, if the slope of supply vector at the corner of isocline of species 1
is larger than C1 = k1

σ1
, then species 1 is R-limited (region A), that means T1 =

ln I0−ξ1
Rin−λ1

> C1. On the other hand, if T1 < C1 then species 1 is I-limited (region

B) and the slope of consumption vector is CI1 = k1
QI1

1
. For the case of species 2,
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Figure 2. The isocline of N1 is right-angled. In region A, T1 > C1

and species 1 is R-limited; in region B, T1 < C1 and species 1 is
I-limited.

we have similar results, that is, when T2 = ln I0−ln ξ2
Rin−λ2

< C2 = k2
σ2

, then species 2 is
R-limited; when T2 < C2, then species 2 is I-limited and the slope of consumption
vector is CI2 = k2

QI2
2

. From Lemma 3.4, we know that CI2 is strictly decreasing in

Rin and strictly increasing in ln I0, and so is CI1.
We assume that (H2) ξ1 < ξ2 always holds. If λ1 < λ2, then species 1 is better

competitor in nutrient and light. Hence species 1 will out-compete species 2.

Table 3

Case Condition States Stability

(I) T1 < C1

T2 < C2

EI1, EI2 (I.a) T ∗ > CI2, bistability happens.

(I.b) T ∗ < CI2, EI1 is G.A.S.

(II) T1 < C1

T2 > C2

EI1, ER2 Bi-stability happens.

(III) T1 > C1

T2 > C2

ER1, ER2 (III.a) T ∗ < C1, bistability happens.
(III.b) T ∗ > C1, ER2 is G.A.S.

(IV) T1 > C1

T2 < C2

ER1, EI2 (IV.a) T ∗ < C1, CI2, ER1 is G.A.S.

(IV.b) C1 < T ∗ < CI2, ERIc is G.A.S.
(IV.c) C1 > T ∗ > CI2, bistability happens.
(IV.d) T ∗ > C1, CI2, EI2 is G.A.S.

G.A.S. means globally asymptotically stable.

Assume λ1 > λ2 and (H2) hold, then species 1 is better competitor in light
and species 2 is better competitor in nutrient. There are four possibilities in the
following (see also Table 3):

(I) Species 1 is I-limited and species 2 is I-limited, that is T1 < C1, T2 < C2. Be-
cause species 1 is better competitor in light, then EI1 is locally asymptotically
stable.

The fact that

min{µ1(QI21 ), η1(ξ2)} −D < 0 (25)
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implies that
N ′1
N1

∣∣∣
(N1,Q1,N2,Q2)=EI2

< 0,

and species 1 can not invade when the resident species attains the amount
N I2

2 with cell quota QI22 . Hence EI2 is locally asymptotically stable. On the
other hand, if min{µ1(QI21 ), η1(ξ2)}−D > 0 then species 1 invade successfully
and EI2 is unstable. Note that, under assumption (H2), (25) means that
QI21 < σ1, which is equivalent to RI2 < λ1. From the fact

RI2 = Rin −N I2
2 QI22 = Rin −

ln I1 − ln ξ2
k2

QI22 < λ1,

we have

T ∗ =
ln I1 − ln ξ2
Rin − λ1

>
k2
QI22

= CI2.

Hence EI2 is locally asymptotically stable if and only if T ∗ > CI2. Therefore,
we have the following two cases.
(I.a) If T ∗ > CI2 then EI1 and EI2 are locally stable, hence the outcome

depends on initial population, it is a bistable case;
(I.b) If T ∗ < CI2, then EI2 is unstable. Hence EI1 is globally stable and

species 1 competitively excludes species 2.
(II) Species 1 is I-limited and species 2 is R-limited, that is T1 < C1, T2 > C2.

We know that species 1 is better competitor in light and species 2 is better
competitor in nutrient, hence EI1 and ER2 are locally asymptotically stable.
Therefore, it is bistable and the outcome depends on initial population.

(III) Species 1 is R-limited and species 2 is R-limited, that is T1 > C1, T2 > C2.
We know that species 2 is better competitor in nutrient, hence ER2 is locally
asymptotically stable.

