§4.3 Fundamental Theorem of Natural Selection

The essence of the theory of evolution through selection is that in any population there will exist genetic variation between individuals and that those genotypes which are better suited to the environment than others will contribute rather more than their fair share of offspring to the following generation. Thus the genetical make-up of the following generation will differ somewhat from that of the parent generation, leading to substantial changes over large numbers of generations.


Such evolution depends on the existence of genetical variation in the population, so that it might be expected that the greater the variation, the greater will be the changes which occur. Further, it appears that in some sense the process leads to an ‘improvement’ in the population. The theory which has so far been developed allows a more precise quantitative examination of these intuitive notions.

Random-mating populations

Consider firstly the case where only two alleles 
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The mean fitness 
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 of the population in the second generation is
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and the increase 
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 in mean fitness between the two generations is
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Writing 
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Clearly 
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 is always non-negative, so that we can conclude that gene frequencies move, under natural selection, in such a way as to increase, or at worst maintain, the mean fitness of the population.

If, furthermore, the 
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and
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The quantities 
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 can be given the following interpretation. If the heterozygotes 
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It was remarked earlier than it is expected that 
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 will be related in some way to the variation in fitness in the population. This possibility is now investigated more closely. It is clear from eqn. 
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will be positive when 
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 is to have some interpretation as a variance, it can only be as some component of the total variance of fitness.
To guide us in trying to isolate some component of 
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where 
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which is identical to eqn. 
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. Thus to the order of approximation used the increase in mean fitness of the population is identical to that part of the total genetic variance which can be accounted for by fitting a weighted least-squares regression line to the fitnesses. For this reason, this component is called the ‘additive’ part of the total variance.

Two sex viability models with two alleles. Consider next a population divided into males and females, mating randomly subject to viability selection where the fitness coefficients may differ between the sexes. The array in Table 1 describes the process (assuming male and female offspring are produced with equal probability).
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Table 1

With Mendelian segregation we obtain for the gene frequencies in the next generation the transformation equations
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Where the denominators are the required normalization factors (cf. Model 1).

In the case at hand it is more convenient to express the changes of gene frequencies over successive generations in terms of the equivalent pair of variables 
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Write 
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 for the mapping defined in 
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We wish to ascertain the character of all equilibria of 
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 and their domains of attraction. The analysis of 
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The stability nature of any equilibrium is customarily ascertained by analysis of the local linear approximation to the non-linear mapping 
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 in the neighborhood of the fixed point. More specifically, we examine the matrix transformation given by the gradient matrix
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evaluated at the fixed point 
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All equilibria can be determined in general, and for some special cases, viz., 
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The following can be readily checked. Assume by symmetry 
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The global convergence behavior of 
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SOME MODELS OF POSITIVE ASSORTATIVE MATING


Consider a two-allele (
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 and 
[image: image165.wmf]a

) single locus population displaying certain preferences in mating behavior. We consider here the case where the preference is exercised by one of the sexes, say the female sex, (this covers most situations of insect and mammal populations).

A model of assortative mating. Assume that 
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When the prohibitions of assortative mating are operating, it is obligate that each mate of an 
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	Of Assorting Types
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Table 3


The corresponding recurrence relations connecting genotype frequencies over successive generations in accordance with Mendelian segregation laws become
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Introducing the 
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The following inferences can now be made:

(i) For 
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(ii) For 
[image: image222.wmf]b

a

<

, the population ultimately fixes in the pure homozygous 
[image: image223.wmf]aa

 state and convergence occurs with an asymptotic factor of decrease per generation 
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