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ABSTRACT. We analyze a competition model of two phytoplankton species
for a single nutrient with internal storage and light in a well mixed aquatic
environment. We apply the theory of monotone dynamical system to determine
the outcomes of competition: extinction of two species, competitive exclusion,
stable coexistence and bistability of two species. We also present the graphical
presentation to classify the competition outcomes and to compare outcome of
models with and without internal storage.

1. Introduction. Nutrients and light are essential resource for growth of phy-
toplankton. Competition for resources affects the composition of species in the
ecosystem. When species compete for one single limiting nutrient, the species with
the highest tolerance for nutrient conditions in the surrounding environment, hence
the smallest break-even concentration, wins the competition [4, 5] and outcompetes
the others. Similarly, when multiple species compete for light, the one with the
highest tolerance for light environment, hence the lowest break-even light intensity,
wins the competition [7]. These demonstrate competitive exclusion in ecosystems
and preclude species coexistence. Nevertheless, competition for multiple resources
may allow coexistence of species under certain conditions. For example, under the
condition of trade-off in tolerance for different nutrients, two species coexist in the
competition for two complementary nutrients [3]. Importance of trade-off in species
coexistence was revealed in the competition model on resources of single nutrient
and light [8]. The same conclusion has been demonstrated graphically by Tilman
[14].

Resource competition model mentioned previously assumed constant yield for
population dynamics. This implies no energy conservation from one stage to the
next. Grover [2] suggested that storage of excess resource could lead to variable
yield for converting nutrient into organism. Such storage results from surplus of
one resource due to limited reproduction (population growth) restricted by the
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other resource. This level of resource storage is called cell quota [1, 2]. In the
model proposed Passarge et al. [11], cell quota from previous stage constrains nu-
trient uptake rate of phytoplankton and affect population growth. This may alter
dynamics of species in competition and lead to different equilibrium statement for
species coexistence. Yet no analytical work was done for the model to the best of
our knowledge.

In this paper, we study a model of two phytoplankton species competing for
two complementary resources. The model assumes internal storage of the first
resource, nutrient, and no internal storage of the second resource, light, in a well-
mixed aquatic environment. Moreover, we will compare our results with those of
competitions for two nutrients in graphical illustration.

The paper is organized as following. In section two, we show the model and
study the single species model. We present results and analyze the model of the
competition of two species for single-nutrient and light in section three and four,
respectively. In section five we discuss the graphical presentation for the two species
competition model (2) with n = 2 or the system (13). The last section is the
discussion. We compare the experimental results in [11] with our analytic results.

2. Model and single species growth model. Assume that species consumes
nutrient and stores it into cell quota, and that the nutrient uptake rate increases
with nutrient and decreases with cell quota. It is the Droop model [1] or the
variable yield model. Assume that the light intensity changes in accordance with
the Lambert-Beer’s law (see the fourth equation in (DE,) below). When species
consumes nutrient and light, its growth function is modeled by Von Liebig’s “Law of
minimum” (see the first equation in (DE,,) below). We shall analyze the following
n-species competition model which was proposed by J. Passarge et al [11]:

N, = [min{ui(Qu), mi(lout)} — D]V,

Q; = vi(R, Qi) — min{u;(Qi), ni(Iout) } Qi

R = D(Rin — R) = Y7, v (R, Q;)N;, (DE,)
Tout = Iin eXp(_kbgzm - Z?:l ijjZm)7

N;(0) >0, Q:(0) > Q™ R(0) >0, i=1,2...,n.

Here N;(t) is the population density of phytoplankton species i at time ¢, and
Q;(t) is the intracellular nutrient content of species i, Q™™ is the minimum cellular
quota satisfying p;(Q™") = 0, for i = 1,2,...,n. The variable R(t) is the nutrient
concentration in the water column, and I, (¢) is the light penetration to the bottom
of the water column. The parameter D is the dilution rate, Ry, is the nutrient input
concentration, and Ij, is the incident light intensity at the water surface, kg is the
background turbidity caused by water, k; is the light attenuation coefficient of
phytoplankton species j, and z,, is the total depth of the water column.

There are some properties for the related functions. The function u;(Q;) is the
growth rate of species ¢ under nutrient limitation with

pi(Qi) > 0, 1y (Qi) > 0, py(QF™) =0,
and is continuous for Q; > Q™. For example, from Droop [1], 1;(Q;) takes the

following forms
Qmin)
i(Qi) = phico |1 — =2 )
(@) = e (1- %5
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where ;5 is some specific parameter. The function 7;(Iout) is the growth rate of
species ¢ under light limitation with 7;(Iout) > 0, 7i(Ious) > 0 and is continuous
for I,y > 0. For example, 1;(I,ut) may satisfy Holling type II functional response
with half-saturation constant a; and maximal growth rate m; for i-th species, re-
spectively, it takes the form

miIout
(Towt) = ————.
nz( out) a; +Iout
The function v;(R, Q;) is the nutrient uptake rate of species i, and it satisfies
81@ (')ui 1 ;
vi(R,Q;) >0, — >0, <0, y; € C (R x [QF™, 00)). 1
z( Qz) el BR an 7 ( + [Qz )) ( )
Grover’s paper [2] presented a classical nutrient uptake function.
By the scaling, we may assume z,, = 1. Denote I(t) to be Iou(t), Ip = Line *es.

Let 35 = R+ 37, N;jQj, then S = D(Riy, — ). Hence S(t) — Ry, as t — oo.
Then the limiting system of (DE,,) is:

Ni = [min{ﬂz‘(Qi)ﬂ?i(I)} - D|N;,
Qi = vi(R, Q;) — min{p;(Qs), n: (1)} Qs
I=TIyexp(— 0, kiN;), (2)
R = Rin =351 NjQj,
N;(0) >0, Q;(0) > Q™in, i =1,2...,n.
We define the following positive numbers o;, §; and A; by the equilibrium analysis
of (2)
ni(oi) = D, n;(&) = D, vi(Ai,0:) = Doy (3)
For simplicity, we assume the following hypothesis:
(Hl) )\1 7£ )‘j for 4 #] and )\1 7& Rin for all i.
(H2) 0 <& <& <& < ... <& and & # I for all i.
(H3) w;i(Q;) # n:(I) at equilibria for all 4.
In this paper we restrict our attention to the case n = 2, the competition of two
species for light and one single nutrient with internal storage.
To understand the system (2) with n = 2, the first step is to consider the single
species model, which takes the form:

N’ = [min{u(Q),n(D)} - D| N,

Q" =v(R,Q) — min{u(Q),n(1)}Q,

R =Ry, — NQ, (4)
I = Iyexp(—kN),

N(0) >0, Q(0) > Q™.

We define the following positive numbers A, £, ¢ based on the equilibrium anal-
ysis of the system (4),

(o) =D, n(§) = D, v(,0) = Do. (5)

Equilibrium analysis: There are two types of equilibria representing species
extinction and survival. First, we consider the equilibrium of extinction type, Fy =
(0,Q") where QV satisfies

v(Rin, Q°) = min{u(Q"), n(10)}Q". (6)
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For the survival type, E. = (N¢,Q.), N. > 0. From the first equation in (4),
we have either u(Q.) = D or n(I.) = D where I. = Iyexp(—kN,.). From the
basic assumption (H3), there are two possible cases. In the first case, we have
w(Q.) = D and n(I.) > D, and denote E. = Er = (Ng,Qgr). In this case,
we called that the species is R-limited. From (5), we obtain that Qr = o and
R. =X, Ng = (Rin—A)/o >0, denote I. = Ip = Iyexp(—kNg) > £. Thus Eg
exists if and only if
Inlp—In&¢ k

- > = (7)

In the second case, we have n(I.) = D and u(Q.) > D, and denote E, = Ef =
(N1, Qr), we say that the species is I-limited. From (5), we have that I, = £ and
N;r = (Inly — In&)/k. In this case, we denote R = R;. From (1), there exists a
unique @y > 0 satisfies v(R;, — N;Qr, Q1) = DQy, then Ry = Ry, — N;Qr > 0.
From the fact u(Qr) > D, we have Q; > o and

V(R[,Q]) = DQ[ > Do = V()\,O’) > V()\,QI).
Then we have Ry > A, and Ry, — A > Rj, — Ry = QN1 > o Ny, which implies that

Rin>)\7 Iy >§,

k' Inly—1In¢
o~ Rm—\
Hence E; exists if and only if
Inly —In&é  k
Run>M\ Ip > ———— < —. 8
0 f Rin —/\ (o2 ( )

From (7) and (8), we conclude that if Ry, > A and Iy > &, then E. exists and E, is
either EFr or E exclusively.