Note that

min{µ2(QR1
2 ), η2(IR1)} −D < 0 (26)

implies that
N ′2
N2

∣∣∣
(N1,Q1,N2,Q2)=ER1

< 0,

and species 2 can not invade when the resident species attains the amount NR1
1

with cell quota QR1
1 . Hence ER1 is locally asymptotically stable. On the other

hand, if min{µ2(QR1
2 ), η2(IR1)}−D > 0 then species 2 invade successfully and

ER1 is unstable. Under the assumption λ1 > λ2, the inequality (26) implies
that QR1

2 > σ2. If not, then

ν2(λ1, Q
R1
2 ) < DQR1

2 ≤ Dσ2 = ν2(λ2, σ2) ≤ ν2(λ2Q
R1
2 ),

and λ1 ≤ λ2, a contradiction. Hence the assumption λ1 > λ2 implies that
(26) holds if and only if IR1 < ξ2, that is

IR1 = I0 exp(−k1
Rin − λ1

σ1
) < ξ2,

i.e.,

T ∗ =
ln I0 − ln ξ2
Rin − λ1

<
k1
σ1

= C1.

Hence ER1 is locally asymptotically stable if and only if T ∗ < C1.
(III.a) If T ∗ < C1 then ER1 and ER2 are locally asymptotically stable, hence

the outcome depends on initial population, it is a bistable case;
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(III.b) If T ∗ > C1, then ER1 is unstable. Hence ER2 is globally stable and
species 2 competitively excludes species 1.

(IV) Species 1 is R-limited and species 2 is I-limited, that is T1 > C1, T2 < C2.
From the stability of ER1 and EI2 which were discussed in (I) and (III), we
have the following subcases:
(IV.a) If T ∗ < C1, CI2, then EI2 is unstable and ER1 is locally asymptotically

stable. Hence ER1 is globally stable and species 1 competitively excludes
species 2;

(IV.b) If C1 < T ∗ < CI2, then ER1 and EI2 are unstable, then there exists
an coexistent equilibrium ERIc and it is globally stable;

(IV.c) If CI2 < T ∗ < C1, then ER1 and EI2 are locally asymptotically stable.
Hence the outcome depends on initial population, it is a bistable case;

(IV.d) If C1, CI2 < T ∗, then ER1 is unstable and EI2 is locally asymptotically
stable. Hence EI2 is globally stable and species 2 competitively excludes
species 1.

We summarize all possible outcomes in Table 3 and present the relations in Figure
3. From calculation in the Appendix, we know that the curve T ∗ = CI2 is a straight
line.

We also draw the graphs, Figure 4, of the model in [10], which is two species
(x1, x2) competition for two resources R and S with internal storage. We follow the
notations and results in [10], and demonstrate the competition outcomes graphically.
We assume 0 < λR2 < λR1 < R0, 0 < λS1 < λS2 < S0 and denote

T1 =
S0 − λS1
R0 − λR1

, C1 =
σS1
σR1

, CR1 =
QR1
S1

σR1

T2 =
S0 − λS2
R0 − λR2

, C2 =
σS2
σR2

, CS2 =
σS2
QS2R2

,

and

T ∗ =
S0 − λS2
R0 − λR1

.

Note that QR1
S1 > σS1 and QS2R2 > σR2 which implies that CR1 > C1 and CS2 < C2.

From calculation in the Appendix, we know that T ∗ = CR1 and T ∗ = CS2 are two
straight lines. We summarize all possible outcomes of competition in Table 4 and
illustrate in Figure 4.

Table 4

Case Condition States Stability

(I) T1 < C1

T2 < C2

ES1, ES2 (I.a) T ∗ > CS2, bistability happens.

(I.b) T ∗ < CS2, ER1 is G.A.S.

(II) T1 < C1

T2 > C2

ES1, ER2 Bistability happens.

(III) T1 > C1

T2 > C2

ER1, ER2 (III.a) T ∗ < CR1, bistability happens.

(III.b) T ∗ > CR1, ER2 is G.A.S.

