Chapter 4
Introduction to population genetics

§4.1 Hardy-Weinberg Law

First we introduce a minimum of the terminology and mechanisms of population genetic systems. Chromosomes—usually found in the nucleus—mostly govern the inheritable characteristics of an organism, Chromosomes may occur singly (the haploid case) as in some fungi, in pairs (the diploid case), as in mammals, or in large groups (triploid, tetraploid, in general polyploid) as in many plants. The associated pairs, triplets, etc., of chromosomes are called homologous. Locus is the position at which a gene (a sort of unit of the chromosome) occurs on a chromosome. Alleles are alternate gene forms at given locus. Genotypes are the various possible combinations of alleles at corresponding loci on homologous chromosomes. In the diploid case if the alleles are 
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The population to be considered here, unless specified otherwise, contain diploid individuals. We concentrate our attention, for the most part, on characters determined by one or two loci, on a given pair of chromosomes. We usually assume that two alternative genes (alleles) may occur at each locus. Consider the case of two loci, where the alleles 
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 are possible at the first locus and alleles 
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 at the second locus. A typical one of the ten possible genotypes (see listing immediately below) could be written 
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 are situated on the second chromosome. The ten genotypes are explicitly
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The physical manifestation of the genotype is called the phenotype. If the genotype 
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 has the phenotype of the 
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 individual, then 
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 is said to be a dominant gene and 
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 is called recessive to 
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We shall assume that an offspring is found by the donation of a gamete (one of each pair of homologous chromosomes) from each of two parents. In the case of one locus, each parent, depending on its genotype, may donate either 
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 or 
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 to form a zygote (fertilized egg) having genotype 
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. Individuals with genotype 
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 are homozygotes; 
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 is a heterozygote. For two loci, the donated gametes can be of four kinds, 
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 and ten zygotes are possible as listed previously. Generations are taken to be non-overlapping.

Considering the one locus case, we are primarily interested in tracing the frequencies of the three genotypes over time. Assume that the population size is very large, effectively infinite. Let 
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 increases we must describe the mating system, i.e., the way mating pairs are to be selected.


One of the most widely studied systems of mating is random-mating. This occurs when any one individual of one sex is equally likely to mate with any one of the opposite sex. Thus, in the one locus case above, the mating 
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 offspring will be produced with probabilities 
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 respectively. This equally likely case of segregation is called Mendelian segregation.

In an infinite population, not subject to any outside influences, and in which random mating takes place the following Hardy-Weinberg Law holds. This states that, if in a given generation the frequencies of the 
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 respectively, then in all subsequent generations the frequencies remain the same. We shall this, and the fact that random mating is equivalent to random union of gametes.

The Hardy-Weinberg Law
We consider a random-mating population which is so large that we may ignore small chance variations in gene frequencies and treat all processes as being deterministic. Suppose that at any given locus only two alleles may occur, namely 
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, and that individuals are diploid but monoecious, (I.e. can act as both male and female parents). Further, suppose that in any generation, the proportions of the three genotypes 
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Since random mating obtains, the frequency of matings of the type 
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, and so on. We must now consider the outcomes of each of these matings. If the very small probability of mutation is ignored, elementary Mendelian rules indicate that the outcome of an 
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It follows that, since 
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Similar considerations give
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Note that in deriving these results we have assumed no selective differences between genotypes; that is we have assumed that the genotype of an individual affects neither his chance of surviving to produce offspring nor the number of such offspring.


The frequencies
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. Thus the genotypic frequencies stabled by the second generation are maintained in the third generation and consequently in all subsequent generations. Note that frequencies having this property can be characterized as those satisfying the relation
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Clearly, if this relation holds in the first generation, so that
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then not only would there be no change in genotypic frequencies between the second and subsequent generations, but also these frequencies would be the same as those in the first generation. Populations for which eqn. 
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 is true are said to have genotypic frequencies in Hardy-Weinberg form.

Since 
[image: image119.wmf]1

2

=

+

+

R

Q

P

, only two of the frequencies 
[image: image120.wmf]P

, 
[image: image121.wmf]Q

2

 and 
[image: image122.wmf]R

 are independent. If, further, eqn. 
[image: image123.wmf])

5

.

1

(

 holds, only one frequency is independent. Examination of eqns. 
[image: image124.wmf])

1

.

1

(

-
[image: image125.wmf])

3

.

1

(

 shows that the most convenient quantity for independent consideration is 
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The above results may be summarized in the form of a theorem:

Theorem (Hardy-Weinberg). Under the assumptions stated, a population having genotypic frequencies 
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Random union of gametes

The Hardy-Weinberg law was derived above under a number of simplifying assumptions, and in order to derive analogous laws under less restrictive assumptions, and to facilitate the mathematical arguments in general, we will now rederive the law in a more efficient way.