Stability analysis of £y , Er and Ej: Consider the Jacobian of the system
(4) evaluated at Ey = (0,Q"), the washout equilibrium,

_ min{u(Q°),n(lo)} — D 0
Jko) = [ ~[% (Rin, Q°) + An(Q°, 10)]Q° 14 }
My = %(Rin, Q") — min{u(Q"),n(Io)} — Ag(Q°, 10)Q°,

where Ay (Q, 1), Ag(Q,I) are functions of (), I and

:{ 0 if 1(Q°%) < n(lo),
(@.D)=(Q°,T) —klon'(Io)  if 1(Q°) > n(Io).

AN(Q° o) = o min{u(@),n(D)}

"o% i 0
Ao(Q" 1) = %mm{u(@ng)}\(w):(m) _ { Q) Q) < ()

The eigenvalues of J(Ey) are:

min{j(Q%).n(Iy)} — D, (%(Rm, Q%) — min{u(Q%). (o)} — Aa(Q°, 10)Q".

From (1), %V(Rin,Qo) < 0, it follows that Fjy is locally asymptotically stable if
and only if min{u(Q°),n(ly)} < D,ie. Q° < o or Iy < &. It is trivial that if Iy > &,
then we have that Q° < ¢ if and only if Ry, < A. Therefore, we conclude that Ej

is locally asymptotically stable if and only if Iy < & or Ry, < A.
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If the species N is R-limited, at the neighborhood of Er, the system (4) becomes

V= [u@ - o]
Q' =v(R,Q) - nQ)Q; )
R = Ry — NQ.

The Jacobian of the system (9) evaluated at Eg is

0 W (Qr)Nr
—Qr5E(ANQr) —NrFE(AQr) + 55X\, Qr) — (Qr) — 1'(Qr)Qr

The eigenvalues p of J(ER) satisfies
2 ov ov , , ov
P +P[NRﬁ()\, Qr) — @(/\7 Qr)+ 1(Qr) + 1 (Qr)QR] + 1 (QR)NRQRﬁ(Av Qr)=0
From (1) and Roth-Hurwitz criteria, the equilibrium Eg is locally asymptotically
stable.
If the species N is I-limited, at the neighborhood of E}, the system (4) becomes

J(Er) =

N’ = [n(I) - D] N,
Q' =v(R,Q)—n)Q, (10)
R=Ry, — NQv
I = Iyexp(—kN).
The Jacobian of the system (10) evaluated at Ey is
—k&n' () N1 0
Q155 (R, Qr) + k&' (6)Qr  —Nr§5(Rr, Qr) + 56 (Rr, Qr) — (&)

The eigenvalues are —k&n'(§) Ny < 0 and —ng—E(RI, Qr)+ %(RI, Qr)—n(€) <.
Hence the equilibrium FE7 is locally asymptotically stable.
The following theorem describes the global dynamics of system (4).

Theorem 2.1. The following holds.
(i) If Rin < X or Iy < &, then Eq is the only equilibrium and
lim (N(2),Q(6) = Bo.
(1) If Rin > X and Iy > &, then Ey is unstable and E. exists, and either E. = Er
or E. = Er exclusively. If species N is R-limited (I-limited) then for N(0) > 0
lim (N (1), Q(1)) = Er (En).

J(Er) =

Proof. Let U = NQ, then we convert system (4) into the following equations
N’ = [min{u(%).n(1)} = D] N,
U =v(R,%)N - DU,
R=Ri,-U, (11)
I =1Iyexp(—kN),
N(0) =0, U(0) = 0.

Note that U = 0 when N = 0 and the system (11) is dissipative.

The isoclines of N are N = (0 and

min{u(55),n(1)} = D. (12)
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E 0 : b‘U

FIGURE 1. The phase plane (N, U) of system (11) in case (ii). Solid
lines indicate the isoclines of N. Dashed line indicates the isocline
of U. The vectors indicate the vector field of system (11). The set
A in case (a) and the set B in case (b) are positively invariant sets.

Note that, if u(¥) = D, then ¥ = oy if n(I) = D, then I = Ipe " = ¢ and
N = % = Ny for Iy > £. Hence the equation (12) implies that
U=0cN for 0 <N <Ny, and N = Ny for U > oNy if Iy > £.
Next, we shall describe the isocline of U. Let the function F'(N,U) be defined by
U

F(N.U) = V(B — U, 55)N = DU.
Note that N = 0 implies U = 0 and Q = Q°, then F(0,0) = 0. And
oF v
—(0,0) = —(Rin, Q%) — D < 0.
2 (0.0) = S (R, Q") - D <

]?y implicit func‘Eion theorem, there exists U (N), a function of N, which satisfies
U(0) =0, F(N,U(N)) =0 and
%(N,O) . _%(Rin_[ja%)%'i'y(Rin_ﬁv%)

T 9F Ty dv 7 v T U
aw(VU) G5 (R —U, )N = §6(Rin —U, ) + D

> 0.

)
(i) If Riy < X or Iy < €&, then min{u(Q),n(ly)} < D and
ooy = — oy 0 5 (i @Q° + V(R @)
au (N, U) 100 — 28 (R, Q0) + D
*%(Rin, Q")o + Do B
_%(Rin,QO) + D

_O"

from the equation (6) the inequality holds. Hence Ey := (0,0) is the only
equilibrium of system (11) and it is locally asymptotically stable. Hence there
is no periodic solutions, by Poincare-Bendixson theorem, and all solutions
converge to E. Therefore, all solutions of system (4) converge to Ey.

(i) If Ry, > A and Iy > &, it implies that min{u(Q°),n(Iy)} > D and U’(0) > o.

The nontrivial intersection of isoclines is either Fp := (Ng,o0NRg) or E; =

(N1,U(Ny)) (see the Figure 1). From the phase plane analysis, we know that
the region A and B are positively invariant, where

A={(N,U): N >Ny, and U > U(N), for N > N;}.
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B={(N,U): N<Nj, and U > 0N for 0 <N < Ng,
U > U(N) for Np < N < N;}.

Hence there is no limit cycles, and by Poincare-Bendixon theorem the omega
limit set of (N (0),U(0)), w(N(0),U(0)), is an equilibrium. We know that Ej
is unstable under the assumption of (ii). Therefore w(N(0),U(0)) is either
ER or Ey for N(0) > 0. Thus, for system (4), w(N(0),Q(0)) = Er or E; for
N(0) > 0, Q(0) > Q.

O

3. Two species model. In this section we consider a model of two species com-
peting for light and a single nutrient with internal storage. The model takes the
form

N = [min{pus Q1) m (D)} — D]y,

Q1 = n(R, Q1) — min{u1 (Q1), m(1)}Q1,

N = [min{jus(@a), (1)} — D| Vs,

Q5 = v2(R, Q2) — min{pz(Q2), n2(1)}Q2, (13)
I = Iy exp(—kiNay — kaNy),

R = Rin — N1Q1 — N2Q2,

N;(0) >0, Q:(0) > QM™», i=1,2.

Let the set € be
Q= {(NlaQ17N27Q2) : Nz(o) >0, QZ(O) > Q?in7 i= 1a2}

First of all, we find all equilibria and classify the stability of them.

Equilibrium analysis: The extinction equilibrium is Ey = (0, Q9,0, QY) where
QY satisfies v;(Rin, Q) = min{u;(QY),n:(I0)}QY, i =1,2.

For the case of competitive exclusion, we have the following semi-trivial equilibria
FEgr; and E;, i = 1,2, representing that the species ¢ is R-limited and I-limited,
respectively.