(IV) T1 > C1

T2 < C2

ER1, ES2 (IV.a) T ∗ < CR1, CS2, ER1 is G.A.S.
(IV.b) CR1 < T ∗ < CS2, ERSc is G.A.S.

(IV.c) CR1 > T ∗ > CS2, bistability happens.

(IV.d) T ∗ > CR1, CS2, ES2 is G.A.S.

G.A.S. means globally asymptotically stable.
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(a) (b) 

(c) 

I.a 

II III.a III.b 

I.b IV.c 

IV.a 

IV.d 

(d) 

I.b 

IV.c 

III.b IV.d 

IV.a 

(e) 

IV.a 

I.b 

III.b IV.b IV.d 

Figure 3. (a) and (b) are modified from Figure 1 in Passarge et
al. [11]. (c)-(e) illustrate outcomes of our model. The isoclines
of N1 and N2 are right-angled and denoted by graphs 1 and 2,
respectively. In dotted region, species 1 wins; species 2 wins in
gray region; the feathered region indicates bistable case; the brick
region represents species coexistence. The case C2 < C1 are (a)
and (c); The case C1 < C2 are (b), (d), (e) where CI2 < C1 in (d)
and CI2 > C1 in (e).

6. Discussion. We analyze a competition model of two phytoplankton species for
a single nutrient with internal storage and light in a well mixed aquatic environment.
The results show that extinction, coexistence and bistability are predictable in this
model. First, while the input concentration of nutrient is less than the break-even
amount of each species, or when the input light intensity is lower than the basic
need of each species, both species extinct (Theorem 3.1). Secondly, when the input
concentrations of nutrient and light are higher than break-even concentration of all
species, the outcomes vary as following. If the species i, i ∈ {1, 2}, has lowest break-
even concentration of nutrient and light, then it competitively excludes the other
(Theorem 3.2). If the semitrivial equilibrium Ei, i ∈ {1, 2}, is locally stable and Ej ,
j 6= i, is unstable, then coexistence is impossible (Lemma 3.4) and Ei is globally
stable (Theorem 4.5). If both Ei and Ej are unstable, then coexistence is possible,
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I.a 

II III.a III.b 

I.b IV.c 

IV.a 

IV.d 

(a) 

IV.c 

I.b 

III.b IV.d 

IV.a 

(b) 

(c) 

IV.b 

I.b 

III.b IV.d 

IV.a 

Figure 4. The isoclines of N1 and N2 are right-angled and de-
noted by graphs 1 and 2, respectively. In dotted region, species 1
wins; species 2 wins in gray region; the feathered region indicates
bistable case; the brick region represents species coexistent. (a)
The case C2 < C1; (b) The case C1 < C2 with CS2 < C1; (c) The
case C1 < C2 with CS2 > C1.

i.e., the coexistent equilibrium ERIc exists and it is globally stable (Theorem 4.6).
If both Ei and Ej are locally stable, then the outcome of competition is bistability
of two species (Theorem 4.7).

In the graphical presentation, our results (Figure 3cde) are compared with results
modified from Passarge et al. [11] (Figure 3ab), in which they considered two species
competition for light and nutrient without internal storage. For the case C1 > C2,
bistability of two species occurs in Figure 3a and our model (Figure 3c); however,
the bistable region is broader from our model. For the case C1 < C2, coexistence
occurs in Figure 3b; however, our model indicates coexistence or bistability of the
two species (Figure 3d and 3e).

We apply graphic approach for the model in [10] and show the results in Figure
4. We demonstrate two species competition for two complementary nutrients, both
exhibit internal storage. We compare Figure 4 with the result in Tilman [14], which
consider the model without any internal storage. Similar to the comparison beween
our model (13) and that of Passarge et al. [11], Figure 4 presents the additional
prediction of bistability in the case C1 < C2, and the enlarged bistable region in the
case C1 > C2. From the comparison of models with and without internal storage,
we obtain that bistability occurs in the case C1 > C2 of those four models. The
models with internal storage do not change the outcome qualitatively; namely, they
only enlarge the bistable region. In the case C1 < C2, the outcome of the model
without internal storage is either coexistence or competitive exclusion. Model with
internal storage predicts an additional region of bistability for the two species.