Any 
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 follow similarly. The derivation of genotypic frequencies from the argument of random union of gametes will be used subsequently on a number of occasions.

Dioecious populations

We assumed that individuals are monoecious. While this assumption is of some independent interest, it was made mainly for convenience; to find how relevant the derived from it are for other situations, some consideration must be given to populations where individuals are dioecious.

Suppose that the frequencies of 
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 respectively. The gametic output from this daughter generations is for both sexes, 
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 for both sexes. Thus after one generation of random mating, the frequencies of three genotypes are the same in both males and females, while a further generation of random mating ensures that these frequencies are in Hardy-Weinberg form.


Thus it is reasonable in many circumstances to ignore the dioecious nature of the population, and we shall indeed almost always do this, mentioning it only on occasions when special attention is necessary.

Sex-linked genes and multiple alleles

The theory of the preceding section does not apply when the genes in question are sex-linked, i.e. located on the sex chromosome. To analyse the behaviour for sex-linked genes, suppose that the male sex is heterogametic and that the initial frequencies are

	
	male
	
	female
	

	
	
[image: image184.wmf]1

A


	
[image: image185.wmf]2

A


	
	
[image: image186.wmf]1

1

A

A


	
[image: image187.wmf]2

1

A

A


	
[image: image188.wmf]2

2

A

A


	

	
	
[image: image189.wmf]M

p


	
[image: image190.wmf]M

q


	
	
[image: image191.wmf]F

P


	
[image: image192.wmf]F

Q

2


	
[image: image193.wmf]F

R


	


Consideration of the gametic output from each sex shows that in the following generation these frequencies become
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The difference between the frequency of 
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while in the second generation this difference is
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which in absolute value is half of 
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. Clearly, with succeeding generations, this difference rapidly approaches zero. If, then, it is assumed that initially 
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are attained, and that these frequencies are unaltered in subsequent generations. For arbitrary initial values of 
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The Hardy-Weinberg law can be extended immediately to the case where more than two types of genes are allowed at the locus in question. If alleles 
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; in subsequent generations these frequencies are unaltered. The proofs of these statements follow immediately by considering gamete frequencies, and are omitted; again it is clear that genotypic frequencies are essentially stable.

Miscellaneous results

Some elementary considerations derived from the Hardy-Weinberg law will be examined.


In a number of case, the gene 
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A second consequence of the Hardy-Weinberg law is that if 
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Finally, we remark that the Hardy-Weinberg law has been derived here under the assumption that generations do not overlap. Thus if this assumption does not hold, the law itself may not hold. For example, suppose as a continuous time analogue to the above that in a small time 
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 of the population dies and is replaced, by random sampling, from he population at large. Under this system the frequency 
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Passing to the limit in this equation,
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Clearly a population initially in Hardy-Weinberg equilibrium will remain in equilibrium, but for non-populations, the equilibrium state is approached asymptotically (and rapidly). It is clear that the important conclusions derived from the Hardy-Weinberg law remain unchanged.

The effect of selection

The results given above have been derived under the assumption that no selective differences exist between the three genotypes 
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. In attempting to discuss the effect of selection one immediately comes up against the problem that selective values are not properties of genes; they are rather properties of individuals (i.e. of the whole interacting collection of genes which an individual has), and then refer properly only to a given environment. Thus it may, and often does, happen that a gene which is selectively and advantageous against one genetic background is disadvantageous against another. It will be shown later that such interaction effects can have major evolutionary consequences, and that it appears difficult even to define a concept of ‘ independence’ of loci. For the moment, we make the rough approximation that selective differences depend on the genotype at a given locus; despite the above remarks, this approximation leads to a number of valuable results.

To be definite, suppose that if, at the time of conception of any generation, the frequencies of the genotypes are 
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. (Note that the population is being considered at the time of formation of zygotes from that gametes of the previous generation. When selective differences exist, this is the only time when Hardy-Weinberg proportions strictly apply; later on, when considering finite populations, the population will be counted at the age of sexual maturity.) The differential reproduction rates may be due to several causes, including in particular different survival rates and different offspring distributions. The quantities 
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 will be called the ‘fitnesses’ of the three genotypes, and genotypic frequencies will usually change from one generation to the next.


With the fitnesses given above, the frequencies of the various genotypes in the following generation now satisfy the equation
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Clearly, after on generation of random mating, Hardy-Weinberg proportions are achieved. In the next generation, the same arguments show that
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It follows that the equation 
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 no longer holds in general. Thus while genotype frequencies settle down immediately to Hardy-Weinberg form, the more important part of the Hardy-Weinberg theorem relating to constancy of genotypic frequencies no longer holds. We shall examine some consequences of this conclusion in the next section.
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