(1) ERl = (Nll%laQ{%Iaongl% where Q?l = 01, RRI = >\1 ’ NlRl = Ma

o1

IR = [yexp(—ki NFY), vo(Ar, QFY) = min{us (QF), o (I }QF. Species 1
is R-limited if and only if

ln]o —fl k‘1
Rin> M, 0 >&, 50— > —.
1, lo> & R M o
(2) Erz = (0,Qf? N3, Q5"), where Qf? = 0y, R = Xy, NJ¥ = fute,

I = Tyexp(—kaN3%?), vi(A2, Q1) = min{11 (Qf), m (I"%)}Q{*. Species 2
is R-limited if and only if

Inly—8& _ ko
Rin > Ao, Ip > &, ——= > —.
2 lo>& Rin—X 02

(3) B = (N1, QI',0,Q4Y), where I't = ¢, , NJ! = lozln&s QI gatisfies

1
v1(Rin — NP1QI, Q1YY = DQIY, R = R, — N{1Q, and Q! satisfies
vo(RIY, Q) = min{pa(QL1), m2(&1)}QLL. Species 1 is I-limited if and only
if
Inly— & k1

Rin > M, Ip> &, —— < —.
1, lo>& F
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(4) Erp = (0,Q1%, N{2,Q1?), where I'? = &, , Ni? = Ilo-In&e QI2 satisfies
va(Rin — N3*Q57,Q3%) = DQ3?, (14)

R = Ry, — N3?Q3?, and Q1 satisfies v1 (R, Q1%) = min{u1 (Q1*), m (&2)}Q1”.
Species 2 is I-limited if and only if
Rin > Ao, Ip > &9, % < %

Next, we consider the coexistent equilibria. In this case, we must have that
min{p;(Q;),n:(I)} = D, for all i« = 1,2. If u1(Q1) = D and p2(Q2) = D, which
implies that Q1 = o1, Q2 = 09, and v4;(R, 0;) = Doy, for i = 1,2. Hence R =\ =
A2, a contrary to (H1). If 1 (I) = D and n9(I) = D, then I = & = &, a contrary
to (H2). From above discussion, we know that the resource can not attain to the
break-even concentration of each species at the same time. Hence the coexistent
equilibria exist if one species induces 11,(Q;) = D and the other causes 7;(I) = D.
Therefore we have exactly two types of coexistent equilibria.

(1) BRL = (NEL QBRI NI QF!) where QF! = oy, REI = )\, TP = &. Note
that n1(&2) > D = n1(&1) then & > &. QF satisfies vo(A\y, QF) = DQEFL.
From the fact n2(&2) = D < pa(QF!), we have QF > o9 and

vo(M, Q) = DQY > Doy = v3(Ng, 02) > va(A2, QF),

it follows that A\; > Xo. N{¥{, NI is the intersection of following two lines

{m%—m&:hNP+@Nyv (15)

Rin — M1 = o1 N+ QNG
We need assumption (H4):

Infy—1 ki k
(H4) Any two of Info=ln& k ko are not equal.

Rin — M1 ’ 01 ’ 51

Then the solution (N, NI) of (15) exists and is unique if and only if
ki Inly—Iné& ko
— < s
o1 Rin — M1 M

(16)
o k In [, 1 k
b Indo—lng 2.
o1 Rin — M1 Q5
(2) EIR = (NI, Q" NI Q4%) where Q47 = 09, RIF = Xy, I'F =&, mi (&) =
D < w(QF), QIF > oy and QIF satisfies v1(\2, QIF) = DQIE. And
NIE NI gatisfy

(17)

{mg—mgszﬁ+@Nﬁ, (18)

Rin — X2 = Q{EN{® 4 5y NJ 7.

Similarly, the existence of EIf implies that & > &1, QIF > oy, and A\g > ;.

The basic assumption is
Inly—1 ky kK
(H5) Any two of %7 U—z, Q—{lR are not equal.
Under (H5) equation (18) has a unique positive solution (N{%, NIf) if and
only if
@< 111[0—11151 kil

<
lop) Rin — X2 QIR
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or

kg 1DIO - lnfl kl
— > .
lop) Rin — X2 QIR

We present the criterion of the existence of Ef*! and EI¥ in Table 1. Note that
the assumption (H2) implies the nonexistence of EXF.

TABLE 1
Equilibrium  Existence criteria
EfI AL > A2, &2 > &
. kl ln [0 — 1H€2 k‘g k,‘l lIl IO — h’lfg k‘g
ther — < ——— >~ _ =
e o1 < Rin — M1 M o o1 Rin — A1 M
EéR A2 > A1, &1 > &
. kQ IHIO —ln§1 I€1 k‘g 111[0 —h’lfl lﬂ1
ther — < ——— _ > — .
crher o2 Rin — X2 IR o 02 Rin — X2 QIR

Stability analysis: The details of the local stability analysis of each equilib-
rium are presented in the Appendix. We denote J(FE) be the variational matrix
of (13) evaluated at equilibrium E. The eigenvalues of J(Ey) are three nega-
tive real values and min{u1(Q%),n1(Io)} — D. It follows that Ejy is locally stable
if min{u;(QY),m:(Io)} < D, equivalently & > I or A\; > Riy, for each i = 1,2.

There are three eigenvalues of J(Fr1) with negative real part, Er; is locally
stable if min{pus(QFY), no(I71)} < D, that is, QF' < oy or I®! < &. Hence Eg; is
locally stable if

lnlo —ln§2 kl
A A —_ < —.
1 < Ag or R — < o1

Similarly, for equilibrium Egrs, there are three eigenvalues of J(Eg2) with negative
real part and it is locally stable if

IHI(]—h’lfl kg
Aoy < A —_ < —.
2 Lot Rin — A2 e

There are three eigenvalues of J(Ej1) with negative real part, E; is locally stable
if min{p2(QIY),m2(&1)} < D, ie., QY < o1 of & < &. Hence Epy is locally stable
if
kl In IO —In 51
Qn < R or & < &s.

Similarly, for equilibrium FEjy, there are three eigenvalues of J(FEjs) with negative
real part and it is locally stable if

k‘g 111]0711152
? R or £ < ;.

We summarize the criteria for the existence and local stability of Ey, Er1, Egr2,
EII: E[Q in Table 2.



1268 SZE-BI HSU AND CHIU-JU LIN

TABLE 2
Equilibrium  Existence Stability criteria
Ey Always exists Rin < o0 or Igp < &, for each i =1, 2.
Inly — 1 k
Em Rin> Do > &, A <hpor 2I0=I& K
1nIo—ln§1 > k1 Rin — 1 g1
Rin — )\l g1 T I T
Ero Rin > A2, Io > &2, A2 < A1 OI‘LH&>3.
In Io — ln£2 > k’z Rin — >\2 02
fin =22 02 Ml =g &
En Rin > M1, 1o > &1, §1 <& or = % :
nlo—Ing& _ ha Rin =X = Q1
N iy —1 13
Er2 Rin > A2, Io > &2, §2 < &1 or L;l\& %
lnIo — lnfz ko Rin — M1 2

Rin - )\2 < 0'72
The stability of coexistent equilibrium is more complicated. We note that from
assumption (H2) and Table 1, EZ! is the only coexistent equilibrium. Observing
that the equilibrium E is hyperbolic since the determinant of J(ER!) is

ov Oov
ENFINF i (o1)m(€2) Gz (i, 1) (D = 522 (0, QF) ) (oot — ki Q).
which is not zero by (H4).

Q2
We state the outcomes of competition in the following theorems, and the proofs
are postponed to the next section.

Theorem 3.1. If either Ry, < \; or Iy < &; for some i € {1,2}, then lim;_, oo N;(t)
=0.

For the rest of this section, we always assume that Ry, > \;, Ip > §; fori=1,2.
We denote some important parameters as following:

111]0—11151 k?l
T = C = —
1 Rin*>\1 y 1 0_17
lnIO—ln§2 I€2 kg
Ty=—07082 0, =2 0y = 22
? Rin — A2 R 5
and nlo - Iné
* nlo — g2
T = —8=.
Rin_)\l

Theorem 3.2. Assume (H1)-(H3). If A1 < Ay < Ry, and & < & < Iy, then for
Ny (0) > 0, N3(0) >0,

tlggo(Nl(t)vQl(t)aNQ(t)vQQ(t)) = FEr1 (En), if Th > C1 (Ty < Cy).