In Passarge et al. [11], they carried out monoculture experiments for five fresh-
water phytoplankton species competing for phosphorus and light. The results show
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that the species with the lowest break-even concentration of nutrient happens to
have the lowest break-even light intensity, and competitively excludes others as the
case in Theorem 3.2. The analytical result does not match the outcome of the ex-
periment in Passarge et al. [11]. We owe this to the violation on the assumption of
trade-off between competitive ability for phosphorus and light in the focal species
in Passarge et al. [11]. Without the trade-off, the competitive exclusion will occur.

In reality, a large number of phytoplankton species coexist in competing for mul-
tiple nutrients and light. In this paper we consider only two species compete for
a limiting single-nutrient with internal storage and light and obtain the possible
outcomes that are classified in graphical presentation. To explore the mechanism
promoting biodiversity in more realistic conditions, we will expand the model for
multiple species with the assumption of internal storage for our future work. In addi-
tion, we will consider heterogeneity for light environment as suggested by Yoshiyama
et al. [15]. We trust such expansion in the model shall bring fruitful and insightful
knowledge to such system.

7. Appendix.

A. Local stability of equilibria. For equilibrium E0 = (0, Q0
1, 0, Q

0
2),

J(E0) =


m11 0 0 0
m21 m22 m23 0
0 0 m33 0
m41 0 m43 m44

 ,
where

m11 = min{µ1(Q0
1), η1(I0)} −D, m21 = −∂ν1

∂R
(Rin, Q

0
1)Q0

1 −∆1
N1

(Q0
1, I0)Q0

1,

m22 =
∂ν1
∂Q1

(Rin, Q
0
1)−min{µ1(Q0

1), η1(I0)} −∆1
Q1

(Q0
1, I0)Q0

1,

m23 = −∂ν1
∂R

(Rin, Q
0
1)Q0

2 −∆1
N2

(Q0
1, I0)Q0

1, m33 = min{µ2(Q0
2), η2(I0)} −D,

m41 = −∂ν2
∂R

(Rin, Q
0
2)Q0

1 −∆2
N1

(Q0
2, I0)Q0

2,

m43 = −∂ν2
∂R

(Rin, Q
0
2)Q0

2 −∆2
N2

(Q0
2, I0)Q0

2,

m44 =
∂ν2
∂Q2

(Rin, Q
0
2)−min{µ2(Q0

2), η2(I0)} −∆2
Q2

(Q0
2, I0)Q0

2,

where ∆1
N1

(Q1, I), ∆1
N2

(Q1, I), ∆1
Q1

(Q1, I) are functions of Q1, I; ∆2
N1

(Q2, I),

∆2
N2

(Q2, I), ∆2
Q2

(Q2, I) are functions of Q2, I:

∆1
N1

(x, y) =
∂

∂N1
min{µ1(Q1), η1(I)}

∣∣∣
(Q1,I)=(x,y)

=

{
0 if µ1(x) < η1(y),

−k1yη′1(y) if µ1(x) > η1(y).

∆1
N2

(x, y) =
∂

∂N2
min{µ1(Q1), η1(I)}

∣∣∣
(Q1,I)=(x,y)

=

{
0 if µ1(x) < η1(y)),

−k2yη′1(y) if µ1(x) > η1(y)).

∆1
Q1

(x, y) =
∂

∂Q1
min{µ1(Q), η1(I)}

∣∣∣
(Q1,I)=(x,y)

=

{
µ′1(x) if µ1(x) < η1(y)),

0 if µ1(x) > η1(y).
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∆2
N1

(x, y) =
∂

∂N1
min{µ2(Q2), η2(I)}

∣∣∣
(Q2,I)=(x,y)

=

{
0 if µ2(x) < η2(y),

−k1yη′2(y) if µ2(x) > η2(y).

∆2
N2

(x, y) =
∂

∂N2
min{µ2(Q2), η2(I)}

∣∣∣
(Q2,I)=(x,y)

=

{
0 if µ2(x) < η2(y),

−k2yη′2(y) if µ2(x) > η2(y).

∆2
Q2

(x, y) =
∂

∂Q2
min{µ2(Q), η2(I)}

∣∣∣
(Q2,I)=(x,y)

=

{
µ′2(x) if µ2(x) < η2(y),

0 if µ2(x) > η2(y).

The eigenvalues of J(E0) are

m11, m22 < 0, m33 < 0, m44 < 0,

hence ER1 is locally stable if m11 < 0.
For equilibrium ER1 = (NR1

1 , QR1
1 , 0, QR1

2 ),

J(ER1) =


0 m12 0 0
m21 m22 m23 0
0 0 m33 0
m41 m42 m43 m44

 ,
where

m12 = µ′1(σ1)NR1
1 > 0, m21 = −∂ν1

∂R
(λ1, σ1)σ1 < 0,

m22 = −∂ν1
∂R

(λ1, σ1)NR1
1 +

∂ν1
∂Q1

(λ1, σ1)−D − µ′1(σ1)σ1 < 0,

m23 = −∂ν1
∂R

(λ1, σ1)QR1
2 , m33 = min{µ2(QR1

2 ), η2(IR1)} −D,

m41 = −∂ν2
∂R

(λ1, Q
R1
2 )σ1 −∆2

N1
(QR1

2 , IR1)QR1
2 , m42 = − ∂ν2

∂Q1
(λ1, Q

R1
2 )NR1

1 ,

m43 = −∂ν2
∂R

(λ1, Q
R1
2 )QR1

2 −∆2
N2

(QR1
2 , IR1)QR1

2 ,

m44 =
∂ν2
∂Q2

(λ1, Q
R1
2 )−min{µ2(QR1

2 ), η2(IR1)} −∆2
Q2

(QR1
2 , IR1)QR1

2 < 0.

The eigenvalues of J(ER1) are m33, m44 < 0 and the eigenvalues of[
0 m12

m21 m22

]
. Since m22 < 0, m12m21 < 0, there are three eigenvalues of J(ER1)

with negative real part, and ER1 is locally stable if m33 < 0, that is min{µ2(QR1
2 ),

η2(IR1)} −D < 0.
Similarly, for equilibrium ER2 = (0, QR2

1 , NR2
2 , QR2

2 ), there are three eigenvalues
of J(ER2) with negative real part and it is locally stable if min{µ1(QR2

1 ), η1(IR2)}−
D < 0.

For equilibrium EI1 = (N I1
1 , QI11 , 0, Q

I1
2 ),

J(EI1) =


m11 0 m13 0
m21 m22 m23 0
0 0 m33 0
m41 m42 m43 m44

 ,
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m11 = −k1η′1(ξ1)ξ1N
I1
1 , m13 = −k2η′1(ξ1)ξ1N

I1
1 ,

m21 = −∂ν1
∂R

(RI1, QI11 )QI11 + k1η
′
1(ξ1)ξ1Q

I1
1 ,

m22 = −∂ν1
∂R

(RI1, QI11 )N I1
1 +

∂ν1
∂Q1

(RI1, QI11 )−D,

m23 = −∂ν1
∂R

(RI1, QI11 )QI12 + k2η
′
1(ξ1)ξ1Q

I1
1 ,

m33 = min{µ2(QI12 ), η2(ξ1)} −D, m41 = −∂ν2
∂R

(RI1, QI12 )QI11 −∆2
N1

(QI12 , ξ1)QI12 ,

m42 = − ∂ν2
∂Q1

(RI1, QI12 )N I1
1 , m43 = −∂ν2

∂R
(RI1, QI12 )QI12 −∆2

N2
(QI12 , ξ1)QI12 ,

m44 =
∂ν2
∂Q2

(RI1, QI12 )−min{µ2(QI12 ), η2(ξ1)} −∆2
Q2

(QI12 , ξ1)QI12 .