Theorem 3.3. Assume (H1)-(H4) and Mo < A1 < Rin, & < & < Ip.
(i) If Th < C1, Ty < Co, then Ep, Ero exist and Eyy is locally stable.
(a) If T* > Cra, then Ers is locally stable and there exists a saddle equilibrium

EERL. The outcomes depend on initial conditions.
(b) If T* < Cra, then Ery is unstable, and for N1(0) > 0, N2(0) > 0,

(N1(t), Q1(t), Na(t), Q2(t)) = En.

lim
t—o0
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(i) If Ty < Cy, Ty > Co, then Eyy, Ers exist and both are locally stable and there
exists a saddle equilibrium EI!. The outcomes depend on initial conditions.
(iii) If Ty > Cq, Ty > Csq, then ERry, Ero exist and Ersy is locally stable.
(a) If T* < Cy, then ER is locally stable and there exists a saddle equilibrium
ERL. The outcomes depend on initial conditions.
(b) If T* > C4, then ERr; is unstable and for N1(0) > 0, N5(0) >0,

Hm (N1 (), @ (2), Na(t), Qa(t)) = Era.

(z'v) ]le > 01, Ty < 02, then ERla FEro exist.
(a) If T* < C1,Cr2, then Egy is locally stable and Ers is unstable, and for
Nl(O) > Oa NQ(O) > 0>

Jim (N1 (2), Q1(2), Na (1), Q2 (1)) = Epa-

(b) If C; < T* < Cro, then Egy and Ery are unstable and EF! exists, and
for N1(0) >0, NQ(O) >0,

Jim (N1 (1), Q1 (6. Na(t). Qa() = EL.

(c) If C1o < T* < Cy, then Er1 and Era are both locally stable and there
ezists a saddle equilibrium ERL. The outcomes depend on initial condi-
tions.

(d) If C1,Cra < T*, then Egy is unstable and Ero is locally stable, and for
N1(0) > 0, N2(0) > 0,

Jim (N1 (1), Q1(2), Na(t), Qa(1)) = Era.

We note that Cjy = Qk—gz < % = Cy, where Q12 = Q12 (R, Iy), a function of Rj,
and Iy, satisfies equation (14). For convenience, we consider 52 = 52 (Rin,In Ip)
as a function of Ry, and InIy. Therefore Cro = Cro(Rin,In Iy) is also a function of

R;, and In Iy. The following lemma describes the monotonicity of Cys.

Lemma 3.4. Cra(Rin,Inly) is strictly decreasing in Ry, and strictly increasing in
In Io.

4. The proofs. To prove the results in section 3, we need the following lemma and
theorems. The lemma states the nonexistence of coexistent equilibrium. Note that
assumption (H2), &; < &, implies that EZ® does not exist.

Lemma 4.1. Assume the semi-trivial equilibria Er1 and Ero exist, L € {R,I}. If
one of them is locally stable and the other is unstable, then EX! does not exist.

Proof. Assumption (H2) implies that Fpy is locally stable if it exists.

(1) For the case Fry or Eyj is locally stable and Egs is unstable, then the insta-
bility of Ers implies A; < Ay, and it follows that E*! does not exist.

(2) Assume Eg; is locally stable and Ejs is unstable, then the instability of Eyo
implies that Q4% > oy if and only if R'? > )\;. Assume E! exists, then
A1 > A and either

k
(16) & Oy < T* < —27 or
2

ko

(17)@01>T*>?
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holds. The stable condition of Eg; implies T* < (4, then (16) does not

hold. From (17), Ni2 = ln(IO)k_zln(&) > Bz R‘“_RI,%IZ, which implies
2 2

B> Ba—I2 — QI2 Tt follows that
2

va(A1, Q57) = DQF' > DQE? = va(R™,Q5%) > va(R", Q51),
and A; > R'2, a contradiction.
(3) If Eyy is locally stable and Ep is unstable, similarly, we have R? > \;, and

the existence of Ey; implies T} < C;. Assume E®! exists, then A\; > Ay and
either (16) or (17) holds. If (16) holds, then

lnlo —ln§1 lnlo —1n§2
— =N <O <T" = ————=
Rin—M Rin — A1

implies that £ < &, a contradiction. Under assumption (H2) and instability
of Erg, R™ > )\ implies Q12 > QL. If (17) holds,

Ry—R”? Ry,—-XN Inlj—In&
12 RI k
2 2 2

12 _ _ arl2
NQ - _N2 )

a contradiction.
(4) If FRsy is locally stable and Eg; is unstable, then A; > Ao and
hl[o—lnfl 111]0 —ln§2
— <Oy < —=.
Rin — A2 *7 R X
Hence &1 > &, it implies the nonexistence of ERL,
(5) If Eyo is locally stable and Eg; is unstable, then A; > Ag and T > C1, Cjs.
Assume EF! exists, then (16) holds. Eps is locally stable means that Q1% <
oy < QFL. Thus T* > Cry > %, a contradiction to (16). O
2

By changing variables, we transform the system (13) into a monotone system,
and apply monotone dynamical theory to obtain the global asymptotic behavior of
the solutions. Let U; = N;@Q;, ¢ = 1,2, then we have the following equations.

Ni = [ min{u (§),m (1)} = D| M,

Ui = (R, $-)N, — DU\,

Nj = | min{pus(§2), ma(1)} = D| N, 1)
Us = va(R, $&)Na — DUy,

I =1Iyexp(—k1Ny — kaN2), R= Ry, — Uy — Uy,

N;(0) >0, U;(0) >0, i =1,2.

Let the biological relevant domain be
Q = {(Nl,Ul,NQ, UQ) (S Ri UL+ Uy < Rin,
Ui
N;’
Then Q is positively invariant for (19), and the forward orbit of (19) have compact
closure in Q. L o
We denote Fy, Eri1, Er1, Era, Ero, Efl, be the associated equilibria of system
(19) with respect to the equilibria of system (13), and their stability are the same
as in system (13). Let X; = (N;,U;) € R, X;F = {(N;,U;) : N; > 0,U; > 0}
be the positive cone of X; for i = 1,2. Let the space X = X; x X5, the positive

QMin < Ni=0=U; =0, i=1,2}.
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cone be X* = X" x X, the cone K = X" x (—XJ). We can define an order
by cone K, denoted by <f, and (Ny, U, N2, Us) <g (N1,Ui, No, Us) means that
N, < Ny, Uy < Uy, and Ny > Ny, Uy > Us. Define &, : X+ — X+t for t > 0 by
that ®;(N1(0),U;(0), N2(0), Uz(0)) is the solution flow of (19) with initial condition
(N1(0), U1(0), N2(0), U3(0)) which belongs to @ € XT. Then the flow ®, is strongly
monotone with respect to <.

Theorem 4.2. If either Ry, < \; or Iy < &; for each i = 1,2, then Ey is the only
equilibrium of system (13) and lim;_, o (N1(t), Q1(t), N2(t), Q2(t)) = Ey.

Proof. From Table 2, Ej is the only equilibrium of system (13), then Eo is also the
only equilibrium of system (19). Since

(0,0, N2(0), U2(0)) <k (N1(0),U1(0), N2(0), U2(0)) <k (N1(0),U1(0),0,0),
and ®; is monotone, we have that for ¢t > 0
®,(0,0, N2(0), U2(0)) <k ®:(N1(0),U1(0), N2(0), U2(0)) <k P:(N1(0),U1(0),0,0).
From Theorem 2.1, ®,(0,0, N5(0), U3(0)) and ®;(N;(0),U;(0),0,0) tend to Eq (32801
goes to infinity. Then the equation (20) implies that
Jim @, (N1(0), U(0), Na(0), U2(0)) = Ep.
Furthermore, for system (13) every trajectory tends to Ej. O

Theorem 4.3. The following holds.

(Z) If Rin > A\ and IO > 61, and either Ry, < Ao or IO < 62, then Ey and
Egri1(Ep) exist, and for N1(0) > 0,

tgr&(Nl(t),Ql(t),N2(t)7Q2(t)) = Er1 (En), if Th > C1 (Th < Ch).

(i) If Rin > Ao and Iy > &, and either Ry, < A\ or Iy < &, then Ey and
Egro(Ers) exist, and for N2(0) > 0,

tlL%(Nl(t),Ql(t),Ng(t),QQ(t)) = Epo (Er2), if To > Cy (Ty < Cy).

Proof. We focus on case (i), the proof of case (ii) is similar.

From assumption and Table 2, it follows that Eg, Egri(E;) exist in system
(13), and E, is unstable. Similarly, Ey, Egi(Eq) exist in system (19) and Ej is
unstable. It is similar to the proof of Theorem 4.2, we will use the monotonicity of
®,. Consider the initial condition (Ny(0),U;(0), N2(0),U3(0)), then equation (20)
holds. From Theorem 2.1, ®;(Ny1(0),U;(0),0,0) tends to FEgri or Epq as t goes to
infinity for N1(0) > 0, and E, is unstable in (N1,Q1) direction. Hence for the
system (13) with initial condition N7(0) > 0, the desired results hold. O

From now on, we assume that (H1)-(H4) hold and R;, > \; and [y > &, for all
i = 1,2. From Table 2, Fy is a repelling in system (13), so is Ey in system (19).
Note that

Oy (X7 x {0}) € X x {0}, ®.({0} x XJ) C {0} x X,
and Theorem 2.1 tells us that the omega limit set w(x1,0) = Em or EH for z1 €

X7\ {0}, w(0,22) = Egy or Eyy for z5 € X5\ {0}.
By Theorem B in [6] or Theorem 2.4.1 in [16], we have the following results.
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Theorem 4.4. Let S = [ELQ,EM}K, L € {R,I}. Then S is positively invariant
and the omega limit set of every orbit in X is contained in S and ezactly one of
the following holds:

(i) There exists a positive equilibrium Ef’f of ®; in S;

(i) w(z) = Ery for every x = (x1,22) € S with x; #0, i =1,2.
(iii) w(x) = Epy for every & = (x1, ) € S with z; #0, i = 1,2.
Finally, if (i) or (i) hold, v = (z1,7z2) € X\ S and with x; # 0, i = 1,2, then
either ®4(x) — Erq or Dy (z) — Eps ast — .

Theorem 4.5. If Ey; is locally stable and Er; is unstable for i,j € {1,2}, 4
J» L€ {R, I}, then limy— o0 (N1(2), Q1(2), Na(t), Q2(t)) = Eri(Er:), for Ni(0) > 0.

Proof. From Lemma 4.1, we know that the coexistent equilibrium E®! does not
exist in system (13), and neither do Ef'[ . The assumption implies that Ep; is
locally stable and ELj is unstable for system (19). By Theorem 4.4 then w(z) = Er;
for every z € X+ with N;(0) > 0. Hence for system (13), we proves the desired

results. 0

Theorem 4.6. If both Er; and Ery are unstable, L € {R, I}, then EF! exists and
limy o0 (N1(£), Q1(£), Na(t), Q2(t)) = EFL, for N1(0) > 0, N2(0) > 0.

Proof. From assumption, we have that ELl, ELQ are unstable. By Theorem 4.4,
w(x) # ELl, EL2 for all z € S, then there exists ERI

The result of Theorem 4.4 (ii) does not hold, which implies that Er,; is not locally
attractive from below. Similarly, Theorem 4.4 (iii) does not hold implies that Ero
is not attractive from above.

By Theorem 2 of [12], and the fact that the coexistent equilibrium is unique,
then for x € [ERI Epilix U[Er, EM) g = M, w(z) = EF. We denote EFT :=
(Nl,Ql,Ng,Qg) Next, we consider x = (z1,22) € S\ M, if z; > (1\7“@1) for
i = 1,2 then there exist 1 < x1, @2 < 3 such that (1, z2), (x1,Z2) € M and
(Z1,22) <k (z1,72) <k (x1,T2). Since w(Z1,x2) = EF and w(z1,To) = ER W
have that w(ml,xg) = ERI. It is similar for the case z; < (N;,Q;) for i = 1, 2
Hence for z € S, w(z) = Efl, and ERT is a global attractor. Thus for system (13)7
we gives the desired results. O

Theorem 4.7. If both Er1 and Ers are locally stable, L € {R,I}, we denote
B; ={x € S:w(z) = Er;} be the basin of attracting of Er;, fori=1,2, then EF!
exists and w(x) = B for z € Q = Q\ (B1 U By) where Q is an unordered and
positively invariant sub-manifold with codimension one.

Proof. From assumption, we have that Em, ELQ are also locally stable. From
Theorem 4.4, w(z) # ELh ELQ for all z € S, then there exists Efl.

The assumption (H3) implies that ®; is continuously differentiable near the equi-
librium ER7 By [13] Theorem E.1, the spectral radius r(D, ®,(ERTY) > 1. By [9],
we have that Q = X+ \ {B; U BQ} is an unordered and positively invariant sub-
manifold with codimension one. Note that Ey and ERI belong to the set Q. Since
Q is positively invariant, there is a heteroclinic orbit connecting E, and Ef“ . In
fact, the set Q is the stable manifold of ER/. Hence, for z € Q, either w(z) = Ep,
or w(x) = Eps. The outcomes depend on initial conditions. O
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Proof of Theorem 3.1. The assumption Ry, < \; or Iy < &;, by Theorem 4.2 or
Theorem 4.3, we know that N;(t) — 0 as t — oc. O

Proof of Theorem 3.2. The assumption implies that Ep; (or Eyq) is locally asymp-
totically stable if it exists, and the coexistent equilibrium EX! does not exist. As-
sume that Egrs (or Ers) is also locally asymptotically stable, from Theorem 4.7,
ER! exists, a contradiction. Thus Ege (or Erg) is unstable if it exists. By Theorem
4.5, the conclusion of this theorem holds. O

Proof of Theorem 3.3. Note that, under the assumption Ay < A\; and & < &, we
have that Ty > T* > Ty. Table 2 tells us that Ere, Ey are locally asymptotically
stable if they exist; 7% < C1 if and only if Ery is locally asymptotically stable;
T* > (9 if and only if Eyo is locally stable.

(i) If Ty < C1, Ty < Cy, then Efq, Epo exists and Eyq is locally stable. We know
that the stability of Ero affects the global behavior of system (13). Hence
there are two subcases:

(a) If T* > Cfpo, then Epy is locally stable. Hence, by Theorem 4.7, the
outcomes depend on initial conditions.

(b) If T* < Cfpa, then Ej9 is unstable. Hence, by Theorem 4.5 lim;_, (N7 (¢),
Ql(t)7N2(t),Q2(t)) = E[l, for Nl(O) > 0, NQ(O) > 0.

(ii) f Th < Cy, To > Cy, then Ep, Egs exist and they are locally stable. Hence,
by Theorem 4.7, the outcomes depend on initial conditions.

(iil) Ty > Cy, Ty > Cy, then Ery, Egs exist and Egs is locally stable. Similarly,
we will consider the following subcases.
(a) If T* < (4, then Eg; is locally stable, and by Theorem 4.7, the outcomes
depend on initial conditions.
(b) If T* > (4, then Eg; is unstable, by Theorem 4.5, lims—, o0 (V1 (¢), Q1(t),
No(t),Q2(t)) = ERra, for N1(0) > 0, N5(0) > 0.
(iv) f Ty > Cy, To < Cy, then Ery, Ejy exist. Similarly, we will consider the
stability of Ery, Ejs.
(a) If T* < C1,CJa, then Eg; is locally stable and Er9 is unstable. Hence,
by Theorem 4.5, limy—, o0 (N1 (2), Q1(t), N2(t), Q2(t)) = Eg1, for N1(0) >
0, N3(0) > 0.
(b) If C; < T* < Cra, then Eg; and Ejp are unstable and EF! exists, since
Theorem 4.4. Hence, by Theorem 4.6, lim;_, oo (N1 (), Q1(t), Na(t), Q2(t))
= BRI for N1(0) > 0, N2(0) > 0.
(¢) If Cra < T* < (4, then Egy and Ejs are locally stable. Hence, by
Theorem 4.7, the outcomes depend on initial conditions.
(d) If Cy,Cr2 < T*, then Epgy is unstable and Ejs is locally stable. Hence,
by Theorem 45, hmt_m)Q(Nl(t),Ql(t),NQ(t),QQ(t)) = E]Q, for Nl(O) >
0, N2(0) > 0. O

Proof of Lemma 3./. From (14), we have
1/2(Rin - N212Q£27 52) = DQ£27 (21)

where Nj2 = NJ%(Inly) = o2 - QF2 = Q2 (Riy,InIo). Note that

d 1
NP2(Inl,)) = —.
a2 (Indo) =2
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Differentiating the equation (21) with respect to Ri,, then