There are three eigenvalues of J(EI1) with negative real part, and it is locally
stable if min{µ2(QI12 ), η2(ξ1)} < D

Similarly, for equilibrium EI2 = (0, QI21 , N
I2
2 , QI22 ), there are three eigenvalues of

J(EI2) with negative real part and it is locally stable if min{µ1(QI21 ), η1(ξ2)} < D.
For equilibrium ERIc = (NRI

1 , QRI1 , NRI
2 , QRI2 ) is

J(ERIc ) =


0 m12 0 0
m21 m22 m23 m24

m31 0 m33 0
m41 m42 m43 m44

 ,
m12 = µ′1(σ1)NRI

1 , m21 = −∂ν1
∂R

(λ1, σ1)σ1,

m22 = −∂ν1
∂R

(λ1, σ1)NRI
1 +

∂ν1
∂Q1

(λ1, σ1)−D − µ′1(σ1)σ1, m23 = −∂ν1
∂R

(λ1, σ1)QRI2 ,

m24 = −∂ν1
∂R

(λ1, σ1)NRI
2 , m31 = −k1η′2(ξ2)ξ2N

RI
2 , m33 = −k2η′2(ξ2)ξ2N

RI
2 ,

m41 = −∂ν2
∂R

(λ1, Q
RI
2 )σ1 + k1η

′
2(ξ2)ξ2Q

RI
2 ,

m42 = −∂ν2
∂R

(λ1, Q
RI
2 )NRI

1 , m43 = −∂ν2
∂R

(λ1, Q
RI
2 )QRI2 + k2η

′
2(ξ2)ξ2Q

RI
2 ,

m44 = −∂ν2
∂R

(λ1, Q
RI
2 )NRI

2 +
∂ν2
∂Q2

(λ1, Q
RI
2 )−D.

B. Geometric properties of T ∗ = CI2, T
∗ = CR1, T

∗ = CS2. First of all, we
consider the geometric properties of the curve of T ∗ = CI2. The equation T ∗ = CI2
implies

ln I0 − ln ξ2
Rin − λ1

=
k2
QI22

,

and

(ln I0 − ln ξ2)QI22 = k2(Rin − λ1).

We denote the function G(Rin, ln I0) as following

G(Rin, ln I0) = (ln I0 − ln ξ2)QI22 − k2(Rin − λ1),

where QI22 = QI22 (Rin, ln I0). Note that G(λ1, ln ξ2) = 0.
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Computation of the first order partial derivative of G is

∂

∂Rin
G(Rin, ln I0) =

−k2
(
− ∂ν2

∂Q (RI2, QI22 ) +D
)

∂ν2
∂R (RI2, QI22 )N I2

2 − ∂ν2
∂Q (RI2, QI22 ) +D

< 0,

where RI2 = Rin −N I2
2 QI22 , and

∂

∂ ln I0
G(Rin, ln I0) =

QI22

(
− ∂ν2

∂Q (RI2, QI22 ) +D
)

∂ν2
∂R (RI2, QI22 )N I2

2 − ∂ν2
∂Q (RI2, QI22 ) +D

> 0.

When (Rin, ln I0) = (λ1, ln ξ2), then N I2
2 (ln ξ2) = 0 and QI22 satisfies ν2(RI2, QI22 ) =

DQI22 and RI2 = Rin = λ1. Hence ∂
∂Rin

G(λ1, ln ξ2) = −k2 < 0 and ∂
∂ ln I0

G(λ1, ln ξ2)

= QI22 (λ1, ln ξ2) > 0. By implicit function theorem, there exists a differentiable
function h satisfies ln I0 = h(Rin), ln ξ2 = h(λ1), and G(Rin, h(Rin)) = 0. Hence

h′(Rin) = −
∂

∂Rin
G(Rin, ln I0)

∂
∂ ln I0

G(Rin, ln I0)
=

k2
QI22

=
h(Rin)− ln ξ2
Rin − λ1

> 0. (27)

From (27),

h′′(Rin) =
1

(Rin − λ1)2

[
h′(Rin)(Rin − λ1)− (h(Rin)− ln ξ2)

]
= 0.