Ovs 0QL?
0 (o — NP QP QR - PO
+ %(R _NI2QI2 12)8Q£2 _ DaQ£2
oQ ™ T2 TRV E2IUOR, T T ORy
Hence
008 _ 7 (i — N3°Q4%, QF) -
OR ~ B (o — NEQE,QPINP — 3R, — NPQP.QP) + D
Similarly, differentiating (21) with respective to In Iy, we have
vy a2 12y @5 2 0Q%°
2 (Rin — NPQP, QP (=2 - N
aR(R 2 QQ 2 )( kQ 2 alnlo)
vy 12412 12y 0Q5° Q%
A Rin — N. ) =D .
*ag! 2 Q5 ) g e = Pan g,
Hence
12 .
0P _ — 52 5% (R — NJ2Q2,QP)
Olnly 2% (R — NJ2QP, QR)NI? — 22 (Rin — N?Q2,Q1?) + D
12 912
ko ORin
Therefore,
aQIQ 6@12
Cra kg o0 9 _ _kegnt 0

ORwm (@22 =7 by (QR)?
O

5. Graphical presentation. In this section we demonstrate the graphical pre-
sentation of the two species competition for light and single nutrient with internal
storage under the assumption \; < Ry, & < Iy for all ¢ = 1,2. First of all, we
consider the identities for resources R and I in (13) that is

Rin — R = Q1N1 + Q2 N2, (22
hl[() —Inl = k1N1 + kzNg, (23)
(

Here we rewrite the identity of I(¢) in (13) as equation (23). Note that (22), (23)
imply that the supply resource is equal to all consumption. We can rewrite (22),

(23) in the form
R, —R | @ Q-
|:1n10—1n1:|_|:]€1 :|N1+|:k'2 :|N2 (24)

We called the vector in the left hand side of (24) the supply vector, and called
the right hand side the consumption vector. We can use graphical presentation to
predict the outcomes of competition, the method is similar to [14].

See Figure 2, if the slope of supply vector at the corner of isocline of species 1
is larger than C; = %, then species 1 is R-limited (region A), that means 77 =

% > C7. On the other hand, if T3 < C; then species 1 is I-limited (region
ky

B) and the slope of consumption vector is Cjp = oI For the case of species 2,
1
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In Io

Inéa 1 A7

In& + £ 1
&

/\.2 /{1 —> R

F1GURE 2. The isocline of Ny is right-angled. In region A, 77 > C4
and species 1 is R-limited; in region B, 77 < C; and species 1 is
I-limited.

we have similar results, that is, when Tb = % <(Cy = %, then species 2 is

R-limited; when T < Cs, then species 2 is I-limited and the slope of consumption
vector is Cro = %25, From Lemma 3.4, we know that C7s is strictly decreasing in
2
Ry, and strictly increasing in In Iy, and so is Cq.
We assume that (H2) & < & always holds. If A\; < A9, then species 1 is better

competitor in nutrient and light. Hence species 1 will out-compete species 2.

TABLE 3

Case Condition States Stability

I T < Cy Er1, Ers (I.a) T* > CfJa, bistability happens.
Ty < C2 (Ib) T* < Cre, Er1 18 G.A.S.

(I1) T < Ch Er1, ERs Bi-stability happens.
To > C2

(I11) T > Cq ERri, Egro (Ill.a) T* < C1q, bistability happens.
Ty > Co (HI.b) T > Ch, Eps is G.A.S.

(IV) T > C ERri1, Ero (IV.a) T* < C1, Cr2, Ery is G.A.S.
Ty < Co (IV.b) C1 < T* < Cpa, ERT is G.A.S.

(IV.c) C1 > T* > Cfa, bistability happens.
(Iv.d) T > C1, Cr2, Er9 is G.A.S.

G.A.S. means globally asymptotically stable.

Assume A\; > Ay and (H2) hold, then species 1 is better competitor in light
and species 2 is better competitor in nutrient. There are four possibilities in the
following (see also Table 3):

(I) Species 1 is I-limited and species 2 is I-limited, that is Ty < C1, T < Cs. Be-
cause species 1 is better competitor in light, then Er; is locally asymptotically

stable.
The fact that

min{y1(Q1%),m (&)} — D <0

(25)
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implies that

N

N1 l(N1,Q1,N2,Q2)=Er2
and species 1 can not invade when the resident species attains the amount
NI2 with cell quota Q2. Hence Ejs is locally asymptotically stable. On the
other hand, if min{p1 (Q12),71(&2)} — D > 0 then species 1 invade successfully
and Ejo is unstable. Note that, under assumption (H2), (25) means that

2 < 5y, which is equivalent to R'? < )\;. From the fact

Inl; —1Iné&s
ka

<0,

R"™? = Ry, — NJ?Q% = Ry — Q5 < i,

we have
- 111[1 —11152 k}Q o C

T R\ A
Hence Ejs is locally asymptotically stable if and only if 7% > Cy. Therefore,
we have the following two cases.
(I.a) If T* > Cjo then Ej; and Epo are locally stable, hence the outcome

depends on initial population, it is a bistable case;
(ILb) If T* < Cfpa, then Ejs is unstable. Hence Ep; is globally stable and

species 1 competitively excludes species 2.
Species 1 is I-limited and species 2 is R-limited, that is T} < Cy, To > Cs.
We know that species 1 is better competitor in light and species 2 is better
competitor in nutrient, hence E7; and Ero are locally asymptotically stable.
Therefore, it is bistable and the outcome depends on initial population.
Species 1 is R-limited and species 2 is R-limited, that is T} > Cy, Ty > Cs.
We know that species 2 is better competitor in nutrient, hence Egs is locally
asymptotically stable.

Note that

T*

min{z(Q5), n2(I™)} = D <0 (26)

implies that

Ny

N2 I(N1,Q1,N2,Q2)=Er:
and species 2 can not invade when the resident species attains the amount N{*
with cell quota QI*'. Hence Eg; is locally asymptotically stable. On the other
hand, if min{pua(Q¥), n2(I%)} — D > 0 then species 2 invade successfully and
Eg; is unstable. Under the assumption A; > Mg, the inequality (26) implies
that Q' > o5. If not, then

vo(M, Q) < DQE < Doy = va(Na, 02) < 12(A2Q5?),

and Ay < Ao, a contradiction. Hence the assumption A\; > A9 implies that
(26) holds if and only if I7! < &, that is
Ry — )\

01

<0,

I8 =7, exp(—k; ) < &,
i.e.,
In IO —In 52 kl
T = — X< —==0(}.
Rin — M1 S 1 !
Hence Eg; is locally asymptotically stable if and only if T* < Cf.
(ITI.a) If T* < C; then Ery and Egrs are locally asymptotically stable, hence

the outcome depends on initial population, it is a bistable case;
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(IIL.b) If T* > C4, then Eg; is unstable. Hence Fry is globally stable and
species 2 competitively excludes species 1.

(IV) Species 1 is R-limited and species 2 is I-limited, that is 71 > C1, Ta < Cs.
From the stability of Ery and Ers which were discussed in (I) and (III), we
have the following subcases:

(IV.a) If T* < C1, Cra, then Ers is unstable and Fr; is locally asymptotically
stable. Hence Fr; is globally stable and species 1 competitively excludes
species 2;

(IV.b) If Cy < T* < Cya, then Egy and Ejo are unstable, then there exists
an coexistent equilibrium E®! and it is globally stable;

(IV.c) If Cry < T* < C4, then Ery and Ers are locally asymptotically stable.
Hence the outcome depends on initial population, it is a bistable case;

(IV.d) If Cy, Cro < T*, then Eg; is unstable and Fy5 is locally asymptotically
stable. Hence Ej is globally stable and species 2 competitively excludes
species 1.

We summarize all possible outcomes in Table 3 and present the relations in Figure
3. From calculation in the Appendix, we know that the curve T* = Cys is a straight
line.

We also draw the graphs, Figure 4, of the model in [10], which is two species
(1, z2) competition for two resources R and S with internal storage. We follow the
notations and results in [10], and demonstrate the competition outcomes graphically.
We assume 0 < Aps < Ap1 < R%, 0 < g1 < Ag2 < SY and denote

1
T_SO—)\Sl oI5l o &
1 — 0 )\ ) 1 — ) R1 —
RY — Ary OR1 OR1
SO—)\SQ 052 052
ngﬂ, Cy = —=, Cs2zﬁa
— A\R2 OR2 R2
and
T — SO_ASQ
RO — A\py~

Note that le%ll > og1 and Q}% > o re which implies that Cr; > C; and Cgo < Cs.
From calculation in the Appendix, we know that T = Cr; and T* = Cgs are two
straight lines. We summarize all possible outcomes of competition in Table 4 and
illustrate in Figure 4.

TABLE 4
Case Condition States Stability
) T < Cq FEgs1, Ego (I.a) T* > Cga, bistability happens.
Ty < Co (Ib) T* < Cg2, ER1 is G.A.S.
(I1) T < Cq Esi, Ero Bistability happens.
Ty > C2
(I11) T > Ch ERr1, Egro IIl.a) T* < CR1, bistability happens.

(IIL.a)
Ty > Co (IIL.b) T* > CRr1, FRr2 is G.A.S.
(IV) T > Ch ERri1, Fgo (IV.a) T* < Cr1, Cs2, ERr1 is G.A.S.
(
(

Ty < Oy IV.b) Cry < T* < Cgo, EFS is G.A.S.
IV.c) Cr1 > T* > Cga, bistability happens.
(IV.d) T* > CRr1, Cs2, Egz is G.A.S.

G.A.S. means globally asymptotically stable.
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FIGURE 3. (a) and (b) are modified from Figure 1 in Passarge et
al. [11]. (c)-(e) illustrate outcomes of our model. The isoclines
of N; and N, are right-angled and denoted by graphs 1 and 2,
respectively. In dotted region, species 1 wins; species 2 wins in
gray region; the feathered region indicates bistable case; the brick
region represents species coexistence. The case Cy < C; are (a)
and (c); The case C; < Cy are (b), (d), (e) where Cr2 < C in (d)
and Cry > C1 in (e).

6. Discussion. We analyze a competition model of two phytoplankton species for
a single nutrient with internal storage and light in a well mixed aquatic environment.
The results show that extinction, coexistence and bistability are predictable in this
model. First, while the input concentration of nutrient is less than the break-even
amount of each species, or when the input light intensity is lower than the basic
need of each species, both species extinct (Theorem 3.1). Secondly, when the input
concentrations of nutrient and light are higher than break-even concentration of all
species, the outcomes vary as following. If the species i, ¢ € {1,2}, has lowest break-
even concentration of nutrient and light, then it competitively excludes the other
(Theorem 3.2). If the semitrivial equilibrium E;, ¢ € {1, 2}, is locally stable and E},
j # i, is unstable, then coexistence is impossible (Lemma 3.4) and F; is globally
stable (Theorem 4.5). If both E; and E; are unstable, then coexistence is possible,
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(b,

7 " =Cm

Ara Ar1

FIGURE 4. The isoclines of N; and Ny are right-angled and de-
noted by graphs 1 and 2, respectively. In dotted region, species 1
wins; species 2 wins in gray region; the feathered region indicates
bistable case; the brick region represents species coexistent. (a)
The case Cy < C1; (b) The case C; < Cy with Cgy < Ci; (¢) The
case (7 < Cy with Cgo > (.

i.e., the coexistent equilibrium EZ! exists and it is globally stable (Theorem 4.6).
If both E; and E; are locally stable, then the outcome of competition is bistability
of two species (Theorem 4.7).

In the graphical presentation, our results (Figure 3cde) are compared with results
modified from Passarge et al. [11] (Figure 3ab), in which they considered two species
competition for light and nutrient without internal storage. For the case C; > Cs,
bistability of two species occurs in Figure 3a and our model (Figure 3c¢); however,
the bistable region is broader from our model. For the case C7 < Cs, coexistence
occurs in Figure 3b; however, our model indicates coexistence or bistability of the
two species (Figure 3d and 3e).

We apply graphic approach for the model in [10] and show the results in Figure
4. We demonstrate two species competition for two complementary nutrients, both
exhibit internal storage. We compare Figure 4 with the result in Tilman [14], which
consider the model without any internal storage. Similar to the comparison beween
our model (13) and that of Passarge et al. [11], Figure 4 presents the additional
prediction of bistability in the case C7 < Cs, and the enlarged bistable region in the
case C1 > (5. From the comparison of models with and without internal storage,
we obtain that bistability occurs in the case C; > C5 of those four models. The
models with internal storage do not change the outcome qualitatively; namely, they
only enlarge the bistable region. In the case C7 < Cs, the outcome of the model
without internal storage is either coexistence or competitive exclusion. Model with
internal storage predicts an additional region of bistability for the two species.

In Passarge et al. [11], they carried out monoculture experiments for five fresh-
water phytoplankton species competing for phosphorus and light. The results show
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that the species with the lowest break-even concentration of nutrient happens to
have the lowest break-even light intensity, and competitively excludes others as the
case in Theorem 3.2. The analytical result does not match the outcome of the ex-
periment in Passarge et al. [11]. We owe this to the violation on the assumption of
trade-off between competitive ability for phosphorus and light in the focal species
in Passarge et al. [11]. Without the trade-off, the competitive exclusion will occur.

In reality, a large number of phytoplankton species coexist in competing for mul-
tiple nutrients and light. In this paper we consider only two species compete for
a limiting single-nutrient with internal storage and light and obtain the possible
outcomes that are classified in graphical presentation. To explore the mechanism
promoting biodiversity in more realistic conditions, we will expand the model for
multiple species with the assumption of internal storage for our future work. In addi-
tion, we will consider heterogeneity for light environment as suggested by Yoshiyama
et al. [15]. We trust such expansion in the model shall bring fruitful and insightful
knowledge to such system.

7. Appendix.

A. Local stability of equilibria. For equilibrium Ey = (0,Q9?,0,Q9),

my1 0O 0 0
mo1 Moz M2z 0

JE) =147 ms3 0 ’
my1 0 M43  Myga
where
. 0
my1 = min{p1(QY),m (L)} — D, may = — al; (Rin, Q))Q7 — AR, (@7, Io)
0 .
2z = 5o (Rin, Q) = mindpn (Q),m (1°)} = A, (QF, 10)Q2.
0 .
Mo3 = 82 (Rin, Q)Q5 — AN, (QY, 10)QY, mas = min{u2(Q9), n2(1°)} — D,
ov
my1 = — 8£(Rm7Q2)Q1 A% ( (2)710)62(2)7
ov
Ty3 = — 81;(Rm7Q2)Q2 A5 ( (2)710)62(2)7
0 .
mia = 550 (Rin, Q3) = min{pa(Q), (1)} = A%, (8 1)

where A}Vl(Ql,I), A}VQ(Ql,I), A}Ql(QhI) are functions of @, I; A%vl(QQ,I),
A?Vz (Q2, 1), Aé?z (Q2,I) are functions of Qq, I

if p1(z) <m(y),
if p1(z) > m(y).
‘ _ {0 if p1(z) < m(y)),
(@1,D)=(2,y) —kayni(y) if pa(z) > m(y)).

)
L _ 9 _ Jmle) if () <m(y)),
Al (2.9) = 5o min{m (@.m@Y| {0 o

0 0
Al b f—
N (Ty) = N, min{1(Q1), m (I )}‘@1’[):(1#) {—kzlyni( )

Al (e,y) = g minfun(Qu), m(D)}
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o . 0 if p2(z) < n2(y),
AQ ’ = A~ ) I =
o (y) = g ming (@)Y {klm W) i) = )
o . 0 if pa(z) < n2(y),
A% (z,y) = —— Jma(1 =
N (2,9) N min{is(Q2), 72 ( )}'(QQ’I):W&‘) {—kwné(y) if o (2) > 7a(y).
o . pa(x) i pa(z) < n2(y),
A, (2,y) = =~ 2 (I =
o (0.0) = 5o, minua(@ma(DY| {0 ) > )
The eigenvalues of J(Ey) are
mi1, Moz <0, maz <0, myq <0,
hence Eg; is locally stable if mq; < 0.
For equilibrium Egr; = (N{¥, QE! 0, QF),
0 mi2 0 0
_ ma1 M2z moz 0
JEr)=| o7 maz 0 ’
ma1 M4z M43 Myq
where
/ R o
mig = py(01)Ni© >0, mgy = R (A1,01)01 <0,
o Oy
Mg = _ﬁ()\laal)NlRl + @(A1701) — D — py(o1)o1 <0,
ov .
ma3 = _aiRl()\lao-l)Q?la ms3 = I’Illl'l{/,cg( 51)7772(11%1)} - D7
61/2 8V2
myp = _ﬁ()‘la o1 — A?\ﬁ(@éﬂ,[m) 5 omap = _T@()\l’ SN,
61/2
My3 = _7()‘1a 51) 51 - A?\b(Qé%leRl) 51’
OR
8V2

|

o (A1, QF") — min{puo (QF1), n2(I™)} — AR, (QF, IFH QT < 0.