Hence

h(Rin) =
k2

QI22 (λ1, ln ξ2)
(Rin − λ1) + ln ξ2,

it is a straight line.
In the following, we consider the geometric properties of curves of T ∗ = CR1 and

T ∗ = CS2. Let

G1(R0, S0) = (S0 − λS2)σR1 −QR1
S1 (R0 − λR1),

G2(R0, S0) = (S0 − λS2)QS2R2 − (R0 − λR1)σS2,

then T ∗ = CR1 means G1(R0, S0) = 0, and T ∗ = CS2 means G2(R0, S0) = 0.
From (5.3) and (5.5) in [10], we know that QR1

S1 and QS2R2 satisfy

ρS1(S0 − xR1
1 QR1

S1 , Q
R1
S1 )−DQR1

S1 = 0,

ρR2(R0 − xS22 QS2R2, Q
S2
R2)−DQS2R2 = 0,

where xR1
1 = xR1

1 (R0) = R0−λR1

σR1
, and xS22 = xS22 (S0) = S0−λS2

σS2
, therefore QR1

S1 =

QR1
S1 (R0, S0) and QS2R2 = QS2R2(R0, S0) are functions of R0 and S0. Then

∂QR1
S1

∂R0
=

−Q
R1
S1

σR1

∂ρS1

∂R

xR1
1

∂ρS1

∂R −
∂ρS1

∂QS1
+D

= −Q
R1
S1

σR1

∂QR1
S1

∂S0
< 0

∂QS2R2

∂R0
=

∂ρR2

∂R

xS22
∂ρR2

∂R −
∂ρR2

∂QR2
+D

= − σS2
QS2R2

∂QS2R2

∂S0
> 0.
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Hence

∂G1

∂R0
=
−QR1

S1 (− ∂ρS1

∂QS1
+D)

xR1
1

∂ρS1

∂R −
∂ρS1

∂QS1
+D

= −Q
R1
S1

σR1

∂G1

∂S0

∂G2

∂R0
=
−σS2(− ∂ρR2

∂QR2
+D)

xS22
∂ρR2

∂R −
∂ρR2

∂QR2
+D

= − σS2
QS2R2

∂G2

∂S0
.

We know that G1(λR1, λS2) = G2(λR1, λS2) = 0, and when (R0, S0) = (λR1, λS2),
xR1
1 (λR1) = 0 = xS22 (λS2), and QR1

S1 (λR1, λS2) satisfies ρS1(λS2, Q
R1
S1 )−DQR1

S1 = 0,
QS2R2(λR1, λS2) satisfies ρR2(λR1, Q

S2
R2)−DQS2R2 = 0. It follows that

∂G1(λR1, λS2)

∂R0
= −Q

R1
S1 (λR1, λS2)

σR1

∂G1(λR1, λS2)

∂S0
< 0,

∂G2(λR1, λS2)

∂R0
= − σS2

QS2R2(λR1, λS2)

∂G2(λR1, λS2)

∂S0
< 0.

Therefore, by implicit function theorem, there exists differentiable functions h1, h2
satisfies S0 = h1(R0), S0 = h2(R0), λS2 = h1(λR1) = h2(λR1), and G1(R0, h1(R0))
= 0 = G2(R0, h2(R0)). Hence

h′1(R0) = −
∂
∂R0G1(R0, S0)
∂
∂S0G1(R0, S0)

=
QR1
S1

σR1
=
h1(R0)− λS2
R0 − λR1

> 0, (28)

h′2(R0) = −
∂
∂R0G2(R0, S0)
∂
∂S0G2(R0, S0)

=
σS2
QS2R2

=
h2(R0)− λS2
R0 − λR1

> 0 (29)

From (28) and (29),

h′′1(R0) =
1

(R0 − λR1)2

[
h′1(R0)(R0 − λR1)− (h1(R0)− λS2)

]
= 0.

h′′2(R0) =
1

(R0 − λR1)2

[
h′2(R0)(R0 − λR1)− (h2(R0)− λS2)

]
= 0.

Hence

h1(R0) =
QR1
S1 (λR1, λS2)

σR1
(R0 − λR1) + λS2,

h2(R0) =
σS2

QS2R2(λR1, λS2)
(R0 − λR1) + λS2,

they are straight lines.
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