= 50,

The eigenvalues of J(Egri) are mgs, mys < 0 and the eigenvalues of
0 mi2

. Since mas < 0, miama; < 0, there are three eigenvalues of J(ER1)
Moy M2

with negative real part, and Epg; is locally stable if ms3 < 0, that is min{us(QF!),
no (I} — D < 0.

Similarly, for equilibrium Egs = (0, Q2 N2, QF?), there are three eigenvalues

of J(ERr2) with negative real part and it is locally stable if min{u; (Q¥?), n; (I7%)} —

D <0.
For equilibrium E;; = (N1, Q11 0,QLY),
my; 0 miz 0
| m21 maa moz 0
J(Ell) - 0 0 Mas 0 ’

Mgl My2 M43 Mgy
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mi1 = fkm’l(&)&Nfl, mi3 = *k277/1(51)51N1H’

ov
Mol = — 8]% (R, QMO + kini ()& Q1
o i A1 I ot i A1
= —— - N D
Moz = aR (R ) 1 ) 1 aQ (R ) )
ov
Ma3 = —aTé(RI1 QA + ko (£1)&1Q1,
. ov
mas = min{uz(Q5'),m2(£1)} — D, may = —T;(RH, QT — A% (@5, &)
v 19)%
myo = _Té(RIla él)Nllla my3 = 6]; (RIl ) él - A?Vg( élagl)
v .
mas = 5 (R, Q4") — min{pa(Q5"), ma(€1)} — A, (Q4',&)

Q2
There are three eigenvalues of J(E;) with negative real part, and it is locally
stable if min{pus(Q11),n2(£1)} < D
Similarly, for equilibrium E7s = (0, Q12 NJ2, Q%2), there are three eigenvalues of

J(Er2) with negative real part and it is locally stable if min{u;(Q12),71(¢&2)} < D.
For equilibrium B = (NEL QR NRIL QR is

0 mio 0 0

J(Eé%l) _ 221 6”22 Tmnjz 8”624 7
M4 Ma2  Ma3 Mg

miz = gy (o)) NI, mar = —%(/\1701)01,
ma2 = _ZR (A1, o0)NT + gg (A1,01) = D — ph(o1)o1, maz = ZR(ALUI)QQ :
Mmog = — aR Py o) NET L may = —kan)(€2)62 NS, mas = —karh(€2)€2 NS,
may = 6R 7 (A, QFN oy +k177§(§2)§2Q§I7
miz = 02 (0, QENIY, mas =~ %2 (01, QENQE! + kanh(€2)E @4,
My = — gR(AthI)NQRI gg (M, Q¥ = D.

B. Geometric properties of T* = Cjy, T* = Cr1, T* = Cgo. First of all, we
consider the geometric properties of the curve of T* = Cjs. The equation T* = Cs
implies
111[0 —1H§2 o kQ
and
(In Ty — In&9) Q42 = ka(Rin — M1).

We denote the function G(Ri,,In Iy) as following
G(Rin,InIp) = (InIp — In&)Q5? — ka(Rin — M),
where Q12 = Q22 (R;,,In Iy). Note that G(\;,In&;) =
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Computation of the first order partial derivative of G is

) (- S0 + D)

G(Rin,lnlo) = % ” <0,
ORi T (R, Q)N — 35 (k™. Q) + D
where RT2 = Ry, — NQIQQéz
I2 vy (pI2 HI2
b 2 ( - %(R , Q3%) + D)
G Rin,lnl = > 0.
dln Iy ( o) %(R”, I2Y\NI2 — %—”QQ(R”, Y+ D

When (Rip, InIy) = (A1,In&s), then N212(1n &) = 0 and Q22 satisfies VQ(RIQ, 2y =
DQ£2 and RI2 = R;, = \1. Hence dR ()\1,1H§2) = —ky < 0and dlnI ()\1, In 52)
= Q{2 (\,In&) > 0. By implicit functlon theorem, there exists a differentiable
function h satisfies In Iy = h(Rin), In& = h(A1), and G(Ri,, h(Rin)) = 0. Hence

LG( in71nIO> kQ h(Rm) — lnfz

h/ Rin = - = —— = ——"_>2= > (. (27)
(fte) 011?1 G(Rin,In 1) 52 Rin — X\
From (27),
" 1 f
h (Rln) (Rln o )\1)2 h (Rm)(Rln )\1) (h(R]n) n§2) 0

Hence
ko

M) = OB ngy)

(Rin - )\1) + 11152,

it is a straight line.
In the following, we consider the geometric properties of curves of T* = C'g; and
= CSQ. Let
G1(R°,58%) = (8° = As2)or — Q&1 (R” — A1),
G2(R", 8% = (5 = Xs2)Q%3 — (R” — AR1)os2,

then T* = Cg; means G1(R°, S%) = 0, and T* = Cgy means Go(R°,S%) =0
From (5.3) and (5.5) in [10], we know that QE} and Q%3 satisfy

PSl( — I 1Qs1a ) DQ51 =
PR2( 0_1'2 Q}227 ) DQ

where xftt = 2F1(RO) = 71%0‘;;;31, and 252 = 252(8°) = 750;3252, therefore Q& =
QEL(RY, 8% and Q32 = Q74(R, S°) are functions of R® and S°. Then

QR _QS1 9ps1 R1 gOR1
S1 _ or1_ OR _ _%xS1 S1
0 ~— ,.R19ps1 _ 9Opsi - 0
OR T hR 50T +D OR1 0S8
S2 OpR2 52
Qs _ OR _ 052 IQF> >0
0 ~ .520pr2 _ Opro - 52 0 :
OR TR~ a0 T D Qpz 05
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Hence

oG, —QS(-g&+ D) QMg

0~ .R19ps1 _ 9psi 0
ORY  pf1%s so-+D oRr1 05

9Gy —052(— 542 + D) s 0Gs
ORO  p§20pme _ fpnz 4 D Q7 05°

‘We know that G1()\R1,/\52) = GQ()\Rl,)\SQ) = 0, and when (RO, SO) = (>\R1, /\52),
2B (Ag1) = 0 = 25%(\s2), and QE} (Ag1, As2) satisfies ps1(As2, QF) — DQEL =0,
Q%(Am, As2) satisfies pRQ()\Rl,Q%) — DQ}?2 = 0. It follows that

G1(Ar1,As2) _ QF (Ar1,As2) G1(AR1, As2) <0
6R0 B OR1 850 ’
O0G2(AR1,As2) _ 052 0G2(AR1, As2) <0
ORO  QPE(M\R1sAs2) dS0 '

Therefore, by implicit function theorem, there exists differentiable functions hq, ho
satisﬁes SO = hl(RO), SO = hQ(RO), )\52 = hl(/\Rl) = h2()\R1)7 and Gl(RO, hl(RO))
=0 = G2(R° hy(R")). Hence

W (R = BmGIRYEY) Qi m(R) sy (28)
! 52:G1(R%,5%)  om RY — AR 7
P 0 g0 0
g G2(R°,S%)  oga ha(RY) — Mg
hy(R") = — 202 = %= >0 29
2B == ) QR R m (29)
From (28) and (29),
1
W (R) = o= 3y [MOR) (B = Ama) = (s () = Asa)| = .
1
M5 (RY) = (po —a)e [PH(R)(R® = Apa) = (ha(R%) = As)| = 0.
Hence
R1 A A
hi(R%) = 951, Asa) (R” = Ar1) + As2,
OR1
ha(R°) = B . (R® — AR1) + As2,

QP (AR1, As2)
they are straight lines.
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